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ABSTRACT 

 

Diarylacetylenes having fluorenyl groups and other substituents (trimethylsilyl, t-butyl, 

bromine, fluorine) (1al) were polymerized with TaCl5n-Bu4Sn. Monomers 1al produced 

high molecular weight polymers 2al (Mw 5.11051.3106) in 1259% yields. All of the 

polymers were soluble in common organic solvents, and gave tough free-standing membranes 

by the solution casting method. The onset temperatures of weight loss of polymers 2al in air 

were over 400 °C, indicating considerably high thermal stability. All the polymer membranes 

showed high gas permeability; e.g., the oxygen permeability coefficient (PO2) of 2a was as 

large as 4800 barrers. Membrane 2d possessing two fluorine atoms at meta and para positions 

of the phenyl ring showed the highest oxygen permeability (PO2 = 6600 barrers) among the 

present polymers. 
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1. Introduction 

 

 Disubstituted acetylenes can be polymerized with group 5 and 6 transition metal 

catalysts to provide substituted polyacetylenes, which have alternating carbon-carbon double 

bonds along the main chain [1]. It is known that some of these polymers, especially those 

having bulky substituents, exhibit high gas permeability among all the existing polymers [2]. 

For example, poly(1-trimethylsilyl-1-propyne) [poly(TMSP)], which is obtained by the 

polymerization of the corresponding monomer with Ta- and Nb-based catalysts, is soluble in 

common organic solvents, provides a free-standing membrane by solution casting, and shows 

extremely high gas permeability [2f, 3]; its oxygen permeability coefficient (PO2) reaches 

about 10 000 barrers [1 barrer = 1  1010 cm3 (STP) cm/(cm2 s cmHg)]. The high gas 

permeability of poly(TMSP) is attributable to the presence of microvoids in the polymer 

matrix based on the stiff main chain composed of alternating double bonds and the bulky 

spherical trimethylsilyl groups. 

 Poly(diphenylacetylene) derivatives are another important type of highly 

gas-permeable polymers. For instance, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] 

[poly(TMSDPA)] exhibits high gas permeability as well as thermal stability [4]. The PO2 

value of this polymer is as high as 1500 barrers, which is ca. twice larger than that of the most 

gas-permeable rubbery polymer, poly(dimethylsiloxane) [poly(DMS)] [5], and the onset 

temperature of weight loss in air (T0) is 420 °C [4], which is clearly higher than that of 

poly(TMSP) (300 °C) [3b]. The superior combination of high gas permeability and high 

thermal stability makes poly(diphenylacetylene)s as promising candidates for gas separation 

membranes. 
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 In previous studies, we have investigated the synthesis and gas permeation 

properties of several poly(diarylacetylene)s [6]. The polymerization of 

1-(2-fluorenyl)-2-(p-trimethylsilyl)phenylacetylene with TaCl5n-Bu4Sn afforded a high 

molecular weight polymer, whose PO2 value was as high as 1700 barrers [6b]. Quite recently 

we have found that indan-containing poly(diarylacetylene)s exhibit gas permeability 

comparable to that of poly(TMSP) [7]. Polymers containing fluorene moieties in the main 

chain or side chain have attracted much attention as potential materials for light-emitting 

diodes [8], thin film transistors [9], solar cells [10], and gas separation membranes [11]. The 

9-position of fluorene can be easily substituted by various groups. Thus, it is interesting to 

synthesize polyacetylenes having substituted fluorenyl groups in the side chain and to study 

their gas permeation properties. 

 Here we report the polymerization of diarylacetylenes containing substituted 

fluorenyl groups (Scheme 1, 1al), and the fabrication of free-standing membranes from 

resultant polymers (2al). Furthermore, the gas permeability and general properties of 

polymers 2al were investigated. 

(insert Scheme 1 here) 

 

2. Experimental section 

 

2.1. Measurements 

 

Molecular weights of polymers were estimated by gel permeation chromatography 

(CHCl3 as eluent, polystyrene calibration). IR spectra were recorded on a JASCO FT/IR-4100 
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spectrophotometer. 1H (400 MHz) and 13C (100 MHz) NMR spectra were observed in CDCl3 

on a JEOL EX-400 spectrometer using tetramethylsilane as an internal standard. Elemental 

analysis of monomers was carried out at the Microanalytical Center of Kyoto University. 

Thermal gravimetric analysis (TGA) was conducted in air with a Shimadzu TGA-50 thermal 

analyzer. Melting points (mp) were determined on a Yanaco micro melting point apparatus. 

