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Abstract

We propose the decomposed element-free Galerkin method (DEFGM) as a modified 

scheme to resolve shortcomings of memory usage in element-free Galerkin methods 

(EFGM). The DEFGM decomposes the stiffness matrix in EFGMs into individual 

schemes and adapts an explicit time-update scheme. In other words, the DEFGM solves 

elastic wave equation problems by alternately updating the stress-strain relations and the 

equations of motion as in the staggered-grid finite-difference method (FDM). The 

DEFGM requires at most twice the memory space, a size comparable to that used by the 

FDM. In addition, the DEFGM can adopt perfectly matched layer (PML) absorbing 

boundary conditions as in the case of the FDM. We therefore can make a fair 

comparison between the DEFGM and the FDM. To confirm that the DEFGM performs 

as well as the FDM, we compared a two-dimensional DEFGM under PML boundary 

conditions with an FDM with fourth-order spatial accuracy (FDM4). We compared the 

DEFGM and FDM4 by using an exact analytical solution of PS reflection waves. The 

results from the DEFGM were as accurate as those obtained by FDM4. We conducted 

another comparison by using Lamb’s problem under the condition of 8 nodal spaces for 

the shortest S-wavelength. Remarkably, the DEFGM provided an accurate Rayleigh 

waveform over a distance of at least 50 wavelengths compared with 5 wavelengths for 
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FDM4. In this Rayleigh-wave case, the DEFGM with 1-m grid spacing was more 

accurate than FDM4 with 0.5-m grid spacing. In this comparison, the CPU time used by 

the DEFGM was less than that used by FDM4. Our results demonstrate that the 

DEFGM could be a suitable method for numerical simulations of elastic wavefields, 

especially in cases where a free surface is considered.
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1. Introduction

Though many numerical methods have been investigated for solving the elastic wave 

equation, the finite difference method (FDM) using the staggered-grid scheme (e.g., 

Virieux, 1986; Graves, 1996) is the most popular because of its simple coding and 

reasonable accuracy. On the other hand, investigation from various angles of the finite 

element method (FEM) has been increasing. For example, Komatitsch and Tromp 

(1999) concluded that the spectral element method (SEM) based on the FEM provides 

more accurate solutions than the FDM, since the SEM adopts a higher-order 

polynomial interpolation. With this higher-order polynomial interpolation, Käser and 

Dumbser (2006) and Dumbser and Käser (2006) demonstrated that the arbitrary 

high-order derivatives discontinuous Galerkin method (ADER-DG) could handle 

complex structure problems by employing triangular or tetrahedral meshes. Min et al. 

(2003) showed that the numerical accuracy of the FEM could be improved by a 

weighted averaging method over neighboring finite elements.

Belytschko et al. (1994) proposed the element-free Galerkin method (EFGM), which 

is an FEM with moving least squares (MLS) interpolants. Belytschko et al. (1994) 

simulated the deformation of fracture phenomena of elastic bodies by solving static 
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equilibria using the EFGM. Lu et al. (1995) advanced the EFGM to fracture dynamics 

by solving equations of motion. Recently, Jia and Hu (2006) used the EFGM to 

simulate the propagation of elastic waves. As shown by these examples of fracture 

mechanics, there is much about mesh-free methods (Liu, 2003) to be investigated in 

more detail for further use. Therefore, FEM-based methodologies need to be 

reevaluated for future application to elastic wave propagation problems.

The EFGM performs with high accuracy even using a low-order (second-order at 

most) polynomial interpolation base function when static or fracture problems are 

solved (Belytschko et al., 1994). Although such high performance is expected in the 

case of wave propagation problems, it is difficult to apply the EFGM to large dynamic 

problems since it uses a stiffness matrix. While these earlier studies adopted a stiffness 

matrix formula, we need to handle this large matrix in a numerical scheme. In fact, the 

computations in Jia and Hu (2006) handled at most 41 × 41 nodal points. Therefore, the 

computational model is applicable only to small models because of memory 

restrictions.

Many authors have tried to avoid the utilization of the stiffness matrix in the standard 

FEM case (Koketsu et al., 2004; Ma et al., 2004; Ichimura et al, 2007) in which a 

second-order system of wave equations is used. Since perfectly matched layer (PML) 
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boundary conditions for a second-order system are far more complicated than for a 

first-order system (Komatitsch and Tromp, 2003), we tried a first-order velocity-stress 

formulation of the elastic wave equation (e.g., Collino and Tsogka, 2001) in this study 

as in the case for the staggered-grid FDM for simplified PML implementation. We used 

the EFGM with third-order spatial accuracy for enhanced accuracy as compared to the 

FDM with fourth-order spatial accuracy (FDM4). 

Applying this set of ideas to the EFGM, we call this new methodology the 

decomposed element-free Galerkin method (DEFGM). This methodology could reduce 

memory usage in the EFGM and allow a fair comparison between DEFGM and FDM4 

in terms of memory usage. In this paper, we first introduce DEFGM methodology 

without using a large stiffness matrix and show how PML boundary conditions are 

adopted in the DEFGM scheme. We next discuss the CPU time requirements of this 

methodology. Finally, we examine the results of solutions for PS reflection waves and 

Lamb’s problem by using the DEFGM and FDM4. Remarkably, the DEFGM provides 

accurate Rayleigh waveforms for a distance of at least 50 wavelengths while FDM4 is 

able to do the same for only 5 wavelengths. We also found that the DEFGM with 1-m 

nodal spacing is more accurate than FDM4 with 0.5-m grid spacing.
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2. Shape function and time update schemes for stress-strain relations

The original computational procedure of the EFGM was introduced by Belytschko et 

al. (1994), who used a stiffness matrix formula. In this paper, we avoid the stiffness 

matrix formulation and propose a new numerical scheme without a large stiffness 

matrix. This technique for decomposing the stiffness matrix into individual schemes 

makes it possible to handle as large a number of grids as in the FDM. 

