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         Dynamic Behavior of Foundations 

     By Sakuro MURAYAMA and Kiichi TANIMOTO 

                          Abstract 

   In this paper, studies on certain dynamic behavior concerning various 
kinds of foundation and a device of vibration measuring are reported in four 
separate sections. 

   The first section is a theoretical research on the consolidation settlement 
of a clayey ground, assuming the clay constitution to be a visco-elastic body 
constructed of an elastic element and a Voigt element in series. Though 
this assumption is adopted to solve the secondary time effect, sufficient 
experiments to examine this assumption are still left to the future. So this 
report can be described chiefly as a mathematical solution of the  one-
dimmensional consolidation of a clayey foundation due to such an oscillating 
load applied on the boundary as the periodical change of ground water pres-
sure, machine vibration etc. 

   The second section is an experimental study on the gravel layer placed 
on the surface of the soft ground. The purpose of this study is to get some 
engineering information for designing such a gravel layer. One of the 
most important problems of the gravel layer lies in the railroad ballast bed, 
which is subjected to a heavy dynamic traffic load, especially in the case of 
the narrow gauge. The remarkable point which is cleared by this experi-
ments is that the modulus of the ballast bed by the dynamic load varies 
with the vibration amplitude and differs from that by the static load. 

   The third section is a study on the free vibration of the foundation pile, 
which is an important element in earthquake-proof construction. In this 
section a newly devised method for numerical solution is introduced. With 
this method it is possible not only to calculate the eigenfrequency of the 
foundation pile subjected to any form of soil reaction pressure but also to 
solve general eigenvalue problems. Results by this method are checked 
with the rigorous solution and applied to the investigation of the field 
experiment of a reinforced concrete pile. In the experiment, the pile supports 
no vertical load, but the numerical solution may be  developed to solve an 
actual foundation pile loaded with a heavy structure. 

   The fourth section is a report on an accelerometer  made. on trial to 
measure the low frequency vibration (5-50 c. p. s.) expected on the measure-
ment in soil. This accelerometer is made with a small cantilever of a 
barium titanate ceramic bar as a vibration transducer, and has many merits 
such as good sensitivity, flat characteristics, small volume, same unit weight
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with soils and cheap cost. After amplified, the excited piezoelectricity is 
recorded  electro-optically by a galvanometer on bromide paper. With this 

accelerometer, the vibration displacement may be obtained by integrating 

the record of acceleration using a suitable integraph.

          1. Consolidation Settlement of Clay Layer 
                    Fundamental Equation 

   A rigorous mathematical solution of the process of consolidation of clay 
was already published by Terzaghi under the assumption that the constitu-
tion of the clay was an  elastic body. This solution is not always correct 
for actual clays showing the so-called secondary time effect. To adapt the 
assumption to actual clay, the constitution of clay is assumed to be const-
ructed of an elastic element and a Voigt element in series. In this section 
the consolidation settlement of the clay layer is solved mathematically not 
only for the static load but for such a dynamic load as the traffic load, the 

 mechine'vibration or the periodical change of ground water pressure. In the 
solution, the following assumptions are put  forward  ; (a) The decrease of 
the volume of the voids of a fully saturated clay corresponds to the amount 
of water squeezed out. (b) For the consolidation by a dynamic load, the 
coefficient of swelling is equal to that of compression. 

   On the one-dimensional consolidation in z-direction, the total deforma-
tion, elastic one and final deformation of the Voigt element are designated 
by e,  ee and  er respectively, then 

 e  =  66+69  =  (ve+vp)  p  ,   ( 1  ) 

where p is the stress, and  ye and  yr the reciprocals of the spring constant 
of the elastic element and the Voigt element respectively. 