 

2.2. Materials 

 

TaCl5 (Aldrich) as main catalyst component was used without further purification. 

n-Bu4Sn (Wako Pure Chemical) as cocatalyst was used after distillation. 

4-(Trimethylsilyl)phenylacetylene was donated by NOF Co. Ltd. Fluorene, 2-bromofluorene, 

and 2,7-dibromofluorene were purchased from Aldrich. 4-tert-Butylphenylacetylene was 

commercially obtained from Wako Pure Chemical. Toluene as a polymerization solvent was 

purified by the standard method. 

 

2.3. Monomer synthesis 

 

9,9-Dimethyl-2-iodofluorene, 9,9-dimethyl-2,7-dibromofluorene, and 

1-(9,9-dimethylfluoren-2-yl)acetylene were prepared according to the literature method [12]. 

2’-Bromo-spiro(cyclopropane-1,9’-fluorene) was prepared according to the literature 

procedure [13]. Monomers 1a–l were synthesized according to Scheme 2, referring to the 

literature with respect to the incorporation of the triple bond [14]. 

(insert Scheme 2 here) 
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2.3.1. 1-Phenyl-2-(9,9-dimethylfluoren-2-yl)acetylene (1a) 

A 500 mL three-necked flask was equipped with a dropping funnel, a three-way 

stopcock, and a magnetic stirring bar, and was flushed with dry nitrogen. 

9,9-Dimethyl-2-iodofluorene (8.0 g, 25 mmol), bis(triphenylphosphine)palladium dichloride 

(0.18 g, 0.25 mmol), cuprous iodide (0.29 g, 1.5 mmol), triphenylphosphine (0.26 g, 1.0 

mmol), and triethylamine (200 mL) were placed in the flask. Then, phenylacetylene (3.2 g, 31 

mmol) in triethylamine (15 mL) solution was added dropwise, and the reaction mixture was 

stirred overnight at room temperature. After the triethylamine in the reaction mixture was 

evaporated, ether (ca. 300 mL) was added, and then the insoluble salt was filtered off. The 

filtrate was washed with 1 M hydrochloric acid and then with water. The ethereal solution was 

dried over anhydrous magnesium sulfate and then concentrated at reduced pressure. 

Purification of the crude product by silica gel column chromatography (eluent: hexane) 

provided the desired product. Yield 63%, white solid; mp 129.0–130.0 °C; IR (KBr, cm-1): 

2976, 2220, 1492, 1443, 1273, 1071, 882, 839, 756, 737, 692, 570. 1H NMR (CDCl3, ppm): 

7.72–7.68 (m, 2H, Ar), 7.61 (s, 1H, Ar), 7.57–7.51 (m, 3H, Ar), 7.45–7.43 (m, 1H, Ar), 

7.38–7.31 (m, 5H, Ar), 1.50 (s, 6H, C(CH3)2). 
13C NMR (CDCl3, ppm): 153.9, 153.6, 139.4, 

138.5, 131.6, 130.7, 128.3, 128.1, 127.7, 127.1, 125.9, 123.4, 122.6, 121.7, 120.3, 119.9, 90.2, 

89.4, 46.8, 27.0. Anal. Calcd for C23H18: C, 93.84; H, 6.16. Found: C, 93.55; H, 6.33. 

 

2.3.2. 1-(4-Fluorophenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1b) 

This monomer was prepared by the same method as for 1a by using 

p-fluoroiodobenzene and 1-(9,9-dimethylfluoren-2-yl)acetylene instead of 
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9,9-dimethyl-2-iodofluorene and phenylacetylene to give a white solid; yield 84%, mp 

147.0−148.5 °C. IR (KBr, cm-1): 2962, 2220, 1895, 1596, 1506, 1216, 1156, 1090, 835, 734. 

1H NMR (CDCl3,ppm): 7.72–7.67 (m, 2H, Ar), 7.59–7.43 (m, 5H, Ar), 7.36–7.32 (m, 2H, Ar), 

7.07–7.02 (m, 2H, Ar), 1.50 (s, 6H, C(CH3)2). 
13C NMR (CDCl3, ppm): 162.4 (d, 1J = 249 Hz), 

153.9, 153.6, 139.5, 138.4, 133.4 (d, 3J = 9.10 Hz), 130.7, 127.7, 127.1, 125.8, 122.6, 121.5, 

120.3, 120.0, 119.5 (d, 4J = 3.30 Hz), 115.6 (d, 2J = 22.3 Hz), 89.9, 88.3, 46.8, 27.0. Anal. 

Calcd for C23H17F: C, 88.43; H, 5.49. Found: C, 88.39; H, 5.60. 