In this method, a coupled first-order velocity-stress formulation of the elastic wave 

equation is solved. The DEFGM therefore solves elastic wave propagation problems by 

alternatively updating stress-strain relations and equations of motion. In this section, a 

shape function that interpolates particle velocity by the EFGM, the stress-strain relation, 

and the time update scheme are presented. 

Interpolating the shape function by the moving least squares method

The velocity vector and the stress tensor are arranged in a rectangular element as in 

Figure 1. (x0 , z0) is the central position of the element, and ∆x and ∆z are the nodal 

spacings in the x- and z-directions, respectively. There are 3 × 3 Gauss-Legendre (GL) 

integral points (i = i, ii, …, ix) shown by filled squares. The nodes (j = I, II, …, IX) are 
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illustrated by open circles. When particle velocity vectors are given at these nine nodes, 

the stress tensor can be evaluated at the nine GL integral points by multiplying a

coefficient matrix by the velocity vectors. This coefficient matrix is determined by the

formation of nine GL points and nine nodal points, and is obtained as follows.

First, we propose the following base vector for the shape function: 

2 2 2 2[1, , , , , , ]x z xz x z x z=TP .     (2.1)

Next, we adopt the following weight function: 

1

1 1      0 R
( ) R R R

0                                                 R

n n

ij ij ij
ij i

i ij i i i

ij i

r r r
n r

w r

r

−    
 − + − ≤ ≤   =     
 >

, (2.2)

where rij is the distance between each pair of GL points and nodal points, and 

( ) ( )2 2

ij j i j ir x x z z= − + − . Ri is the affection radius for each GL point, and n is an 

arbitrary natural number. This function is useful for arranging the inflection points in a 

simple way by selecting the arbitrary number n. Figure 2 shows this weight function 

(2.2) with n = 6. Equation (2.2) with n = 4 was a popular weight function among earlier

works (e.g. Beissel and Belytschko, 1996; Liu, 2003; Brighenti, 2005). Although the 

choice of base vector and weight function controls numerical accuracy in the EFGM, we 

choose them because they are simple to introduce and provide sufficient accuracy (see 

section 7). 
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When a GL point i in an element is located at a point (xi, zi), the coefficients of the 

interpolated particle velocity, 

2 2 2 2
1 2 3 4 5 6 7i i i i i i i i iv a a x a z a x z a x a z a x z= + + + + + + ,  (2.3)

satisfy the following equation:

i iW BA WV= ,     (2.4)

where 

[ ] ( ) ( ) ( ) T

I II IXdiag i i i i i i iW w r w r w r=   L ,   (2.5)

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( )( )

2 2 2 2

0 0 0 0 0 0 0 0

2 22 2
0 0 0 0 0 0 0 0

2 22 2
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

0 0 0 0

1

1

1

1

1

1

x x z z x x z z x x z z x x z z

x z z x z z x z z x z z

x x z x x z x x z x x z

x z x z x z x z

x x z z x x z z x x z z x x z zB

x x z z x x z z

−∆ −∆ −∆ −∆ −∆ − ∆ −∆ − ∆

−∆ −∆ − ∆ −∆

−∆ −∆ −∆ −∆

+ ∆ −∆ + ∆ −∆ + ∆ −∆ + ∆ −∆=

−∆ + ∆ −∆ + ∆ ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

2 2 2 2

0 0 0 0

2 22 2
0 0 0 0 0 0 0 0

2 22 2
0 0 0 0 0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

1

1

1

x x z z x x z z

x x z x x z x x z x x z

x z z x z z x z z x z z

x x z z x x z z x x z z x x z z

 
 
 
 
 
 
 
 
 
 − ∆ + ∆ −∆ +∆
 
 + ∆ +∆ + ∆ + ∆
 

+ ∆ + ∆ + ∆ +∆ 
 

+ ∆ + ∆ + ∆ +∆ + ∆ + ∆ +∆ + ∆  

, 

(2.6)

[ ]T1 2 7A a a a= L ,  (2.7)
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( )
( )
( )
( )
( )
( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )

( )

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

I ,

II ,

III ,

IV ,

V ,

VI ,

VII ,

VIII ,

IX ,

v v x x z z

v v x z z

v v x x z

v v x z

V v v x x z z

v v x x z z

v v x x z

v v x z z

v v x x z z

−∆ −∆   
   − ∆   
   − ∆
   
   
   = = + ∆ −∆
   

− ∆ +∆   
   + ∆   

+ ∆   
   +∆ +∆      

,   (2.8)

where T denotes the matrix transpose. Solving equation (2.4) by using the moving least

squares (MLS) method gives 

1T T
i iA B W B B WV

−
 =   .    (2.9)

Thus equation (2.3) becomes

i iv PV= ,       (2.10)

where

12 2 2 2 T T1i i i i i i i i i i iP x z x z x z x z B W B B W
−

   =     .  (2.11)

All Pi vectors for every GL point form the following coefficient matrix:

1

2

9

ij

P

P

P

φ
   
   
   Φ = =
   
   
    

M

L L L

M M

M

.   (2.12)

This ijφ  is known as a shape function in the EFGM.
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Partial derivatives of the shape function

The partial derivatives of the particle velocity vi at each GL point can be calculated 

using ijφ as follows:

i iv P
V

x x

∂ ∂
=

∂ ∂
,  (2.13)

i iv P
V

z z

∂ ∂
=

∂ ∂
,  (2.14)

where 

12 T T

1T

2 2 2 2 T

12 2 2 2 T T

0 1 0 2 0 2

1

1

i
i i i i i i

i

i i i i i i i i i

i
i i i i i i i i i

P
z x x z B W B B W

x

B W B
x z x z x z x z B W

x
W

x z x z x z x z B W B B
x

−

−

−

∂    =    ∂

 ∂   +   ∂
∂   +     ∂

,   (2.15)

12 T T

1T

2 2 2 2 T

12 2 2 2 T T

0 0 1 0 2 2

1

1

i
i i i i i i

i

i i i i i i i i i

i
i i i i i i i i i

P
x z x z B W B B W

z

B W B
x z x z x z x z B W

z
W

x z x z x z x z B W B B
z

−

−

−

∂    =    ∂

 ∂   +   ∂
∂   +     ∂

,   (2.16)

1T
1 1T T Ti i

i i

B W B W
B W B B B B W B

k k

−
− − ∂ ∂      = −     ∂ ∂ 

 (k = x, z).  (2.17)

Dynamic problems, such as wave propagation phenomena, generally assume that the 

displacements caused by elastic waves are negligible in infinitesimal displacement 

theory, therefore /iP x∂ ∂  and /iP z∂ ∂  can be considered as constant throughout the 

simulation and need only be computed once after the geometrical parameters ∆x and ∆z
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are given. 

