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Chapter 1 
 
Introduction 
 

 

Water is an essential material for human beings. However, it can cause severe problems 

when this material becomes scarce or excessive in our life. For the proper control and 

usage of water, we have tried to understand the cycle of water in our living 

environments. Hydrology is the study of understanding water cycles on the earth in 

order to avoid water quantity problems, droughts and floods. 

 

“The world is experiencing a dramatic increase of suffering from the effects 

of disasters, ranging from extreme droughts to huge floods, caused by the 

poor management of water and land and possibly by climate change. Human 

society and particularly the poor are becoming more vulnerable to such 

disasters.” (UNESCO-WWAP, 2003) 

 

Floods have been in conflict with humankind since we have existed, and have become a 

serious issue especially since mass settlement and residential improvements. Following 

an explosive increase in population in the last century, several factors such as 

urbanization, deforestation, and denser occupancy of flood plains are believed to 

amplify flood disaster. Furthermore, a flood of large magnitude would nowadays 

produce big property losses compared to earlier days as society has become highly 

sophisticated and industrialized. 

 

There are two main types of countermeasures for flood problems: ‘structural’ and 

‘non-structural.’ Structural countermeasure is mostly uses for flood protection via 

hydrologic structures, such as dam construction, channel embankment, etc. 

Non-structural countermeasure, however, emphasizes and implements various ways to 

decrease flood damages before, during and after floods. Flood forecasting and 

floodplain management take a main roll in non-structural countermeasure.  
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No matter how much engineers try to prevent or control floods by use of huge structures, 

there are currently no possible means for being absolutely free from flood related 

problems. In addition, engineering is a matter of economics. In some cases, it would 

economically be much better to allow a flood to happen and reestablish the flooded area 

rather than rebuild the entire channel network wasting large amounts of money. 

However, even in such a situation, we must be aware of the time and magnitude of the 

possible flood in order to safely evacuate the people and save as much property as 

possible. Real-time flood forecasting is therefore the job of anticipating flood danger 

and allows sufficient time for necessary preparation. 

 

 

1.1 Background 
 

The advances in knowledge and technology up to now have increased the performance 

of flood forecasting. Hydrologists have understood the detailed physics of water 

movement with various analytical and empirical equations. At the same time, progress 

in other fields of engineering has produced methodologies that can observe and 

efficiently handle vast amounts of meteorological and hydrological data. It is now 

possible to simulate sophisticated meteorological and hydrological phenomena with 

physics-based models. Data collecting techniques using remote sensing as well as 

increased computational technology have harnessed more accurate flood forecasting on 

a real-time basis. 

 

However, even with powerful technology and advanced knowledge, it is hard to 

determine whether current flood forecasting is successful or not since the results still 

fall short of what is required, especially in short-term forecasting. The efficiency of 

short-term flood forecasting is highly affected by the quality of the input data, namely 

precipitation, which is known for being difficult to accurately forecast. Furthermore, 

with very short lead times, high spatial and temporal resolution of precipitation data is 

required for forecasting of flash floods (Golding, 2000). To satisfy the demand for high 

quality precipitation forecasting, many studies are focusing on specialized schemes, 

such as hybrid numerical prediction and radar image extrapolation. 
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For any natural phenomenon scientists try to forecast, if the spatiotemporal boundary or 

initial condition were to be exactly known, and if the model were to simulate the 

process exactly, the computed phase path would thus provide an exact forecast. 

However, neither assumption is valid based on current technology or knowledge. One 

should bear in mind that there will always be an initial error in the model at the 

beginning of simulation and there will always be additional errors during a simulation 

due to the imperfection of the model’s structure. To estimate the effect of the errors 

from the forecasts’ results, it is necessary to supplement such deterministic forecasts 

with detailed information by estimates of forecast reliability. By this reason, the 

stochastic concept has been included in forecasting, and ensemble simulation has been 

used as an effective tool for incorporating stochastic concepts into computer simulation. 

 

However, when considering that most ensemble forecasting relies on the probable initial 

analysis, the benefits of ensemble simulation is maximized under the condition in which 

the systematic error of a model is relatively small compared to the initial condition 

sensitivity (Du and Mullen, 1997). Because of this quality, ensemble forecasting has 

been criticized for ignoring its external error growth and, as a result, usually fails to 

include all sources of uncertainty in the forecasting (Leith, 1974; Krysztofowicz, 2001). 

An alternative to fill the shortage of the current ensemble techniques and to strengthen 

the reliability of the scheme is to give a continuous correction of forecasting results or 

model behavior itself by using the most updated observation. The continuous refinement 

of ensemble forecasting and/or model structure in order to get results that are more 

accurate is the main subject to be discussed in this study. 

 

 

1.2 Objectives of the Study 
 

This study discusses stochastic real-time flood forecasting with radar observation and a 

distributed hydrologic model. A new attempt of ensemble rainfall-runoff prediction is 

introduced with probabilistic radar rainfall forecasting and recursive measurement 

updating in a distributed hydrologic model. Detailed objectives of this study are as 

follows: 
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- To examine the availability of radar observed data in flood forecasting 

- To understand radar image extrapolation methods for short-term rainfall forecasting 

- To analyze error structures in the rainfall forecasting with consideration towards the 

deterministic characteristics of extrapolation methods 

- To develop a prediction error simulation model for improved reliability and accuracy 

with radar rainfall forecasting 

- To understand the behavior of a distributed hydrologic model 

- To consider state variables in a distributed hydrologic model that are continuously 

updated through use of observed discharge data 

- To couple the Kalman filter with a distributed hydrologic model for a recursive 

updating of state variables 

- To consider the ensemble simulation method for stochastic flood forecasting 

 

1.3 Outline of Thesis 
 

This thesis mainly consists of two parts in discussing stochastic real-time flood 

forecasting. The first section focuses on stochastic radar rainfall forecasting using radar 

image extrapolation and prediction error simulation (Chapters 2 and 3). The second 

section focuses on recursive updating of state variables in a distributed hydrologic 

model based on the Kalman filter algorithm (Chapters 4 and 5).  

 

In Chapter 2, short-term forecasting of precipitation using radar observation is 

explained. After a short review of weather radar usage in hydrology for nowcasting of 

precipitation, an extrapolation scheme of radar imagery is illustrated with an 

introduction of the Translation model (Shiiba et al., 1984). The radar extrapolation 

model projects deterministic rainfall prediction. Its prediction error structure is then 

analyzed by comparing the observed rainfall fields to obtain error results. Properly 

analyzed error structure can be used as vital information for improving the forecast 

accuracy and providing its reliability (Kim et al., 2005b). 
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A new attempt of ensemble rainfall forecast is introduced in Chapter 3 by use of a 

spatial random error field simulation. As opposed to a conventional ensemble 

simulation that uses initial condition control to obtain a statistical outcome, stochastic 

prediction error fields are generated to offer probable variations of deterministic 

predictions. For the error field generation, spatially correlated random errors are 

simulated using a covariance matrix decomposition method. The prediction error fields, 

which successfully keep the analyzed error structure, improve the accuracy of the 

deterministic rainfall prediction (Kim et al., 2006). The random error fields along with 

the deterministic fields are thereafter tested with a distributed hydrologic model to 

measure its validity on an ensemble runoff prediction. 

 

Chapter 4 describes the distributed hydrologic model, CDRMV3 (Kojima et al., 2003), 

and discusses updating methodologies of distributed state variables in the model. 

During runoff simulation, inappropriate rearrangement of the spatial distribution of state 

variables produces negative effects towards the runoff simulation results (Kim et al., 

2004). To avoid an unpredictable collapse of the internal model state throughout a 

simulation, an updating method introduced in this study retains the spatial distribution 

pattern of the state variables. This is conducted before and after the updating by using a 

ratio of total storage amount or outlet discharge. 

 

The objective of Chapter 5 is to couple the Kalman filter into a physically based 

distributed model and test the performance of the coupled model under real-time 

conditions. For the incorporation of the filtering concept into a distributed model, there 

are several hurdles to be overcome. First of all, Monte Carlo simulation method makes 

it possible to project a nonlinear variation of system states and their error covariance 

without the need for linearized system equations. Secondly, as an alternative to the 

linear observation function, this study introduces an external relationship of observed 

data and the internal state variables of the hydrologic model. Here, the observed data is 

defined as outlet discharge and the state variable in the Kalman filter algorithm is the 

total amount in storage in the basin. The developed Kalman filter coupled with the 

distributed hydrologic model can incorporate the uncertainty of input and output 

measurement data as well as the uncertainty in the model’s structure (Kim et al., 2005a). 
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Finally, Chapter 6 summarizes the study with a concluding remark. 
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Chapter 2  
 
Short-term Forecasting of Precipitation with Weather Radar 
 

 

“For operational forecasting of river flow and flash floods, dense rain gage 

observations (telemetered) are desirable, but their installation has not been 

practical. Thus there has been considerable interest in utilizing weather radar, 

since it provides spatially and temporally continuous measurements that are 

immediately available at one location.” (Wilson and Brandes, 1979)  

 

Radar rainfall estimation and its utilization into flood forecasting has received growing 

attention in operational hydrology since Marshall and Palmer (1948) proposed the 

theory of drop size distribution. Nowadays, radar observed rainfall has became one of 

the most demanded data to hydrologists with a growing interest in distribute hydrologic 

modeling. However, there is continuous research on improving the radar’s estimation 

accuracy of quantitative precipitation, as there is still vast amounts to improve upon 

when it is applied to flood forecasting. 

 

This chapter presents weather radar usage in hydrology, especially in short-term 

forecasting of precipitation. First of all, a radar image extrapolation method is explained 

following with an introduction of the Translation model, that has been used in this study. 

Extrapolation of rainfall cells’ movement is the most commonly used method in radar 

rainfall forecasting. As the next step, prediction error characteristics of the Translation 

model (Shiiba et al., 1984) are analyzed for a deeper understanding of the model 

behavior and for improvement of forecasting accuracy. The analyzed error 

characteristics include basic statistics, such as the mean and standard deviation, as well 

as spatial correlation of errors as time passes. Finally, spatiotemporal distribution 

patterns of the errors are also analyzed. Properly analyzed error structure can be 

stochastically used as valuable information for providing updated reliability of 

forecasting (Kim et al., 2005; Kim et al., 2006). 
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2.1 Weather Radar in Hydrology 
 

2.1.1 Radar Rainfall Estimation 
 

Weather radars are an appealing instrument for observing rainfall over large spatial 

domains within fine time resolutions. The usual C-band radar (wave length 4~8cm, see 

Table 2.1 for more details on band types) quantitatively covers an area of 120 km radius 

and produces one set of cylinder shape observations down to every five minutes. After a 

3-dimentional volume scanning, a horizontal radar projection at a specific altitude, or 

CAPPI (Constant Altitude Planned Position Indicator), is calculated. Rainfall intensity 

is estimated from this single horizontal section of radar reflectivity based on analytical 

and/or empirical relationships of the intensity and reflectivity. 

 

Table 2.1 Weather radar band types and its characteristics. 

 Wavelength Frequency Characteristics 

S band 8~15cm 2~4GHz Not easily attenuated,  
near and far range weather observation 

C band 4~8cm 4~8GHz More easily attenuated,  
short range weather observation 

X band 2.5~4cm 8~12GHz Possible to detect smaller particles,  
very short range weather observation 

 

Marshall-Palmer’s exponential drop-size distribution (Marshall and Palmer, 1948) is 

believed to be one of the most prominent works in weather radar research. The 

drop-size distribution is a simple function of the rain rate, which leads to a relation 

between radar reflectivity Z and rain rate R. Radar reflectivity is the received radiation 

power of backscattered signals from precipitation particles. Assuming the backscattered 

power is proportional to the summation of the sixth power of particle diameters in a unit 

volume, the radar reflectivity can be written as: 

 

∫∑ == dDDDNDNZ ii
66 )(       (2.1) 
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where Ni is number of drops per unit volume having diameter Di and N(D)dD is the 

number of drops with diameters between D and dD. The unit of drop size is in mm and 

the volume is in m, so that Z is in units of mm6/m3. Assuming that rainfall rate R is 

related to D and the drop terminal velocity of a drop V(D) as: 

 

∫= dDDVDDNR )()(
6

3π
      (2.2) 

 

leads to an expression of Z and R in the form: 

 
βBRZ =         (2.3) 

 

Thus, if the drop-size distribution were exponentially known and if the vertical air 

motions are low relative to the drop terminal velocities, the accuracy of the radar 

rainfall estimation using equation 2.3 would have no limit (Wilson and Brandes, 1979). 

However, due to the uncertainty of the drop-size distribution and the terminal velocities, 

the Z-R relationship is not unique and therefore generates numerous empirical 

relationships. Because radar does not measure rainfall intensities directly, but rather the 

backscattered energy from precipitation particles, radar is prone to errors from many 

other sources. The error sources of radar rainfall estimation, which also incorporate 

radar systematic errors, are: 

 

1) Incorrect relationship between the reflectivity and rainfall intensity 

2) Height dependent variation of the reflectivity measurement 

3) Ground echoes or blockage of the signal by any obstacle 

4) Attenuation of the signal by precipitation 

5) Systematic errors due to radar hardware calibration 

 

Details of radar rainfall observation including error sources can be found in Wilson and 

Brandes (1979) and Einfalt et al. (2004) with well-documented research reviews.  
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The most general and successful techniques for improving radar rainfall estimates is the 

adjustment of radar observation with ground rain gauges. Both measurement devices are 

often times complementary, thus, the concurrent use of both can provide the best spatial 

estimate of rainfall for hydrological applications (Einfalt et al., 2004). There are many 

ways in utilizing rain gauge observations to adjust the radar estimate, which has proven 

to be a major research subject still being conducted today. 

 

2.1.2 Nowcasting of Precipitation 
 

Nowcasting of precipitation is an essential prerequisite for real-time flood forecasting in 

operational hydrology. The term “nowcasting” is used to emphasize the specificity and 

shortness (0~3hrs) of rainfall forecast largely by radar image extrapolation, a method 

going back nearly 50 years (e.g. Smith and Austin, 2000; Fox and Wilson, 2005). Even 

though the benefits of short-term precipitation forecasts are well known, it is 

acknowledged as being among the most challenging areas in hydrology and 

meteorology (Collier and Krzysztofowicz, 2000). 

