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Abstract 
A back analysis using a three dimensional boundary element 
method can be used to calculate the far-field stress state from 
local stresses measured in situ. The far-field stresses are 
decomposed into tectonic and gravitational components and 
account for the influence of localized faulting and topography. 
Therefore, the far-field stresses are taken to consist of a 
constant term, a term that varies linearly with depth, and a 
hyperbolic term, with one of the principal stresses being 
vertical. A boundary element method for inhomogeneous 
bodies is introduced to calculate elastic gravitational stresses, 
which is necessary for determination of the far-field stresses.  
   An application to the stress field determination for the 
Mizunami Underground Research Laboratory (MIU) is carried 
out. Based upon the local stresses generally measured by 
conventional hydraulic fracturing (HF), the unknown stress 
state at MIU is estimated and compared with the 
measurements carried out recently by the improved HF 
method with flow rate measurements at the position of 
straddle packer. After calculating the far-field stress state by 
BEM back analysis, 3D-FDM forward analysis was carried to 
calculate the in situ stresses at certain locations. The 3D-FDM 
results roughly coincide with the measured results. 
Keywords: Stress determination; Stress measurement; Numerical 
modelling; Boundary element method; Hydraulic fracturing 

1. Introduction 

In many civil and mining engineering projects, especially 
those involving underground excavation, the initial state of 
stress, i.e., the state of stress prior to any excavation or 
construction, can be essential to understand.  This state may be 
complex owing to (a) heterogeneity in rock type and rock 
structure, and (b) the geologic history. Recent experience with 
underground research laboratories has highlighted the 
necessity of understanding the ambient stress state for 
designing and constructing repositories for high-level 
radioactive wastes, especially with regard to excavation 
stability and hydraulic suitability. Such projects require stress 

evaluations for rock masses with widths of several kilometres 
and depths greater than one kilometre [1]. In some cases the 
rock at the depth of repository candidates is influenced 
substantively by topography. Analytical solutions for stresses 
exist for a range of idealized 2D topographies [2], but accurate 
analytical solutions are not available for an elastic medium 
with an irregular three-dimensional surface. Such terrains may 
be analyzed with numerical models, such as finite difference 
methods (FDM) or finite element (FEM) methods. A 
problematic aspect of both these methods, however, is that the 
model boundary conditions are applied to boundaries of 
arbitrarily defined geometry, and it is not clear what these 
should be. Hence, the central question is how the boundary 
conditions of a numerical model of a rock mass should be 
assigned. In comparison, boundary element methods (BEM) 
have the advantages that no artificial truncated boundaries are 
necessary and open regions deep underground can be treated 
rather accurately. 

We present here a non-linear numerical inverse method for 
evaluating the in situ state of stress in a rock mass. It accounts 
for tectonic stresses, topography and rock mass 
inhomogeneity. Unlike back analysis by FEM or FDM with 
strain components or displacement components on model 
boundaries adopted as unknowns, we carried out a back 
analysis by using the boundary element method (BEM) and 
treated the far field stress state as the unknown. The BEM 
back analysis results can then serve as the input boundary 
conditions for FEM or FDM analysis, two popular and 
powerful methods well-suited for non-linear or large- strain 
problems. With the numerical model boundary conditions 
determined, we can easily study a variety of key issues, such 
as excavation-induced stress or the stress perturbations caused 
by faults. Finally, we applied this method to evaluate the stress 
field of the Tono district, Japan, a candidate for an 
underground repository site for high-level radioactive wastes. 
The numerical model is 2.4 km x 3.2 km in area. Stress 
measurements in 9 different locations obtained by various 
methods were adopted for the back analysis. 
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2. Overview of methods 

2.1 Back analysis 

The in situ stress field can never be completely measured, 
and as a result methods for evaluating it involve simplifying 
assumptions. The most common practice is to assume lateral 
confinement (i.e., no horizontal displacement anywhere due to 
gravitational loading).  The following equation usually is used 
to describe the initial state of stress in a uniform soil or rock 
mass below a horizontal free surface: 

ghzz  0 , ghyyxx 






1

00  (1) 

where    is the mass density of the material, g  is the 
gravitational acceleration,    is Poisson’s ratio, and h  is the 
elevation below the surface which assumes a negative value 
[3]. The terms

0
xx  and 

0
yy  are the two horizontal principal 

stresses, and 
0
zz  is the vertical stress at depth h . Actual 

field measurements, however, show that the horizontal stresses 
commonly to not follow this relationship, and in many places 
are several times larger than the vertical stress [4]. 
Furthermore, the horizontal stress state is not uniform, 
especially in a seismically active region such as Japan [5]. The 
current stress state reflects a series of geologic events, the 
stiffness of a rock mass, as well as gravitational and tectonic 
stresses [6]. Finally, a rock mass heterogeneities and 
discontinuities cause local stress variations. In light of these 
factors, the assumption of lateral confinement is likely to be 
inappropriate in many cases, and factors like tectonic stresses 
must be considered.  