Parameters for the shape function 

For this paper, all simulations adopted the following parameters: the elemental volume 

was assumed to be 2∆x × 2∆z, the nodal spacing ∆x and ∆z were the same (∆x = ∆z), 

and the affection radius Ri for each GL point was set to be 

0.8 2   (for  = iv)           

R 1.1 2   (for  = ii, iii, vii, viii)

1.3 2   (for  = i, v, vi, ix)
i

x i

x i

x i

× ∆
= × ∆
 × ∆

.   (2.18)

These values were set to a distance that is a little longer than the distance between the 

farthest pair of nodal points and GL points. From computational trials, we found that the

set of values in equation (2.18) performs better than

0.7 2   (for  = iv)           

R 1.0 2   (for  = ii, iii, vii, viii)

1.2 2   (for  = i, v, vi, ix)
i

x i

x i

x i

× ∆
= × ∆
 × ∆

 or 

0.9 2   (for  = iv)           

R 1.2 2   (for  = ii, iii, vii, viii)

1.4 2   (for  = i, v, vi, ix)
i

x i

x i

x i

× ∆
= × ∆
 × ∆

. 

The value of n in the weight function, equation (2.2), is set to n = 5. In order to stably 

compute ijφ , we use x0 = −∆x and z0 = −∆z. We chose n = 6 as the best value after

performing computational trials for n = 3, 4, ዊ�, 7. There is definitely a possibility that

the accuracy could be increased by modifying equations (2.1), (2.2), Ri, or n. The results 

from some other choices are shown in section 7.
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Time update schemes for the stress–strain relations

As is well known, the velocity-stress formulation of the elastic wave equation 

comprises two sets of equations: stress-strain relations and the equations of motion. The 

stress-strain relations are given as follows:

( )2xx x zv v

t x z

σ λ µ λ∂ ∂ ∂
= + +

∂ ∂ ∂
,  (2.19a)

( )2xzz zv v

t x z

σ λ λ µ∂∂ ∂
= + +

∂ ∂ ∂
,  (2.19b)

xz x zv v

t z x

σ µ∂ ∂ ∂ = + ∂ ∂ ∂ 
,       (2.19c)

where λ and µ are Lame’s moduli; σxx, σzz, and σxz are the stresses; and vx and vz are the 

particle velocities. On a GL point i at a specific time t, by employing explicit 

discretization of second-order accuracy in time and interpolation of particle velocity, 

equations (2.19a-c) become

( ) ( ) ( )
/ 2 / 2, ,

2
t t t t
xx i i xx i i t ti i

x z

x z x z P P
V V

t x z

σ σ
λ µ λ

+∆ −∆− ∂ ∂
= + +

∆ ∂ ∂
,  (2.20a)

( ) ( ) ( )
/ 2 / 2, ,

2
t t t t
zz i i zz i i t ti i

x z

x z x z P P
V V

t x z

σ σ
λ λ µ

+∆ −∆− ∂ ∂
= + +

∆ ∂ ∂
,  (2.20b)

( ) ( )/ 2 / 2, ,t t t t
xz i i xz i i t ti i

x z

x z x z P P
V V

t z x

σ σ
µ

+∆ −∆− ∂ ∂ = + ∆ ∂ ∂ 
,       (2.20c)

where ∆t is the sampling time length, the superscript is the computing time, and
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( )
( )
( )
( )
( )
( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )

( )

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

I ,

II ,

III ,

IV ,

V ,

VI ,

VII ,

VIII ,

IX ,

k k

k k

k k

k k

k k k

k k

k k

k k

k k

v v x x z z

v v x z z

v v x x z

v v x z

V v v x x z z

v v x x z z

v v x x z

v v x z z

v v x x z z

−∆ −∆   
   − ∆   
   − ∆
   
   
   = = +∆ −∆
   

− ∆ + ∆   
   + ∆   

+ ∆   
   +∆ + ∆     

, (k = x, z).   (2.21)

3. Equations of motion

In this section, the equations of motion are discussed. Figure 3 shows an elastic body 

consisting of nine elements. Open circles show the nodal points. The equations of 

motion are as follows:

k kx kz
k

v
f

t x z

σ σρ ∂ ∂ ∂
= + +

∂ ∂ ∂
,    (k = x, z)   (3.1)

where fk is a component of an external acceleration vector and ρ is the material density. 

These partial differential equations give the following weighted residual equations:

0k kx kz
k

v
f d

t x z

σ σϕ ρ
Ω

∂ ∂ ∂ − − − Ω = ∂ ∂ ∂ ∫ .   (3.2)

In the Galerkin method, the shape function ijφ  introduced in the previous section is 

used as the weight function ϕ . By using integration by parts, equation (3.2) becomes

( )k
k kx x kz z kx kz

v
d f d n n d d

t x z

ϕ ϕϕρ ϕ ϕ τ τ σ σ
Ω Ω Γ Ω

∂ ∂ ∂ Ω = Ω + + Γ − + Ω ∂ ∂ ∂ ∫ ∫ ∫ ∫ ,  (3.3)

where τkx and τkz are the components of the external stress tensor on the surface (Γ), and
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nx and nx denote the components of the normal vector.