 

Forecast techniques using radar observations are based on tracking past movements of 

rain cells and extrapolating those movements, assuming that rainfall intensities are 

constant. The early stage of the extrapolation methods applies the simplest technique. It 

does not usually allow for the growth and decay of the rainfall intensities or nonlinear 

motion of the rainfall band. The main disadvantage of this technique is that because of 

its simplicity, the forecast accuracy decreases rapidly within an hour (Bellon and Austin, 

1984, Wilson et al., 1998). In a study of the improvement of forecasts accuracy, 

elaborate nonlinear extrapolation schemes only give negligible improvement or even 

worse results than the linear extrapolation (Smith and Austin, 2000).  

 

Many hydrologists and meteorologists have conducted vast research effort over several 

decades allowing for the introduction of many new schemes. These new schemes 

include mathematical and stochastic models integrated with a meteorological 

component (e.g. Geogakakos and Bras, 1984; Nakakita et al., 1996) and hybrid models, 

which are a combination of Numerical Weather Prediction (NWP) and image 
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extrapolation models (e.g. Golding, 2000; Ganguly and Bras, 2003). In addition, there 

have been complex statistical approaches such as using fractal generation algorithms 

(Lovejoy and Schertzer, 1986) and artificial neural networks (Grecu and Krajewski, 

2000). However, even though the vast research efforts, it has still proven hard to find a 

notable improvement of forecast accuracy. 

 

The extrapolation techniques are yet in the main stream for nowcasting, as many studies 

are taking place in order to develop more accurate extrapolation models (e.g. Kawamura 

et al., 1997; Georgakakos, 2000; Grecu and Krajewski, 2000). Although there are many 

NWP models, the model still has insufficient spatial and time resolution to represent the 

detail distribution of precipitation, and furthermore, it requires sophisticated data, which 

in many cases is not available (Golding, 2000). For this reason, the radar image 

extrapolation is very powerful nowcasting tool in many practical flood forecasting 

situations as will be discussed in this study.  

 

 

2.2 Nowcasting Using Radar Image Extrapolation 
 

2.2.1 Introduction of the Translation Model 
 

The Translation model by Shiiba et al., (1984) is used in this study for deterministic 

predictions of short-term radar rainfall. In this model, the horizontal rainfall intensity 

distribution, z(x,y,t) with the spatial coordinate (x,y) at time t is defined as: 
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       (2.4) 
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dzw

dt
dyv

dt
dxu === ,,   

 

where u and v are advection velocity along x and y, respectively, and w is rainfall 

growth-decay rate along time. Among other similar discrete equations for the rainfall 
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intensity distribution, characteristics of the translation model are on the vector u, v, and 

w formation, which are specified on each grid in the manner of: 

 

321),( cycxcyxu ++=  

654),( cycxcyxv ++=        (2.5) 

987),( cycxcyxw ++=  

 

so that the advection velocities can express the patterns of the non-uniform movement 

of rainfall, such as rotation and sheer strain (Takasao et al., 1994). In order to optimize 

the parameters c1~c9 using observed radar rainfall data, the equation 2.5 is approximated 

by the central difference scheme on the rectangular horizontal area with Δx×Δy grid size 

and Δt time resolution. 
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Here, M and N are the number of grid along the x and y-axis, respectively, and K is the 

number of rainfall slides for the optimization. The parameters c1~c9 are sequentially 

optimized using the square root information filter in a manner of minimizing 
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The translation model provides expected rainfall movements under the assumption that 

the vectors u and v are time invariant for the next several hours and that there is no 
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growth-decay of rainfall intensities during that time. In this research, three consecutive 

observed rainfall fields, which have a resolution of 3 km and 5 min, are used to 

determine u and v. When forecasting rainfall fields, the u and v are assumed spatially 

uniform and updated every 5 min, although the rainfall movement would have spatially 

invariant movements in a real environment. Most of heavy rainfall in Japan, which 

occurs during the rainy and typhoon season, have a frontal rain band over a wide area, 

and therefore the movement of the rainfall band can be reviewed as a spatially uniform 

within a single radar range. 

 

2.2.2 Forecasting Behavior of the Translation Model 
 

Radar data used for testing the translation model is observed at the Miyama radar 

station located in the central part of Kinki district, Japan (Figure 2.1). The observation 

field of the radar includes all spaces within a radius of 120 km and a height of 15 km 

(more details of the radar station can be found in Nakakita et al., 1990). It takes 5 

minutes to scan over the entire observation field and therefore produce rainfall 

reflectivity data every 5 min.  

 

The reflectivity data is converted to rainfall intensity of a 3 km spatial resolution by the 

Z-R relationship, Z=200R1.6 according to Marshall and Palmer (1948). During the 

conversion, basic correction for ground clutters and shadow effects are carried out. The 

converted rainfall intensities, called observed rainfall field in this study is believed to be 

the true rainfall value and are the targets of the accuracy improvements of prediction 

fields.  

 

Two representative rainfall events have been selected for this study. Those events are of 

a typical frontal rain bands type, which occurred during the rainy season (Jun and July) 

and the typhoon season (August and September) in Japan. As shown in Table 2.2, one 

event that took place in August 1992 had severe rainfall intensity with fast movement 

velocity compared to the second event. The event of June 1993 had a rather steady and 

slowly moving rainfall band.  
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Figure 2.1 Miyama radar station and its covering area of 120 km radius. 

 

Table 2.2 Radar data and its characteristics. 

 Duration Type 

August 1992 Event 92/8/18~19 Typhoon season (Frontal) 

June 1993 Event 93/6/30~31 Rainy season (Frontal) 

 

Figure 2.2 shows spatially averaged rainfall intensities of the August 1992 Event and its 

covering area ratio by rainfall intensities. As previously shown, high rainfall intensities 

(for example an intensity over 10 mm/hr) normally have a 10 % ratio of the whole 

rainfall area, meaning that the most rainfall area is covered by very low rainfall 

intensities. This is a typical pattern of frontal rainfall band in Japan. The same 

characteristics can be found in the June 1993 Event shown in Figure 2.3.  
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Figure 2.2 Rainfall Intensity Variations of August 1992 Event. 

 

 

 
Figure 2.3 Rainfall Intensity Variations of June 1993 Event. 



 18

Both figure 2.4 and 2.5 show the characteristics of forecasted rainfall by the translation 

model. First of all, Figures 2.4 (a) and 2.5 (a) show the spatially averaged rainfall 

intensities of observation and each predictions with the August 1992 Event and June 

1993 Event. In order to prevent outside influence by sizes and shapes of rainfall band, 

the intensity calculation includes every grid within the radar observation domain. Note 

that there are overall delays of rainfall intensities, as prediction time elongates. Because 

the translation model only represents the movement of the rainfall bands without their 

growth or decay, the model assumes the same amount of current rainfall intensities lasts 

until the prediction target time. 

 

In Figures 2.4 (b) and 2.5 (b), correlation coefficients of the two events’ observation and 

predictions are shown. The majority of the time for both events, correlation coefficients 

is under 0.5, which is a rather low value. As it can be expected, the coefficients with 

short lead-time have higher values compared to longer lead-time predictions. In the case 

of 180 min prediction of in the August 1992 Event, the most of the coefficients were 

less than 0.2. On the other hand, the June 1993 Event shows irregular variations of the 

coefficients values. After checking the variant forecasting results from other events, this 

kind of behavior is rather arbitrarily and does not follow a certain pattern. 

 

Another method used to measure prediction accuracy is the Critical Success Index (CSI), 

which is given as: 

 

100(%) ×
++

=
ZYX

XCSI        (2.8) 

 

where X is the number of correct forecasts rainfall cells (i.e. rainfall is observed and also 

predicted in the grid), Y is the number of misses (i.e. rainfall is observed, but not 

predicted), and Z is the number of false alarms (i.e. rainfall is predicted, but not 

observed). The CSI is especially appropriate as a summary measure of forecasting for 

the case of extreme events, since the index value decreases when both the number of 

misses and false alarms increases (Smith and Austin, 2000). A threshold rain-rate for the 

CC and CSI is over 0.0 mm/hr in this study. 
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(a) Spatially averaged intensity of observed and predicted rainfall 

 
(b) Correlation coefficient of each prediction with observation 

 
(c) Critical success index of each prediction to the observation 

Figure 2.4 Prediction results and its performance index for August 1992 Event. 
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(a) Spatially averaged intensity of observed and predicted rainfall 

 
(b) Correlation coefficient of each prediction with observation 

 
(c) Critical success index of each prediction to the observation 

Figure 2.5 Prediction results and its performance index for June 1993 Event. 
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where X is the number of correct forecasts rainfall cells (i.e. rainfall is observed and also 

predicted in the grid), Y is the number of misses (i.e. rainfall is observed, but not 

predicted), and Z is the number of false alarms (i.e. rainfall is predicted, but not 

observed). The CSI is especially appropriate as a summary measure of forecasting for 

the case of extreme events, since the index value decreases when both the number of 

misses and false alarms increases (Smith and Austin, 2000). A threshold rain-rate for the 

CC and CSI is over 0.0 mm/hr in this study. 

 

The CSI show rather high values in most prediction times even for the 180 min 

prediction (see Figures 2.4 (c) and 2.5 (c)). In the figures, the index clearly shows that 

shorter lead-time predictions have higher prediction accuracy compared to longer 

lead-time. The index appeared to have a positive relationship to the covering area of 

rainfall bands. It is rather reasonable phenomena since the index can be simply regarded 

as an overlap ratio of the prediction rainfall band to the observed band. If the area of 

rain bands is wide (or narrow), there would be higher (or lower) possibility to overlap 

the area with the predicted rainfall bands. Because of this characteristic of the CSI index, 

widespread frontal rainfall bands can give relatively higher values compare to the 

convective rainfall bands.  

 

 

2.3 Prediction Error Structure Analysis 
 

Tachikawa et al. (2003) statistically analyzed the characteristics of absolute prediction 

error and relative prediction error and defined them as shown in Equations 2.9 and 2.10.  

 

ipioia RRE ,,, −=          (2.9) 

ipipioir RRRE ,,,, /)( −=         (2.10) 

 

The absolute prediction error Ea,i on a certain grid i is calculated from the difference 

between predicted rainfall Rp,i and observed rainfall Ro,i on the grid, while the relative 

prediction error Er,i is the ratio of the absolute prediction error to its predicted rainfall. 
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Tachikawa et al. (2003) examined the timely accumulated error values with variant 

spatial resolutions and found that the distributions of absolute and relative error are 

respectively close to normal distribution and lognormal distribution.  

 

This study concentrates on the absolute prediction error Ea,i and simulates the spatially 

correlated possible error for future prediction target times on a real-time basis. Basic 

statistics of the prediction error examined in this study includes the mean and standard 

deviation as well as probability distribution of the error, which indicates normal 

distribution allowing a slight variation in each event and prediction case.  

 

Figures 2.6 and 2.7 show basic statistics of the prediction error. It includes the mean, 

standard deviation, and spatial correlation coefficients of the error. During the August 

1992 Event, the variation of mean and standard deviation values along the time-axis is 

rather drastic compared to the values of the June 1993 Event. This is because of higher 

rainfall intensity as well as its spatial variation of the August 1992 Event. However, the 

values are not significantly different between the variant prediction lead-times. 

 

The Spatial Correlation Coefficients (SCC) of the absolute prediction error, which 

shows how much the error is spatially correlated to each other, are shown in Figures 2.6 

(c) and 2.7 (c). The SCC is calculated for every increment of time by grouping every 

pair of the absolute error values, which is one grid apart for 3 km, two grids for 6 km, 

etc., on each error field. The SCC shows high values for close distances and decreases 

as the distance gets longer. It is found that the absolute error from longer prediction 

times has higher SCC values, and is diminished to approximately 15 km in most 

prediction cases. In addition, higher prediction error (the August 1992 Event) gives 

higher spatial correlation as shown in Figure 2.6 (c). 

 

For the purpose of reviewing the spatial pattern of the prediction error, the absolute 

errors on each grid are accumulated event by event. For example, if there is a certain 

spatial and/or time pattern in the prediction error, because of perpetual overestimation or 

underestimation on a certain area during a certain event, the accumulated error will 

present those patterns. Otherwise, if the error does not have any spatiotemporal pattern
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(a) Mean values of prediction error 

 
(b) Standard deviations of prediction error 

 
(c) Spatial correlation coefficients of prediction error 

Figure 2.6 Prediction error characteristics of August 1992 Event. 
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(a) Mean values of prediction error 

 
(b) Standard deviations of prediction error 

 
(c) Spatial correlation coefficients of prediction error 

Figure 2.7 Prediction error characteristics of June 1993 Event. 
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(a) 60min (left), 120min (middle) and 180min (right) prediction of August 1992 Event 
 

 

(b) 60min (left), 120min (middle) and 180min (right) prediction of June1993 Event 
 

Figure 2.8 Accumulation of the prediction error during each event (unit: mm/hr). 
 

namely arbitrarily random errors, the accumulated prediction error on every grid would 

compensate each other. As shown in Figure 2.8, there is a specific spatial pattern on 

each accumulation of prediction error. Another interesting point is that although each 

individual event depicts similar patterns within themselves, separately they remain quite 

distinct.  

 

To forecast precipitation accurately hydrologists and meteorologists need to understand 

not only the rain band movement but also the generation, growth, and decay of rain cells. 

As mentioned earlier, the translation model ignores the growth-decay of rainfall 

intensities, and has inherent error sources related to this growth-decay rate. Many 

studies say that the rainfall generation and its amount are highly correlated to 

topographic patterns, but the relationships between precipitation and topography in 

mountainous areas continue to be vague due to the complexity of the topography of 
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those regions (Prudhomme and Reed, 1998). In addition, studies of precipitation pattern 

adjustments to topography are often based on annual precipitation. However, not only 

the effects of topography and its relation to precipitation can be vary with each event, 

but also the wind direction against mountains and wind speed are important factors in 

such cases (Johansson and Chen, 2003). From this point of view, it can be considered 

that different wind direction gives different spatial patterns of the prediction error. In the 

instances of the June 1993 and August 1992 Event, the main wind direction was West 

and South-East, respectively.  