The following equation provides a more general 
relationship, with the constraints that one of the principal 
stress components is vertical and varies linearly with depth: 

ghk
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b
ghS 


0  (2) 
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Here 0  stands for the in situ measured stress state, S is the 
tectonic (regional) stress state, α is the 3-by-3 matrix of 
coefficients due to gravitational loading with the relation that 






1yx  and 1z , k is the 3-by-3 matrix of 

coefficients for a linear distribution of horizontal stresses [7], 
and a and b are constants, determined from measured data by 
a simplex method, that allow for a non-linear distribution of 

certain stresses with depth [4]. In this equation a has a 
dimension of length and b is dimensionless. We emphasize 
that ,,, xyyx SSS  xyyxzyx kkk ,,,,,   
are considered as coefficients of far field stress components. 
The right side of Equation (2) contains a constant term, a term 
that varies linearly with h, and a non-linear term with a 
hyperbolic coefficient 

ah

b


. As mentioned later, the values 

of a = 904.6 meters and b = 812.1 meters were determined to 
minimize the sum of the differences of the stress values given 
by Equation (2) and the stress values measured.  

The calculated stress component c
ij  at an arbitrary point 

can be expressed as 

pqpqijpqpqijpqpqij
c
ij kS ,,,           (3) 

where the superscript c refers to a stress component calculated 
at that point and repeated indices imply summation. pqij, , 

pqij,  and pqij, are calculated stress components due to each 
independent unit stress state established by the coefficients of 
far field stress components pqS ,  pq  and pqk  respectively. 
If the measured stress component at an arbitrary point is 
expressed as m

ij , the following equation is obtained by 
putting c

ij
m
ij    in Equation (3) 

pqpqijpqpqijpqpqij
m
ij kS ,,,            (4) 

Thus, applying Equation (4) to all stress components at all 
measurement points, we can obtain the equation relating all 
field measurement stress components with the unknown 
coefficients of far field stresses.   
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 (5) 

 

In Equation (5), the superscript n in the last row of the left 
column stands for the number of underground measurement 
points, and the superscript m means that the stresses in the left 
column are all field measurement stress components. Since in 
practice the number of equations is usually more than 6, i.e., 
the number of the unknown coefficients xS , yS , xyS , xk  , 

yk and xyk , a unique solution cannot be guaranteed. A least-
squares procedure is adopted here to find the best solution of 
the equation. 

 

2.2 Calculating elastic gravitational stresses by introduction 

of a boundary element method for inhomogeneous bodies 
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To calculate 
pqij, , pqij,  and 

pqij,  in Equation (5) at an 
arbitrary point due to each independent unit stress state, 
numerical modelling is necessary for terrains with an irregular 
three-dimensional surface, as discussed above. Thus the 
central question is how to assign boundary conditions to the 
model of a rock mass. In general, the finite element method 
(FEM) and finite difference method (FDM) are more popular 
than the boundary element method (BEM) for dealing with 
intricate geological conditions (e.g., inelasticity, 
heterogeneity, and anisotropy). However, certain artificial 
boundary conditions have to be assumed for FEM and FDM 
such as prescribed displacement boundary conditions or 
prescribed stress boundary conditions, and it is hard to 
evaluate the potential influence of the boundary on the 
calculated model. 

The boundary element method, on the other hand, is well 
suited for unbounded problems such as excavations or 
constructions in rock mass since no artificial boundaries are 
necessary; furthermore, it saves time in numerical modelling 
since the geometrical dimension is reduced by one. [8]. 
Boundary element methods include the fictitious stress method 
(FSM), displacement discontinuity indirect method (DDM), 
and the direct boundary integral method [9]. The indirect 
methods were extended by Kuriyama and Mizuta [10, 11] to 
establish three-dimensional procedures using triangular leaf 
elements. Martel and Muller [12] showed how the 
displacement discontinuity boundary element method can be 
used to calculate elastic gravitational stresses beneath 
topographic surfaces by modeling the topographic surface as a 
large traction-free crack. They implemented the approach in 
two-dimensional plane-strain analyses in homogeneous bodies 
but noted that the method could be extended to three 
dimensions. 