Lumped mass matrix

By employing GL integration, the left-hand side of equation (3.3) is discretized in 

space as

( )
ix

T

i

4k
i i i k

i

v
d x z P q P V t

t t
ϕρ ρ

Ω
Ω =

 ∂ ∂   Ω = ∆ ∆   ∂ ∂   
∑ ∑∫ ,  (3.4)

where qi is the weight value for each GL integration point and 4∆x∆z represents the 

volume of a single element. The treatment of 
Ω
∑ as a symbolic calculation in the 

DEFGM is explained by the later equations (3.11) to (3.13).

We introduce the unit mass matrix M as follows:

1 2

ix
T

i

4 j j
i i i

i

m
M x z P q P

=

 
 
  = ∆ ∆ =   
 
 

∑

M

L L L

M

M

, (j1, j2 = I, II, …, IX).   (3.5)

To solve the dynamic problem explicitly, we employ the following lumped mass matrix 

M :

[ ]
2 2 2

2 2 2

IX IX IX

I II IX I II IX
I I I

diag j j j
j j j

M m m m m m m
= = =

 
  = =  

 
∑ ∑ ∑L L .    (3.6)

Thus equation (3.4) becomes
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( )k
k

v
d MV t

t t
ϕρ

Ω
Ω

∂ ∂
 Ω =  ∂ ∂ ∑∫ .     (3.7)

Internal stress

By using the shape function, the third term on the right-hand side of equation (3.3) is 

discretized into the following:

( ) ( )
T Tix

i

4 , ,i i
kx kz i kx i i kz i i

i

P P
d x z q x z x z

x z x z

ϕ ϕσ σ σ σ
Ω

Ω =

   ∂ ∂∂ ∂        + Ω = ∆ ∆ +       ∂ ∂ ∂ ∂           
∑ ∑∫ .

(3.8)

External forces

The first and second terms on the right-hand side of equation (3.3) show the external 

acceleration and stress. They become equivalent forces on the node (Fk) by the shape 

function, thus

( )k kx x kz z kf d n n d Fϕ ϕ τ τ
Ω Γ

Ω

Ω + + Γ =∑∫ ∫ .   (3.9)

Time update schemes for the equations of motion

Using the discretization of equations (3.7) to (3.9), equation (3.3) becomes
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( ) ( ) ( )
T Tix

i

4 , ,i i
k k i kx i i kz i i

i

P P
MV t F x z q x z x z

t x z
σ σ

Ω Ω Ω =

   ∂ ∂∂        − = − ∆ ∆ +      ∂ ∂ ∂         
∑ ∑ ∑ ∑ .

(3.10)

Using explicit discretization of second-order accuracy in time, equation (3.10) becomes

( )

( ) ( ) ( )

/ 2 / 2

T Tix

i

1

4 , ,  .

t t t t
k k

t t ti i
k i kx i i kz i i

i

M V V
t

P P
F t x z q x z x z

x z
σ σ

+∆ −∆

Ω

Ω Ω =

 − ∆

   ∂ ∂     = − ∆ ∆ +     ∂ ∂         

∑

∑ ∑ ∑
  (3.11)

Based on the elemental arrangement of Figure 3, for example, near 5Ω the particle 

velocity is shared by neighboring elements on nodal points as follows:

( ) ( ) ( ) ( )5 4 2 1I, V, VI, IX,V V V VΩ = Ω = Ω = Ω , 

( ) ( )5 2II, VIII,V VΩ = Ω , ( ) ( )5 4III, VII,V VΩ = Ω .       (3.12)

Thus, the summation 
Ω
∑  in equation (3.11) is the most complex procedure in 

DEFGM computation and is expressed by the following four patterns:

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
/ 2 / 2

5 5
I 5 V 4 VI 2 IX 1 5

I, I,
I,

t t t t
k k t

k

v v
m m m m F

t

+∆ −∆Ω − Ω
Ω + Ω + Ω + Ω = Ω

∆

( ) ( ) ( ) ( )
ix

I 5 I 5
5 5

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑

( ) ( ) ( ) ( )
ix

V 4 V 4
4 4

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑
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( ) ( ) ( ) ( )
ix

VI 2 VI 2
2 2

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑

( ) ( ) ( ) ( )
ix

IX 1 IX 1
1 1

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑ ,    (3.13a)

( ) ( )( ) ( ) ( ) ( )
/ 2 / 2

5 5
II 5 VIII 2 5

II, II,
II,

t t t t
k k t

k

v v
m m F

t

+∆ −∆Ω − Ω
Ω + Ω = Ω

∆

( ) ( ) ( ) ( )
ix

II 5 II 5
5 5

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑

( ) ( ) ( ) ( )
ix

VIII 2 VIII 2
2 2

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑ ,    (3.13b)

( ) ( )( ) ( ) ( ) ( )
/ 2 / 2

5 5
III 5 VII 4 5

III, III,
III,

t t t t
k k t

k

v v
m m F

t

+∆ −∆Ω − Ω
Ω + Ω = Ω

∆

( ) ( ) ( ) ( )
ix

II 5 II 5
5 5

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑

( ) ( ) ( ) ( )
ix

VIII 4 VIII 4
4 4

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑ ,    (3.13c)

( ) ( ) ( ) ( )
/ 2 / 2

5 5
IV 5 5

IV, IV,
IV,

t t t t
k k t

k

v v
m F

t

+∆ −∆Ω − Ω
Ω = Ω

∆

( ) ( ) ( ) ( )
ix

IV 5 IV 5
5 5

i

4 , , , ,i it t
i kx i i kz i i

i

x z q x z x z
x z

φ φ
σ σ

=

 ∂ Ω ∂ Ω 
− ∆ ∆ Ω + Ω  ∂ ∂   

∑ .    (3.13d)

In summary, the practical computational procedure is as follows: at a specific time step, 
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the stress tensor is updated from the particle velocity vector by using equations

(2.20a–c). Then the particle velocity vector is updated from the stress tensor by using 

equations (3.13a-d). These two alternating update processes are repeated for the 

required number of time steps. We call this methodology the decomposed element-free 

Galerkin method (DEFGM). Figure 4 shows the flow of DEFGM computation.

4. Stability conditions

 Before applying this proposed scheme to realistic subsurface models, we first 

investigate its stability conditions. 

