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Sparse Bayesian Learning of Filters
for Efficient Image Expansion

Atsunori Kanemura, Member, IEEE, Shin-ichi Maeda, and Shin Ishii

Abstract—We propose a framework for expanding a given image
using an interpolator that is trained in advance with training data,
based on sparse Bayesian estimation for determining the optimal
and compact support for efficient image expansion. Experiments
on test data show that learned interpolators are compact yet supe-
rior to classical ones.

Index Terms—Automatic relevance determination (ARD), image
expansion, image interpolation, resolution synthesis (RS), sparse
Bayesian estimation, variational estimation.

1. INTRODUCTION

LASSICAL methods for image expansion such as bi-
C linear interpolation or splines can be understood as linear
filtering operations on a given image, and their support and
coefficients are designed based on top-down assumptions, e.g.,
the image is a piecewise polynomial and smooth at the knots.
However, these assumptions are not necessarily true for natural
images. Alternatively, the support and coefficients of the filter
can be learned from real image data. Arguably, learning-based
approaches can yield better performance than top-down strate-
gies [1]-[3]. In principle, a learning-based filter design can use
arbitrary size support. This is in contrast to the bilinear inter-
polator, which uses at most four low-resolution pixels when
determining the value of a pixel in the high-resolution expanded
image. The support should be simple for efficient processing of
the images and for preventing overfitting; however, excessively
simple ones will fail to capture the useful information contained
in the surrounding pixels. The compactness of the support is
beneficial when we want a fast and high-quality image interpo-
lator, especially when we apply it in small embedded systems
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mxm low-resolution
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Fig. 1. m x m = () low-resolution pixels are used to estimate r X r = D
high-resolution pixels. This figure depicts a case where m = 5 and r = 2.

such as digital cameras and mobile phones. In this paper, we

aim to resolve the tradeoff between high quality and low cost.
Let » be an integer magnification factor. The task of image

expansion is:

_ givenan M x N image &, estimate 7M x r N expanded image

In our framework, the interpolator expands the image by re-
placing each pixel in the given low-resolution image by an r X
r high-resolution image patch. Of course, since estimating 72
pixel values is impossible from only one pixel value, we use the
low-resolution pixel patch surrounding the pixel to be replaced
(Fig. 1). This local interpolation is repeated for every pixel in
the given image, and the expanded image is constructed by tes-
sellating the high-resolution patches. Vector-valued function f
maps an m X m low-resolution patch to an r X r high-resolution
patch.

We address the problem of determining optimal supports
by formulating the image interpolation task from a viewpoint
of sparse Bayesian estimation. A simple method to determine
the optimal shape of the support would be to perform discrete
optimization that compares 2m” different shapes of the support.
Obviously, this approach soon becomes intractable when m
gets larger. Alternatively, sparse Bayesian methods [4]-[7]
offer continuous parameters that regulate the importance of
each pixel, and the less important pixels for the estimation
of high-resolution patches are automatically pruned from the
support of the filter.

The learning of filter coefficients has been considered by
Triggs [8], emphasizing low-level vision and reducing aliasing,
and by Atkins [1], whose proposal, called resolution syn-
thesis (RS), uses a mixture of linear interpolators for image
expansion. In [8], the interpolator is learned from pairs of the
original images and their synthetically smoothed and subsam-
pled images by optimizing several error metrics including L
and L, norms (which is equivalent to maximum-likelihood
estimation). Triggs reported that the shapes of the learned
interpolators resemble the sinc function and are robust to the
change of error metrics or anti-aliasing smoothing kernels. He
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also investigated the influence of support size and found that
the variation of test interpolation errors between m = 3, 5, 7
is significant, but beyond m = 7 the learned filters have sim-
ilar test performance. Atkins’s RS is modeled by a Gaussian
mixture that is trained by maximum-likelihood estimation
utilizing the expectation-maximization (EM) algorithm. Ni and
Nguyen [9] refined RS by replacing linear interpolators with
nonlinear support vector regressors. RS can be considered an
image superresolution method (as in [9]) because its regressors
contain information from external training data other than the
given image. The support size of Atkins’ original RS [1] is
5 x 5, but he did not provide logical justification for this choice.
As far as we know, existing RS methods [1], [9]-[15] have not
mentioned any reasonable way to determine the support size.

In comparison with superresolution methods, our framework,
image expansion based on learned filters, can be understood as
the simplest extreme of RS and is placed somewhere between
RS, example-based superresolution methods that hallucinate a
high-resolution image by searching patches in the example data-
base [2], [3], and reconstruction-based superresolution methods
that invert a generative model from a high-resolution image to
multiple low-resolution images [16]-[18]. An important aspect
of our framework is that the external information is encapsu-
lated compactly in interpolator f. Therefore, it does not suffer
from the large computational loads required to use a mixture, to
search through a large database, or to invert the forward optics;
yet it is expected to have good performance based on the statis-
tical integration of external data. Even though we do not argue
that image expansion using learned filters is a superresolution
method, it can be usable enough.