 

However, more detailed study is required in order to calculate the particular effects of 

topography on the prediction error patterns. The error would have a complex 

relationship with topography as well as meteorological conditions of each event, and it 

is difficult to define the error beforehand. Be that as it may, the information of spatially 

variant prediction error patterns can be used in real-time forecasts of precipitation, 

which is presented and discussed in the next section. In the next section, a method to 

obtain a spatially variant error pattern on a real-time basis is proposed and it is used for 

stochastic prediction in this study.  
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Chapter 3 
 
Ensemble Flood Forecasting with Prediction Error Fields 
 

 

“In the course of the statistical hydrodynamical studies of the predictability 

problem, it has become clear that single numerical forecasts do not provide 

the best estimate of the true state of the atmosphere in the classical least mean 

square sense.” (Leith, 1974) 

 

NWP models have been run in ‘ensemble mode’ for the last decade or so, and statistical 

outcome has been obtained from the ensemble simulations by adopting small 

perturbations in the initial values and initial condition (e.g. Du and Mullen, 1997). The 

ensemble forecast of hydrographs is also a recent trend away from the conventional 

simple deterministic forecasts of hydrographs and towards probabilistic forecasts, which 

include prediction uncertainty (see Krzysztofowicz, 2001). However, most of the 

ensemble simulations in the early stages are concerned only with the internal growth of 

error rising from the difference in initial conditions (Leith, 1974). In considering the 

external growth of prediction error rising from an imperfect model structure, continuous 

corrections of model states or additional error simulation models are necessary. More 

specifically, to fill the shortage of the current ensemble techniques, real-time correction 

of forecasting results using the most updated observation should be brought into mind. 

 

As a step towards addressing the improvement of forecast accuracy and ensemble 

forecasting with consideration of external error, this chapter introduces a new attempt of 

ensemble rainfall forecasting using a stochastic error field simulation. As apposed to the 

traditional ensemble simulation method that uses initial condition control to obtain 

statistical outcome, the error model independently offers stochastic error fields to the 

deterministic prediction results. The characteristics of the error fields are based on an 

analyzed error structure of the current rainfall prediction, and are simulated using the 

random field generation method.  
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The simulated error fields, responsible for successfully keep the analyzed error structure, 

not only give probable rainfall field variations for the ensemble simulation but also 

improve the accuracy of the deterministic prediction by correcting the possible 

prediction error (Kim et al., 2006). Then, stochastically extended prediction fields are 

given to a distributed hydrologic model to achieve ensemble runoff predictions.  

 

 

3.1 Stochastic Forecasting by an Ensemble Mode 
 

In atmospheric modeling, stochastic dynamic forecast was introduced more than three 

decades ago (Epstein, 1969). Until now, the main purpose of ensemble forecasting in 

those models was to consider the uncertainty of initial conditions and boundary 

conditions at the start of forecasting. After Lorenz (1963) found that only slightly 

variant initial conditions yield quite different results in a numerical weather prediction 

model, small perturbations of the initial condition in the beginning of a model 

simulation were used as a trigger for ensemble forecasting. One good example of 

short-range ensemble forecasting of precipitation with well-documented review can be 

found in Du and Mullen (1997).  

 

Most ensemble simulations in early stages are primarily concerned with the internal 

growth of error rising from the difference in initial conditions and ignore the external 

growth of error rising from the difference between a numerical model and the real 

atmosphere (Leith, 1974). Until now, ensemble simulations for probabilistic forecasting 

had been criticized for its underestimation of the total uncertainty as not all sources of 

uncertainty are accounted for in the ensemble generator (Krysztofowicz, 2001). Because 

the model conducting the simulation cannot be perfect, there is always a chance that the 

initiated variant initial conditions for an ensemble simulation have resulted in different 

forecast projections (Fig. 3.1). 

 

Figure 3.1 presents schematic drawings of ensemble forecasting, plotted in terms of an 

idealized two-dimensional phase space. The first circles at initial time t represent initial 

states for ensemble forecasting, and the dot stands for the best prediction or the best 
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(a) Forecasted result from a model generates a shifted projection to the real projection 

 

 
(b) Forecasted result from a model generates a diverged projection to the real projection. 

 

 
(c) Forecasted result from a model generates a localized projection to the real one. 

 

Figure 3.1 Three different cases of forecast projection caused by variant conditions. 

  Initial state at t      Forecast Projection at t+dt 

Real phase path 
Simulated phase path 

  Initial state at t         
                    Forecast Projection at t+dt 

Real phase path 
Simulated phase path 

  Initial state at t         
                    Forecast Projection at t+dt 

Real phase path 
Simulated phase path 
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observation at the beginning of the simulation. The solid line represents the phase path 

of the states by processes in a real environment, and the dashed line represents the phase 

path of model simulations. Because of the imperfection of the model, the forecast 

projection (dashed line circle) has shifted from the real projection (solid line circle) as 

shown in Figure 3.1 (a). In other cases, the forecast projection can have a diverged state 

space (Figure 3.1 (b)) or can converge into a limited space area (Figure 3.1 (c)). These 

three cases can occur depending on whether different models are running or whether 

there are different situations in a one-model simulation. In any case, as forecasting 

continues for longer prediction time, noted as t+ndt, the shift or divergence of the 

simulation results makes a much bigger discrepancy in the real phenomena. 

 

If any model shows one specific pattern of discrepancy that is recognizable, the model 

structure should be corrected for an improvement of forecasting behavior. If any model 

shows a different discrepancy pattern with different simulation times or conditions, 

which is more common in model simulations, the different forecast projection should be 

corrected by updating the model state vectors through means of most recent 

observations. Such real-time updating can be fulfilled by adopting a data assimilation 

method, for instance the Kalman filter (Kim et al., 2005), or an additional error 

simulation model (Kim et al., 2006).  

 

 

3.2 Prediction Error Field Simulation Algorithm  
 

3.2.1 Overview of the Algorithm 
 

The main purpose of the algorithm is to simulate possible error fields after current time, 

t, using the current prediction error structure. This is conducted under the assumption 

that a temporal persistence of the error characteristics from the current time to the 

prediction target time exists. The proposed scheme uses a certain duration of prediction 

error data for the simulation of future prediction error as shown in Figure 3.2. In the 

figure, the observed rainfall fields, the previous prediction fields, and the prediction 

error fields are sequentially illustrated until the current time t. Various prediction fields  
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Figure 3.2 Schematic drawing of the stochastic error field simulation. 
 

of each time segment are followed by various prediction lead-times. However, in this 

case only one prediction with the lead-time Δt is considered in the figure. Again, every 

prediction field at each time increment is the prediction results that are carried at Δt time 

before that time increment. At the current time t, the translation model carries another 

prediction for the time t+Δt upon which the probable prediction error of the prediction is 

then simulated in accordance with the current error characteristics.  

 

The current characteristics of the prediction error can be presented by basic probabilistic 

statistics under an assumption that the time series of the error on each grid follows 

normal probability distribution. Here, the basic statistics stand for the mean and 

standard deviation values of the most recent errors in certain duration, one hour for 

example, on each grid. Based on this procedure, the statistic fields can compromise 

spatial and temporal patterns of the current errors and can be updated on a real-time 

basis.  

 

If the spatiotemporal characteristics of the prediction error lasts for a couple of hours, 

and the statistic characteristics of the error on the prediction target time t+Δt are similar 

to the characteristics of the current statistic fields, the possible error fields at t+Δt can be 

simulated by using the current statistic fields. The proposed algorithm is for offering a  
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(a) Prediction error field  (b) StDev field of error  (c) Unit random error field  (d) Mean field of error 
 

Figure 3.3 Simulation procedure of the error field using the statistic fields and UREF. 
 

probable variation of the deterministic extrapolation model as well as improving its 

forecast accuracy. This assumption, the temporal persistency of the error characteristics 

is evaluated in the next section. 

 

Figure 3.3 explains the procedure for the simulation of the possible error field. The 

statistic field, the mean and standard deviation field of error (see Fig. 3.3(b) and (d)), 

contains the current characteristics of the prediction error. The statistic field therefore 

converts the Unit Random Error Field (UREF; Fig. 3.3(c)) to the target error field (Fig. 

3.3(a)), which is the aim of the error field simulation.  

 

The UREF is a set of random values, which are spatially correlated and follow normal 

distribution of N(0,1). The spatial correlation for the UREF is determined by spatial 

correlation of the current error fields. A matrix decomposition method is used for a 

simulation of UREF in this study. Through numerous generations of the UREF it 

becomes possible to acquire many prospective error fields for the prediction target time.  

 

Finally, the deterministic prediction field obtained by the translation model is extended 

to many prospective prediction fields by combining them with the simulated prediction 

error fields.  

 

3.2.2 Time Persistency of the Error Characteristics 
 

To confirm the temporal persistence of the characteristics of prediction error, this study 

has adopted modified CSI (MCSI) as Equation 3.1. The MCSI uses the same form of 

CSI, shown in Equation 2.8, with the exception of range concept. As noted in the 
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previous section, the statistic fields give a specific probabilistic range on each grid by 

the mean μ and the standard deviation σ of the error on its own grid. If the real, not 

simulated prediction error of the target time on a certain grid is within the range 

between μ-σ and μ+σ on the grid, it is counted as a correct value, X, and if the error is 

out of the range, it is counted as a wrong value, Y. 

 

100(%) ×
+

=
YX

XMCSI         (3.1) 

 

Evaluations were firstly conducted with the 60 min lead-time predictions and three 

different sets of statistic fields were calculated using the error fields within 10, 30, and 

60 min. After each statistic fields was prepared for every time increment, the MCSI was 

calculated with the corresponding real prediction error field.  

 

Figure 3.4 (a) shows the MCSI values for the 60 min lead-time predictions with three 

different sets of statistic fields. With focusing on the MCSI with the statistic fields of a 

30 min duration, the MCSI starts with high values around 80%, and lowers as the 

rainfall intensity becomes stronger. When it is considered that the probability area 

within ±1.0σ of a normal distribution is 68%, this result is highly encouraging for 

adopting the time persistence of the prediction error.  

 

Compared to the MCSI from the statistic fields of 30 min duration, MCSI from the 60 

min duration statistic fields has larger values whereas 10 min duration statistic fields 

indicate lower values. When the statistic fields of different duration were compared to 

each other, the mean field of error did not show different spatial patterns. However, the 

longer the duration of a statistic field, the larger the produced standard deviation value 

is; therefore the value X can have bigger values in MCSI. There are no specific criteria 

to determine what length of duration is appropriate for making the statistic fields. 10 

min duration would be too short for representing the current error characteristics while a 

30 min duration is long enough to represent the current characteristics. Therefore, the 

statistic field of 30 min duration is used for the error field simulation in the next section. 
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Figure 3.4 MCSI variations of 60 min prediction in August 1992 Event. 

 

Table 3.1 and 3.2 show the time averaged MCSI values within different prediction 

lead-times: 60, 120 and 180 min prediction. Note that the statistic field for each 

prediction lead-time is derived from different prediction error fields. For example, a 

prediction with a 120 min lead-time generates error fields of its own lead-time whose 

statistic field consist of 10, 30 and 60 min durations for this prediction. As shown in 

both tables, the MCSI values remain approximately the same throughout each 

prediction lead-time. The values from the August 1992 Event are higher than the values 

form the June 1993 Event. 

 

Table 3.1 Averaged MCSI values from variant prediction lead-times (August 1992 Event). 

Error Durations for Statistic Fields 
Lead-time 

10 min 30 min 60 min 

60 min Prediction 37.88 53.92 64.13 

120 min Prediction 35.43 50.52 60.48 

180 min Prediction 35.83 50.59 60.09 
 

Table 3.2 Averaged MCSI values from variant prediction lead-times (June 1993 Event). 

Error Durations for Statistic Fields 
Lead-time 

10 min 30 min 60 min 

60 min Prediction 25.69 39.46 49.95 

120 min Prediction 21.75 32.90 42.66 

180 min Prediction 23.30 34.12 42.48 
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3.3 Stochastic Extension of the Deterministic Rainfall Prediction 
 

3.3.1 Spatially Correlated Random Error Field 
 

The UREF simulation is based on the decomposition of a matrix that includes spatial 

correlation characteristics of the prediction error in a covariance matrix form. The 

matrix is decomposed approximately into its square root matrix with the matrix 

factorization technique and the Chebyshev polynomials. Multiplying the square root 

matrix by a random vector N(0,1) gives a non-conditional simulation of the UREF 

(Davis, 1987; Tachikawa and Shiiba, 2000).  

 

Davis (1987) proved a symmetric matrix B that satisfies K=BB could be found when K 

is symmetric and positive-definite. Considering the random vector Y in this study, the 

spatially correlated unit random error vector is as follows: 

 

Y=Bw 

 

where w is the uncorrelated random vector N(0,1). The expected value of the matrix 

YYT (n×n) is given by 

 

E[YYT] = E[BwwTBT] = BE[wwT] BT  

 

Because w is a vector of independent random numbers, E[wwT] = I, thus 

 

E[YYT] = B I BT= K 

 

The spatial correlation coefficients (SCC), which are obtained from the absolute 

prediction error Ea, makes up the covariance matrix K as shown in Equation 3.2. Under 

an assumption of ergodicty on SCC, the sccj is prepared using two error groups, which 

are j grids separate from other within one error field. For example, scc0 is the SCC with 

its own cell, thus scc0 should be 1.0, and scc1 is the SCC with the error of the next cell,  
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which is around 0.70 in the June 1993 Event. Although it is possible to get scci from 

every prediction error field at every time increment, time averaged scci is used for the 

matrix K following the assumption of ergodicty. 

 

The matrix K is decomposed into a symmetric matrix B approximately by the 

Chebyshev polynomials (see more details on the matrix decomposition in Davis, 1987; 

Tachikawa and Shiiba, 2000). Vector Y (or UREF), which is a non-conditional 

simulation of spatially correlated random vectors, can be generated continuously by 

multiplying the matrix B by an uncorrelated random vector w. Figure 3.3 (c) shows one 

example of UREF. 

 

The statistic fields convert the UREF to the prediction error fields as Equation 3.3: 
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    (3.3) 

 

Here, the mi and sdi are the mean and standard deviation of the current prediction error 

on grid i. The yi is the unit random error of the vector Y, and the Es,i is the simulated 

error for the prediction target time. Equation 3.3 is a linear equation, thus the spatial 

correlation structure of Y, which is obtained from the Ea, is maintained in the Es. The 

form of Equation 3.3 is identical with Figure 3.3. The total grid number of the Miyama 

radar image is 80×80, thus the n in Equation 3.3 is 6400. This procedure allows each 
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random error value yi to have statistical characteristics on its own grid. Fifty sets of 

prediction error fields at each time increment were generated for the ensemble 

simulation. 

 

3.3.2 Generation of the Extended Prediction Fields 
 

Deterministic prediction rainfall field from the translation model are extended to many 

prospective prediction rainfall fields by combining them with the simulated prediction 

error fields in a manner of: 

 

isipie ERR ,,, +=         (3.4) 

 

where Es,i is the simulated prediction error value on grid i, Rp,i is the prediction from the 

translation model, and Re,i is the extended prediction. Because the simulated prediction 

error contains the error statistics of the absolute prediction error (Es,i≈Ea,i), the extended 

prediction can be close to the observed rainfall on the prediction target time as:  

 

iaipioie ERRR ,,,, +=≈         (3.5) 

 

In other words, the properly simulated prediction error can remove the discrepancy, 

which would occur in the prediction target time, and therefore has the ability to improve 

the accuracy of the deterministic prediction.  