 

2.3.3. 1-(3-Fluorophenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1c) 

This monomer was prepared by the same method as for 1b by using 

m-fluoroiodobenzene instead of p-fluoroiodobenzene to give a white solid; yield 88%, mp 

87.0−88.0 °C. IR (KBr, cm-1): 2979, 2206, 1912, 1577, 1449, 1192, 860, 781, 735, 678. 1H 

NMR (CDCl3,ppm): 7.73–7.69 (m, 2H, Ar), 7.60 (s, 1H, Ar), 7.52 (d, J = 7.9 Hz, 1H, Ar), 

7.44 (m, 1H, Ar), 7.35–7.24 (m, 5H, Ar), 7.04 (m, 1H, Ar), 1.50 (s, 6H, C(CH3)2). 
13C NMR 

(CDCl3, ppm): 162.4 (d, 1J = 246 Hz), 153.9, 153.6, 139.8, 138.4, 130.8, 129.9 (d, 3J = 9.10 

Hz), 127.8, 127.4 (d, 4J = 3.30 Hz), 127.1, 126.0, 125.3 (d, 3J = 9.09 Hz), 122.6, 121.1, 120.3, 

120.0, 118.3 (d, 2J = 23.1 Hz), 115.4 (d, 2J = 20.7 Hz), 91.2, 88.2 (d, 4J = 3.30 Hz), 46.8, 27.0. 

Anal. Calcd for C23H17F: C, 88.43; H, 5.49. Found: C, 88.50; H, 5.75. 

 

2.3.4. 1-(3,4-Difluorophenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1d) 

This monomer was prepared by the same method as for 1b by using 

1-iodo-3,4-difluorobenzene instead of p-fluoroiodobenzene to give a white solid; yield 88%, 

mp 105.0−106.5 °C. IR (KBr, cm-1): 2975, 2210, 1913, 1597, 1517, 1273, 1116, 860, 759, 735. 
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1H NMR (CDCl3,ppm): 7.73–7.69 (m, 2H, Ar), 7.59 (s, 1H, Ar), 7.50 (d, J = 8.0 Hz, 1H, Ar), 

7.44 (m, 1H, Ar), 7.38–7.25 (m, 4H, Ar), 7.14 (m, 1H, Ar), 1.50 (s, 6H, C(CH3)2). 
13C NMR 

(CDCl3, ppm): 153.9, 153.6, 150.4 (dd, 1J = 251 Hz, 2J = 12.4 Hz), 150.0 (dd, 1J = 248 Hz, 2J 

= 12.4 Hz), 139.8, 138.3, 130.7, 128.1 (dd, 3J = 6.20 Hz, 4J = 3.73 Hz), 127.8, 127.1, 125.9, 

122.6, 120.9, 120.4 (d, 2J = 18.2 Hz), 120.3 (d, 3J = 8.26 Hz), 120.3, 120.0, 117.4 (d, 2J = 19.0 

Hz), 90.8 (d, 5J = 2.48 Hz), 87.2 (vt, J = 2.07 Hz), 46.8, 26.9. Anal. Calcd for C23H16F2: C, 

83.62; H, 4.88. Found: C, 83.73; H, 5.12. 

 

2.3.5. 1-(3,5-Difluorophenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1e) 

This monomer was prepared by the same method as for 1b by using 

1-iodo-3,5-difluorobenzene instead of p-fluoroiodobenzene to give a white solid; yield 79%, 

mp 95.0−96.0 °C. IR (KBr, cm-1): 2979, 2208, 1912, 1617, 1424, 1122, 989, 838, 736, 509. 

1H NMR (CDCl3,ppm): 7.71–7.66 (m, 2H, Ar), 7.59 (s, 1H, Ar), 7.49 (d, J = 7.8 Hz, 1H, Ar), 

7.43–7.41 (m, 1H, Ar), 7.35–7.31 (m, 2H, Ar), 7.06–7.04 (m, 2H, Ar), 6.80–6.75 (m, 1H, Ar), 

1.48 (s, 6H, C(CH3)2). 
13C NMR (CDCl3, ppm): 162.7 (dd, 1J = 249 Hz, 3J = 13.2 Hz), 153.9, 

153.7, 140.1, 138.3, 130.9, 127.9, 127.2, 126.2 (t, 3J = 12.4 Hz), 126.0, 122.7, 120.6, 120.4, 

120.0, 114.4 (dd, 2J = 19.8 Hz, 4J = 7.44 Hz), 104.2 (t, 2J = 24.8 Hz), 92.3, 87.2 (t, 4J = 3.30 

Hz), 46.9, 27.0. Anal. Calcd for C23H16F2: C, 83.62; H, 4.88. Found: C, 83.59; H, 5.02. 