In Section II, we describe a linear regression model for
predicting high-resolution patches from low-resolution patches
and present maximum-likelihood and L;-regularized estima-
tion methods of image expansion filters. Section III introduces
sparse Bayesian modeling, and in Section IV, we derive an
iterative algorithm to efficiently solve the Bayesian estimation
problem. Experimental results are presented in Section V,
where we show that sparse Bayesian learning successfully ob-
tains compact and efficient filters. Discussion on the modeling
direction for estimating high-resolution images from low-reso-
lution images is given in Section VI. Section VII summarizes
this study.

II. MODEL AND BASIC LEARNING

Before the real image expansion jobs, we attempt to obtain
f using a training dataset that consists of a large number of
low- and high-resolution patches so that the filter learns the re-
lationship between them. We regard these patches as lexico-
graphically stacked vectors. Let z, be the m? = (Q-dimen-
sional vectors of the low-resolution patches, let x,, be the r? =
D-dimensional vectors of high-resolution patches, and let D =
{(Xy,2n)}_, be the dataset consisting of N pairs of patches.
We stack the vectors column-wise and obtain the following ma-
trices: Z = [z1,...,zy] and X = [xq,...,XN].

’

We assume the following relationship between x,, and z,,:

x, = f(zn) + &n (1
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where €,, is isotropic Gaussian noise with precision (inverse
variance) (3. As the simplest form of f, we assume a linear re-
gression model

£(2,) = Wz, + o )

where W is a D x @ filtering matrix and p is a D-dimensional
bias vector. Let wg be the dth row of W. Since wy is the fil-
tering kernel for estimating the dth pixel of the high-resolution
patch, W is regarded as a matrix built by stacking D filters.
Even though linear regressors are simple, they are advantageous
because they can be reduced to only the linear filtering of the
given image that can be efficiently performed. This model leads
to the probability distribution of x,,

p(xn|Zn7W7ﬂ'7ﬂ> :N<Xn|wzn+ll'7ﬂ_lID) 3)

where NV (-) denotes the Gaussian distribution (Appendix A) and
Ip is the D-dimensional identity matrix.

In maximum-likelihood learning, the parameters are esti-
mated by

N

(W, u*) = argmax Y Inp(x, |z, W, 0, 8) (@)
(W.p)

n=1

which can be performed easily; since this model is linear
Gaussian, (4) is reduced to the least squares estimation. The
optimal parameters are found as

W* = (XZ")(Z2Z")™ ! 6))

where W and Z are extended matrices to include p and defined
as

W=[W ul, Z:[IZT] ©)
We refer to the filter trained by maximum likelihood as a max-
imum-likelihood expansion filter (MLEF). This training rule (5)
can be considered as a special case of RS [1] with the number
of components equated to one.

Given a new image to expand, the trained MLEF estimates
high-resolution patches x from low-resolution patches z by the
following filtering equation:

x = W* {ﬂ = W*z + u*. )

Note that maximum-likelihood estimation inherently suffers
from overfitting; that is, an increase in the size of the filters
beyond a certain complexity increases the generalization (test)
error, although the training error always decreases [19].

A natural idea for preventing overfitting by support selec-
tion is to use sparse regularization on filter coefficients. Lasso
[20] uses L1 norm regularization on filter coefficients and effi-
cient implementation called Lars [21] is available to draw the
entire regularization path. We call the filter estimated by the
Lasso L, -regularized expansion filter (L1EF). Lasso regulariza-
tion has never been performed in the context of image expansion



1482

filter learning, and Section V would be the first report of how
L1EF works in image expansion.

III. SPARSE BAYESIAN LEARNING

In this section, we discuss sparse Bayesian estimation in the
filtering model, which we call sparse Bayesian expansion filter
(SBEF). According to the Bayesian methodology, all the param-
eters (W, u, 3) are treated as random variables, and prior dis-
tributions with parameters A = [aq4,] and p are placed on them
as follows:

D Q

p(WIA) = [T [N (waql0, 07,) ®)
d=1gq=1

p(ulp) =N (pl0, p~'1p) )

p(B) =G(Blago; bso)

where G(-) is the gamma distribution (Appendix A). We further
place hierarchical priors on parameters A and p as

D Q
p(A) = T] IT 9(adqlaao, bao)

d=1q=1
p(p) = g(/’|ap07 bpﬂ)-

(10)

(11)
12)

In the equations above, a4 and beo are hyperparameters deter-
mined manually. The other variables are all determined auto-
matically through Bayesian estimation. Note that the above dis-
tributions are all natural conjugate priors; thus, posterior distri-
butions have the same function shapes as the priors.