 

 
Figure 1. Conceptual model for calculating the stress state with a 

topographic surface (The depth D is actually infinite): (a) the stress 
state under the topographic surface tiled with boundary elements; (b) 
the ambient stress state under the assumed horizontal reference plane; 

(c) the perturbation due to the overburden. 
 

To meet needs for large underground excavations or 
constructions, we present a three-dimensional boundary 
element method for calculating elastic gravitational stresses 
for a homogeneous rock mass. Figure 1 shows a conceptual 
model for calculating the stress state in a homogeneous linear 
elastic region with a topographic surface. Considering 
principles of linear elastic theory and continuum mechanics, 
we assume a horizontal arbitrary plane above the highest 
elevation of the surface. Anything under this plane is assumed 
as one homogeneous linearly elastic body. The stress state at 
an arbitrary point under the topographic surface can be 
calculated by subtracting the perturbation to the ambient stress 

state due to the overburden between the horizontal arbitrary 
plane and the surface, from the ambient stress state under the 
assumed horizontal reference plane. The total stresses are 
obtained as the sum of the ambient stresses state and the 
perturbation to it, for example, 
    0int

)( ******
i

xx

i

xx

i

xx
       (6) 

where      
ttt ****** ,, i

xz

i

zy

i

zz
  are equal to zero for the free 

topographic surface. An initial stress state under the assumed 
horizontal arbitrary plane prior to removal of the overburden 
can be calculated analytically using Equation (2). The 
perturbation stresses due to the overburden from the arbitrary 
plane to the topographic surface can be easily solved with the 
adoption of fictitious stresses. Here body forces are described 
in a global coordinate system where the z-axis is vertical. The 
topographic surface stresses are described by an element-
based local co-ordinate system. The origin of the local co-
ordinate system is at the centre of the element, with z* -axis 
normal to the element. In this approach the effect of horizontal 
ambient stresses is established by 

,,, xyyx SSS xyyxyx kkk ,,,,  . For any 
boundary element i along the topographic surface, the 
following equation can be set up  
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where j

x
P * , j

y
P * , j

z
P *  are fictitious stresses introduced to 

facilitate the numerical solution to the problem and are 
fictitious quantities, ijA  is the influence coefficient relating 
the effect of a unit fictitious stress at element j to the traction 
at element i, N is the total number of the boundary elements, 
and      

ininin ****** ,, i

xz

i

zy

i

zz
  are the stress components 

induced by the fictitious stresses at all N elements. On the 
other hand, since 
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where i

zz ** , i

zy ** , i

xz **  are the three components of the initial 

ambient stresses at element i, and can be determined by the 
depth from the assumed arbitrary plane and inclination of the 
element. Thus we obtain a system of 3N algebraic equations 
with 3N fictitious unknown stresses. Once the three fictitious 
stresses i

x
P *

, i

y
P *

, i

z
P *

are solved for, other stress components 

such as  
in**

i

xx
 ,  

in
**

i

yy
  and  

in
**

i

yx
 induced by the above 

fictitious stresses can be calculated from the same expression 

by using ij
xA  etc.. By the same method, all of the six stress 

components of the initial stresses at a specified point k under 
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the assumed arbitrary horizontal plane,  
0**

k

xx
  etc., can be 

calculated through an equation with the same form as 
Equation (7) but with an appropriate set of new influence 
coefficients. 

Rock masses are typically heterogeneous and contain 
discontinuities such as faults. To adequately estimate the state 
of stress properly the effects of inhomogeneity must be 
considered in certain cases [13]. 

 
Figure 2. Conceptual model for calculating the stress state in an 

inhomogeneous body containing two subregions R1 and R2  (The 
topographic surface and the interfaces with local coordinate systems 

are tiled with boundary elements). 
 