The image method by Levander (1988) is widely used in the FDM framework for 

expressing a flat free surface, and at least 8 grid spaces are assured for the shortest 

S-wavelength (Bohlen and Saenger, 2006). We conducted two tests for this paper. The 

first was determining the solution for a PS reflected wave, which was conducted under 

the condition of 4 to 8 nodal spaces for the shortest S-wavelength. The second test was 

solving a Rayleigh wave, which was conducted under the condition of 8 nodal spaces 

for the shortest S-wavelength.

When ∆x = ∆z, the sampling time step∆t should be dominated by
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{ }max p

c x
t

V

∆
∆ < ,   (4.9)

where c is the Courant number and max{Vp} is the maximum P-wave velocity in the 

medium. We determined experimentally that DEFGM requires c = 0.80 or less. This is 

the same value as in Koketsu et al., (2004) and it does not change even if the weight 

function is changed.

5. Computation memory and time requirements

Finite difference method

We adopted a fourth-order standard staggered-grid scheme (FDM4) from Levander

(1988). Although a rotated staggered-grid scheme is better than a standard one for a

model comprising a topographic surface (Bohlen and Saenger, 2006), we used a 

standard one because we considered a flat free surface in our investigation of the basic 

accuracy of the DEFGM. In FDM4, we chose a flat free surface boundary by the image

method (Levander, 1988); Figure 5 shows a schematic of our FDM4 grid arrangement 

and the strategy for the free surface. In Figure 5, ∆x and ∆z are the grid spacing for the 

x- and z-directions, respectively. The FDM4 grid spacing is the same parameter as the 

DEFGM nodal spacing. 
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Memory requirements

Table 1 shows the general array sizes for the DEFGM and FDM4. In the DEFGM case, 

when (2nx+1) × (2nz+1) nodal points are evaluated, an array size of nx × nz is required 

for λ and µ; nx × nz × 9 for σxx, σzz, and σxz; and (2nx + 1) × (2nz + 1) for vx, vz, and M . 

In the case where a stiffness matrix is used, an array size of 25 × 2 × (2nx + 1) ×(2nz +

1) × 2 is required (= 25 neighboring nodes × 2 components ×(2nx + 1) ×(2nz + 1) total 

nodes × 2 components).

In the DEFGM numerical scheme configuration, the number of nodal points used to 

evaluate the particle velocity is the same as in FDM4. However, the number of grid 

points used to evaluate the stress tensor becomes 9/4 times greater in comparison with

FDM4 since these grid points are used for the GL integration (Figure 1). This means 

that the DEFGM requires at most twice the memory space of FDM4.

Time requirements

The schemes for applying PML to the DEFGM are shown in Appendix A. We used

directional splitting for all calculation space even if there was a non-PML area. 

Therefore, the number of PML layers was not a function of the CPU time. 
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FDM4 without PML took only about 26 s on a Xeon 3.0 GHz PC when we employed 

1000 time steps and 401 × 401 nodal points; on the other hand, the DEFGM without 

PML needed 1 min 16 s. Table 2 summarizes the calculation times. The values in 

square brackets are the ratios of the calculation time with respect to the FDM4 time.

The DEFGM required 2.9 times the calculation time of FDM4. Although the 

calculation time of FDM4 became 5.8 times greater when applying PML, that of the 

DEFGM became about 15 times greater.

Next, we calculated in the same physical space using a smaller nodal spacing. The 

model consisted of 2000 time steps and 801 × 801 nodal points. When we did not use 

PML, the DEFGM (1 min 16 s) was faster than FDM4 (4 min 34 s). When we used

PML, the DEFGM (18 min 26 s) was faster than FDM4 (30 min 50 s).

6. PS Reflected wave 

In the field of exploration geophysics, the reflected wave contains important 

information. The upper left of Figure 6 shows the calculation model. The model 

comprises the interface between two elastic media; the upper layer has a P-wave 

velocity of Vp = 2000 m/s, S-wave velocity of Vs = 1000 m/s, and material density of ρ
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= 1500 kg/m3 and the lower layer has Vp = 2500 m/s, Vs = 1500 m/s, and ρ = 1900 

kg/m3. A 20-m-thick PML is applied to all four sides of the numerical model. There are 

401 × 401 nodal points in the model, and the nodal spacing is ∆x = ∆z = 1 m, which 

defines a 400 × 400 m calculation space. The compressional source is located at (100 m, 

100 m). The Ricker wavelet (second-order derivative of the Gaussian function) 

generates various peak frequencies including 50, 66, 80, and 100 Hz and a peak 

amplitude of 1 Pa/m. For example, in the case of the 50 Hz peak frequency, about 125 

Hz becomes the maximum frequency component for this implementation. The 

minimum wave propagation velocity for this model is 1000 m/s; therefore, 8 m is the 

shortest wavelength and 8 nodal spaces are assured for the wave. The upper right, lower 

left, and lower right snapshots in Figure 6 show the z-component of the particle velocity 

at 0.1, 0.14, and 0.18 s, respectively. The PML works effectively. 

We obtained an exact waveform from EXE2DELEL from the Spice homepage 

(http://www.spice-rtn.org). Figure 7 shows a comparison of the waveforms calculated 

by the DEFGM and FDM4. The analytical solution (thick black line) is plotted against 

the numerical one (thin gray line) obtained by the DEFGM and FDM4. You can see that 

both the DEFGM and FDM4 provide good resolution. Subsequently, to compare them 

precisely, we increased the peak frequency of the Ricker wavelet. We studied the 
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following four cases: 50, 66, 80, and 100 Hz. The maximum frequencies for each case 

become 125, 165, 200, and 250 Hz. Therefore, 8, 6, 5, and 4 nodal spaces are assured 

for the shortest wavelength. Figure 7 shows good convergence between the analytical 

and numerical solutions. It is difficult to rank the methods. Thus, we evaluated the error 

value E as

( ) ( )2 2b b

a a

n n
a a

j j j
j n j n

E s s s
= =

= − ÷∑ ∑ ,    (6.1)

where na and nb are the numbers of the start and end sampling time steps, respectively;

sj is the numerical value of the particular seismogram at sample j; and sa
j is the

corresponding analytical value. The E values for each seismogram are displayed in 

Figure 7, although even after evaluating them, it is still hard to say which is better. 