The prior for filtering matrix W (8) is the key to the sparsity.
This resembles the priors used in sparse Bayesian estimation
[4]-[7] and is called automatic relevance determination (ARD)),
which was first introduced for neural networks [22]. Parame-
ters agq work as regularizers that pull wq, toward prior mean
0. Therefore, if the values of ay, are very large, the estimated
values of wg, become very small. It is theoretically known [5],
[23] that in this sparse Bayesian type of estimation, cg,’s that
satisfy a certain condition diverge to infinity; therefore, the cor-
responding elements of W become zero and hence are pruned
from the filtering supports. In other words, the elements of W
irrelevant to filtering are automatically switched off. The experi-
ments in Section V will actually illustrate such behaviors. Since
a detailed account of ARD is beyond the scope of this manu-
script, see [4]-[7], [22], [23] for an in-depth discussion of ARD
and sparse Bayesian estimation.

A graphical model representing the statistical dependency
structure of SBEF is shown in Fig. 2. The joint probability is
decomposed based on the model as

(A, W, p,u, 3,X|Z) = p(A)p(W|A)p(p)

N
xp(ulp)p(B) [ | p(xnlza, W, p. 8). (13)

n=1
The filtering equation that maps a low-resolution patch z to
a corresponding high-resolution patch x is simply given by the
mean value of the predictive distribution

E(x) = /xp(x|z,D) dx. (14)
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Fig. 2. Graphical model of sparse Bayesian expansion filters.

Predictive distribution p(x|z, D) is calculated by
p(xl2.D) = [ ploxlz W)
xp(A, W, p,p, B|D) dAdWdpdpd (15)

where p(A, W, p, pu, B|D) is the posterior distribution given
data D = (X, Z), derived by the Bayes theorem as

(A, W, p,p,3|D)
_ P(A, W, p,p,3,X|Z)
[ p(A, W, p, s, 8, X|Z) dAdW dpdpd’

(16)

However, an analytical evaluation of the true predictive distri-
bution is intractable because it is a complex of Gaussian and
gamma variables. Therefore, we adopt an efficient computation
procedure based on variational approximation, as described in
the following section.

IV. VARIATIONAL INFERENCE

A. Variational Approximation

To overcome the intractability, posterior distribution
p(A,W,p,u,8|D) is approximated by distribution
q(A, W,p,u,(3) that is restricted to a tractable class of
distributions on which we impose a factorization property

(A, W, p,p, B) = ¢(A)g(W)q(p)q(m)q(B)-

We call ¢ the trial distribution. Let the latent variables be de-
noted by n = {A, W, p, u, §} for notational simplicity. Within
the restricted distribution space, we search for the optimal trial
distribution that minimizes Kullback—Leibler (KL) divergence
to the true posterior distribution

a7

q*(n) = argqmin Dxv(q(m)|lp(n|D)) (18)
where KL divergence is defined by
Draawlpnip)) = - [am ™22 i a9)
_ <1n p(nID)> . 20)
am) /,

Here, (-), is the expectation operator with respect to g(n). KL
divergence is similar to the distance because it is nonnegative,
i.e., Dx1.(q|lp) > 0, for any ¢ and p, and Dkr.(q||p) = 0 if and
only if g and p are equivalent distributions.
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This variational optimization problem can be analytically
solved if we optimize only one factor ¢(9;), fixing the other

factors g(m\;) = Hj;éi a(n;) [24], [25]

e~ {lnp(n, XIZ)), )
Fexp{—(np(n, X2}y, }dn;

In the following subsection, we present the optimal fac-
tors ¢*(A), ¢*(W), ¢*(p), ¢*(p), and ¢*(fB). To find joint
minimum ¢*, we iterate factor-wise, or coordinate-descent,
optimization until convergence. Variational estimation is be-
coming popular in the field of signal processing as can be seen
in a recent tutorial article [25].

7" (m;) 21

B. Optimal Trial Distribution

Optimal distribution is sought by iterating the computation of
the following optimal trial factors:

D Q
7" (A) = H H g(adq|aadq7 badq)

(22)
d=1q=1
D
¢"(W) = [[V(walm{, =) (23)
d=1
q¢"(p) =G(plap;b,) 24)
q¢" (1) =N(plmy, 5y) (25)
7" (B) =G(Blag, bp) (26)
where the parameters are given by
1 1
Aadqg = Ga + 57 badq = baO + §<’U}Zq> (27)
N -1
25\7) = <<diag(04d17 o aag)) + (B) Z ZtZtT> (28)
n=1
N
m{) = (B)2) Y (2an — (1a))2n (29)
n=1
D 1
Qp = apo + 57 bp = pr + §<[llT[ll> (30)
1
Y, =—-—+1 31
TN ey
N
my, =(B)X, ) (%0 — (W)z,) (32)
n=1
ND
ag =ago + > (33)
| N
bg =bgo + 3 nzz:l{xzxn —2x,(W)z — 2x7T1<,u,)
+ 2, (WIW)zp, + 22, (W) () + (n"p) . (34)

The expectations remaining in the above equations can be
evaluated easily by using well-known results in statistics
(Appendix A). Distributions (22)—(26) have the same function
shapes as their priors due to the natural conjugate prior setting.
In (22) and (23), further independence, which was not assumed
in (17), is automatically derived from the model structure.
These optimal factors are mostly the same as those derived
in [6] as relevance vector machine regression; the differences
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Input: High- and low-resolution patch pairs D = (X, Z) and
sparsity hyperparameter aqg.
Output: Filter parameters My and my,.