 

2.3.6. 1-(4-Bromophenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1f) 

This monomer was prepared by the same method as for 1b by using 

p-bromoiodobenzene instead of p-fluoroiodobenzene to give a white solid; yield 77%, mp 

145.0−147.0 °C. IR (KBr, cm-1): 2958, 2220, 1905, 1490, 1066, 1009, 887, 735, 523. 1H 
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NMR (CDCl3, ppm): 7.73–7.68 (m, 2H, Ar), 7.59 (s, 1H, Ar), 7.51–7.47 (m, 3H, Ar), 

7.45–7.39 (m, 3H, Ar), 7.37–7.31 (m, 2H, Ar), 1.49 (s, 6H, C(CH3)2). 
13C NMR (CDCl3, 

ppm): 153.9, 153.6, 139.7, 138.4, 133.0, 131.6, 130.7, 127.8, 127.1, 125.9, 122.7, 122.4, 

122.3, 121.3, 120.3, 120.0, 91.4, 88.4, 46.9, 27.0. Anal. Calcd for C23H17Br: C, 74.00; H, 4.59. 

Found: C, 74.12; H, 4.89. 

 

2.3.7. 1-(4-tert-Butylphenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1g) 

This monomer was prepared by the same method as for 1a by using 

4-tert-butylphenylacetylene instead of phenylacetylene to give a white solid; yield 35%, mp 

177.5−179.5 °C. IR (KBr, cm-1): 2959, 1506, 1445, 1396, 834, 782, 757, 736, 567. 1H NMR 

(CDCl3, ppm): 7.72–7.67 (m, 2H, Ar), 7.60 (s, 1H, Ar), 7.52–7.48 (m, 3H, Ar), 7.44–7.42 (m, 

1H, Ar), 7.39–7.31 (m, 4H, Ar), 1.50 (s, 6H, C(CH3)2), 1.33 (s, 9H, C(CH3)3). 
13C NMR 

(CDCl3, ppm): 153.9, 153.6, 151.4, 139.2, 138.6, 131.3, 130.7, 127.6, 127.1, 125.9, 125.4, 

122.6, 121.9, 120.4, 120.2, 119.9, 89.6, 89.6, 46.8, 34.8, 31.2, 27.0. Anal. Calcd for C27H26: C, 

92.52; H, 7.48. Found: C, 92.24; H, 7.54. 

 

2.3.8. 1-(4-Trimethylsilylphenyl)-2-(9,9-dimethylfluoren-2-yl)acetylene (1h) 

This monomer was prepared by the same method as for 1a by using 

4-(trimethylsilyl)phenylacetylene instead of phenylacetylene to give a white solid; yield 63%, 

mp 139.0−142.0 °C. IR (KBr, cm-1): 2959, 2219, 1591, 1445, 1252, 1099, 824, 757, 633, 454. 

1H NMR (CDCl3, ppm): 7.73–7.68 (m, 2H, Ar), 7.61 (s, 1H, Ar), 7.54–7.49 (m, 5H, Ar), 

7.45–7.43 (m, 1H, Ar), 7.36–7.31 (m, 2H, Ar), 1.50 (s, 6H, C(CH3)2), 0.28 (s, 9H, Si(CH3)3). 

13C NMR (CDCl3, ppm): 153.9, 153.6, 140.9, 139.4, 138.5, 133.2, 130.8, 130.6, 127.7, 127.1, 



 10

125.9, 123.7, 122.7, 121.7, 120.3, 119.9, 90.6, 89.6, 46.9, 27.0, -1.2. Anal. Calcd for 

C26H26Si: C, 85.19; H, 7.15. Found: C, 85.05; H, 7.24. 

 

2.3.9. 1-Phenyl-2-(9,9-dimethyl-7-bromofluoren-2-yl)acetylene (1i) 

This monomer was prepared similarly to 1a from 9,9-dimethyl-2,7-dibromofluorene 

to give a white solid; yield 37%, mp 149.5−150.5 °C. IR (KBr, cm-1): 2978, 1442, 1400, 1257, 

1073, 820, 751, 686, 466. 1H NMR (CDCl3, ppm): 7.65 (d, J = 7.8 Hz, 1H, Ar), 7.59–7.51 (m, 

6H, Ar), 7.46 (d, J = 8.0 Hz, 1H, Ar), 7.39–7.33 (m, 3H, Ar), 1.49 (s, 6H, C(CH3)2). 
13C NMR 

(CDCl3, ppm): 155.9, 153.2, 138.3, 137.5, 131.6, 130.9, 130.3, 128.4, 128.3, 126.2, 125.9, 

123.3, 122.2, 121.6, 121.5, 120.0, 90.0, 89.8, 47.1, 26.9. Anal. Calcd for C23H17Br: C, 74.00; 

H, 4.59. Found: C, 74.00; H, 4.67. 

