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Dicarbonylcyclopentadienylorganoiron complexes 
[CpFe(CO)2R] have been attracting considerable attention 
in the field of coordination chemistry.1  Among them, the 
corresponding (1-alkynyl)iron complexes 
[CpFe(CO)2(C≡CR)] are interesting not only as 
fundamental organometallic compounds2 but also as 
potentially useful precursors for molecular electronic 
devices.3 

The synthesis of the (1-alkynyl)iron complexes often 
employs the reactions of [CpFe(CO)2X] (X = halogen) with 
lithium or magnesium acetylides, which lack generality and 
functional group compatibility.4  Although palladium-
catalyzed Migita-Kosugi-Stille-type reactions of 
[CpFe(CO)2I] with (1-alkynyl)stannanes offer an 
alternative route,5 preparation of the tin reagents and 
removal of tin impurities would be troublesome.  Copper-
catalyzed reactions of [CpFe(CO)2X] (X = Cl or Br) with 
terminal acetylenes providing [CpFe(CO)2(C≡CR)] are 
most useful at present due to their reasonable scope and 
efficiency.4d,6  However, the yields heavily depended on the 
alkynes used and [CpFe(CO)2I] would not react under the 
copper-catalyzed conditions.  More efficient and versatile 
methods for the synthesis of [CpFe(CO)2(C≡CR)] are 
hence awaited.7,8 

Recently, we have developed easy and efficient methods 
for the synthesis of [CpFe(CO)2Ar], the palladium-
catalyzed Kumada-Tamao-Corriu-,9a  Negishi-,9b and 

Suzuki-Miyaura-type9b reactions of [CpFe(CO)2I] with 
arylmetal reagents.  Here we report the synthesis of 
[CpFe(CO)2(C≡CR)] by palladium-catalyzed Sonogashira-
type carbon–iron bond formation.10  

Treatment of [CpFe(CO)2I] with phenylacetylene in the 
presence of catalytic amounts of CuI and [PdCl2(PPh3)2] in 
a triethylamine/THF mixed solvent afforded 
[CpFe(CO)2(C≡CPh)]11 (1a) in 60% yield (Eq 1).  The 
combination of CuI and the palladium catalyst is important.  
The reaction was sluggish when copper iodide (11% yield) 
or the palladium complex (18%) was omitted.  After 
screening reaction conditions, we found that 
diisopropylamine is the most effective base (Eq 2).  The 
reaction in a diisopropylamine/THF mixed solvent at 25 ˚C 
for 30 min afforded 1a in 81% yield, albeit with a smaller 
amount, 2.5 mol%, of the palladium catalyst.12 

Fe IOC
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Fe COC
OC 1a

5 mol% PdCl2(PPh3)2
5 mol% CuI
1.5 equiv

C Ph
H C C Ph

Et3N/THF = 1:2
25 ˚C, 30 min, 60%

(1)
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2.5 mol% PdCl2(PPh3)2
5 mol% CuI
1.5 equiv H C C Ph
iPr2NH/THF = 1:2
25 ˚C, 30 min, 81%
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The scope of alkynes is summarized in Table 1.  A methyl 
or methoxy group at the 4 position of the arylacetylene had 
little influence on the reaction (entries 1 and 2).  The steric 
effect of a 2-methyl group was also negligible (entry 3).  
On the other hand, electron-withdrawing groups retarded 
the reaction.  The reaction with 4-fluorophenylacetylene 
required a higher temperature and a longer reaction time to 
attain a satisfactory result (entry 4).  More disappointingly, 
very inefficient conversions were observed in the reactions 
of 4-trifluoromethyl- and 4-cyanophenylacetylene (entries 
5 and 6). 

We thus reexamined the conditions for the reactions with 
electron-deficient arylacetylenes.  To our delight, 
ethyldiisopropylamine proved to be effective.  In addition, 
the amounts of [PdCl2(PPh3)2] and CuI were changed from 
2.5 mol% and 5 mol% to 5 mol% and 2.5 mol%, 
respectively.  For instance, treatment of [CpFe(CO)2I] with 
4-trifluoromethylphenylacetylene under the reoptimized 
conditions (Conditions B) furnished the corresponding 
alkynyliron 1f in 86% yield (entry 7).  Cyano or halo-
substituted arylacetylenes were also transformed efficiently 
(entries 8–11).  Iron complex 1k bearing a carbonyl group 
was obtained in high yield (entry 12) although 1k was 
unstable under air and decomposed during chromatographic 
purification on silica gel.13 