 

One example of this accuracy improvement is shown in Figure 3.5. The deterministic 

prediction field failed to give high rainfall intensities, marked by a red circle in Figure 

3.5. During a prediction of the given deterministic field, the circled area shows 

perpetual underestimation of rainfall for a certain duration by missing newly generated 

rainfall at those times. Because the underestimation lasted for several hours, this 

temporal and spatial characteristic of prediction error was detected and included in the 

simulated error fields in a stochastic way. After the deterministic field from the 

translation model is combined with the simulated error fields, the extended prediction 
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Figure 3.5 Example of bias correction by the simulated error fields. 

 

fields can produce bias-corrected values. This mechanism gives an accuracy 

improvement of the extended prediction fields as well as probabilistic variability of the 

prediction values. 

 

Because some values on the simulated prediction error field yield negative value that 

can be larger than the predicted rainfall value at that point, negative values could occur 

on the extended prediction field. These negative rainfall values are set to zero, and the 

same amount of negative values is subtracted from the positive rainfall values so as to 

keep the total rainfall amount as: 

 

R’e,i = Re,i(1+r) (if Re,i≥0.0) 

 = 0.0   (if Re,i<0.0)      (3.6) 

 

 where   
∑
∑=

ie

ie

PlusR
MinusR

r
,

,  

 

The value r stands for the ratio of the total negative rainfall amount on each extended 

prediction field to the total positive rainfall amount. The total amount of negative 

rainfall generally has 10% to 20% of the total positive rainfall amount, therefore, r 

varies from -0.1 to -0.2. In addition to tallying total rainfall amount, this procedure 

gives a smoothing effect on the extended prediction fields, so that it decrease an 

abnormally high prediction value caused by abnormally high random error values. 
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3.3.3 Evaluation of the Extended Prediction Fields 
 

For validity of an error field simulation, the extended prediction fields should have 

similar error structure to the real prediction error. Furthermore, if the bias correction 

mentioned in the previous section works properly, the extended prediction fields should 

have a much closer value to the observed radar rainfall intensities.  

 

First, spatially averaged rainfall intensities are checked as shown in Figure 3.6 (a) with 

the 60 min prediction case of the Event in Aug. 1992. The intensities from the extended 

prediction fields make a certain range and show similar patterns of intensities in the 

deterministic prediction. From the rainfall intensity comparison, it is difficult to specify 

whether the extended prediction produces an improvement of accuracy or reasonable 

reliability range to the original deterministic prediction. The intensities of the extended 

prediction fields distributed to the outer part of the deterministic rainfall intensity and 

the range of the ensemble prediction hardly covers the observed intensities.  

 

The correlation coefficients from the extended prediction show improved results in most 

prediction times. Figure 3.6 (b) represents the correlation coefficients of the extended 

prediction fields and the observed radar rainfall fields as well as the coefficients of the 

deterministic prediction fields. In most prediction times, the coefficients from the 

extended prediction fields have higher values compared to the values from the 

deterministic prediction. When considering that the correlation coefficient value is a 

rather strict measurement index for prediction performance, the improved correlation 

values are encouraging results implying the enhancement of the prediction accuracy.  

 

Yet, the CSI values in Figure 3.6 (c) do not show a vast difference between the extended 

prediction and the deterministic prediction. Because the error field simulation is based 

on the most recent prediction results, theoretically, the simulated error field contains the 

same area as the prediction fields. Even though there is slight variation of rainfall 

covering area as time passes, it does not significantly alter the CSI values, as they can 

simply be considered as an overlap ratio of prediction towards the observation. 
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(a) Average rainfall intensity  

 
(b) Correlation coefficient 

 
(c) Critical success index 

Figure 3.6 Evaluations for extended prediction fields (August 1992 Event, 60min Pred.). 
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(d) Mean of Prediction error  

 
(e) Standard deviation of error 

 
(f) Spatial correlation coefficient  

    Figure 3.6 Evaluations for extended prediction fields (continued) 
(Event in August 1992, 60 min Prediction). 
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(a) Average rainfall intensity  

 
(b) Correlation coefficient 

 
(c) Critical success index  

Figure 3.7 Evaluations for extended prediction fields (June 1993 Event, 60min Prediction). 
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(d) Mean of Prediction error  

 
(e) Standard deviation of error 

 
(f) Spatial correlation coefficient 

      Figure 3.7 Evaluations for extended prediction fields (continued) 
(Event in June 1993, 60 min Prediction). 
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The mean (Figure 3.6 (d) and 3.7 (d)) and standard deviation (Figure 3.6 (e) and 3.7 (e)) 

of the simulated prediction error show that the statistical characteristics of the prediction 

error as well as spatial correlation coefficients (Figure 3.6 (f) and 3.7 (f)) were 

successfully maintained throughout the error field simulation.  

 

3.3.4 Forecast Verification 
 

For an overall forecast verification, several performance indexes were adopted, such as 

accumulated rainfall amounts, root mean square error and mean absolute error. First, 

accumulated rainfall amount (ACRA) is the gradual amount of rainfall during the 

simulation after the rainfall intensities are spatially averaged. The ACRA of observed 

and forecasted (whether deterministic or ensemble) rainfall is calculated as: 
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where ns and nt are the number of rainfall grids, and time increments. Ot,s and Ft,s are 

observed and forecasted values at time t on point s. Note that the observed values Ot,s 

may different to the ground gauge observation, since the radar observation used in this 

study is not adjusted to the ground gauge data. However, this radar observation Ot,s is 

regarded as the reference rainfall values of the forecasted rainfall.  

 

For the ensemble forecasting results, which has fifty sets of the extended prediction 

field, the mean and standard deviation of the ACRA were calculated, and the minimum 

and maximum of the ACRA values were examined as shown in Figure 3.8 and 3.9 as 

well as Table 3.3 and 3.4. Better results having closer ACRA value to the observed one 

are marked with bold character in those tables. 

 

Additional performance indexes adopted to attain a single overall score are Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) as expressed in Equation 3.8 and 

3.9. 
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The simplest method for an overall scoring of forecast performance is to disregard the 

difference between the temporal and spatial dimensions, namely all error information is 

comprised into one value (Drosdowsky and Zhang, 2003). In most forecast results, the 

forecast performance will variant not only event by event, but also spatially and 

temporally even down to one event. Although this kind of comprisal scoring is not 

appropriate for examining a specific spatial and temporal variance of the forecast 

performance, RMSE and MAE are still convenient to check the overall comparison of 

performance, which is implemented by other similar forecast methods, along with the 

overall pattern of performance from the variant lead-times. 

 

Lastly, time averaged correlation coefficient and critical success index were examined. 

These are simply the mean of CC and CSI values’ time series for a perspective 

comparison of variant prediction lead-time.  
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Figure 3.8 and Table 3.3 show the comparison of accumulated rainfall amount values of 

observation, deterministic and ensemble prediction from the variant prediction lead-time 

of the August 1992 Event. In the figure, ACRA of the observation is presented with a  
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      Figure 3.8 Accumulated rainfall amounts comparison (August 1992 Event). 
 

Table 3.3 Accumulated rainfall amount values (August 1992 Event, Unit: mm/hr). 

Ensemble Prediction 
Lead-time Observation Deterministic 

Prediction Mean±StDev Min~Max 

60 min Pred. 217.38 226.64 224.79±28.51 165.09~290.06 

120 min Pred. 217.38 215.94 226.29±38.29 147.15~314.78 

180 min Pred. 217.38 192.17 228.97±39.74 149.04~321.40 

 

solid green line along the x-axis for showing the reference value, 217.38 mm. Here, the 

x-axis represents the prediction lead-time. The ACRA values from the deterministic and 

ensemble prediction are expressed with points and error-bars.  

 

The ACRA values from the deterministic prediction decrease as prediction lead-time 

elongates, showing some differences to the observed one. The reason of the decrease 

can be found in the simulation behavior of the Translation model. When the model 

performs a simulation, the optimized u and v vector transfer the current rain bands, and 

therefore some rainfall area is located outside of the radar range at the prediction target 

time. In addition, because new rain band that comes in the radar range during the 

prediction lead-time is not counted in the prediction results, the deterministic prediction 

shows a trend of decreasing rainfall area as well as the ACRA values.  
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      Figure 3.9 Accumulated rainfall amounts comparison (June 1993 Event). 
 

Table 3.4 Accumulated rainfall amount values (June 1993 Event, Unit: mm/hr). 

Ensemble Prediction 
 Observation Deterministic 

Prediction Mean±StDev Min~Max 

60 min Pred. 35.14 34.81 36.88±2.30 31.97~42.28 

120 min Pred. 35.14 32.01 40.98±3.85 32.85~49.97 

180 min Pred. 35.14 26.42 39.06±4.67 29.39~50.06 

 

However, the error field simulation of this study incorporates the information of the 

newly added rain bands, and as a result, the ensemble forecasting shows relatively 

steady ACRA values regardless of the prediction lead-time. 

 

The reliability range of the ensemble forecasting (whether the standard deviation, or the 

maximum and minimum values) clearly expresses the uncertainty of the forecasted 

values; the larger the prediction lead-time is extended, the wider the range becomes. In 

the case of 180 min prediction, the standard deviation of the ensemble forecasting’s 

ACRA is ±39.74 mm, and the difference of the minimum and the maximum value is 

172.36 mm, which might be considered as a large uncertainty for a 3 hrs lead-time 

forecasting. The Detailed values are presented in Table 3.3. 
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Figure 3.9 shows the comparison of ACRA values from the variant prediction lead-time 

of the June 1993 Event. In the figure, ACRA of the observation is 35.14mm and the 

values from the deterministic prediction show a larger discrepancy for the observation 

as the lead-time gets longer. While the mean values from the ensemble forecasting also 

show negative results, the range values from the ensemble simulation successfully 

encompass the observation values. Detail vales are illustrated in Table 3.4. 

 

      Table 3.5 Root mean square error and mean absolute error (August 1992 Event). 

RMSE MAE 
Lead-time 

Deterministic Ensemble Deterministic Ensemble 

60 min Pred. 12.97 11.50 5.96 5.36 

120 min Pred. 14.01 12.17 6.60 5.86 

180 min Pred. 14.06 12.59 6.58 6.19 
 

      Table 3.6 Root mean square error and mean absolute error (June 1993 Event). 

RMSE MAE 
Lead-time 

Deterministic Ensemble Deterministic Ensemble 

60 min Pred. 5.22 5.25 3.26 3.35 

120 min Pred. 5.33 5.38 3.36 3.48 

180 min Pred. 5.41 5.42 3.41 3.47 
 

Tables 3.5 and 3.6 show the RMSE and MAE from the variant forecast lead-time of the 

August 1992 Event and June 1993 Event. The August 1992 Event clearly illustrates that 

the ensemble forecasts gives much smaller error values than the deterministic prediction 

in all lead-times. Furthermore, one should notice that both scoring values become larger 

for longer lead-times, which proves higher uncertainty for longer lead-time predictions. 

On the other hand, the June 1993 Event resulted in better values for the deterministic 

prediction than the ensemble forecasts. This may be because the June 1993 Event has 

low rainfall intensities, therefore the ensemble forecasts are much more influenced by 

the negative rainfall handling during the extended prediction field simulation. However, 

undefined spatial and/or temporal characteristics in a certain rainfall pattern can be there 
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during the June 1993 Event, and therefore more detailed study with various event types 

is required in order to generalize the proposed ensemble forecasting method. 

 

The mean of correlation coefficient (MCC) and mean of critical success index (MCSI) 

for the August 1992 Event and June 1993 Event are respectively presented in Table 3.7 

and 3.8. The values for the ensemble forecasts are averaged values from the fifty sets of 

extended prediction results. From the both tables, the values clearly show that ensemble 

forecasts give improved accuracy compare to the deterministic predictions while the 

accuracy decreases as prediction lead-time gets longer. 

 

      Table 3.7 MCC and MCSI values comparison (August 1992 Event). 

 Mean Correlation Coefficient Mean Critical Success Index (%) 

 Deterministic Ensemble Deterministic Ensemble 

60 min Pred. 0.164 0.252 50.5 49.1 

120 min Pred. 0.063 0.173 42.1 46.6 

180 min Pred. 0.052 0.143 36.6 45.7 
 

      Table 3.8 MCC and MCSI values comparison (June 1993 Event). 

 Mean Correlation Coefficient Mean Critical Success Index (%) 

 Deterministic Ensemble Deterministic Ensemble 

60 min Pred. 0.216 0.229 74.03 69.45 

120 min Pred. 0.090 0.123 65.15 66.73 

180 min Pred. 0.070 0.072 56.51 64.86 
 

 

3.4 Ensemble Runoff Simulation with a Distributed Hydrologic Model 
 

For real-time flood forecasting, there has been considerable interest in utilizing weather 

radar and distributed hydrologic models, as it can provide continuous spatiotemporal 

measurements and outputs that are immediately available at any location in catchments. 

From a hydrological point of view, runoff responses of forecasted rainfall throughout a  
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Figure 3.10 Entire Yodo river basin and its sub-basins: Ootori, Ieno and Kamo. 
 

hydrologic system are valuable information for checking the validity of the input data 

during operational usage. This study assesses the simulated extended prediction fields 

with a distributed hydrologic model, which is developed for the Yodo river basin located 

in the Miyama radar observation range. Figure 3.10 shows the Yodo river basin as well 

as its sub-basins, and the location map of the basin is given in Figure 2.1. 

 

The Yodo river model (Sayama et al., 2005) used in this study solves kinematic wave 

equations for both subsurface flow and surface flow using the Lax-Wendroff scheme. 

Discharge and water depth propagate node to node according to a predefined routine 

order, which is determined in accordance with DEM and river channel network data. 

One characteristic of the Yodo river model is a specific stage-discharge relationship, 

which incorporates saturated and unsaturated flow mechanisms. More details about the 

stage-discharge relationship are illustrated in Chapter 4 with an introduction of the 

distributed hydrologic model, CDRMV3. For additional details on the Ohymos system 

refer to Ichikawa et al.(2000), and on the Yodo river model refer to Sayama et al.(2005). 
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The runoff simulation is carried out in three different catchments located within the 

observation range of the Miyama radar: Ootori (156 km2), Ieno (476 km2) and Kamo 

(1469 km2). The catchments, which are located near the radar station (see Figure 2.2) 

are selected to avoid inherent radar error, which is mainly caused by reflectivity 

attenuation. The parameters were calibrated with the Miyama radar observation and 

observed discharge data for each outlet. Although the calibrated parameter set may not 

necessarily correspond to the best series, and additionally the simulated results does not 

specifically represent the actual discharge, the simulated discharge from the observed 

radar data is nevertheless set as a reference to compare with the discharge from the 

deterministic prediction and extended prediction data.  