 

2.3.10. 1-Phenyl-2-(9,9-dimethyl-7-trimethylsilylfluoren-2-yl)acetylene (1j) 

A 300 mL three-necked flask was equipped with a dropping funnel, a three-way 

stopcock, and a magnetic stirring bar. After the flask was flushed with nitrogen, 

9,9-dimethyl-2,7-dibromofluorene (10 g, 28 mmol), ether (100 mL), and benzene (40 mL) 

were added and cooled at 0 °C. At the same temperature, a hexane solution of n-butyllithium 

(18 mL, 1.6 M, 28 mmol) was added dropwise, and then the mixture was stirred for 2 h at 

room temperature. Then, a solution of trimethylchlorosilane (3.0 g, 28 mmol) in ether (10 

mL) was added dropwise at 0 °C, and stirring was continued further for 5 h at room 

temperature. A small amount of water was added at 0 °C, and the reaction mixture was 

extracted with ether. The organic phase was washed with water, and dried over anhydrous 

magnesium sulfate. After ether was evaporated, the crude product was purified by silica gel 
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column chromatography (eluent: hexane) to give 

9,9-dimethyl-2-bromo-7-(trimethylsilyl)fluorene as a white solid. 

1j was prepared similarly to 1a by using 

9,9-dimethyl-2-bromo-7-(trimethylsilyl)fluorene instead of 9,9-dimethyl-2-iodofluorene to 

give a white solid; yield 43%, mp 124.0−125.0 °C. IR (KBr, cm-1): 2958, 1458, 1396, 1246, 

1107, 825, 756, 690, 629, 462. 1H NMR (CDCl3, ppm): 7.70 (d, J = 7.3 Hz, 2H, Ar), 

7.60–7.50 (m, 6H, Ar), 7.37–7.34 (m, 3H, Ar), 1.51 (s, 6H, C(CH3)2), 0.32 (s, 9H, Si(CH3)3). 

13C NMR (CDCl3, ppm): 153.8, 153.0, 140.1, 139.4, 139.2, 132.2, 131.6, 130.7, 128.4, 128.1, 

127.2, 125.9, 123.4, 121.8, 120.1, 119.6, 90.3, 89.5, 46.9, 27.1, -0.9. Anal. Calcd for 

C26H26Si: C, 85.19; H, 7.15. Found: C, 85.41; H, 7.25. 

 

2.3.11. 1-Phenyl-2-(spiro[cyclopropane-1,9’-fluoren]-2’-yl)acetylene (1k) 

This monomer was prepared similarly to 1a from 

2’-bromo-spiro(cyclopropane-1,9’-fluorene) to give a white solid; yield 72%, mp 

103.5–105.0 °C. IR (KBr, cm-1): 3053, 3004, 2207, 1490, 1439, 1426, 951, 835, 745, 691, 473. 

1H NMR (CDCl3, ppm): 7.81–7.76 (m, 2H, Ar), 7.55–7.51 (m, 3H, Ar), 7.36–7.27 (m, 5H, Ar), 

7.21 (s, 1H, Ar), 7.03 (d, J = 7.5 Hz, 1H, Ar), 1.76–1.69 (m, 4H, CCH2CH2). 
13C NMR 

(CDCl3, ppm): 148.5, 148.2, 140.0, 139.2, 131.5, 129.7, 128.3, 128.1, 127.2, 126.1, 123.4, 

121.8, 121.2, 120.3, 119.9, 118.6, 90.3, 89.4, 29.4, 18.4. Anal. Calcd for C23H16: C, 94.48; H, 

5.52. Found: C, 94.52; H, 5.63. 

 

2.3.12. 1-(4-Trimethylsilylphenyl)-2-(spiro[cyclopropane-1,9’-fluoren]-2’-yl)acetylene (1l) 

This monomer was prepared by the same method as for 1k by using 
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4-(trimethylsilyl)phenylacetylene instead of phenylacetylene to give a white solid; yield 61%, 

mp 142.5–144.0 °C. IR (KBr, cm-1): 2954, 1592, 1426, 1250, 1098, 953, 841, 820, 752, 632. 