Figure 2 shows an inhomogeneous rock mass containing 

two subregions R1 and R2. The two subregions are each 
assumed to be homogeneous, isotropic and linear elastic. The 
common portions of the two subregions define the interface 

between the subregions. The local *x , *y  , *z   coordinate 

systems associated with the interfaces appear as shown in 

Figure 2. The local coordinates *
1Rx  , *

1Rz   and *
2Rx ,  *

2Rz  are 

oppositely directed along the interfaces, i.e. *
2

*
1 RR xx    and 

*
2

*
1 RR zz  . The areas must extend sufficiently far away 

from the area of interest such that the behaviour in that area is 
not greatly affected by perimeter of the R1-R2 interface. The 
upper subregion can be solved by the method above for the 
homogeneous half-plane with a free topographic surface. The 
lower subregion with the interface can be treated as the same 
problem expressed by Equation (7), except that the free 
topographic surface is replaced by the interface between the 
two subregions. Tractions and displacements must be 
continuous along the interface between the two subregions, we 
can have the following equations for the three stress 
components j

zz ** , j
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xz **  at element j along the interface 
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for the displacement. The minus signs in Equation (9) and (10) 
are a consequence of the opposite directions of the local 

coordinates of subregions R1 and R2 along the interface. This 
method can be extended to solve problems involving several 
homogeneous, isotropic and linear elastic subregions. 
However, this means that we will have to solve the boundary 
integral equations with a large number of coefficients. To save 
the requirement on central memory for boundary element 
simulation, a simultaneous equation solution method 
developed by Beer and Watson can be adopted [14]. Since in 
this study only two homogeneous subregions were 
represented, the procedure of Beer and Watson was not 
adopted. 
 

2.3 Check of the inhomogeneous modelling code 

Liu CL, Li G, Kuriyama K. and Mizuta Y [13] carried out 
numerical calculation using their BEM code developed for 
inhomogeneous modelling. They took the infinite model 
including concentric double cylindrical surfaces whose lengths 
are finite. As shown in Fig. 3, the inner boundary contour with 
radius a is the free surface boundary subject to the uniform 
pressure and the outer boundary contour with radius b is the 
interface between the subregion R1 and R2, where R1 is the 
finite region between the free surface and the interface, and R2 
is the infinite region outside of the interface although the 
longitudinal length of those contours are L (not infinite). They 
compared the numerical results with the analytical solution 
[15] and fund that the numerical and analytical solutions are 
almost the same even in the case of L/(2b)=2. Please refer to 
Ref. 13 for further information about material parameters and 
solutions in detail. 

 
Figure 3. Axi-symmetric model containing two subregions. 

 

3. Application to the stress field determination for 
underground research laboratory 

3.1 Introduction of Mizunami Underground Research 
Laboratory (MIU) and Tono district 

One aim of the geological disposal policy in Japan is the 
establishment of Underground Research Laboratories (URLs). 
The URLs are distinguished from a disposal facility, as 
outlined in the Atomic Energy Commission (AEC) report [16]. 
Research on the deep geological environment will provide the 
scientific and technological basis for R&D on geological 
disposal of high-level radioactive waste. The AEC also 
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stipulated that research at the underground laboratories 
contribute to Japan's scientific research on the geological 
environment. URL projects of the Japan Atomic Energy 
Agency (JAEA) are directed towards improving the reliability 
of geological disposal technologies and developing advanced 
safety assessment methodologies.  

 

 
 

Figure 4. Diagram of the Mizunami Underground Research 
Laboratory (MIU). 

 
As a part of the projects, the Mizunami Underground 

Research Laboratory (MIU), located in Mizunami city of Gifu 
Prefecture in central Japan, is under construction for research 
works 1,000 meters underground (see Fig. 4). The 
construction includes two vertical shafts excavated 1,000 m 
deep underground and horizontal tunnels at depths of 500 
meters and 1,000 meters. First stage excavation of the vertical 
shafts to 300m depth has already been carried out. The 
laboratory shall be utilized as a base for research of rock 
mechanics and groundwater flow relating to deep geological 
repositories. 

Figure 5 shows the location of MIU in Tono district. Local 
hills reach elevations of 200 meters to 300 meters. Two main 
geologic units exist at MIU, a basement of Toki granite and 
the overlying Akeyo formation of mudstone and sandstone, 

which has a maximum thickness of ~150 meters [17]. The 
Tsukiyoshi fault is a reverse fault with a strike of N80W, a dip 
of 60 and an estimated throw of about 30m located in Tono 
district.  

 

 
 

Figure 5. Location of MIU in Tono district. The rectangle indicates 
the area to be simulated. 

 
3.2 Local stress measurements using conventional hydraulic 
fracturing  

Rock stress measurements have been performed at 247 
points under 9 different locations within Tono district by 
various measurement techniques, including the hydraulic 
fracturing (HF) [17], deformation rate analysis (DRA), and 
acoustic emission (AE). However, only the in-situ stresses 
measured by HF are introduced into the left column of 
Equation (5). Figure 6 shows the locations of the boreholes for 
stress measurement at locations 1 to 9 relative to the location 
of the Mizunami Underground Research Laboratory (MIU). 
Table 1 shows the in-situ stresses measured by HF at 101 
points in different locations at various depths. Note that stress 
convention in this paper is that tensile stresses are considered 
positive and compressive stresses negative. 