1: repeat

2:  Update g(A) by computing agqq and bgqq using (26).

3:  Update (W) = HdD=1 g(wq) by computing =@ and
m'? using (27), 28).

4:  Update ¢(p) by computing a, and a, using (29).

5:  Update g(y) by computing 33, and my, using (30), (31).

6:  Update ¢(53) by computing ag and bg using (32), (33).

7: Set (aqq) to infinity if it is above 2.

8: until Relative change of M is sufficiently small.

Fig. 3. Training algorithm for SBEF.

are the existence of the bias term (g) and the disuse of kernel
functions.

We denote the mean of joint trial distribution ¢(W') by Myy;
that is, we put My = [m$, ..., m{?]. The filtering equa-
tion for variational SBEF image expansion is obtained by sub-
stituting the true posterior distribution with the trial distribution,

which results in

E(x) ~ (x) = (W)z + (u) = Mwz + m,,. (35)

This is the expansion equation for SBEF. When we expand a
given image, this linear filtering (35) is repeated for every low-
resolution patch.

C. SBEF Learning Algorithm

1) Training Procedure: An algorithmic procedure to train an
SBEF is shown in Fig. 3. As a criterion to check convergence
and stop iterating (22)—(26), we monitor the relative change of
the Frobenius norm of My

_ My — Ml

(36)
My [[p

where MY is the matrix at the previous iteration step; the al-
gorithm is terminated when A < 1075, To accelerate the con-
vergence, the expected values of g, are thresholded and set to
infinity when they are greater than threshold ¢2°. We conducted
several preliminary experiments and confirmed that if a4, con-
verge, their converged values never exceed e'®; therefore, this
threshold of ¢2° is sufficiently large.

Hyperparameters aq(, beo must be determined manually. We
used a hyperparameter setting of noninformative limit agy =
bgo = ayo = byo = 0 for B and p. For o, we assume bno = 0
but ang # 0; this allows us to control the value of a4, to facili-
tate the divergence of (g, ). We call ang the sparsity hyperpa-
rameter since this value determines the degree of sparseness, as
will be seen in the experiments. Although having zero hyperpa-
rameters makes the priors improper, this is not a problem since
the posterior computation of a,, be is well defined.

2) Color Image Expansion: Color consideration is important
for real applications. There are at least three methods for color
image expansion.

1) Expand each RGB component separately.

2) Learn the direct relationship between low- and high-res-
olution color patches. In other words, extend x and z to
include the three color components.
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3) Convert the color space from RGB to YIQ, expand only
the luminance component, and then convert it back to the
RGB space.

Although 2) should yield the best quality, we adopt 3) for effi-
cient computations in the experiments.

3) Symmetry in Filter Supports: Since natural image patches
harbor symmetry, we expect filters w; to have symmetric sup-
ports. This notion can be easily integrated into SBEF by con-
straining g, to be symmetric over different d. We enforce sym-
metry in both horizontal and vertical directions; that is, the sup-
port of the filter for estimating the value of the top-left pixel is
horizontally symmetric with that of the filter for the top-right
pixel, vertically symmetric with that for the bottom-left pixel,
and so on.

V. EXPERIMENTAL RESULTS

We conducted five experiments. In the first experiment, we
observed what support would be selected by SBEF, MLEF, and
LI1EF and compared the performances of them. In the second,
we saw the effect of mismatch in anti-aliasing smoothing be-
tween training/test datasets. Third, we visually compared SBEF
with the example-based superresolution method by Freeman
et al. [2]. The fourth experiment demonstrated how the perfor-
mance of Atkins’ RS was affected by the support discovered by
our SBEF method. The final experiment was to see when learned
filters fail to surpass simple interpolation approaches.

Since learned filters are optimized for the training dataset,
we must clearly separate training and testing datasets. When
assessing the quality of the expanded image, we only measured
the peak signal-to-noise ratio (PSNR) between expanded image
£ and original image £ for the luminance component. PSNR is
defined by

K,2

I€" — €12/ (r2MN)

where  is the maximum pixel value and 72 M N is the number
of pixels. All the PSNR values presented in the experiments
are test (or generalization) PSNRs; i.e., they are measured for
images not included in the training dataset. Since the main focus
of this study is to offer a good tradeoff between high quality
(high PSNR) and low computational cost (small support), we
must also heed the size of the support of the learned filters.