1H NMR (CDCl3, ppm): 7.81–7.76 (m, 2H, Ar), 7.53–7.48 (m, 5H, Ar), 7.36–7.27 (m, 2H, Ar), 

7.22 (s, 1H, Ar), 7.03 (d, J = 7.3 Hz, 1H, Ar), 1.77–1.69 (m, 4H, CCH2CH2), 0.27 (s, 9H, 

Si(CH3)3). 
13C NMR (CDCl3, ppm): 148.5, 148.2, 140.9, 140.0, 139.2, 133.2, 130.6, 129.7, 

127.2, 126.1, 123.7, 121.9, 121.3, 120.3, 119.9, 118.6, 90.7, 89.6, 29.4, 18.4, -1.2. Anal. Calcd 

for C26H24Si: C, 85.66; H, 6.64; Si, 7.70. Found: C, 85.70; H, 6.79. 

 

2.4. Polymerization 

 

Polymerizations were performed in a Schlenk tube equipped with a three-way 

stopcock under dry nitrogen. The polymerizations were carried out at 80 °C for 24 h under the 

following conditions: [M]0 = 0.20 M, [TaCl5] = 20 mM, [n-Bu4Sn] = 40 mM. A detailed 

procedure of polymerization was as follows: a monomer solution was prepared in a Schlenk 

tube by mixing monomer 1a (0.30 g) and toluene (3.0 mL). Another Schlenk tube was 

charged with TaCl5 (36 mg), n-Bu4Sn (0.066 mL), and toluene (2.0 mL); this catalyst solution 

was aged at 80 ºC for 10 min. Then the monomer solution was added to the catalyst solution. 

Polymerization was carried out at 80 ºC for 24 h, which was quenched with a small amount of 

methanol. The formed polymers were isolated by precipitation into a large amount of 

methanol, and dried to constant weight; the polymer yields were determined by gravimetry. 

 

2.5. Membrane fabrication 
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Membranes (thickness ca. 50–80 μm) were fabricated by casting from toluene 

solution (2a–e, 2g, 2h, and 2j–l) and chloroform solution (2f and 2i) due to the difference in 

their solubility onto a flat-bottomed Petri dish (concentration ca. 0.80–1.5 wt%). Then, the 

dish was covered with a glass vessel to retard the rate of solvent evaporation (ca. 3–5 days). 

After membranes were prepared, they were immersed in methanol for 24 h and dried to 

constant weight at room temperature for 24 h. 

 

2.6. Measurement of gas permeabilities 

 

Gas permeability coefficients of polymer membranes were measured with a 

Rikaseiki K-315-N gas permeability apparatus equipped with an MKS Baratron detector at 

25 °C. The downstream side of the membrane was evacuated at 0.3 Pa, while the upstream 

side was filled with a gas at about 1 atm (105 Pa), and the increase of pressure in a 

downstream receiving vessel was measured. P values were calculated from the slopes of 

time-pressure curves in the steady state where Fick’s law held. 

 

3. Results and discussion 

 

3.1. Polymerization 

 

The polymerization of monomers 1al having fluorenyl groups was carried out in 

toluene by using the TaCl5n-Bu4Sn catalyst (Table 1). It is well known that the 

TaCl5n-Bu4Sn catalyst is effective for the polymerization of diphenylacetylene derivatives, 
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and provides polymers having high molecular weight [15], which is essential for the 

fabrication of free-standing membranes. Monomer 1a afforded a polymer in a moderate yield 

(42%), whose Mw was as high as 5.9  105. Similarly, fluorine-containing monomers 1be 

polymerized in ca. 4060% yields into high molecular weight polymers (Mw ≥ 5.3  105). 

Monomers 1fj having bulky substituents also gave high molecular weight polymers. For 

instance, bromine-containing monomers 1f and 1i produced polymers with high Mw values 

(5.5  105 and 5.7  105, respectively) in 43% yield. Monomer 1g having a t-butyl group 

produced a polymer with Mw (7.9  105) in a low yield (14%). Monomers 1h and 1j 

possessing a bulky trimethylsilyl group afforded polymers, whose Mw values reached 5.1  

105 and 5.8  105, respectively, although the polymer yields were rather low (12 and 25%). 

Monomers 1k and 1l possessing a cyclopropane moiety at the C-9 position of fluorene 

polymerized practically in the same way as 1a. Thus, all of polymers 2al possessed enough 

high molecular weights for the fabrication of free-standing membranes. The appearance of 

these polymers was orange-colored and fibrous. 