 

The purpose of this rainfall-runoff simulation is to examine the accuracy and reliability 

range of the extended rainfall prediction from a hydrological point of view. The final 

goal is the achievement of ensemble discharge, which has values around the discharge 

output from the observation. 

 

 

3.5 Application Results and Discussion 
 

The fifty sets of extended prediction fields generate an ensemble rainfall-runoff 

simulation through the distributed hydrologic model. Each extended prediction field 

among the fifty sets of input data was assigned to each runoff simulation independently. 

Firstly, preliminary simulation was conducted with the observed rainfall data until 0:00 

on the 18th for the August 1992 Event and until 6:00 on the 30th for the June 1993 Event. 

The deterministic and extended prediction fields data was inputted after the above 

mentioned times. The ensemble simulation was carried out until 0:00 on the 20th 

(August 1992 Event) and until 18:00 on the 30th (June 1993 Event). After those time 

periods, the observed rainfall data was equally set to every fifty-ensemble simulation, 

upon which the simulation was shortly continued in order to observe the remaining 

effect of the input rainfall on the runoff. The rainfall data, whether observed or predicted, 

was given every 5 min for the distributed hydrologic model, which produced a 

hydrograph every 10 min. 
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Figure 3.10 shows the ensemble runoff simulation results (60 min prediction) in the 

August 1992 Event for all three subject basins: Ootori (156 km2), Ieno (476 km2) and 

Kamo (1469 km2). The green line stands for the discharge from the observed radar 

rainfall, which is the reference discharge regarded as the actual value. The orange line 

represents the discharge from the original deterministic predicted rainfall for 60 min 

ahead of every time increment. Fifty gray lines show each discharge from the extended 

prediction fields, which was simulated in the previous section.  

 

In the three sets of the simulation results, the discharges from the ensemble simulations 

show closer values to the discharges from the observed radar rainfall, which implies the 

improved prediction accuracy of the extended prediction. At the first peak in the Ootori 

simulation (17:00 on the 18th of August) in Figure 3.11 (a), the deterministic prediction 

produced a 350 m3/sec discharge, while the reference discharge form the observed 

rainfall produced only 90 m3/sec. The discharge results from the extended prediction 

data diminished from the highly overestimated value above down to 150 m3/sec. The 

results from the Ieno simulation (Fig 3.11 (b)) clearly show the improved prediction 

accuracy with the reduced discharge compared to the output from the deterministic 

rainfall data.  

 

From Figures 3.11 to Figure 3.16 show the same form of the ensemble simulation 

results with a 60, 120 and 180 min prediction of the August 1992 Event and the June 

1993 Event. While the results with the August 1992 Event give optimistic results for the 

120 min prediction, the results with the June 1993 Event show that the ensemble 

simulation with error field simulation still has much room for improvement.  

 

Note that the ensemble simulation results were given by the continuous application of 

the extended prediction data, therefore the discharge output accumulated the prediction 

error. In a practical usage of forecasts rainfall data in a real-time simulation, the rainfall 

input data will be given in accordance with the most updated forecast for each lead-time. 

When considering that only the 60, 120 or 180 min prediction data was given for every 

time increment, the improved accuracy proved and continues to be worthy of attention 

in practical usages.  
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(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.11 Runoff simulation results with 60 min prediction, August 1992 Event. 
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(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.12 Runoff simulation results with 120 min prediction, August 1992 Event. 
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(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.13 Runoff simulation results with 180 min prediction, August 1992 Event. 
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(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.14 Runoff simulation results with 60 min prediction, June 1993 Event. 
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(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.15 Runoff simulation results with 120 min prediction, June 1993 Event. 



 60

 
(a) Discharge hydrographs at Ootori (156 km2) 

 

 
(b) Discharge hydrographs at Ieno (476 km2) 

 

 
(c) Discharge hydrographs at Kamo (1469 km2) 

 
Figure 3.16 Runoff simulation results with 180 min prediction, June 1993 Event. 
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While the improvement of forecast accuracy show encouraging developments, the band, 

which stands for the reliability range of the extended prediction, is hard to determine 

that the results are acceptable. Proper reliability bands from the ensemble simulation 

should be around the true values, but the presented results hardly cover the reference 

discharge with a wide enough range. Wider reliability bands can be simply acquired by 

applying longer durations for the statistic fields, since in most cases, longer duration 

gives bigger standard deviation. However, more study for giving proper reliability range 

with appropriate duration for the statistic fields should be continued. 

 

For an overall comparison of the ensemble runoff simulation, peak discharges of each 

case from both events are extensively examined, and those values are presented in Table 

3.9 and 3.10. In the case of August 1992 Event, the peak discharges form the 

deterministic prediction give variant values showing large overestimation in most cases. 

For example, the peak discharge of Kamo basin for 60 min prediction is 7362.8 m3/sec, 

while the peak of observation is only 3836.1 m3/sec. However, the ensemble forecasting 

using the error simulation model decreases that overestimation of discharge down to 

4474.8 m3/sec. In most simulation case of the August 1992 Event, the ensemble forecast 

gives accuracy improved results in a sense of having closer values to the reference 

discharges. The closer values are marked with bold character in the table. 

 

In the results from the June 1993 Event (Table 3.10), about the half of the ensemble 

forecasting does not produce positive results with a reasonable reliability range. For 

Ieno and Kamo basin, the deterministic prediction already provides highly accurate peak 

discharge values, and the ensemble forecasting fails to offer much more accurate and 

reasonable reliability. This result may be because of a certain characteristic in the June 

1993 Event as mentioned in the earlier section including low rainfall intensities.  

 

The ACRA values are calculated using the rainfall data on each testing basin, and the 

values are presented in Table 3.11 and 3.12. The ACRA values of each basin has similar 

pattern to the earlier analysis using the overall rainfall amount within the radar range; 

the values from the ensemble forecasting provide not only improved result but also its 

reliability range.  The accumulated rainfall amount in the August 1992 Event is rather 
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Table 3.9 Peak discharge comparison of August 1992 Evnet (Unit: m3/sec). 

Ensemble Prediction 
 Prediction 

Lead-time Observation Deterministic
Prediction Mean Min~Max 

60 min 610.3 358.9 432.1 378.0~520.3 

120 min 610.3 913.4 622.5 542.7~694.3 
Ootori 

(156km2) 
180 min 610.3 1096.2 866.9 664.1~1040.3 

60 min 1426.7 3838.6 2108.4 1882.5~2348.5 

120 min 1426.7 2534.7 1947.4 1728.6~2175.2 
Ieno 

(476km2) 
180 min 1426.7 454.3 1259.9 1095.5~1463.2 

60 min 3836.1 7362.8 4474.8 4063.2~4743.4 

120 min 3836.1 7271.0 5385.6 4939.0~6034.5 
Kamo 

(1469km2) 
180 min 3836.1 4470.3 4718.8 4343.5~5271.2 

 

 

Table 3.10 Peak discharge comparison of June 1993 Event (Unit: m3/sec). 

Ensemble Prediction 
 Prediction 

Lead-time Observation Deterministic
Prediction Mean Min~Max 

60 min 181.8 190.2 218.6 191.5~265.3 

120 min 181.8 120.7 201.2 179.0~228.1 
Ootori 

(156km2) 
180 min 181.8 111.3 188.9 161.6~213.1 

60 min 496.2 484.3 504.6 487.4~527.3 

120 min 496.2 479.2 552.2 538.5~569.4 
Ieno 

(476km2) 
180 min 496.2 430.3 501.5 481.5~522.9 

60 min 1073.6 1067.2 1104.5 1087.2~1131.2 

120 min 1073.6 1043.8 1190.5 1162.9~1218.6 
Kamo 

(1469km2) 
180 min 1073.6 918.0 1083.2 1052.9~1112.5 
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Table 3.11 Accumulated rainfall amount values of August 1992 Event (Unit: mm/hr). 

Ensemble Prediction 
 Prediction 

Lead-time Observation Deterministic
Prediction Mean±StDev Min~Max 

60 min 273.2 341.6 331.3±24.2 284.7~376.8 

120 min 273.2 442.8 357.9±27.0 281.0~416.5 
Ootori 

(156km2) 
180 min 273.2 593.8 459.3±30.9 390.7~507.0 

60 min 362.7 818.9 487.5±27.2 424.4~537.7 

120 min 362.7 437.3 413.4±26.4 350.4~477.4 
Ieno 

(476km2) 
180 min 362.7 80.0 300.3±18.9 258.4~352.1 

60 min 319.6 574.4 389.2±14.7 357.8~418.4 

120 min 319.6 533.5 387.4±18.9 340.5~421.1 
Kamo 

(1469km2) 
180 min 319.6 238.9 312.4±13.3 258.9~336.4 

 

 

Table 3.12 Accumulated rainfall amount values of June 1993 Event (Unit: mm/hr). 

Ensemble Prediction 
 Prediction 

Lead-time Observation Deterministic
Prediction Mean±StDev Min~Max 

60 min 58.2 55.2 60.5±7.1 46.1~80.2 

120 min 58.2 27.6 51.1±6.0 39.9~66.0 
Ootori 

(156km2) 
180 min 58.2 39.7 63.2±7.9 48.5~88.1 

60 min 41.5 50.0 53.8±3.1 47.5~60.2 

120 min 41.5 53.0 62.1±3.5 54.0~71.6 
Ieno 

(476km2) 
180 min 41.5 44.4 59.0±4.5 45.4~68.0 

60 min 41.7 51.4 54.2±2.3 50.3~60.6 

120 min 41.7 47.1 58.7±2.9 49.9~63.5 
Kamo 

(1469km2) 
180 min 41.7 36.8 54.7±3.5 47.8~62.1 
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large amount when considering that is within two days’ accumulation. However, this is 

because the radar observation used in this study is not adjusted to the ground gauge data, 

and it may cause some difference in rainfall intensity as well as accumulated amount.  

 

For forecast accuracy improvement and ensemble flood forecasting with an external 

error consideration, this chapter introduced ensemble rainfall forecasting using a 

stochastic error field simulation along with a runoff simulation using a distributed 

hydrologic model. The proposed algorithm is for offering probable variation of the 

deterministic prediction results from the extrapolation model, as well as improving its 

forecast accuracy. The random error fields were simulated using the error structure, and 

the extended prediction field, which is the combination of the deterministic rainfall and 

the simulated error, was generated, after which its stochastic validity was examined. The 

extended prediction fields not only gave probable reliability with variant form of rainfall 

fields but also improved the accuracy of the deterministic prediction.  

 

The validation of the extended prediction fields was completed from two different 

perspectives: juxtaposing the extended fields to the radar observed data, and comparing 

hydrographs simulated through a distributed hydrologic model. Firstly, the mean and 

standard deviation as well as spatial correlation coefficients of the simulated prediction 

error showed that the statistical characteristics of the prediction error were successfully 

maintained through the error field simulation.  

 

Secondly, for an overall forecast verification, several performance indexes, such as 

ACRA, RMSE and MAE were adopted. From the ACRA testing, the reliability ranges of 

the ensemble forecasting clearly expressed the uncertainty of the forecasted values; the 

larger the prediction lead-time is extended, the wider the range becomes.  

 

Finally, the ensemble runoff simulation results with the Yodo river model verified the 

hydrologic effectiveness of the extended prediction fields. While the ensemble runoff 

simulation showed highly encouraging results, the range, which stands for the reliability 

of the extended prediction, needs more detailed study based on various event types in 

order to confirm the proposed ensemble forecasting method. 
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Chapter 4 
 
Updating of State Variables in a Distributed Hydrologic Model 
 

 

Over the last several decades, there has been more progress in computing, and 

developments of distributed models, than in field measurement techniques (Beven, 

2002). Current hydrology suffers from a measurement problem especially with the 

distributed properties of catchments, such as water levels and soil moisture at every 

point of a basin.  

 

However, it is unrealistic to define the detailed spatial distribution of catchment 

properties through extensive field measurement, as such a process is too costly and 

time-consuming. Except for few specially designed catchments studied for a specific 

purpose, outlet discharge is the only commonly available observation in a given 

catchment. To reflect a low-resolution observation into a detailed spatial resolution for a 

distributed hydrologic model, an effective method is needed to estimate and update the 

distributed catchment properties. 

 

To minimize the discrepancy between simulation and observation, correcting the model 

internal state variables is the most commonly used updating scheme in real-time 

simulation. However, in updating the measurement for a distributed hydrologic model, 

not only the magnitude of the state variable but also its spatial distribution pattern 

should be considered. During runoff simulation, inappropriate rearrangement of the 

spatial distribution of state variables produces obvious effects on the runoff simulation 

results (Kim et al., 2004; Kim et al., 2005).  

 

This chapter describes a distributed hydrologic model, CDRMV3 (Kojima et al., 2003), 

and discusses updating methodologies of distributed state variables in the model. To 

avoid an unpredictable collapse of the internal model state during a simulation, the 

update method introduced in this study retains the spatial distribution pattern of the state 
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variables. This is executed before and after the updating by using a ratio of total storage 

amount or outlet discharge. The main purpose of updating the state variables is for 

coupling the Kalman filter algorithm into a distributed hydrologic model. 

 

 

4.1 Distributed Hydrologic Model, CDRMV3 
 

The model used here is known as the Cell-based Distributed Runoff Model Version 3 

(CDRMV3; Kojima et al., 2003). The CDRMV3 is a physically based distributed 

hydrologic model developed at the Disaster Prevention Research Institute of Kyoto 

University, Japan. The model solves the one-dimensional kinematic wave equations for 

both subsurface flow and surface flow using the Lax–Wendroff scheme on every 

computational node in a cell. Discharge and water depth diffuse to the steepest 

downward adjacent cell according to a flow direction map generated from DEM data. 

 

Kinematic wave modeling, not only for channel routing and overland flow but also for 

subsurface flow has been widely used in distributed flow computations because of its 

simplicity and computational efficiency (see Singh, 2001; Reed et al., 2004). A good 

example of kinematic wave modeling simulating the flow of the subsurface in 

unsaturated and saturated zones is presented in Beven (1982) with a comparison in field 

observations.  

 

Takasao and Shiiba (1988) analyzed the interaction between surface and subsurface 

flow on convergent/divergent slopes using kinematic wave equations with a stage 

discharge relationship with consideration towards surface and subsurface flow 

generation. Tachikawa et al. (2004) extended the concept to include unsaturated 

subsurface flow, and this extended stage discharge relationship was incorporated into 

CDRMV3. 