   For the Voigt model, 

 86p               =(e p -upP)  ,   ( 2  )  at 

where  w is a coefficient of the model. 
   When p varies with time, the total deformations is given by 

 e  (z, t) =  veP(x, t)+vpro[  e—no—T)}1 p (z,  r) dr   ( 3  )                             at

Differentiating Eq. (3), 

 Oe  (x,  t) +72e(z, t) ve p  (z, t) +v(vp—ve)  P  (z, t)-= 0   ( 4  )    at at 

is obtained. From the assumption  (a), 

 ae  (z, t)  k02w(z, t)   ( 5  ) 
            ataz2 •
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where w is the pore-water pressure and k the coefficient of permeability. 
Elliminating  e and p from Eqs. (4), (5) and the relation  P(t) =  p  (z,  t) 
+  w  (z,  t), where  P  (t) is the surcharged load, we get the following funda-
mental  equation  : 

 83w, 82w,ve  02ww(vp—ve)  Ow  
              8t8z2-1-'2 Oz2k Ot2 k at 

 ve d2Pw(vp—ve) dP ( 6  ) 
 k  dt2 k  • dt 

     Solution of the Fundamental Equation for Dynamic Load 

   The fundamental equation (6) can be generally integrated, but it is 
solved for  ve = 0 to calculate only the final deformation of the Voigt element. 
In this case, Eq. (6) is simplified as  follows  : 

 83w  (z, t)  82w  (z,  t)b Ow (z,t)+bdP(t) = 0  OtO
z2+a  Oz2atdt '   (7  ) 

 a  =  ,  b  =  vvplk 

   Let us consider that a clay layer of thickness H is sandwiched between 
an impervious boundary at the surface and a pervious boundary at the 
bottom, and is stressed by a surface unit load P(t). Hence, the initial and 
the boundary conditions are assumed as  follows  : 

 w(z,  o)  =  P(0)  ,   ( 8  ) 

 Ow  (o,  t)   —  0  ,  w  (H,  t)  =  0  .   (  9  )  Oz 

   The Laplace transform of Eq. (7) with respect to t is given by 

 8 2  s)—w(z,  o)}  +a  0  zu(;, s)  —b  {su(z,  s)  —w(z,  0)} 
 •••(10) 

       +b  {sh  (s)  —  P  (0)  } =  0  , 
where 

            u(z, s) =  Lt  {w(z,  t)}  w(z, t)  dt  , 

 0 

            h(s)  =  Lt  (t)}  . 
Substituting Eq. (8) into Eq. (10), we get 

 (s  a) 82u(z's)                  8z2+bs {h(s)u(z,^)}  =  0  .  (11) 
   The Laplace transform of Eq. (11) with respect to z is given by 

 (s  +a) fq2u(o(sti(q,  s)—qu(o,O+bs{h)— a (q,  s)}  =  0  ,  •  •• (12) 
                 azs)
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where 

                                        — 

 a  (q, s)Lz  {u(z, s)} =u(z, s)  dz  .  (13) 

                                                0 

   Putting 

 0(s)  =  bsl  (s  +  a)  (14) 

and applying the first equation of  (9), to Eq.  (13), we have 

                              (s)  
                                   s)  a  (q,  s)q2-0 (s)'u(o,q {qh(s)  (15)                            2( 

   By the inverse transformation with respect to z 

                       u(z, s) = u(o, s) cosh /0(s)  z+  h(s) 

 c  --. • • •   x (1—cosh V0 (s) z)(16) 

                  is obtained and with the second equation of (9), 
                  Eq. (16) reduces to 

                    e-                        u(z, s) = h(s)  {1—f  (z,  s)}  .  (17) 
                    where 

 f(z, s) = cosh  >/0  (s)  z/cosh.V0(s)  H  .  •  •  • (18) 

 Fig. 1. Integration                        The inverse transformation of  f(z, s) is repre- 
  path cn complex sented by an integral taken along a path on the 

  plane s. complex plane of s as shown in Fig. 1. That is 

                      1Rimi8+0„cosh Vc(s) z      F(z, t) = L`(z, s)} =ds• • • (19) 
                            27ri13+—.3--ifiecosh 3/0 (s) H 

where  6>  0. When F(z, t) is evaluated, w(z, t) is proved to be 

 w(z,  t)  =  P(t)  P(t  r) F(z,  z) dr  (20) 

from Eq. (17). In Eq. (19) the integrand is analytic except for the zero 

points of the denominator. Then the integral F(z, t) is equal to the sum-
mation of all residues of the poles existing in the domain whose boundaries 
are represented by and C, because the integration along C vanishes when 

 co. The values of s which make the denominator of the integrand 

zero are 

                           2n +1 
          bQ„= 2H n(n = 2, *)  (21) 

and  s,, is negative, as a and b are both positive. 
   The residue  fin at the pole s =  s„  is 

                         abOn                  p
l,= 2( — 1)ThH(b+ 19,202cos(3„z•esnt ,  (22)
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Then 

  F(z, t)E2ab[3                    =,(-1)"(s.+ a)2. cos Onz • es                                                           nt           n=o  

Substituting this into Eq. (20), we get the solution w(z, t) as 

 w(z, t) = P(t)2ab(b+  (-1)"  ".)2 cosOnZ P  (t  r)  esnt  dr.  .      H n=o

 —(23)

 •••  (24)

          Further  Investigation on the Above Solution 

   We shall investigate Eq. (24) for some special cases. 