Training and test datasets were generated by the following
procedures. The pixel values are first converted into double-pre-
cision floating points within [0, 1] and transformed to luminance
values if the original image has color channels. High-resolu-
tion patches are prepared by cutting them into non-overlapping
pieces. To make low-resolution patches, first the high-resolution
images are blurred by an anti-aliasing filter and subsampled by
specified factor r to extract overlapping patches of size m x m.
For the training datasets, low-resolution patches stemming from
the boundaries are discarded, and the corresponding high-reso-
lution patches are not used. For test datasets, to extract patches
near the boundaries, the low-resolution image is extended by
pixel replication.

PSNR(£",€) = 101logy dB) (37)
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Fig. 4. Learned MLEF filters. All coefficients are nonzero.

A. Comparison of SBEF, MLEF, and LIEF

The expanding factor is chosen to be » = 2. The training
dataset is produced from eight images of size 256 x 256
(#4.1.]01-08] in the USC-SIPI image database [26]), resulting
in a total of N = 8 - 2562 /7% = 131, 072 patch pairs. We used
seven images (#4.2.[01-07] in [26]) as test images on which
PSNRs are measured, and the mean PSNR is used to assess
the quality of the learned filters. A cubic kernel is used for
anti-aliasing blurring both on the training and test images. The
Lars—Lasso algorithm [21] is used to obtain L1EFs.

The MLEF performance was measured with low-resolution
patches whose size varied from 3 x 3 = 9 to 19 x 19 = 361.
Fig. 4 shows the filters of the trained MLEF when the size of
the low-resolution patches is 19 x 19. There is no nonzero el-
ement in the filter coefficients; thus, the size of the support is
19 x 19. Although skewed, the coefficients have oscillation and
look somewhat similar to the sinc function, as expected from the
results of Triggs [8]. The maximum mean PSNR of 31.83 dB is
attained when the patch size is 11 x 11 = 121, and the use of
larger patches only degrades the performance, showing typical
overfitting.

The SBEEF training algorithm was executed with a fixed size
of low-resolution patches, 19 x 19, by varying hyperparameters
aq0 from 1 to 210. The shapes of the learned SBEF filters m‘(,f,i )
with a,9 = 20 are shown in Fig. 5, and the supports (regions
where the filters have nonzero values) are shown in Fig. 6. The
effective sizes of the learned supports are all 29. Compared to
the size of the best MLEEF, the size of the SBEF filters is reduced
by 112 -29 = 92 pixels for each of the four filters; however,
the PSNR remained the same. The same effective supports were
learned with patches larger than 11 X 11 since the pixels of the
outer region were automatically pruned. We note that SBEF fil-
ters learned without the symmetricity constraint on a4, had sim-
ilar supports, but with slightly (below 0.1 dB) worse PSNRs.

An interesting point is that the learned supports shown in
Fig. 6 have irregular shapes. From the shapes of the learned sup-
ports, the direct horizontal and vertical pixels are highly relevant
for estimating high-resolution pixels, but the diagonal pixels are
of less importance. The filters bulge toward the center; the filter
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Fig. 5. Learned SBEF filters. They resemble those of MLEEF, but the marginal

o o filters is 24.
coefficients are exactly zero, as suggested by the supports in Fig. 6.
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Fig. 7. Supports of learned L1EF filters when the mean support size of the four

1 TABLE I
EFFECTIVE SUPPORT SIZES LEARNED AND MEAN
PSNRS FOR SEVEN TEST IMAGES
SBEF MLEF
10 ago  Support Mean PSNR Support  Mean PSNR
1 361 31.82 361 31.81
2 139 31.83 289 31.82
3 76 31.83 225 31.82
4 48 31.83 169 31.82
19 5 44 31.83 121 31.83
1 10 19 10 37 31.83 81 31.82
1 20 29 31.83 49 31.80
30 23 31.82 25 31.71
50 20 31.80 9 31.33
90 15 31.76
130 12 31.70 Bicubic Interpolation
10 170 9 31.63 Support Mean PSNR
210 8 31.59 16 30.89
x-X-2K -*'O'M'-—m
19 38l K Q...:b“'
1 10 19 {4
Fig. 6. Supports of learned SBEF filters. 317Lx% 9
g
for estimating the top-left high-resolution pixels is swelled to- ¥ 316 ® ot
. . Ox
ward the bottom right, the top-right filter toward the bottom Z
left, and so on. These irregular shapes could be attributed to the P |
square shape of pixels; the irregularity would not be observed if é 35y x SBEF
pixels were arrang.ed asa l}oneycomb griq. O MLEF
The low-resolution training patches of size 19 x 19 were also 314+ L1EF
given to the Lars—Lasso algorithm for training L1EF, which o . . . . : . .
found sparse supports whose sizes ranging from 0 to 192, Fig. 7 9 25 49 81 121 169 225 289 361

shows the shapes of the L1EF support when the mean support
size is 24. Although around the central regions the supports ap-
pear to have similar shapes to those of SBEF, the supports are
somehow messy so that some coefficients are scattered on the
marginal regions. Coefficients of the central regions had oscil-
lations similar to the other filters (figure not shown for saving
space).