 
Figure 6. Map of measurement locations within the area of 

simulation shown in Fig. 5.  The y-axis points north and the x-axis 
points east.  Point 10 shows MIU. 
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Table 1. In-situ measured stresses for the Tono district 

Measurement
locations 

Depth 
(m) 

1  
(Mpa) 

2  
(Mpa) 

Degree of 1  

(clockwise, 
from north)

1 233.6  
235.5  
238.5  
249.9  
251.8  
253.0  
258.9  
260.9  
263.9 

-7.26  
-6.97  
-8.45  
-5.80  
-5.71  
-5.70  
-5.97  
-5.55  
-5.95 

-12.16  
-11.85  
-15.78  
-9.89  
-9.47  
-9.42  
-9.66  
-8.85  
-9.45 

-46.69  
-71.46  
-70.02  
-25.78  
-14.32  
-23.27  
-39.95  
-27.12  
-23.14

2 52.3  
64.5  
77.0  
102.0  
122.0  
141.0  
157.8  
170.3  
184.2  
192.5 

-1.00  
-1.70  
-1.40  
-1.90  
-6.20  
-7.50  
-6.60  
-3.40  

-10.10  
-4.50 

-1.40  
-3.30  
-2.40  
-3.20  

-12.50  
-11.40  
-11.40  
-4.80  

-20.20  
-8.30 

45.20  
65.20  
35.40  
26.60  
-89.60  
-72.80  
-46.00  
-42.60  
-51.30  
-61.00

3 39.0  
44.0  
75.0  
79.0  
87.0  
105.0  
127.0  
162.0  
188.5  
199.0  
205.0 

-1.00  
-1.50  
-1.80  
-1.70  
-1.40  
-2.10  
-2.10  
-3.60  
-3.20  
-3.90  
-4.50 

-2.20  
-1.90  
-3.80  
-3.30  
-1.80  
-3.70  
-4.00  
-5.30  
-5.40  
-6.30  
-6.50 

32.30  
-36.70  
-13.80  
-20.40  
-38.80  
22.30  
-28.10  
32.50  
-50.50  
-18.90  
-58.50

4 49.0  
199.0  
249.0  
309.0  
351.0  
404.0  
498.5  
564.0  
600.0  
651.0  
700.0  
790.0  
850.0  
900.0  
941.0  
991.0 

-2.90  
-6.80  
-9.10  
-3.80  
-8.80  
-10.40  
-13.60  
-14.10  
-15.80  
-16.10  
-12.90  
-15.70  
-18.40  
-25.50  
-23.40  
-18.30 

-5.10  
-14.10  
-20.30  
-4.80  

-17.50  
-19.20  
-28.00  
-29.70  
-25.30  
-29.20  
-20.80  
-22.80  
-28.30  
-48.50  
-42.70  
-27.80 

0.40  
3.80  
10.70  
-40.20  
-26.80  
-32.50  
-55.90  
-50.90  
-39.90  
-36.10  
-41.20  
-41.40  
-45.40  
-53.30  
-27.50  
-71.30

5 233.6  
235.5  
238.5  
249.9  
251.8  
253.0  

-7.26  
-6.97  
-8.45  
-5.80  
-5.71  
-5.70  

-12.16  
-11.85  
-15.78  
-9.89  
-9.47  
-9.42  

-46.69  
-71.46  
-70.02  
-25.78  
-14.32  
-23.27  

 

 
Sano, Ito, Hirata and Mizuta [18] reviewed methods of 

measuring stress and uncertainties in HF. The shut-in pressure, 
ps, is widely considered to equal the minimum principal stress 
Sh in the plane perpendicular to the borehole. In conventional 
HF analyses, the maximum principal stress (SH) is determined 
through the following equation: 