 

The capillary pore layer of depth dc provides simulation of unsaturated flow. After the 

water depth reaches dc the capillary pore layer is assumed saturated and gravity flow 

occurs in the non-capillary pore layer. Since the total depth of the subsurface flow layer 
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Figure 4.1 Schematic illustration of the water flow within soil layer in CDRMV3. 
 

is ds, the depth of the saturated soil layer is ds – dc. After the water depth exceeds ds, 

surface flow begins. Within the soil layer, the flow lines are assumed to be parallel to 

the slope, and the hydraulic gradient is assumed equal to the slope. In mountainous 

areas with steep slopes, it is reasonable to assume that the flow streamlines are parallel 

to the slope (Beven, 1981).  

 

In each slope segment, rainfall is directly added to subsurface or surface flow according 

to the water depth on each point in the basin. Rather than including a vertical infiltration 

model with additional model parameters that cannot be directly measured, the stage 

discharge relationship effectively simulates lagged subsurface flow with calibrated soil 

depths and hydraulic conductivities.  

 

The continuity equation for each slope segment is written as: 

 

θcos)(tr
x
q

t
h

=
∂
∂

+
∂
∂

       (4.1) 

 

where h is water depth and q is discharge per unit width; t and x are time and distance 

along water flow, respectively, and r(t) is the rainfall amount on a node at time t. To 

define the relationship between h and q, a stage–discharge relationship incorporating the 

saturated and unsaturated subsurface flows as well as the surface flow (Tachikawa et al., 

2004) is adopted.  
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Figure 4.2 Relationship between water depth and discharge per unit width in CDRMV3. 

 

This relationship is expressed by three equations as shown in Figure 4.2, one applying 

to each water level. When water depth h is less than the depth of the capillary pore layer 

dc (0 ≤ h < dc), flow is described by Darcy’s law with a degree of saturation (h/dc)β and 

saturated velocity vc (= kci). Here, β is the degree of saturation ratio, kc is saturated 

hydraulic conductivity in the capillary layer, and i is the slope gradient. If h increases 

(dc ≤ h < ds), the velocity of flow from the non-capillary pore layer is expressed as va (= 

kai), where ka is the saturated hydraulic conductivity in the non-capillary layer. When the 

water depth is greater than that of the soil layer (ds ≤ h), overland flow is added using 

Manning’s resistance law. The equations relating discharge per unit width q to water 

depth h are formulated as Equation 4.2:  
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where α = i1/2/n, m = 5/3, and n is Manning’s roughness coefficient.  
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Model parameters in the stage–discharge relationship are dc, ds, kc, ks and n. The 

kinematic wave celerity c for each layer is given in Equation 4.3, and β (= va/vc) is 

determined by the continuity condition on the wave celerity. This specific stage 

discharge relationship characterizes the distributed hydrologic model CDRMV3. Each 

cell has its own stage discharge relationship determined by topography, land use, and 

soil type. 

 

 

4.2 Updating of Distributed State Variables 
 

During runoff simulation, inappropriate rearrangement of the spatial distribution of state 

variables produces obvious effects on the runoff simulation results (Kim et al., 2004). 

Figure 4.3 shows one clear example of the negative effects produced when the state 

variables are reset uniformly as the initial condition setting in CDRMV3. The resetting 

of the state variables was carried out by means of using the outlet discharge 72 hrs after 

the beginning of the simulation. After the reset, the spatial pattern of the state variables 

in the model is setaside and the results of resetting the spatial distribution pattern causes 

a poor simulation result.  

 

To avoid an unpredictable collapse of the internal model state during a simulation, the 

update method used maintains the spatial distribution pattern of the state variables 

before and after updating (see Figure 4.4). Only the total amount of the state variables 

was updated by multiplying the variables by a specific factor. This factor was calculated 

from the ratio of the total storage amount, estimated from observed discharge, and the 

simulated total storage amount. Since the simulated water depth on every computation 

node in the model was multiplied by the calculated factor, the model was able to retain 

the spatial distribution pattern of the internal state variables.  

 

This factor application, named ratio method, can be classified into two separate methods 

by the way of factor calculation. One is the S-ratio method using a ratio of total storage 

amount in the basin and the other is the Q-ratio method using a ratio of discharge at the 

outlet of the basin. 
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Figure 4.3 Comparison of two updating method; steady state and storage amount ratio. 

 

 
Figure 4.4 Resetting of state variables using the ratio of storage amounts. 

 

 

4.2.1 S-ratio Method 
 

If a difference between observed discharge and simulated discharge at the outlet of the 

basin exists, it can be assumed that it is caused by incorrect total storage amounts in the 

model. When a storage amount is considered as a state variable, a relationship between 

discharge Q, and storage S can be established. The nonlinear Q-S relationship, as 

defined in equation 4.4 is generally used. 

 
PtKQtS )()( =                 (4.4) 
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where S(t) is storage amount in a basin and Q(t) is discharge of the outlet at time step t. 

K and P values are parameters for he relationship of the S and Q. 

 

Based on the nonlinear Q-S relationship, the S-ratio method uses the ratio of total 

storage amount in the subject basin, which is calculated from simulated and observed 

discharges. To calculate the ratio of total storage amount, both the simulated and 

observed storage amounts must be acceptably accurate. A simulated total storage 

amount in a model is easily calculated from the water depth on each grid cell by 

multiplying by its cell area.  

 

However, because the total storage amount cannot be measured directly, the 

corresponding total storage amount must be estimated from the observed discharge, 

assuming there is a discharge–storage relationship. To relate discharge at the basin 

outlet Q and the total storage amount S, the Q–S relationship under a steady-state 

assumption was established. Applying a constant rainfall intensity over the study basin 

until it reached a steady state, one pair of total storage amount and discharge was 

acquired from the CDRMV3. Through variable rainfall intensities, the Q–S relationship, 

as shown in Figure 4.5, was obtained at the Kamishiiba catchment.  

 

 
Figure 4.5 Discharge storage relationships under a steady-state and from Event 979. 
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A runoff simulation under unsteady-state conditions produced a loop-shaped Q–S 

relationship (thicker solid line in Figure 4.5), and the produced curve appeared to differ 

from event to event, however the difference of the total storage amount obtained from 

the curves of the steady-state and unsteady-state condition was not significant. 

Moreover, instead of direct conversion of observed discharge to the storage amount, the 

storage amount So,t at time step t was obtained as 

 

( )tstotsto QQHSS ,,,, −+=       (4.5) 

 

where Ss,t and Qs,t are total storage amount and the outlet discharge simulated by the 

model at time step t. Qo,t is the observed discharge at the outlet, and H is the mean of the 

gradient values on the Q–S relationship at the point defined by Ss,t and Qs,t. The 

calculated total storage amount So,t from Equation 4.5 was regarded as the observed 

total storage amount. From the Q–S relationship, two H values were obtained, which 

were essentially different: one came from the simulated discharge Qs,t and the other 

from the simulated storage amount Ss,t. Through several test simulations, it is found that 

those two H values did not produce a recognizable difference in the filtered results. 

Thus, an arithmetic average of those two H values was used in the application. 

 

Since the calculated ratio from the storage amounts represented the ratio of average 

water depth in the catchment, this ratio was applied to the simulated water depth on 

every grid cell to rearrange the distributed storage amount. After this procedure, the 

updated water depths were equivalent to the storage amount So,t estimated from the 

observed discharge. The spatial distributed pattern of water depth contained the 

predicted water storage pattern before updating, and the pattern reflected the spatial 

distribution of rainfall and topographic properties. 

 

4.2.2 Q-ratio Method 
 

The second way to reset the distributed storage amount is by applying a ratio of 

discharge difference at the outlet to the discharge of every point in a basin. This concept 

is under an assumption that every discharge in a basin would increase or decrease with 
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the same ratio according to the discharge change in the outlet. The assumption is 

reasonable when considering a steady state basin.  

 

In the CDRMV3, water depth and discharge on every cell are simulated based on the 

kinematic wave equation, and those two values are convertible at each calculation time 

step by the specified stage-discharge relationship on each grid cell. If every discharge is 

reset by the ratio ‘R=Qs/Qo’ as shown in the Figure 4.6, each water depth would also be 

reset by its own stage discharge relationship. The updating of the discharge means the 

water depth, too, is updated which finally results in the storage amount reformation.  

 

Figure 4.6 shows the schematic drawing of discharge and water depth profile updating 

at the ideal one dimensional basin with the Q-ratio and the stage discharge relationship. 

While every updated discharge has the same ratio of discharge before updating at each 

point, the ratio of water depth will be different by each point because of the topographic 

and physical characteristic of each cell, such as slope and roughness coefficient.  

 

 
Figure 4.6 Q-ratio application examples to the ideal one dimension basin. 

 

The Q-ratio method has several merits compared to S-ratio methods: 1) A characteristic 

stage discharge relationship of each cell can reflect topographic and physical character 

of cell, 2) Steady state assumptions of Q-S relationship are not needed to acquire an 

observed storage amount, and 3) Can efficiently get the ratio and update. 
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Figure 4.7 Catchment boundary and channel network of Kamishiiba basin. 

 

4.3 Application Results and Discussion 
 

The CDRMV3 model was applied to the Kamishiiba basin (211 km2) in the Kyushu, 

Japan (see Figure 4.7). The selected flood events are shown in Table 4.1 with the Nash 

coefficient, which is used for checking the model performance efficiencies.  

 

Table 4.1 Flood events used in this study and Nash coefficients.  

EVENT Flood Term Max Q N.S. 

Event 979 15–19 September 1997 1203.0 m3/s 0.988 

Event 996 24 June–3 July 1999  210.0 m3/s 0.698 

Event 998 1–7 August 1999  489.0 m3/s 0.962 

Event 999 22–27 September 1999  644.0 m3/s 0.919 
 

The parameters given in Table 4.2 were mainly calibrated from Event979, and an 

identical parameter set was used for the other events. There is only one type of land use 

(forest: n = 0.30) in the Kamishiiba basin, and the cells in the upper area, of which there 

are more than 500, are assumed to be river cells (n = 0.025). 
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Table 4.2 Parameter set of CDRMV3 for Kamishiiba basin. 
da (m) dm (m) Ka (m/s) β = ka/km n (m3/s) 

0.55 0.45 0.01 4.0 0.30 (0.025) 
 

The initial water depth at each slope was determined under the steady state assumption. 

Given the initial discharge at the basin outlet, the discharge from every grid cell was 

assigned in proportion to each of the grid cells upstream to it. The assigned discharge in 

each cell was converted to the value of the water depth by the stage discharge 

relationship. This water depth and discharge in each cell served as the initial soil 

moisture distribution for the following rainfall–runoff simulation.  

 

The state variable to be updated stood for the total amount of storage in the basin, and 

the spatial distribution of water depth was recalculated based on this updated storage 

amount. As the simulation proceeded, the total amount of storage could easily be 

calculated by multiplying the water depths at every computational node by the cell area 

and adding up the entirety of the values in the basin. During this procedure, the 

parameters were not changed. Radar-observed rainfall data, calibrated by ground gauges, 

were used as forecast rainfall data. This rainfall data became available every 10 minutes, 

after which the distributed hydrologic model produced its simulation results with a time 

increment of 10 min.  

 

Figures 4.8 and 4.9 show the comparison of results from the three ratio methods. When 

the results are compared, generally the Q-ratio method shows a positive relativity with 

observed discharge. To check the quantitative updating efficiency, root mean square 

error (RMSE) is calculated as:  

 

N
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      (4.6) 

 

where  QS is discharge from the ratio method, QO is observed discharge, and N is the 

number of QS and QO values. 
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Table 4.3 The ratio of storage amount and discharge. 
Event Discharge & Storage-amount RS RQ 

Event 979 
(38th hr) 

249.00       0.97292×108 
349.24       1.03476×108 0.9402 0.7130 

Event 979 
(47th hr) 

640.00       1.15252×108 
788.69       1.19596×108 0.9637 0.8115 

Event 996 
(57th hr) 

100.00       0.81944×108 
121.85       0.86443×108 0.9480 0.8207 

Event 996 
(68th hr) 

191.17       0.92619×108 
267.44       0.97295×108 0.9519 0.7148 

 

 

  
Figure 4.8 Updating results comparison for two Ratio-methods (Event979). 

 

  
Figure 4.9 Updating results comparison for two Ratio-methods (Event996). 

 

Table 4.4 shows the RMSE of each time step after updating. Both the S-Ratio and 

Q-Ratio method show optimistic values compared to the values of the steady state 

method. According to Table 4.5, the RMSE values of a 6 hrs period after updating 

exemplify that of the Q-Ratio method which can thus be said to be the most efficient 

method for updating state variables in a distributed hydrological model. Furthermore, 

the Q-Ratio method is the most straightforward in updating state variables. 
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Table 4.4 Root Mean Square Error –Every time step after updating. 

 Steady-state S-Ratio Q-Ratio  

Event 979 (38th hr) 62.777 31.801 32.633 

Event 979 (47th hr) 63.046 41.740 39.036 

Event 996 (57th hr) 37.485 29.703 30.612 

Event 996 (68th hr) 36.142 29.152 28.677 
 

Table 4.5 Root Mean Square Error –6hr period after updating. 

 Steady-state S-Ratio Q-Ratio  

Event 979 (38th hr) 18.132 30.574 11.451 

Event 979 (47th hr) 160.941 108.356 90.599 

Event 996 (57th hr) 18.376 6.449 17.017 

Event 996 (68th hr) 13.409 15.033 10.239 
 

In this chapter, three different types of methods for updating state variables were tested: 

the steady state method and two kinds of ratio methods. Though the steady state method 

proved to be the simplest way to update state variables, it is not an appropriate one to 

update a spatial distribution of the variables in a distributed hydrological model. 

Furthermore, during a runoff simulation, ignorance of distributed spatial patterns of 

state variables causes severe collapse of simulation behavior.  

 

The S-Ratio method showed improved simulation results upon updating. The Q-S 

relationship under a steady state assumption was found necessary in order to produce a 

storage amount corresponding to an observed discharge, which may also lead to 

unexpected error in the S-Ratio method. With the Q-ratio method, a successful updating 

of the state variables becomes simple and effective. The stage-discharge relationship of 

each cell reflect topographic and physical characteristics of each cell during the update.  