Table I shows the effective support sizes and mean PSNRs
for the SBEF, MLEF, and bicubic methods. Fig. 8 plots the
content of Table I together with the performance of the L1EF;
the crosses, circles, and dots indicate the PSNRs of the SBEF,
MLEF, and L1EF, respectively. The learned filters have signifi-
cantly better PSNRs than the bicubic method. For support sizes

Effective support size (pixel) ~ Comput. cost at expansion

Fig. 8. Generalization performance of expansion filters: mean PSNRs for seven
test images versus effective sizes of support. Crosses, circles, and dots show the
performance of SBEF, MLEF, and L1EF, respectively.

smaller than 25, SBEF yields PSNRs that are higher by 0.2-0.3
dB than those of MLEF and L1EF. Remember that the support
size should be controlled directly for MLEF, whereas for SBEF
the original patch size is fixed at 19 x 19 and sparsity hyperpa-
rameter a,, is controlled instead. Increasing the low-resolution
patch size does not affect the acquired effective support size for
SBEEF, but the support size of MLEF increases endlessly with
the patch size; this implies that, for MLEEF, there is no criterion
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Fig. 9. Expansion results for Lena image. (a) Original image (#4.2.04 in [26]), whose expansions are (b)—(d). () Low-resolution image [(a) is blurred by cubic
kernel and subsampled], whose expansions are (f)—(h). PSNR values for (f)—(h) are calculated only for the shown region. (a) Original image. (b) SBEF expansion
of (a). (c) Cubic expansion of (a). (d) Sharpening of (c). (¢) Low-resolution image (f). SBEF expansion of (e); 35.59 dB. (g) Cubic expansion of (e); 33.05 dB.

(h) Sharpening of (g); 30.95 dB.

to automatically choose the optimal support size and shape. Al-
though L1EF is able to acquire sparseness, it has unwanted co-
efficients distant from the center; these unwanted coefficients
lessen the performance of L1EF over SBEF when compared
at the same-size points. These results suggest the advantage of
SBEF over MLEF and L1EF because SBEF achieved higher
PSNRs with smaller flexible supports, which results in relatively
higher performance with smaller computational costs when ex-
panding the images.

Here, we would like to point out that simple support selection
methods for MLEF do not work well. The minimum of the ab-
solute value of the trained filter coefficients shown in Fig. 4 is as
small as 10~% compared to the mean absolute value of 2 x 1072,
Then one might consider cutting off the coefficients smaller than
a specified threshold. However, reducing the support size by this
simple cutoff method only decreased PSNR; if the performance
were plotted in Fig. 8, it would always be below the line con-
necting the circles. Cross validation is another possible method
to find the optimal support, that is, a comparison of all 2m” com-
binations of the shapes of support. The computational cost is
obviously prohibitive for a large m and thus it is less realistic.

As another performance reference, we tested the perfor-
mance of the reconstruction-based image superresolution
method that employs total-variation (TV) regularization [18].
The TV method was modified to use only one image, and the
regularization hyperparameter was hand-tuned for each test
image to produce the highest PSNR. The mean PSNR for the
seven test images was 31.11 dB, which was higher than that of
the bicubic method but lower than those of the learned filters.

Almost the same mean test PSNR was obtained when using the
Ly regularization as in [17].

Before closing the first experiment, we show the image ex-
pansion results comparing SBEF with hyperparameter ag = 20,
bicubic interpolation, and bicubic interpolation + post sharp-
ening (the “Sharpen More” filter of Adobe Photoshop CS). The
expansion results and the source images given to the expanders
are shown in Fig. 9.

B. Effect of Anti-Aliasing Mismatch

It is plausible that the SBEF performance depends on the anti-
aliasing blurring kernel that was used to generate the training
data, and that has really blurred the given image to expand. Then
we conducted the second experiment to see how the mismatch in
the anti-aliasing kernels influences the expansion performance.
The original images for training and testing are the same as those
in the previous subsection, which were smoothed using the five
kernels shown in Fig. 10.

We trained SBEF with sparsity hyperparameter ag = 20
and measured the test PSNRs. See Table II for the performance
under the training/test kernel mismatch. There is a tendency that
high PSNRs are obtained when the same kernel is used for both
training and testing, while mismatch in the anti-aliasing kernels
does not always cause serious deterioration of the expansion
quality. Whatever kernel is used for training, on the other hand,
low PSNRs are obtained for the delta-smoothed test images; this
shows agreement with the findings of Triggs [8], who reported
that good expansion is possible only when good anti-aliasing



KANEMURA et al.: SPARSE BAYESIAN LEARNING OF FILTERS FOR EFFICIENT IMAGE EXPANSION

Delta

A | — Box
| 5T (O Triangle
j %
.| : ,:\.\“ = = = Cubic
. !;' ‘\‘\ == Lanczos3
ik |
> osf ¥
.g l :V | “
2 " .
g 0al 5! n
E !
i i
P
02} 4 3
i kY
.
_____ - =
0 \_v:'\ -—"; \‘ ~_’,f,,
N, ’ ’
-0.2 - : —
-2 -15 -1 05 0 05 1 15 2

Pixel

Fig. 10. Anti-aliasing kernels.