(insert Table 1 here) 

 

3.2. Solubility and thermal stability of the polymers 

 

Solubility properties of polymers 2al are summarized in Table 2. Polymers 2al 

were all soluble in CHCl3 and THF, and most of them were also soluble in toluene. The 

polymers having trimethylsilyl and t-butyl groups dissolved also in cyclohexane, while those 

with halogens tended to dissolve in N,N-dimethylformamide (DMF), a polar solvent. All the 

present polymers were insoluble in methanol. Due to the difference in their solubility, 
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free-standing membranes were fabricated from either toluene (2ae, 2g, 2h, and 2jl) or 

CHCl3 (2f and 2i) solution. The formed membranes were sufficiently tough, stiff, red, and 

transparent. 

(insert Table 2 here) 

 The thermal stability of polymers 2al was examined by TGA in air (Fig. 1). The 

onset temperatures of weight loss (T0) of 2al were all above 400 °C, indicating considerably 

high thermal stability. When Si-containing polymers 2h, 2j, and 2l were heated above 700 °C 

in air, the ash composed of SiO2 remained, whose amounts agreed with the expected values. 

(insert Fig. 1 here) 

 

3.3. Gas permeability 

 

The gas permeability of membranes 2al to various gases was examined at 25 °C 

(Table 3). The oxygen permeability coefficient (PO2) of 2a was as large as 4800 barrers. We 

previously synthesized poly[1-(2-fluorenyl)-2-(p-trimethylsilyl)phenylacetylene] (2m) 

without two methyl groups at 9-position of the fluorenyl group and its desilylated polymer 

3m (Chart 1) [6b]. Their PO2 values were 1700 and 2200 barrers, respectively. These results 

indicate that the oxygen permeability is remarkably enhanced by introducing two methyl 

groups into polymer 2m. The reason for the high gas permeability of 2a is probably that the 

two methyl groups, sticking out vertically from the rigid fluorene plane, inhibit the effective 

π-stacking between aromatic rings, generating a large amount of molecular-scale void in the 

membrane. Similar and even more obvious effects of plural numbers of methyl groups have 

been observed in our recent studies of poly(diarylacetylene)s having polymethylated indanyl 
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groups [7], although a polymer having the 9,9,10,10-tetramethyl-9,10-dihydroanthracene 

moiety did not show so high gas permeability [16]. 

(insert Chart 1 here) 

Fluorine-containing polymers tended to display even higher oxygen permeability; 

namely, the PO2 values of 2bd were clearly larger than that of 2a, and 2d possessing two 

fluorine atoms at meta and para positions exhibited the highest permeability among the 

present polymers (PO2 = 6600 barrers). Thus, it can be said that incorporation of F atoms into 

poly(diarylacetylene)s is effective to enhance the gas permeability of the membranes [19]. 

The reason why polymer 2e showed lower permeability might be that the m,m-difluorophenyl 

group is more planar and tends to stack with one another. 

Polymer 2f having bromine atoms also displayed high gas permeability (PO2 = 5000 

barrers), while 2g having t-butyl groups showed somewhat lower gas permeability (PO2 = 

3500 barrers). Furthermore, 2h having trimethylsilyl groups exhibited the lowest gas 

permeability within this series (PO2 = 470 barrers), which was only one tenth of that of 2a. 

This implies that a bulkier spherical substituent rather lowers the gas permeability in this type 

of polymers. 

Polymers having the same substituents at different positions showed different PO2 

values. For example, the PO2 value of bromine-containing polymer 2i was 2000 barrers, 

which was much lower than that of 2f (PO2 = 5000 barrers), while polymer 2j possessing 

trimethylsilyl groups exhibited much higher gas permeability (PO2 = 5400 barrers) than that 

of 2h (PO2 = 470 barrers). Polymers 2k and 2l containing cyclopropane moiety showed rather 

low gas permeability; the PO2 values of 2k and 2l remained 660 and 1000 barrers, respectively. 

The gas permeability difference between 2a and 2k suggests that the rotational motion of 
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methyl groups plays an important role to enhance gas permeability, which agrees with the 

results of dynamic neutron scattering [20]. The permeability of 2al to other gases such as He, 

H2, N2, CO2, and CH4 showed similar tendencies. The separation factors of oxygen against 

nitrogen (PO2/PN2) of polymers 2al were in a range of 1.32.2, where a tradeoff is observed 

between permeability and permselectivity, namely, more permeable polymers are generally 

less selective and vice versa [21]. 