SH = 3Sh – pr – pp          (11) 
where pr is the reopening pressure and  pp is the pore pressure. 
Equation (11) assumes that a hydraulic fracture closes 
completely before reopening. In order for Equation (11) to 
apply, the “flow rate should be sufficiently high to prevent 
fracturing fluid percolation into the closed fracture before the 
actual mechanical fracture reopening” [19]. However, the 
residual aperture of the induced fracture cannot be negligible 
for rocks [20-23].  Numerical simulations indicate that the 
pressurized fluid should permeate easily into a hydraulic 
fracture, even for an initial aperture of 3 m and the aperture 
should be enlarged by the penetration of fluid [24]. Equation 
(11) should be modified by substituting pr into pp [24, 25] as 
   2 pr = 3Sh – SH                (12) 

Based on experimental results for a granitic rock mass, Pine et 
al. [26] considered reopening pressure as a measure of 
minimum horizontal stress, namely, 
    2 pr = Sh              (13) 
Ito and Hayashi [27] numerically showed that the 
conventional pr could be equal to ps by considering that the 
pressure fluid permeates the fracture deeply before reopening. 
Rutqvist et al. [28] suggested that Equations (11), (12), and 
(13), might be true for fracture with extremely small apertures, 
medium apertures and sufficiently large apertures, 
respectively. 
   In general, numerical simulations [25, 27, 28] suggest that 
water permeates hydraulic fractures at a lower pressure than 
conventional reopening pressure, and that pr is affected by 
flow rate. The magnitude of pr should also be affected by 
water volume in the pressurizing system [24]. When the 
constant flow rate is so small that the pressure gradient in the 
fracture is negligible, temporal variation of pressure are given 
by [23], 
   dp/dt = Q/(dVc /dp + C )             (14)   

where Q, Vc and C are flow rate, volume change due to 
fracture opening and compliance of the system, respectively. 
Since the conventional pr could only be detected when the 
water permeated a fracture several times longer than the 
borehole radius, this result explained why the conventional pr 
is almost equal to ps. Ito et al. also proposed the use of a high-
stiffness HF system instead of a compliant conventional HF 
system.   
   As it is not easy to make a HF system sufficiently rigid for 
measurements in a deep borehole, the authors used the 
conventional HF procedure for local stress measurements 
described in this paper. However, in the measurements at the 
MIU, the flow meter was installed at the position of the 
straddle packer and the flow rate at that position was 
controlled in the fracture reopening procedure, while the flow 
meter is put at the ground surface in the conventional HF 
procedure. The measurements at the MIU were carried out 
recently whereas the measurements at other locations were 
carried out before 21st century. 
                         
3.3 Estimation of field stress state by 3-D BEM 

The BEM model for the Tono district simulates an area 3.2 
km long and 2.4 km wide. The BEM element (see Fig. 7) 
generally is an isosceles-right triangle with 200m x 200m in 
both directions, while the elements that cover most field-
measured locations are finely discretized (100m x 100m) to 
improve the accuracy of stress calculations.  Interface 
elements simulate the boundary between different geologic 
units, here the Akeyo formation and the Toki granite. The sub 
region between the surface and the interface in Figure 7 
represents the Akeyo formation, while the sub region under 
the interface represents the Toki granite. The Tsukiyoshi fault 
is modelled with Displacement Discontinuity Method (DDM) 
joint elements [9]. Elastic constants and densities of the 
formations were determined by laboratory tests of core 
specimens taken from various locations at various depths. 
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However, the averaged values shown in Table 2 are adopted in 
numerical modelling.  

 
 

 
 

 
Figure 7. Grid of triangular elements for the BEM modeling. The 

volume modelled has a plan view area of 3.2 km x 2.4 km and a 
depth of 1.2 km.  The projection of MIU onto the surface is shown by 

a dotted line. 
 

Table 2. Input material properties for BEM modeling. 

Materials Akeyo formation Toki granite Tsukiyoshi fault 

Young’s modulus E [GPa] 2.21 50.09  

Poisson’s ratio ν  0.30 0.35  

Density ρ [g/cm3] 1.84 2.56  

Normal stiffness kn [MPa/m]   50.0 

Shear stiffness ks [MPa/m]   50.0 

  

Model parameters are based on a combination of field 
measurements and results from numerical simulations. The 
mean inclination of Tsukiyoshi Fault is 56.3 degree. The mean 
vertical dimension of the fault that is obtained from boring 
data is 23.8m and thus, the mean thickness of the fault, t, is 
13.2m. The P wave velocities in the fault have been found 
from logging data to be 65.3~77.4 % (mean ratio, 

717.0pr ) of that of the sound rock. Assuming that the 
normal stiffness kn and shear stiffness ks are given by the 
following formula:  

t

E
k F

n 
, 

t

E
k F

s )1(2 
 , and 

corepF ErE 2              (15)   

where Ecore is Young’s modulus measured from core 
specimens, then, MPa/m,86nk MPa/m33sk  for 
the fault in the Akeyo formation and MPa/m1950nk , 