Finally, in Figure 8 we plot the seismogram of the specific time window between 0.2 

and 0.3 s in Figure 7. Since the factor defining the stability condition is the medium 

with the minimum wave propagation velocity, the error term mostly appears in the PS 

reflected wave. We can clearly recognize grid dispersion in the resolution of the 100 Hz 

peak source case. Remarkably, small grid dispersion can be seen in the result for the 

DEFGM for the 80 Hz peak source case. On the other hand, the z-component of the 

FDM4 resolution shows a faster approach than the exact waveform. It is difficult to 
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distinguish between the two methods in terms of accuracy. We conclude that FDM4 

performs better than the DEFGM since the computational cost of FDM4 is lower than 

for the DEFGM. Grid dispersion occurs when the S-wave propagates in the upper layer 

for both cases. However, the reflection ratio is accurately simulated. 

7. Rayleigh wave

Lamb’s problem is suitable for evaluating the newly proposed numerical simulation

scheme since the analytical solution with a flat free surface is known. Here we used the 

analytical solution from Saito (1993). The model discussed in this section is a 

homogeneous half-space medium, which is defined by Vp = 1732 m/s, Vs = 1000 m/s,

and ρ = 1500 kg/m3. The total calculation area is 4001 × 2001 nodes with no absorbing 

boundary condition. The nodal spacing is set at ∆x = ∆z = 1 m. The input waveform is a 

50-Hz peak Ricker wavelet that acts as a vertical line stress to the surface. Among the 

4001 × 2001 nodes, the source point is placed at (1001, 1), and the five receiver points 

are at (1101, 1), (1201, 1), (1501, 1), (2001, 1), and (3001, 1). Therefore, the receivers 

are set at 100, 200, 500, 1000, and 2000 m from the source point. The maximum 

amplitude of the Ricker wavelet is Fz = 1 N/m, and the sampling interval is 0.1 ms. The 
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total number of samples in time is 30 000 steps. Since 125 Hz is the approximate

maximum frequency of the adopted Ricker wavelet, the shortest S-wavelength becomes 

8 m. Thus, 8 nodal spaces are assured for the wavelength. For simplicity, the Rayleigh 

wave velocity is not taken into this dispersion consideration. 

Numerical simulation results

Figure 9a-d shows the waveforms of the particle velocity at the four receiver points. In 

each subplot, the left and right columns correspond to the horizontal (x) and vertical (z)

components, respectively, and we plot three waveforms: The top is the DEFGM

solution, the middle is the FDM4 solution, and the bottom is the FDM4 solution under 

the grid spacing condition ∆x = ∆z = 0.5 m. The thick black lines and the thin gray lines

correspond to the analytic and numerical solutions, respectively. The error values 

calculated from equation (6.1) are shown in Figure 9. From the figure, we can see that 

the accuracy of the DEFGM resolution is much better than that of FDM4 even if the 

grid spacing is set to 0.5 m. 

Weight function comparison

In the Rayleigh wave test, we compared results obtained from the following four 
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cases. 

ዊ� Case 1: 6 bases; this case has been used frequently in recent studies of fracture 

mechanics (e.g., Beissel and Belytschko, 1996; Liu, 2003; Brighenti, 2005). Thus 

2 2[1, , , , , ]x z xz x z=TP  and equation (2.2) with n = 4 are used.

ዊ� Case 2: 7 bases; this case has been proposed in this paper. Thus, equations (2.1) and 

(2.2) with n = 6 are used.

ዊ� Case 3: FEM interpolation; this case adopts the full 9 bases, 

2 2 2 2 2 2[1, , , , , , , , ]x z xz x z x z xz x z=TP . This case is the same as standard FEM 

because the term 
1T T

i iB W B B W
−

    in equation (2.9) becomes B-1 for any weight

function Wi. 

ዊ� Case 4: Compound bases; this case adopts 2 2 2 2[1, , , , , , ]x z xz x z x z=TP  and n = 5 

only for the central GL point (i = iv in Figure 1). For the other eight GL points, the 

full 9 bases 2 2 2 2 2 2[1, , , , , , , , ]x z xz x z x z xz x z=TP  are used. 

Figure 10(a) and (b) show the results for the above four cases at offsets of 1000 and

2000 m, respectively. The 6-bases case shows large grid dispersion and the error is 

larger than for FDM4. This case does not work effectively for our DEFGM. When the 

x2z2 term is added to the base vector and the n value is changed to 6 (Case 2), the 

accuracy is dramatically improved. Among the four cases, Case 4 with compound bases 
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shows the best convergence. 

Belytschko et al. (1994) applied the EFGM to an elastic body deformation problem 

and showed that the EFGM performs better than the standard FEM. However, this good

performance is seen only when every element is structured by 2 × 2 nodal points and 2

× 2 GL points. Figure 11 shows a schematic of the EFGM applied to a wave 

propagation problem. If we use first-order polynomial interpolation (second-order 

spatial accuracy) as shown in Figure 11(a), there is a high probability that MLS 

interpolation on the GL points will improve the linearly interpolated waveform in the 

standard FEM. If we use second-order polynomial interpolation (third-order spatial 

accuracy) as shown in Figure 11(b), the standard FEM produces a far better interpolated 

waveform than does the first-order case. The scope for MLS interpolation to increase 

accuracy becomes smaller than when we use first-order polynomial interpolation. In 

fact, even the 7-base case proposed in this paper performs with less accuracy than the 

standard FEM. On the other hand, the compound-base case performs with better 

accuracy than the standard FEM. We think the reason for this differing performance is 

as follows. On the GL points near the boundary, the continuation of the shape function 

between neighboring elements is more important than the improvement of the shape 

function by MLS interpolation. On the GL point at the center of the element, MLS 
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interpolation effectively improves the shape function. 