 

It is possible to improve real-time forecasting accuracy if the updating method 

introduced here is conjoined with a data assimilation scheme, and if new observed data 

is available for several steps of updating. Figure 4.10 shows improved forecasting 

accuracy by the three steps of Q-Ratio updating with observed data. This case can be 
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regarded as one type of data assimilation when the observed data is believed to be of a 

true value. However, as the uncertainty in the observation should be highly considered, 

it will therefore be discussed in the next chapter. 

 

 
Figure 4.10 Expected result from a multi-step updating by use of S-ratio method. 
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Chapter 5 
 
Embedding Kalman Filter into a Distributed Hydrologic Model 
 

 

“By adding stochastic noise components to both the dynamic and observation 

equations, the model accounts for measurements errors (in observations and 

inputs) and errors in model structure and model parameters. If the 

observations are taken at discrete times, the end result is a state-space 

representation of a stochastic nonlinear rainfall-runoff model.” (Puente and 

Bras, 1987) 

 

R.E. Kalman (1960) developed a recursive optimization algorithm, later called the 

Kalman filter, for linear filtering problems. To exploit its potential for wider application, 

this filter has been enhanced as the extended Kalman filter for nonlinear systems. The 

filter combines all the available observation data, and incorporates prior knowledge 

about the system and measuring devices to produce estimates of the required variables 

in such a manner that the error is statistically minimized (Maybeck, 1979). In the last 

several decades, many hydrologists have applied Kalman filter into hydrological 

systems for an improved model performance in real-time forecasting of river flows (e.g. 

Takasao et al., 1989). However, most applications were limited to conceptual 

hydrologic models and few researches were available with a distributed hydrologic 

model.  

 

The objective of this chapter is to couple the Kalman filter with a distributed model, 

CDRMV3, and test the performance of the coupled model on a real-time basis. The 

CDRMV3 using the Kalman filter not only yielded better results than non-filtering 

simulations but also presented the reliability of the performances and can thus be used 

as a probabilistic forecast algorithm (Kim et al., 2005). The developed algorithm can 

incorporate the uncertainty of input and output measurement data as well as the 

uncertainty in the model itself. 
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5.1 Kalman Filter in Hydrology 
 

Accurate flood forecasting on a real-time basis has long been the principal aim of many 

hydrologists, and a large number of rainfall–runoff models have been developed and 

applied toward forecasting problems. In operational hydrology, real-time forecasting 

requires not only well developed rainfall–runoff models, but also a method for 

continuous adjustment of the forecast based on the error observed from earlier forecasts 

(Nash and Sutcliffe, 1970). This continuous correction, with real-time measurement and 

updating, is one of the most valuable schemes for improving the forecasting 

performance of any rainfall–runoff model. Many studies over the last several decades 

have shown the effectiveness of filtering methods in applying this continuous 

correction. 

 

Hino (1973) was among the first to adopt a filtering theory for use with a hydrologic 

system by applying a recursive estimation approach to the problem of real-time river 

runoff forecasting. Several papers have discussed recursive real-time parameter 

estimation for conceptual hydrologic systems (e.g., Wood and Szöllösi-Nagi, 1978; 

Cooper and Wood, 1982; Puente and Bras, 1987; Rajaram and Geogakakos, 1989; Lee 

and Singh, 1999).  

 

The Kalman filter (Kalman, 1960) has been the most widely used algorithm for 

recursive updating. It is still believed that there is no reason to fix the model structure 

throughout all time steps and to ignore newly observed data. For comparatively simple 

conceptual rainfall–runoff models, adjusting inappropriate model structure is reasonable 

and even necessary for simulation of the nonlinear behavior of hydrologic systems. 

 

However, as Kitanidis and Bras (1980b) pointed out, most of the proposed hydrologic 

systems using recursive update algorithms have been achieved at the expense of 

employing oversimplified models. The recursive calibration of model parameters based 

on the output measurements has been somewhat overemphasized, while the use of more 

sophisticated and physically based models, which can be used to correctly project into 
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the future, has been overlooked. This is a kind of hydrologist’s trade-off for 

incorporating the filtering concept into the hydrologic model. The Kalman filter, which 

is the most representative recursive data processing algorithm, requires linearized 

equations for the system dynamics and a linear observation function related to the 

system states. These requirements have deterred many hydrologists from applying 

filtering theory in a physically based distributed hydrologic system.  

 

Current data availability, such as the use of digital elevation models (DEM) and radar 

observation of rainfall, together with exponential increases in computer data storage and 

processing speed, have allowed hydrologists to study watershed behavior at remarkably 

small scales and to use physically based process equations. Under these conditions, 

considerable research effort has been directed toward the development of distributed 

hydrologic models by solving the numerous and complex physically based equations 

(Smith et al., 2004). However, the usefulness of the recursive measurement updating 

method in operational hydrology has not diminished, even for a state-of-the-art 

distributed hydrologic model, since the model is still based on a deterministic system.  

 

Recent trends in flood forecasting have been diverging from deterministic forecasts and 

heading toward probabilistic forecasts, accepting their prediction uncertainties. A 

deterministic forecast gives a point estimate of the predicted values, such as river 

stages/discharges; thus, it may create the illusion of certainty in a user’s mind and cause 

immense losses of property and/or one’s life as a result of a wrong decision caused by 

overconfidence (Krzysztofowicz, 2001). However, a probabilistic forecast provides a 

certain probability distribution for the predicted values. The predictive probability can 

be assigned a numerical measure of reliability, such as the mean and variance of 

discharge, by means of, for example, a hydrologic model incorporating the Kalman 

filter.  

 

Hence, it is now appropriate to consider utilizing the filtering concept with a distributed 

hydrologic model; much more flexible and improved performance can be anticipated 

when the model is applied on a real-time basis to varying nonlinear catchments.  
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5.2 Kalman Filter Application into CDRMV3 
 

For the incorporation of the filtering concept into a distributed model, there are several 

hurdles to be overcome. First, linearized equations for the system dynamics are 

necessary for projecting the state variables and their error covariance in the Kalman 

filter. The Monte Carlo simulation method makes it possible to project the nonlinear 

variation of system states and their error covariance without the need for linearized 

system equations. Evensen (1994) has shown that Monte Carlo methods permit the 

derivation of forecast error statistics in the Kalman filter algorithm, and thus, the 

inefficiency involved in the linearization of system states can be eliminated.  

 

Second, as an alternative to the linear observation function, this study introduced an 

external relationship of observed data and the internal state variables of the hydrologic 

model. Here, the observed data are outlet discharge and the state variable in the Kalman 

filter algorithm is the total amount of storage in the basin. Rather than inputting a linear 

function of the observation and the system states into the Kalman filter, a table of those 

two sets of values successfully defines the nonlinear interaction in the updating 

algorithm.  

 

The last problem to be considered was how a very large number of state variables, 

which are usually based on the fine grid cells of a distributed hydrologic model, can be 

updated at the same time without a excessive computational burden. A simple but very 

efficient method using a ratio of the state variables makes it possible to solve this 

restriction of the application with the Kalman filter for a distributed hydrologic model. 

The Kalman filter algorithm updates the total amount of storage in the basin, and a ratio 

of the updated and simulated storage amount is calculated and applied to each of the 

internal state variables on a fine grid cell.  

 

The Kalman filter algorithm consists of two parts: a measurement update algorithm for 

the assimilation of observed data into the system state variables, and a time update 

algorithm for predicting simulated state variables and their error covariance. The 
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following sections illustrate these two parts in relation to coupling with the distributed 

hydrologic model CDRMV3. 

 

5.2.1 Measurement Update Algorithm 
 

In the measurement update algorithm of the Kalman filter, an observation vector yk at 

time step k is described as a linear vector function of a state vector xk, and observation 

noise vector wk assuming white noise is included in the observation as:  

 

kkkk wxHy += , ),0(~ kk RNw ,      (5.1) 

 

which has an error covariance matrix Rk. The m × n matrix H relates the state vector to 

the observation. The state variables are updated as follows: 

 

))1(ˆ()1(ˆ)(ˆ −−+−= kkxHyKkkxkkx kkk      (5.2) 

)1()1()( −−−= kkPHKkkPkkP kk      (5.3) 

1))1(()1( −+−−= k
T
kk

T
kk RHkkPHHkkPK .    (5.4) 

 

The difference, )1(ˆ −− kkxHy kk , which is called the residual or innovation, reflects the 

discrepancy between the estimated observation )1(ˆ −kkxH k  and the actual observation 

yk. In the measurement update algorithm, the state vector )1(ˆ −kkx  and its error 

covariance vector P(k│k–1) as estimated at time step k–1, are updated by use of the 

m×n matrix Kk at time step k. The matrix Kk, called Kalman gain, is chosen to minimize 

the updated error covariance P(k│k). In the algorithm, the superscript ‘^’ indicates 

estimated value and ‘T’ indicates the transpose of a matrix. 
 

Here, the observation equation is the Q–S relationship shown in Figure 4.5; thus, the 

scalar value of H represents the gradient of the Q–S relationship using the simulated 

results at the updating time step. The results from the measurement update algorithm 

were used to update the total storage amount of the study basin and its error variance. 

With the updated watershed storage amount, the ratio method described in the previous 
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Figure 5.1 Illustration of the measurement update algorithm using the ratio method. 

 

section was used to update the spatial distribution of water depth in the distributed 

hydrologic model. The flow of measurement update algorithm using the Q-S curve and 

S-ratio method is presented in Figure 5.1. 

 

5.2.2 Time Update Algorithm 
 

The n×n matrix F in the system equation relates the state variables x at the current time 

step k to those at the next step k +1 as: 

 

kkkkk vBxFx ++=+1 ; ),0(~ kk QNv      (5.5) 

 

The system is continuously affected by white Gaussian system noise, vk, with system 

error covariance matrix Qk. The matrix Bk provides optional control input to the state x. 

The time update algorithm 

 

kk BkkxFkkx +=+ )(ˆ)1(ˆ        (5.6) 

k
T

kk QFkkPFkkP +=+ )()1(       (5.7) 

 

is used to project forward the current state and the n×n error covariance to obtain 

estimates for the next time step. 

 

In the CDRMV3, a complicated relationship exists between the present and the next 

time-step state variable, i.e., the present and the next time-step total storage amount. The 
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Figure 5.2 Schematic drawing of time update algorithm (a) of the conventional Kalman  

    filter concept and (b) using Monte Carlo simulation methods.  
 

current water depth at each cell responds interdependently to the next step’s water depth 

according to the current spatial distribution of water depth and rainfall input.  

 

It is impractical to define the system matrix Fk to formally express this process from the 

hydrologic system equations as shown in the schematic drawing in Figure 5.2 (a); 

instead, a Monte Carlo simulation (drawing (b) in Figure 5.2) was applied to solve this 

problem. Many random variables were generated at time step k; and used to generate 

100 total storage amount values within the range of the probability distribution, 

N( )(ˆ kkx , σk), where σk = P(k│k)0.5.  

 

The ratio method was then used to rearrange the spatial distribution of the each water 

stage at each cell by multiplying the ratio of each generated storage amount to the 

updated storage amount )(ˆ kkx . After 100 simulations, the probability distribution of 

the total storage amount at the next time step, N( )1(ˆ kkx + ,σk+1), was calculated from the 

simulated results. The estimated state )1(ˆ kkx +  was the mean value of the simulated 

total storage amounts, and the error variance (σk+1)2 was taken as FkP(k│k)Fk
T.  

Adding the additional system error covariance Qk completed the estimation of the error 
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variance P(k+1│k) at time step k+1. The estimated error variance FkP(k│k)Fk
T stands 

for a diffusion of the existing error variance P(k│k) through the simulation, and Qk 

denotes a generated or added system covariance during simulation from time step k to 

the next time step k+1. The newly added system covariance is caused by either system 

structure or newly input rainfall data. The methodology used to determine the system 

error covariance, Qk, is discussed in the following section. 

 

 

5.3 Setting the Observation and System Noise 
 

The most difficult part of applying the Kalman filter to a hydrologic model is 

determining the covariance of the system and observation noise. Although the Kalman 

filter provides an algorithm for better forecasting by updating the state estimates, its 

success depends largely on an appropriate determination of the error statistics, which 

requires proper judgment by the hydrologist. 

 

The basic assumption of the Kalman filter is that the system and observation noise are 

both white and Gaussian. This assumption is justified physically when the noise is 

largely caused by a number of small sources (Mayback, 1979). From this perspective, it 

is reasonable to regard the observation noise, which is usually corrupted by several 

definable error sources, as derived from a white, Gaussian distribution. In addition, an 

accuracy assessment test using data obtained over a long duration makes it possible to 

properly estimate the measurement error covariance (Kitanidis and Bras, 1980a).  

 

However, the system error variance is a critical value for the Kalman filter, as it 

contains many error sources, which are difficult to define separately. The system error 

covariance should reflect system structure error, parameter identification error and input 

data error, as well as system linearization error. Underestimation of the system error 

leads to excessive certainty in the model behavior, and overestimated system error 

makes the filter too sensitive for observation values. In practice, the system error 

variance is usually estimated by a trial and error procedure assuming it is constant.  
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Figure 5.3 Variances of system error and its probability distribution (Event 998). 
 

Several cases of feedback performance with various assumed error co variances were 

tested. The simple method used to estimate the system error covariance was as follows. 

If observed data were comparatively close to the absolute true values and assuming the 

noise was white Gaussian, the biases of simulation results to the observed values could 

also be regarded as system noise. When the biases were examined, the distribution of 

the biases was different event-by-event; however, each distribution can be regarded as a 

normal as shown in Figure 5.3. 

 

Table 5.1 shows the first and second statistical moments of the biases. The mean values 

were around zero and the standard deviations were around 30m3/s. In addition, we 

confirmed that the biases were distributed as a normal probability distribution. 

Following this analysis, the standard deviation of the biases was assumed equal to the 

second moment of the system noise in terms of discharge. The discharge noise was 

converted to the error covariance of the total storage amount Qk. The system noise in 

terms of discharge was translated to the noise in terms of storage amount by use of the 

Q–S relationship as shown in Figure 5.4.  
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Figure 5.4 Conversion of the noise term from discharge to storage amount.  

 

Table 5.1 Statistical values of simulation results. 