MPa/m722sk for the fault in the Toki granite. However, 
normal and shear stiffness of the DDM joint elements are both 
assumed to be 50Mpa/m, because our FEM modelling yields 
stress distribution in the Toki granite that are gross 
inconsistent with the measured values, unless stiffnesses of 
~50 MPA are used  [19]. 
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Figure 8. In-situ stresses versus depth for the Tono district 

     In Equation (5), 6 coefficients are unknown since 

yx  ,  and z  are known, while 101 stress measurements 
exist. Only vertical stresses were determined from DRA and 
AE, and the measured values were compared with overburden 
pressure, ρgh . HF can only determine the stress states in the 
plane perpendicular to the vertical holes (see Table 1 and Fig. 
8). Hence, data of z , yz  and zx  components are not in 
the left column of Equation (5). Furthermore, there are no 
sudden changes in the stresses determined from Equation (2), 
although sudden changes near the ground surface or 
subsurface are in the calculated stresses through FLAC 3D 
(see Fig.9). 
 

 
Figure 9. The local stress distributions calculated by FLAC3D 

forward analysis compared with the measurement results at location 6 
of Fig. 6. 

Based on the measurement results and material properties 
adopted above, we first used BEM method to calculate the 
matrix of induced state of stresses in Equation (5). Second we 
used a simplex method [29] to determine the two constants a 
and b in Equation (2), with a = 904.6 meters and b = 812.1 
meters. A least squares approach is chosen to control the 
distribution of error and find the best approximate solution for 
this over-determined problem [29, 30]. Table 3 shows the 
calculated results for far field stress state. The solution for the 
far field stresses with the non-linear assumption of the initial 
state of stresses is affected by local effects such as non-
linearity and large strains. Furthermore, the fault stiffness 
adopted from the FEM modeling results might be a key factor 
that would contribute to error in the BEM modeling. Finally, 
there still exists the possibility that one of the principal 
stresses is not vertical. 

 
Table 3. Far field stress state determined by BEM3D 

Sx (MPa) -1.99 

Sy (MPa) -3.45 

Sxy (MPa) 0.755 

xk  0.778 

yk  0.674 

xyk  -0.168 

(xሺAkeyoࢻ  0.429 

 yሺAkeyo) 0.429ࢻ

 zሺAkeyo) 1ࢻ

(xሺTokiࢻ  0.538 

 yሺToki) 0.538ࢻ

 zሺToki) 1ࢻ

a 904.6m 

b 812.1m 
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Fig. 8 shows the far-field principal stresses, calculated 
using the BEM results and the coefficients for equations 2 and 
5, as a function of elevation. The vertical stress v  has a 
stress gradient of 0.026MPa/m. The calculated stresses are 
calculated based on in-situ measured stresses shown in Table 
1. In most cases the absolute values of measured horizontal 
principal stresses, 1  and 2 , exceed those of the vertical 
stresses at shallow depths. The above results show that the 
stress state measured varied with depth from thrust fault type 
( 1  >  2 > V  ) to strike-slip fault type ( 1  > V  
>  2 ).  

 

3.4 Estimation of field stress state by 3-D FDM with boundary 
conditions determined by the above BEM analysis 

To illustrate how the above far field stress coefficients can 
be adopted as input boundary conditions, a three-dimensional 
finite difference method named FLAC3D (Fast Lagrangian 
Analysis of Continua in 3-Dimensions) [31] is applied to 
simulate the same area of 3-D BEM analysis. FLAC3D can 
solve a wide range of complex problems in mechanics, and 
has some advantages over a BEM approach in certain 
situations, such as modelling of the non-linear behaviour of 
materials and large-strain deformation analysis. The region 
modeled is 3.2 km long, 2.4 km wide and 1.1 km deep. The 
model was composed of 280,160 elements and 301,704 
gridpoints with an interface to simulate the Tsukiyoshi fault. 
The Akeyo formation and Toki granite are accounted for in 
the simulation; their properties are shown in Table 2. 