8. Discussion and Conclusion

We have proposed a numerical method called the decomposed element-free Galerkin 

method (DEFGM). We examined our scheme by using numerical simulations of PS 

reflection and Lamb’s problems. 

The DEFGM decomposes a stiffness matrix in the element-free Galerkin method into 

individual schemes and adapts an explicit time-update scheme. In other words, the 

DEFGM solves elastic wave equation problems by alternatively updating stress-strain 

relations and equations of motion as in the staggered-grid finite difference method 

(FDM). To examine this idea, we used the DEFGM with 4001 × 2001 nodal points, 

which was sufficient to compare the performances of the DEFGM and the finite 

difference method with fourth-order spatial accuracy (FDM4). We also compared the 

performance of the DEFGM with FDM4 in terms of computation time and numerical 

accuracy. The DEFGM required a CPU time that was at least 2.9 times that of FDM4. 

When we used PS reflection waves for the comparison, we found that the numerical 

accuracy of FDM4 was a little better than that of the DEFGM. This is because the 
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spatial accuracy of FDM4 is fourth-order while that of the DEFGM we used is 

third-order. Therefore, FDM4 is better than the DEFGM when infinite space is 

simulated since FDM4 consumes less CPU time than the DEFGM. However, when we 

simulated solutions to Lamb’s problem with 8 nodal spaces for the shortest 

S-wavelength, the DEFGM provided an accurate Rayleigh waveform for a distance at 

least equal to 50 wavelengths, while for FDM4 it was 5 wavelengths. This is because 

the FDM4 we used adopts second-order spatial accuracy near the free surface (Figure 

5). In addition, the DEFGM with a 1-m nodal spacing was more accurate than FDM4 

with 0.5-m grid spacing. In this comparison, the CPU time of the DEFGM was less

than that of FDM4. Finally, we compared the results from some weight functions. 

Although the weight function used by Beissel and Belytschko (1996), Liu (2003), and

Brighenti (2005) was less accurate than expected, the proposed combination of base 

vector and weight function dramatically improved the accuracy of the EFGM. However, 

we found a specific DEFGM (compound-base case) that had better accuracy than the 

standard FEM.

In summary, the numerical performance of the EFGM is clearly improved by the 

DEFGM. This is because the DEFGM requires a computation memory size comparable 

to the FDM. Moreover, the DEFGM can accommodate perfectly matched layer (PML) 
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absorbing boundary conditions as in the FDM case. A comparison using an exact

analytical solution of PS reflection waves showed that the results of the DEFGM are as 

accurate as those of FDM4. The CPU time of FDM4 was smaller than that of the 

DEFGM. However, a comparison using Lamb’s problem showed that the DEFGM 

provides ten or more times better resolution than FDM4. If we obtain accurate DEFGM 

resolution by using FDM4, the CPU time of the DEFGM becomes smaller than for 

FDM4. In addition, we found a specific DEFGM that performs with better accuracy 

than the standard FEM. The DEFGM is thus able to improve the shape function of the 

standard FEM. The DEFGM could be suitable for numerical simulations of elastic 

wavefields, especially in cases where a free surface is considered.

Because the weight functions used in this study were only experimental, it is possible 

that the accuracy of the DEFGM could be increased. Future studies should investigate 

which weight functions best approximate the wave equations and apply them to realistic 

3D problems. 

Acknowledgments

We appreciate the advice and encouragement of Jun Ichi Takekawa of the 

Geo-Research Institute and the technical support of Norihiro Nakata of Kyoto 

Page 32 of 58GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

33

University. We gratefully acknowledge the anonymous reviewers who helped us 

improve the manuscript. 

Appendix A. Perfectly matched layer

Because the DEFGM is developed by using the stress-velocity formulation, PML 

absorbing boundary condition can be applied as shown in Collino and Tsogka (2001).

Equations (2.19a–c) are divided as follows:

( )' 2
x

x xxx x
xx

v
d

t x

σ σ λ µ∂ ∂
+ = +

∂ ∂
, (A.1a)

'
z

z zxx z
xx

v
d

t z

σ σ λ∂ ∂
+ =

∂ ∂
, (A.1b)

'
x

x x xzz
zz

v
d

t x

σ σ λ ∂∂
+ =

∂ ∂
, (A.1c)

( )' 2
z

z zzz z
zz

v
d

t z

σ σ λ µ∂ ∂
+ = +

∂ ∂
,   (A.1d)

'
x

x xxz z
xz

v
d

t x

σ σ µ∂ ∂
+ =

∂ ∂
,       (A.1e)

'
z

z zxz x
xz

v
d

t z

σ σ µ∂ ∂
+ =

∂ ∂
, (A.1f)

where 

x z
kl kl klσ σ σ= + , (k, l = x, z).  (A.2)

This division is called directional splitting. The two-dimensional PML therefore has

twice the memory cost of the non-PML case. The damping functions are given as 
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follows:

2
' 3 1 '

log
2

pk V k
d

D R D
  =   
  

(k = x, z),  (A.3)

where k' is the distance from the boundary between the PML and non-PML area (see 

Figure 12), D is the width of the PML, Vp is the P-wave velocity, and R is the 

theoretical reflection coefficient after discretization, which can be chosen to be a very 

small number (e.g., 0.001, which is the value used in this paper). For numerical 

computations, the term dσ  is evaluated by the average value between the old and new 

times, thus

/ 2 / 2

2

t t t t

d d
σ σσ

+∆ −∆+
= .    (A.4)

Equations of motion also adopt the PML; equation (3.1) becomes

'
l

l l lk kl
k k

v
d v f

t l

σρ
 ∂ ∂

+ = + ∂ ∂ 
, (k, l = x, z) , (A.5)

where 

x z
k k kv v v= + , (k = x, z),   (A.6)

x z
k k kf f f= + , (k = x, z).   (A.7)

The treatment for dv is the same as for equation (A.4). 
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Table 1: The array sizes for the DEFGM and FDM4 for the case in which (2nx+1) ×

(2nz+1) nodal points are evaluated. 