(insert Table 3 here) 

 The time dependence of oxygen permeability of 2a (thickness: ca. 80 m) was 

examined by storing the membrane at 25 °C in air. As seen in Fig. 2, the PO2 value of 2a 

gradually decreased with time to become a half of the initial value after 60 days, and it 

decreased further to 2000 barrers after 90 days and almost leveled off. On the other hand, the 

PO2/PN2 value of 2a gradually increased from 1.43 to 1.84 after 90 days. Similar tendencies 

have been observed with other disubstituted acetylene polymers. For instance, the PO2 value 

of poly(TMSP) decreases from ca. 5000 to ca. 100 barrers after about 100 days [22], and that 

of poly[1--naphthyl-2-(p-trimethylsilyl)phenylacetylene] decreases from 3500 to 1000 

barrers after 90 days [6c]. The decreased PO2 value of 2a was completely restored to the 

initial value when the membrane was immersed in methanol for 24 h. 

(insert Fig. 2 here) 

 

4. Conclusions 

 

A series of poly(diarylacetylene)s having fluorenyl groups (2al) were synthesized 

by the polymerization of the corresponding monomers. These polymers possessed high 
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molecular weight, good solubility in organic solvents, and high thermal stability. All of the 

polymers gave free-standing membranes by solution casting, and exhibited high gas 

permeability. The PO2 value of polymer 2a was 4800 barrers, which is three times as large as 

that of poly(TMSDPA). Further, polymers containing both fluorenyl groups and fluorine 

atoms showed even larger oxygen permeability, and the value of 2d reached 6600 barrers. The 

results in the present study indicate that the incorporation of both 9,9-dimethylfluorenyl 

groups and fluorine atoms achieves high gas permeability. These polymer membranes are 

thought to be promising candidates for gas separation membranes from the viewpoint of high 

gas permeability and high thermal stability. 
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Table 1 

Polymerization of 1al with TaCl5n-Bu4Sna 

 Polymerb 

Monomer Yield (%) Mw  105 c Mw/Mn
c 

1a 42 5.9 3.6 

1b 49 13 3.9 

1c 59 6.9 2.6 

1d 40 6.7 2.2 

1e 50 5.3 2.1 

1f 43 5.5 2.3 

1g 14 7.9 3.7 

1h 12 5.1 4.5 

1i 43 5.7 2.6 

1j 25 5.8 2.2 

1k 41 5.2 2.0 

1l 47 9.0 2.8 

a In toluene at 80 °C for 24 h; [M]0 = 0.20 M, [TaCl5] = 20 mM, [n-Bu4Sn] = 40 mM.  b 

Methanol-insoluble product. 

c Measured by GPC calibrated with polystyrenes as standards.
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Table 2 

Solubility of the polymersa 

Solvent 2a 2bd 2e 2f 2g, 2h 2i 2j 2k 2l 

Hexane          

Cyclohexane          

Toluene          

CHCl3          

THF          

DMF          

DMSO          

Methanol          

a Symbols: , soluble; , insoluble; , partly soluble. 
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Table 3 

Gas permeability coefficients (P) of the polymer membranes 

 P (barrera)  

Polymer He H2 O2 N2 CO2 CH4 PO2/PN2 

2a 3200 8100 4800 3300 17000 9100 1.5 

2b 4600 11000 6200 4700 21000 11000 1.3 

2c 4100 9900 5900 4200 18000 11000 1.4 

2d 5000 11000 6600 5100 26000 12000 1.3 

2e 2100 5000 2700 1700 9200 4200 1.6 

2f 3400 8700 5000 3500 17000 9300 1.4 

2g 2700 6200 3500 2500 11000 6600 1.4 

2h 520 1100 470 210 1900 550 2.2 

2i 1500 3700 2000 1100 8000 3000 1.8 

2j 3400 8500 5400 3400 18000 10000 1.6 

2k 600 1400 660 300 3200 810 2.2 

2l 840 1900 1000 540 4100 1500 1.9 

2mb 1300 3100 1700 950 6500 2000 1.7 

3mb 1600 3700 2200 1300 8500 2400 1.7 

a At 25 °C in the units of 1  1010 cm3 (STP) cm/(cm2 s cmHg) ( = 1 barrer) (the values are 

average values of the two independent observed values using two different membranes). 

b Data from Ref. [6b].
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Scheme 1.  Synthesis of poly(diarylacetylene)s having fluorenyl groups. 
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Scheme 2.  Synthesis of diarylacetylene monomers having fluorenyl groups. 
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Fig. 1.  TGA curves of the polymers (in air, heating rate 10 °C/min). 
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Fig. 2.  Effect of aging time on the oxygen permeability of 2a (stored at 25 °C in air). 
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Chart 1.  Structures of 2m and 3m. 

 