TABLE 1T
MEAN PSNRS FOR SEVEN TEST IMAGES UNDER TRAINING/TEST
ANTI-ALIASING KERNEL MISMATCH

Test kernel Mean
Delta Box Triangle Cubic Lanczos3

Delta 30.81 31.44 30.69 3148 31.60 31.20
2 Box 30.84 31.54 3091 31.65 31.67 31.32
:E g Triangle | 28.47 29.27 31.77 30.64 29.61 29.95
&~ Cubic 3048 31.23 31.15 31.83 31.70 31.28
Lanczos3 | 30.61 31.31 30.76 3171 31.90 31.26

Mean 30.24 30.96 31.06 31.46 31.30

(e.g., sinc) is used for images to expand. Similar results were
also observed for the MLEF filters.

C. Comparison With Example-Based Superresolution

We compared our expansion method to one of the learning-
based superresolution algorithms, the example-based superres-
olution of Freeman et al. [2]. We trained the SBEF with ag = 20
using all the original images used for generating training and test
datasets in Section V-A, anti-aliased by the cubic kernel. The
results are shown in Fig. 11. Fig. 11(a) and (b) is taken from
[27].! SBEF produces a sharper result than the bicubic interpo-
lation. Although quantitative evaluation is not provided since
the ground truth is unknown, the estimate of the example-based
method looks better than those of the other methods. This per-
formance gap may be explained by the complexity of the ex-
ample-based method. We should be aware that the aims of SBEF
and the example-based superresolution are different; the former
attempts to obtain compact linear filters for efficient image pro-
cessing, whereas the latter’s efforts are devoted to developing
high-performance (and high-cost) machinery by searching in a
large example database.

D. Using SBEF’s Support for Atkins’ RS

In this experiment, we demonstrate how the performance of
Atkins’ RS is affected by integrating the supports found by
SBEF. The following two support settings were used: the 5 x 5
support, which is the same as proposed in the original RS [1] and
the one shown in Fig. 6. In the EM clustering phase, fully param-
etrized covariance matrices were estimated, although the orig-

Free copying for research purposes is permitted by the copyright holder,
MERL.
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Fig. 11. Comparison with superresolution  method.

example-based
(a) Low-resolution. © MERL [27]. (b) Bicubic interpolation. (c) SBEF
expansion. (d) Example-based. © MERL [27].

inal RS uses isotropic covariance, because the former setting
produced higher PSNRs. Since RS depends on the initialization
of the EM algorithm, we used 12 different initializations and
measured the means and standard deviations of the PSNRs of
the resultant 12 RS interpolators. The training and test datasets
are the same as in Section V-A. The number of mixture compo-
nents varied from 10 to 120.

Fig. 12 shows the results of RS image expansion with 5 x 5
and SBEF support settings and the performance of the best
SBEEF obtained in Section V-A. Surprisingly, the mean PSNRs
of the original RS are not higher than those by the non-mixture
SBEF. The RS with the SBEF-based support exhibits improve-
ment in PSNR over the sole SBEF when the number of mixture
components is less than 30.

E. Failure of Learned Filters in Severe Situations

In this final experiment, filters were learned in challenging
situations where the noise levels were high or the magnification
factor was large. The training and test datasets are the same as
in Section V-A and the cubic kernel is used for all anti-aliasing
tasks.

So far all the experiments were performed without adding
noise to low-resolution images. Here we see how the expansion
performance is affected by the presence of noise. The magni-
fication factor is 2. White Gaussian noise of SNR varied from
10 to 40 dB are added to both the training and test low-resolu-
tion images, and Fig. 13 shows the performance of the SBEF
trained with @y = 20, cubic interpolation, pre-denoising +
cubic interpolation, and cubic interpolation + post-denoising.
As the denoising algorithm, we used the BLS-GSM Image De-
noising Toolbox [28]. When the noise strength is low (40 dB),
the SBEF’s mean test PSNR is approximately 0.9 dB higher
than those of the other algorithms. However, as the noise level
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Fig. 13. Mean test PSNRs under different noise levels.

becomes severe toward 10 dB, the PSNR values decline and
the SBEF performance drops below that of the pre-denoising +
cubic algorithm.