Event Mean (m3/s) StDev (m3/s) 

Event 979 –2.22 36.48 

Event 996 –10.80 22.93 

Event 998 3.32 22.11 

Event 999 –1.02 25.70 
 

Three discharges, Dk, Dk+Sd, and Dk–Sd, where Dk is the discharge at time step k and Sd 

is the second moment of the noise distribution, were converted to the three different 

storage amounts, Sk, Supk, and Sdnk, respectively. Using the differences of storage 

amount, Supk, Sk and Sk – Sdnk, the system error covariance Qk was calculated as 

 

)()( kkkkk SdnSSSupQ −×−= .      (5.8) 

 

Even if the probability distribution of the discharge follows normal probability, because 

the relationship between discharge and storage amount is nonlinear, the distribution of 

storage amount cannot strictly be considered normal. However, this nonlinear effect on 

the probability distribution was not significant in this study; the Q–S relationship can be 

taken as approximately linear over a short range. 
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The observation noise was also assumed to be a stationary value with a constant ratio to 

the system noise. Since the second moment of the system noise in terms of discharge 

was set to 30m3/s, the second moment of the observation noise was first taken as the 

same as the system noise. Then, three other cases were tested in the application of the 

Kalman filter-coupled CDRMV3: (1) both the system and observation contain noise; (2) 

only the system contains noise, while no observation noise exists; and (3) no system 

noise is present, while the observation contains noise. If there is no observation noise in 

the Kalman filter, the filter takes the observed value as the true value, and the feedback 

through the filter should match the observed data. However, if no system noise is 

present, the filter “believes” the system produced perfect results and ignores any other 

observed data. In the case when noise is present in both the system and observation, the 

feedback values are located in the range between the system output and the observed 

data.  

 

The initial state value x(1) is given automatically once the initial condition of the model 

is set by the outlet discharge of each event. The initial state error variance P(1) takes the 

same value as the system error variance. 

 

 

5.4 Application Results and Discussion 
 

The Kalman filter-coupled distributed hydrologic model CDRMV3 was tested on the 

Kamishiiba basin under various error covariance conditions. Figures 5.5 and 5.6 show 

the feedback through the algorithm under the three different error conditions. In the 

figures, the label SN30:ON30 indicates the results from the condition that both the 

system and the observation are assumed to have the given noise. The labels SN00:ON30 

and SN30:ON00, respectively represent feedback when no system noise is present and 

when no observation noise is present. 

 

In both Figures 5.5 and 5.6, the feedback result with the condition SN00:ON30 exactly 

matches the off-line simulation result. Because the Kalman filter algorithm “believes” 

the model is perfect, it produces absolutely true values. On the other hand, the case  
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Figure 5.5 Observed and feedback values through the Kalman filter under various system 
   and observation noise conditions (Event 998).  
 

 
Figure 5.6 Observed and feedback values through the Kalman filter under various system 
   and observation noise conditions (Event 999).  
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SN30:ON00 shows that the feedback essentially follows the observed data. The 

feedback is particularly satisfying at the rising limb and the falling limb of the 

hydrographs. However, at the peak of both events (see the hydrograph around 30 hrs in 

Figure 5.5 and 50 hrs in Figure5.6), the feedback shows a delayed response relative to 

the other parts of the simulations. This time lag around the peak was mainly caused by 

the Q–S relationship, which was derived under steady state conditions.  

 

As mentioned earlier, the original relationship of discharge and storage amount has a 

looped shape. It appears that a small difference of gradient between both relationships 

causes little difficulty for the updating algorithm, since the rising and the falling limb 

show positive relativity with the observed values. However, around the peak of the 

hydrograph (which corresponds to around the turning point of the Q–S relationship 

loop), the relationship applied under the steady state cannot properly estimate the total 

storage amount because of the sudden changes of discharge under the highly unsteady 

conditions. As a result, the feedback produces a response from 1 hr to 2 hrs late. 

 

The effect of the difference between steady and unsteady states on the Q-S curve can be 

explained by conceptual storage amount distributions as shown in Figure 5.7. When the 

steady state assumption is made, discharge and storage are expressed as a single valued 

function (see Figure 5.7 (a)). On the other hand, although the discharge is the same as 

shown in Figure 5.7 (b) and (c), different storage values occur through a runoff, which 

is under an unsteady state condition. The differences in storage amount at the beginning 

of the runoff (the difference of the Storage A and Storage B) cause the underestimation 

of discharge at the rising limb, while after the peak (the difference of the Storage A and 

Storage C) cause the over estimation at the falling limb of the hydrograph. 

 

 
Figure 5.7 Conceptual distributions of storage amount according to state differences. 
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The case SN30:ON30 shows that the feedback values are between the off-line 

simulation results and the observed data. Even though the noise values were set to the 

same 30m3/s, the filtered results were closer to the observed data than the off-line 

simulation results.  

 

Several explanations are possible for this phenomenon: a different form of error 

variance on the system and the observation, as well as the initial state and its error 

variance. While the observation error covariance in the filter is in terms of discharge, 

the system error covariance is in terms of storage amount transformed from the 

discharge noise. The initial error covariance is also believed to produce an effect on the 

filtered results. In practical use, appropriate system error covariance and initial error 

variance can be estimated by a trial and error procedure for each basin. 

 

To check the prediction accuracy after coupling with the Kalman filter, 1 hr, 6 hrs, and 

12 hrs prediction results were compared. Table 5.2 shows the root mean square error of 

the prediction results compared to the observed values. As expected, prediction for short 

lead times showed higher accuracy, and furthermore, the prediction for 12 hrs ahead 

produced quite good accuracy compared to the short lead-time forecasting.  

 

Table 5.2 RMSE of prediction results (m3/s). 

EVENT 1 hr ahead 6 hrs ahead 12 hrs ahead 

Event 979 37.18 39.64 37.28 

Event 996 11.42 17.24 20.14 

Event 998 16.45 21.93 22.17 

Event 999 28.00 34.72 27.85 
 

The main reason for the efficient prediction was the use of recorded rainfall data. The 

simulation and prediction were performed under the condition that the observed radar 

rainfall data was taken as the forecast rainfall. In practice, error in the forecast rainfall is 

large, and the prediction results are highly dependent on the accuracy of the input data. 

If the uncertainty of the rainfall forecasting is known, it should be added to the system 

error covariance Qk. 
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The Kalman filter was successfully coupled to the distributed hydrological model, 

CDRMV3, to update internal distributed state variables. Rather than attempting an 

impractical algorithm formulation, several techniques were adopted such as use of the 

Q–S relationship, efficient updating of the water depth by the ratio method, and Monte 

Carlo simulation methods. In the measurement update algorithm, the Q–S relationship 

was used as the observation equation, and the ratio of total storage amount was applied 

for setting the water stage for each cell in the distributed hydrologic model.  

 

For the prediction algorithm, a Monte Carlo simulation was adopted to diffuse the state 

variable and its error covariance. The CDRMV3 using the Kalman filter yielded more 

effective results than off-line simulations and can thus be used as a probabilistic forecast 

algorithm. The developed algorithm can incorporate the uncertainty of input and output 

measurement data as well as the uncertainty of the model itself. 

 

Further work will include developing a method to apply several observations for the 

updating method to fully utilize the properties of a distributed hydrologic model. One 

way would be to define sub basins according to the location of observation stations, and 

to apply different factors to each sub basin for updating the spatial pattern of water 

depth. For nested river basins with different observation stations, sophisticated methods 

to define the ratio would be required.  

 

Using the Q–S relation curve to evaluate the estimated total storage amount should also 

be investigated. The Q–S relationship represents the overall relation of the storage 

amount in a catchment to the outlet discharge under a steady state assumption. The 

uncertainty from the Q–S relationship should be included in the observation error 

variance. 
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Chapter 6 
 
Conclusions 
 

This study discussed stochastic real-time flood forecasting with radar image 

extrapolation and a distributed hydrologic model, while also presenting a real-time 

flood forecast algorithm. This algorithm mainly consists of two parts; 1) stochastic 

rainfall forecasting with a radar image extrapolation and the simulation of prediction 

error fields, and 2) the updating of state variables in a distributed hydrologic model 

using Kalman filter algorithm.  

 

Firstly, a new attempt of ensemble rainfall forecasting was carried out with radar rainfall 

prediction and spatial random error field simulation. The radar extrapolation model gave 

a deterministic rainfall prediction. Then, its prediction error structure was analyzed by 

comparing the prediction fields with the observed rainfall fields. With the analyzed error 

characteristics, spatial random error fields were simulated using a covariance matrix 

decomposition method. The simulated random error fields, which successfully 

maintained the analyzed error structure, improved the accuracy of the deterministic 

rainfall prediction.  

 

Secondly, a Kalman filter was coupled with a distributed hydrologic model to update 

spatially distributed state variables, and to incorporate the uncertainty of rainfall 

forecast data. Here, rather than attempting to formulate an impractical algorithm, several 

new techniques were adopted. In the measurement update algorithm, the discharge and 

storage amount relationship (Q–S relationship) was used as the observation equation, 

and the ratio of total storage amount was applied for setting the water stage for each cell 

in the distributed hydrologic model. For the prediction algorithm, a Monte Carlo 

simulation was adopted to diffuse the state variable and its error covariance from one 

time step to another. The distributed hydrologic model coupled with the Kalman filter 

made it possible to incorporate the input as well as the system uncertainty into the flood 

forecasting. 



 102

 

At each step for composing the algorithm, every procedure was carefully examined and 

discussed. These acquired results are provided in the next section. 

 

 

Summary of the Study 
 

The radar image extrapolation model, namely the Translation model, enabled 

deterministic forecasting to be produced. Upon comparing the prediction results with 

observed rainfall fields, the behavior of the translation model was examined. Spatially 

averaged rainfall intensities of prediction were compared with an observation, and it 

was found that there were overall delays of rainfall intensities as prediction lead-time 

was extended. Because the translation model only represents the movement of the 

rainfall bands without their growth or decay, the model assumes the same amount of 

current rainfall intensities lasts for the duration of each lead-time. The correlation 

coefficients of the observation, and the prediction in short lead-times have higher values 

compared to longer lead-time predictions. Even for such longer lead times, the CSI 

show rather high values in most prediction times.  

 

This study analyzed the absolute prediction error and simulated the possible error fields 

on a real-time basis. The analyzed error characteristics include mean, standard deviation, 

and spatial correlation coefficients of the error. The spatial correlation coefficients show 

high values for close distances, and decreases as the distance enlarges. It was also found 

that the prediction error from longer prediction times has higher spatial correlation 

coefficient values, which are almost diminished around 15 km in most prediction cases. 

When frequency distribution of prediction error was checked, even though there was a 

slight variation in each event and prediction case, the distribution pattern primarily gave 

forth normal distribution. 

 

For checking the spatial pattern of the prediction error, the absolute errors on each grid 

were accumulated event by event, and found that there was a certain spatial pattern on 

each accumulation. It was assumed that the wind direction and topographic pattern had 
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a relation to the rainfall generation and extinction, therefore eventually causing a 

different spatial pattern of the prediction error. However, detailed study is required in 

order to 1) determine whether a certain relationship between topography and the 

prediction error pattern exists, and 2) establish what exact type of relationship that is. 

 

For forecast accuracy improvement and ensemble forecasting with an external error 

consideration, this study introduced ensemble rainfall forecasting using a stochastic 

error field simulation. The proposed algorithm is for offering probable variation of the 

deterministic prediction results from the extrapolation model, as well as improving its 

forecast accuracy. By means of the simulated error fields, which successfully keep the 

analyzed error structure, not only are probable rainfall field variations for the ensemble 

simulation produced but also improved accuracy of the deterministic prediction by 

correcting the possible prediction error becomes a result.  

 

The extended prediction field, which is the combination of the deterministic rainfall and 

the simulated error, was generated, after which its stochastic validity was examined. The 

intensities of the extended prediction fields were distributed around the deterministic 

rainfall intensity and then showed a certain range, which can be regarded as a reliability 

band. The correlation coefficients from the extended prediction showed improved 

results in most prediction lead-times. On the one hand, the coefficients from the 

extended prediction fields have higher values compared to the values from the 

deterministic prediction. On the other hand, the CSI values do not show great variance 

between the extended and the deterministic prediction. The mean and standard deviation 

as well as spatial correlation coefficients of the simulated prediction error show that the 

statistical characteristics of the prediction error were successfully maintained through 

the error field simulation.  

 

An Ensemble runoff simulation was carried out in three different catchments located 

within the observation range of the Miyama radar: Ootori (156 km2), Ieno (476 km2) 

and Kamo (1469 km2). Within the three sets of the simulation results, the discharges 

from the ensemble simulations showed closer values to the discharges from the 

observed radar rainfall, which was previously identified as the reference discharge. This 
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illustrates the improved prediction accuracy of the extended prediction. While the 

ensemble runoff simulation showed highly encouraging results, it is hard to say whether 

the band, which stands for the reliability range of the extended prediction, can be 

accepted as a reasonable result. In most cases, the range was not enough in covering the 

reference discharges. More study for giving proper reliability range with appropriate 

duration on the statistic fields should be followed. 

 

To minimize the discrepancy between simulation and observation during a runoff 

simulation, correcting internal state variables of a hydrologic model was tested with 

various methods. To avoid an unpredictable collapse of the internal model state during a 

simulation, the update method used in this study retains the spatial distribution pattern 

of the state variables This factor application, called the ratio method, can be classified 

into two methods by way of factor calculation. The first is the S-ratio method using the 

ratio of the total storage amount in a basin, and the second is the Q-ratio method using 

the ratio of the discharge at the outlet of a basin.  

 

After the Kalman filter was coupled with the CDRMV3, the performance of the coupled 

model was tested on a real-time basis. The CDRMV3 using the Kalman filter not only 

yielded better results than non-filtering simulations, but also presented the reliability of 

the performances, thus proving able to be used as a probabilistic forecast algorithm. The 

developed algorithm incorporates the uncertainty of input and output measurement data 

as well as the uncertainty of the model itself. 

 

For the incorporation of the filtering concept with a distributed model, various 

developed techniques were implemented. Firstly, the Monte Carlo simulation method 

made it possible to project the nonlinear variation of system states and their error 

covariance without the need for linearized system equations. Secondly, as an alternative 

to the linear observation function, this study introduced an external relationship of 

observed data and internal state variables within the hydrologic model. The Kalman 

filter algorithm updates the total amount of storage in the basin, and a ratio of the 

updated and simulated storage amount is calculated and applied to each of the internal 

state variables on a fine grid cell.  
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The distributed hydrologic model CDRMV3 coupled with the Kalman filter was tested 

on the Kamishiiba basin under various error covariance conditions. When no system 

error was assumed in the filter, the feedback results exactly matched those of the 

off-line simulation. Furthermore, when the system contained no observation errors, for 

the most part, the feedback followed the observed data. However, upon closer 

examination of the results, specifically at the peak of the simulation, the feedback 

showed a delayed response. This time lag around the peak of the hydrograph was 

mainly caused by the Q–S relationship, which was produced under steady state 

conditions. In order to evaluate the estimated storage amounts, further investigation into 

the usage of the Q-S relationship curve should be considered.  
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