λ, µ ρ M σxx, σzz, σxz vx, vz

DEFGM nx × nz N/A (2nx+1) ×

(2nz+1)

nx × nz × 9 (2nx+1) ×

(2nz+1)

FDM4 (2nx+1) ×

(2nz+1)

(2nx+1) ×

(2nz+1)

N/A (2nx+1) ×

(2nz+1)

(2nx+1) ×

(2nz+1)
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Table 2: Summary of calculation times. The calculation model consists of 1000 time 

steps and 401 × 401 nodal points (upper table). The model with 2000 time steps and 

801 × 801 nodal points (lower table) is also shown. The numbers in square brackets are 

the ratios of the calculation times when the time for FDM4 is assumed to have the value 

of one.

401 × 401 grids, 1000 steps Absorbing B. C.: N/A Absorbing B. C.: PML

FDM4 26 s [1] 2 min 30 s [5.8]

DEFGM 1 min 16 s [2.9] 18 min 26 s [43]

801 × 801 grids, 2000 steps Absorbing B. C.: N/A Absorbing B. C.: PML

FDM4 4 min 34 s [1] 30 min 50 s [6.8]

DEFGM 24 min 18 s [5.3] 3 h 5 min 34 s [41]
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Figure captions

Figure 1: The rectangular element and grid arrangement for the EFGM scheme for the 

case of a second-order base function and 3 × 3 Gauss-Legendre integral points. (x0 , z0) 

is the central position of the element; ∆x and ∆z are the nodal spacings for x- and 

z-direction, respectively; and G = 0.7745867.

Figure 2: Weight function (equation (2.2)) with n = 6.

Figure 3: Elastic body consisting of nine elements. Open circles are nodal points. 

 

Figure 4: Flow chart of the DEFGM. 

Figure 5: Grid arrangement for the staggered-grid finite difference scheme. ∆x and ∆z

are the grid spacings for the x- and z-directions, respectively. We chose a free surface 

boundary by the Levander (1988) method.

Figure 6: Upper left: the calculation model. Upper right: a snapshot of the z-component 
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of the particle velocity at 0.10 s. Lower left and right: z-components at 0.14 and 0.18 s, 

respectively.

Figure 7: Comparison of the x- and z-direction velocity components. The analytical 

solution (thick black line) is plotted against the numerical one (thin gray line) obtained 

by the DEFGM and FDM4.

Figure 8: Magnification of Figure 7 between 0.2 and 0.3 s. The analytical solution 

(thick black line) is plotted against the numerical one (thin gray line) obtained by the 

DEFGM and FDM4.

Figure 9: Comparison of the x- and z-direction velocity components. The analytical 

solution (thick black line) is plotted against the numerical one (thin gray line) obtained 

by the DEFGM and FDM4. From top to bottom, the graphs correspond to the DEFGM, 

FDM4 with 1-m grid spacing, and FDM4 with 0.5-m grid spacing. Offsets are (a) 100 m, 

(b) 200 m, (c) 500 m, and (d) 1000 m. 

Figure 10: Comparison of the x- and z-direction velocity components. The analytical 
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solution (thick black line) is plotted against the numerical one (thin gray line) obtained 

by various DEFGMs. From top to bottom, the graphs correspond to 6 bases, 7 bases, 

FEM interpolation, and compound bases. Offsets are (a) 1000 m and (b) 2000 m.

Figure 11: Schematics of the EFGM computation as conducted for a wave propagation 

problem. (a) First-order polynomial interpolation, (b) Second-order polynomial 

interpolation.

Figure 12: The PML damping function (A.3).
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Fig.1: The rectangular element and grid arrangement for the EFGM scheme for the case of 
a second-order base function and 3 3 Gauss-Legendre integral points. (x0 , z0) is the 

central position of the element; x and z are the nodal spacings for x- and z-direction, 
respectively; and G = 0.7745867. 
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Fig.2: Weight function (equation (2.2)) with n = 6. 
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For Peer ReviewFig.3: Elastic body consisting of nine elements. Open circles are nodal points. 
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Fig.4: Flow chart of the DEFGM.  
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Fig.5: Grid arrangement for the staggered-grid finite difference scheme. x and z are 
the grid spacings for the x- and z-directions, respectively. We chose a free surface 

boundary by the Levander (1988) method. 
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Fig.6: Upper left: the calculation model. Upper right: a snapshot of the z-component of 
the particle velocity at 0.10 s. Lower left and right: z-components at 0.14 and 0.18 s, 

respectively. 
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Fig.7: Comparison of the x- and z-direction velocity components. The analytical solution 
(thick black line) is plotted against the numerical one (thin gray line) obtained by the 

DEFGM and FDM4. 
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Fig.8: Magnification of Figure 7 between 0.2 and 0.3 s. The analytical solution (thick black 
line) is plotted against the numerical one (thin gray line) obtained by the DEFGM and 

FDM4. 
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Fig.9(a): Comparison of the x- and z-direction velocity components. The analytical 
solution (thick black line) is plotted against the numerical one (thin gray line) obtained 

by the DEFGM and FDM4. From top to bottom, the graphs correspond to the DEFGM, FDM4 
with 1-m grid spacing, and FDM4 with 0.5-m grid spacing. Offsets are 100 m 
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Fig9(b): offset = 200 m 
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Fig9(c): offset = 500 m 
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Fig9(d): offset = 1000 m 
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Fig.10(a): Comparison of the x- and z-direction velocity components. The analytical 
solution (thick black line) is plotted against the numerical one (thin gray line) obtained 
by various DEFGMs. From top to bottom, the graphs correspond to 6 bases, 7 bases, FEM 

interpolation, and compound bases. Offsets are 1000 m 
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Fig.10(b): offset = 2000 m 
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Fig.11: Schematics of the EFGM computation as conducted for a wave propagation 
problem. (a) First-order polynomial interpolation, (b) Second-order polynomial 

interpolation. 
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Fig.12: The PML damping function (A.3). 
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