Next we see how the performance changes as the magnifica-
tion factor is increased. The magnification factors up to 14 are
used. Fig. 14 shows the performance of the SBEF trained with
ao = 0 and cubic interpolator. When the factor is 2, the SBEF
outperforms the cubic by the same amount as shown in Table I.
However, as the magnification factor gets larger, their mean test
PSNR values approach each other and the advantage of SBEF
becomes hard to be seen.

VI. DISCUSSION ON MODELING DIRECTION

Our framework for estimating high-resolution images has
an interesting relationship with variational Bayesian super-
resolution methods [17], [18]. Essentially, both frameworks
approach the same quantity from different directions; the same
goal of Bayesian estimation is the probability distribution of
the high-resolution image conditioned on the low-resolution
observations, p(X|z), where X and z are the entire (non-patch)
high-resolution and low-resolution images, respectively. For
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simplicity, in this section, we ignore other variables than the
images without loss of generality.

The authors of [17] and [18] start by defining a prior prob-
ability on high-resolution images p(X) and the probability of
observing low-resolution images p(z|X) that represents a phys-
ical observation process consisting of warping, blurring, down-
sampling, and noise addition. Then the distribution in demand
is calculated by the Bayes theorem by
(&l — - POOPEHR)

[ p(X)p(2[%) dx

They apply the variational Bayesian technique and derive itera-
tive update equations for approximate inference. The resulting
updating rule for the estimate of the high-resolution image is
derived as a linear transform of the observations [17], [18].

On the other hand, our approach attempts to directly model
p(x|z) by a linear model (3), which results in a local linear op-
eration (filtering) given by (35) for estimating high-resolution
images. The consideration of patch-wise distributions is equiv-
alent to assuming patch-wise independence on the entire-image
distribution.

This difference in the modeling direction is the same as the
difference between ‘“generative” and “discriminative” models
for classification discussed in the machine learning community
[29].

Although the two frameworks both result in linear opera-
tion for inversion, their inverse operators have different features
coming from different parametrizations. In the “generative” su-
perresolution framework by [17] and [18], we have to choose
the observation model (e.g., the shape of the blur) and the prior
model (it is usually difficult to incorporate the exact prior knowl-
edge of the image; no one has successfully found the true distri-
bution of natural images). Moreover, the generative framework
requires accurate registration between the observed frames. The
inverse filter is then constructed to correspond to the choice of
the two models. Therefore, assuming that the models and reg-
istration are correct, the estimated images should be close to
the ground truth. By contrast, in our framework, which we call
“synthetical” since there is nothing to discriminate, the inverse
operator is directly learned from a dataset, rather than defining

(38)
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an explicit physical model to invert. Therefore, it depends on the
characteristics (e.g., sampling distance, blurring kernels, scenes,
or objects in images) of the training dataset, while it is advan-
tageous because it skips the difficulties in choosing the precise
prior and observation models. Nevertheless, the learned filters
exhibit good generalization on test images unseen in the training
data and differently anti-aliased images.

VII. CONCLUSION

We proposed SBEF, a synthetical model for acquiring com-
pact yet high-performance image expansion filters based on
sparse Bayesian estimation, and derived an efficient learning
procedure for its parameters on the basis of variational ap-
proximation. We demonstrated that the compact filter supports,
relevant to high-resolution image estimation, can be automat-
ically selected by SBEF. Although the learning algorithm of
SBEEF described in Fig. 3 requires higher computational loads
than the one-shot calculation (5) of MLEF, the supports of the
filters learned by SBEF were significantly smaller than those
learned by MLEF, and the PSNRs were higher even with the
reduced numbers of the low-resolution pixels used for image
expansion. Another sparse learning method for image expan-
sion filters, L1EF, was designed using the Lasso; however, their
sparse supports are somewhat scattered and do not contribute to
improving the performance. These results are interesting from
both the theoretical and technological aspects. Theoretically,
they signify the discovery of an effective subspace where the
optimal image regressors reside. Technically, they show that
SBEEF can be efficiently implemented by using only the relevant
supports, which would be particularly beneficial when consid-
ering realistic applications to graphics software and various
embedded systems, for example.

Finally we should be aware that, if we ignore the computa-
tional costs, the proposed linear regression framework is not
competitive with nonlinear algorithms, including RS and ex-
ample-based superresolution; it is only a first-order approxima-
tion to the nonlinear real world. Moreover, when the magnifica-
tion factor is large or noise is severe, learned linear filters would
not give the best performance. When plenty of computational
resources is available, or when the observation process is too se-
vere to recover by mere linear filtering, the complicated image
expansion methods will be preferred.

APPENDIX
STATISTICAL DISTRIBUTIONS
In this section, we have listed the statistical distributions used
in the text. The expectation with respect to each distribution is
denoted by (-).
¢ Gaussian distribution:

— 1 —1/2(x—m)T271(x—m)
N(x|m,¥) = EEE (39)
(x)=m, (x"x)=m"m+tr(),
(xxT) =mmT + (40)
¢ Gamma distribution:
G(tla,b) = 1 b lebT (41)

I'(a)
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