(A) when =  00,  P(t) =  P (const) 

                                               - 

 k  2 
 w(z, t) = 2P0( 1)"COS Onze—vpent (25)  .-0 0.1/ 

   This is the same result as Terzaghi's. 

(B) when  P(t) =  Po cos cot,  co  : circular frequency 
   In practice, tensile stress cannot occur in soil, so that we must add the 

static load which cancels at least the negative vibrating load. Disregarding 
the influence of the added static load, however, we shall deal exclusively 
with only the vibrating load in this case, then the equation of the pore-
water pressure by only the vibrating load takes the  form  : 

 w(z, t) =  Po cos  cot  —2abP   >i  (-1)n   On  cos  Onz   H  
n=o  (b  +  (3,i)  2  (co2  +  4)  (26) 

                x {—sn(cos cot — esnt)  —co sin  cot} 
   As the successive terms decrease with the order  0;,-,3, it is sufficient to 
approximate Eq. (26) by its first term as  follows  : 

                           4abH2P on cos                                 2H  
 w(z, t)  P, cos  wt—  2  (4bH2  +  n2)2  +  a2n4                                                   —(27) 

                                 arc2            X{an 2 (COS  cot  4bH2-1-x2  t)  —w sin cot (4bH2 +7r2)}. 
   Since the pore-water pressure varies with t in Eq. (27), the direction  of 

the seepage flow cannot be constant. It is only the exponential term in 
Eq. (27) that influences the seepage flow in one cycle of the oscillation, and 
this term is denoted  ici(z, t). 

                                ae                        4a2bH2P 
orc3                                           cos?rz . e- 4bH2-1-7-c2 t  (28)            fi")(z, t) (02 (4b1-12 ± n.2) 2 + a2n4  2H 

   Denoting the quantity of water squeezed out of the clay layer by Q, 
we have
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                                                   7r.Z  
              Q =o 0z282 dt  =-e cos2H(ct` 1)  (29)                           211 

where 
         abe (4bH2+ 7/2) Pok ant      C.=e—  (30) 

                   (02(4bH2n2)2±a271.44bH21-- n2 • 

   According to Eq. (29), Q has a certain limit. The value varies with 
a, b and H, and is large when the elastic property of the Voigt element is 
superior to the plastic one and vice versa. If E 1, we can easily derive 
the conclusions in two cases for  co.

 

i  )  when  co>  1,  E  1 
   From Eq. (27) 

                            4abH27rPo7tZ.            211(Z
,0P0coscot + (4b1-12 + 7')cos2Hsincot , 

and as the second term is negligibly small compared with the first 
the right hand side,  w(z, t) is nearly equal to the external load 
not damp with time.

 (31)

term on 

and does

 ii) when  co  <1,  e  1 
 ax2  

                       ±H2rrzH2ir2 e (32) w(z,  t) =  Po (14bcos 2H) cos cot +4bH2P 0cos—77e 4b     rrrc2H 

   Here the effect of the damping term is left until t becomes very large, 
and the amplitude of the harmonic term is governedby viscosity. 

(C) when  P(t) =           r0o (const) for  T  > t  >  0  for  t  > T 
   This is the case of the impact work from t = 0 till t = T and if  soT (1, 

for T>t>0 

 w(z, t)  P(t)  + Ho 
0 (b2bsoPot08)cos1oz (33) 

For  t  > T 
                        2bsoPT  w(z,  t)

00 +o(30)  cos le oz. esot  (34) 

   The pore-water pressure damps with the relaxation  time  :          

1   arr2   (35) 
 so  —  4bH2  +7r2  •

  Solution for a static Load—as a Case 

   Since P (t) = const P) in this case, 

reduces to 

 83w, 82w, ve  82w v(vp- 
             Ot8z2-1-V 8z2k ate

 of the Consolidation Test 

the fundamental equation (6)

 (vp  —  v  e)  aw     = 0 . at (36)
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   The initial and the boundary conditions are assumed as  follows  : 

                  w(z, o) P  (37) 
 w(o,  t)  =  0,  w(H,  t)  O. 