A stress boundary determined by the above-calculated 
coefficients of far field stresses is applied to the FLAC3D 
model. In FLAC3D forces or stresses may be easily applied to 
any boundary by some inherent commands. The boundaries 
should be placed sufficiently far away from the area of interest 
such that the behaviour in that area is not greatly affected, 
with constraints on memory and computer time being 
considered. In this study a space about 300 meters between the 
boundaries and the areas of interest is adopted (see Fig. 6). 
Fig. 9 shows the stresses calculated with FLAC3D at location 
6 (in Fig. 6) with the measured stresses. We can tell that 
calculations with FLAC3D provide a better fit at shallow 
depths than at great depth, which could be a result of more 
input data, i.e., in-situ measurement results, at shallow depths 
(see Table 1). The least square procedure adopted to solve 
Equation (5) for the unknown coefficients reflects the 
influence of field measurements at shallow depths better than 
those at great depths. The estimated stresses distribution has 
the same pattern as the measured stresses, i.e., the absolute 
value of the vertical stress is least at shallow depths and 
increases with depth. 

All the stress measurements at the locations 1-9 were carried 
out before 21st century by the conventional HF method and 
those HF data were used for stress field estimation at location 
10, which is the location of the Mizunami Underground 
Research Laboratory (MIU). We assumed that locations 1-10 
were under the influence of the same far-field stress state, i.e., 
the estimation results of the above BEM modelling. Therefore 
the unknown stress state at location 10 could be estimated 

based on the FLAC3D model with boundary conditions 
determined by the above BEM analysis. Recently the stress 
measurements at the MIU were carried out by the improved 
HF method, which provided us a chance to verify our 
estimation of the stress state at location 10. 

 

FLAC3D 

estimation 

Best‐fit line
FLAC3D 

estimation 

Best‐fit line 

 
Figure 10. In situ stresses measured by hydraulic fracturing at depths 
as great as 1000m at MIU (location 10 in Fig. 6) compared with the 

stresses estimated using FLAC3D.  The horizontal dashed lines show 
where the MIU borehole intersects three small faults. 

 
Figure 10 shows stresses estimated using FLAC3D 

compared with the in situ stresses measured by hydraulic 
fracturing at MIU at depths as great as 1,000m. The horizontal 
dashed lines in Fig. 10 show where the MIU borehole 
intersects three small faults that were not modelled in our 
numerical simulations. When we compare the estimated 
stresses with the measured ones, good matches can be found 
for both the maximum and minimum principal stresses as 
shown in Fig. 10, which means that it is practical to estimate 
the stress state at MIU (location 10) based upon the in-situ 
stress measurement results at locations 1-9. Therefore, the 
method proposed here provides a practical way to estimate the 
stress state based on measured results with reasonable pre-
determined boundary conditions by BEM analysis. Since the 
FLAC3D model is only about 1.1km in depth, the stress state 
estimated at greater depth, i.e., more than 1000m, deviates 
from the measurement results due to the influence of the 
bottom boundary.  A model with greater depth at least 1200 
meters will be necessary for accurate estimation of stress state 
at depth near 1000 meters. A best-fit line for the in situ 
measurement data was added in this figure to compare with 
the FLAC3D estimated results. The FLAC3D estimation fits 
the measurement data better than the best-fit line at shallow 
depth. 

Thus, by adopting the stress boundary determined by non-
linear far field stress coefficients calculated from BEM 
modelling, the in situ state of stress can be calculated by FDM 
simulation considering tectonic stresses, inhomogeneity and 
discontinuities of rock mass. With the understanding of this 
initial state of stress we can easily study other aspects that we 
are interested in along with the excavation of Mizunami 
Underground Research Laboratory, although more detailed 
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field formation should be taken into modelling for better 
estimation of the local stresses. 

4. Conclusion 

A new proposal for the determination of the far field 
stresses based on stress measurement results is developed in 
this paper. The method considered the tectonic stresses, 
topography and inhomogeneity of the rock mass. The in situ 
measurement stress is decomposed into tectonic and 
gravitational components, and 6 independent far field stress 
coefficients are achieved by back analysis using newly 
developed three-dimensional BEM simulation incorporating 
inhomogeneity for determination of gravitational stresses 
distribution.  

The 3-D BEM and FDM applications to the MIU site have 
shown that the estimated stresses agree well with the tendency 
of the in situ measurement data. Therefore, it is practical to 
estimate the stress state in an unknown location based upon 
the in situ measurement data in the close locations by inverse 
analysis. It is likely that the tectonic stresses have to be 
considered for a better estimation of underground stress 
distribution in tectonically active region, such as in Japanese 
islands. The method described here provides boundary 
conditions for commercially available FEM or FDM programs 
by considering the influence of tectonic stresses based on 
stress measurements.  
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