Table 1. Scope of alkynes 

Fe IOC
OC

cat. PdCl2(PPh3)2
cat. CuI
1.5 equiv H C C R

amine/THF = 1:2
25 ˚C, 30 min

Fe COC
OC 1

C R

 
entry R conditionsa 1 yield /% 

1 4-MeC6H4 A 1b 85 
2 4-MeOC6H4 A 1c 76 
3 2-MeC6H4 A 1d 88 
4 4-FC6H4 A 1e 77b 
5 4-CF3C6H4 A 1f 13 
6 4-NCC6H4 A 1g 23 
7 4-CF3C6H4 B 1f 86 
8 4-NCC6H4 B 1g 84 
9 2-NCC6H4 B 1h 91 
10 4-ClC6H4 B 1i 75 
11 4-BrC6H4 B 1j 74 
12 4-MeOC(=O)C6H4 B 1k 85c 
13 nC4H9 A 1l 34c 
14 tC4H9

 A 1m 66c 
15 Me3Si A 1n 73c 
a Conditions A: 2.5 mol% [PdCl2(PPh3)2], 5 mol% CuI, 

iPr2NH; Conditions B: 5 mol% [PdCl2(PPh3)2], 2.5 mol% 
CuI, iPr2EtN.  b At 50 ˚C for 1 h.  c Based on NMR 
analysis of a crude mixture. 

 
Although the reaction of [CpFe(CO)2I] with aliphatic 
terminal acetylene or trimethylsilylacetylene proceeded 
under Conditions A (entries 13–15), products 1l–1n were 

not isolated efficiently in our hands due to the instability 
under air.13 

The Sonogashira-type reaction is so chemoselective that 4-
ethynylbenzyl alcohol underwent smooth carbon–iron bond 
formation without affecting the hydroxy group (Scheme 1).  
To verify that the hydroxy group remained intact, the 
hydroxy group of 1o was acetylated to yield 1p.  The 
benzylic protons of the starting alcohol and 1o appeared 
around 4.6–4.7ppm in 1H NMR analysis, whereas those of 
1p appeared at a clearly different chemical shift of 5.04ppm.  
These NMR analyses strongly support the inertness of the 
hydroxy group under the palladium catalysis. 

Scheme 1. Chemoselective reaction of 4-ethynylbenzyl 
alcohol 
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iPr2NH/THF = 1:2
25 ˚C, 3.5 h

 
 
The reaction of [CpFe(CO)2I] with 1,4-diethynylbenzene 
afforded dinuclear iron complex 1q in high yield (Eq 3), 
highlighting the efficiency of the carbon–iron bond 
formation. 

Fe IOC
OC

(2.2 equiv)

C CCH C H+

5 mol% PdCl2(PPh3)2
10 mol% CuI
iPr2NH/THF = 1:2
25 ˚C, 30 min, 70%

C CC CFeOC
OC

Fe CO
CO

1q

(3)

 
 
Not only iodoiron complexes but also similar molybdenum 
and tungsten complexes underwent alkynylation under 
Conditions A (Eq 4). 

M I

M = Mo:  
M = W:

(4)OC
OC CO

M COC
OC CO

C Ph

2.5 mol% PdCl2(PPh3)2
5 mol% CuI
1.5 equiv H C C Ph
iPr2NH/THF = 1:2
25 ˚C, 30 min

2a, 66%
2b, 88%  

 
The Sonogashira-type reaction was applicable to the 
alkynylation of [Cp*Fe(CO)2I] (Eq 5).  Due to the more 
bulky and electron-donating Cp* group, [Cp*Fe(CO)2I] 
was less reactive.  The reaction required larger catalyst 
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loadings and a longer reaction time.  Tetrabutylammonium 
fluoride (TBAF) served as a base more efficiently than 
ethyldiisopropylamine and diisopropylamine.  It is worth 
noting that the precedented copper-catalyzed alkynylation 
of [Cp*Fe(CO)2Br] is low-yielding.6b 

Fe IOC
OC

Fe COC
OC 1a*

5 mol% PdCl2(PPh3)2
10 mol% CuI
1.5 equiv TBAF
1.5 equiv

C Ph
H C C Ph

THF, 25 ˚C, 12 h, 74%
(5)

 
 
The TBAF-mediated alkynylation conditions were also 
effective for the alkynylation with diynylsilane 3, which 
represents a model synthesis of oligoynylirons as molecular 
electronic devices3 (Eq 6).  Diynylsilane 3 reacted with 
[CpFe(CO)2I] in the presence of TBAF and the 
[PdCl2(PPh3)2]/CuI catalyst to yield diynyliron complex 1r 
in 80% yield.14  It is worth noting that 3 is readily 
available15 and stable whereas phenylbutadiyne is difficult 
to synthesize and to handle.16 

Fe IOC
OC

+

CCCFeOC
OC

(6)C

CCCMe3Si C

5 mol% PdCl2(PPh3)2
10 mol% CuI
1.5 equiv TBAF

THF, 25 ˚C, 12 h, 80%3  (1.5 equiv)

1r  
 

In summary, we have applied an important carbon–carbon 
bond forming reaction, the Sonogashira reaction, to the 
construction of carbon–iron bonds.  We have thus 
developed a method for the synthesis of 1-alkynyliron 
complexes [CpFe(CO)2(C≡CR)].  The iron complexes will 
find many applications in advanced material sciences as 
well as coordination chemistry and organic synthesis. 
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