Applying the Laplace transformation, the solution of Eq. (37) is given by 

              w(z, t)  = 4P n=  I,  3,  5  •  •  •1 5..2.2(AeA1t+BeA2t) sinnnz  (38) 
          71"n 

where 

229-=[-  (ye+  vp) -k(17--)2± 1/{(ve+vp) v+k(17 )2}2 —4/40( )21 
                  (A1+12)2   A  = -k( n1/7)2. Ai{ve(21+V)2 + V2v2,}  (39) 

 (A2+77)2   B=2nit) 22{ve(A2-1-72)2  +722vp} 
   Then the degree of consolidation  p is calculated as  follows  : 

 p1             g2v, E1A't+BeA2t 8 vp                    Ve ±Vp ta=1,5••• n-(Ae it  ye+  vp  (40) 

              i;12 vA  exit ± eA2t) 
                 73—t13, 5 n2\A,+72A2+22I 

   Putting 
          k nr)2/r 

        vLH)/72-x,  v (41) 
we get 

 2,= -72 {(1+c+x)   (42) 
                             1+ c+x(1+x2c+x)2 ' 

and 

     A,=xx2±             ' {1+c+x+ (l+c+x)2} (43) 
   In the following two cases, we investigate Eq. (40).  

i  ) when x <1 

   AsA,= -v(1+c),22=-1knr)2                              A=0,B=1,VA=0 and•1 +c v
e HAi-I-  B  

 1„u is given by  A
,+v 

            8-1k nn   p= 1-E
5•••  nve+vp\ H I  (44)                 rcn1 

 ii)  when  x>  1 
         knir)2   AsA1=

v,1 H' A2=  -v, A=1, B=0, VA=0 and  72Bp                             A+vA,+v 
is given by 

             -1 -knr\2 
                                           1 p-1-8v2,e vokII8 v—ec 2(45)          7rv ed-vpn=1,3,5... n2rc2ve-Fvpn-1 ,3,5... n2 

   The obtained  p-log t curves for various values of x and c are shown 
in Figs.  2-5.
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Fig. 2-5. Theoretical  A–log  t curves for  x=-1.0, 2.0, 4.0, 8.0 and C=0.1, 0.5, 2.0.
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  2. Experimental Studies on  Gravel Beds under Dynamic Loads 

                     Model Experiments 

   The most typical example of the gravel bed is the railroad ballast. 
Besides this, gravel or sandy gravel beds are frequently found in the under-
lying layer of such various structures built on soft ground as pavements or 
footings. This article is a report about vibrational characteristics of the 

gravel bed studied experimentally with small models. 
   Vibration is produced by a two-mass oscillator driven by  1/50  HP. A. C. 

motor. The oscillator weighs 3.93 kg and has a base of 135 mm x 160 mm 
dimensions. As its eccentric masses the following four kinds are  used  : 

 A:  2.6  gr,  B:  19.7  gr,  C:  26.55  gr,  D:  37.43  gr. 
   The model gravel beds are made of gravels as shown in Table 1 for 

every thickness of the beds, and are surrounded by U-shaped wooden frames 
on three sides and are placed on sponge rubber of 52  cm  x 53 cm wide and 
1 cm thick simulating soft ground. Every side of the wooden frames is 
30 cm or 50 cm in length, and cotton 6 mm thick is inserted between the 
inner sides of the frames and the graval to remove the effect of reflective 
waves from the frames. 

               Table 1. Model gravel beds used in exeriment

I side length of frame  50  cm

thickness of layer size of grain

side length of frame  30  cm

thickness of layer size of grain

 5  cm  0-5  mm  5  cm  0-5nam 
  10  5-10 10  5-10 
  15  10-45 15  10-15 

In this experiment, the frequency of the oscillator is controlled in the range 
of  0-50 c. p. s., and the vibration displacement is measured optically at the 
center of the base of the oscillator. 

   The displacement amplitude-frequency curves obtained are shown in 
Figs.  6-11, where t is thickness of the bed, s grain size and f side length 
of the frame. These figures show the relations corrected to correspond to a 
constant oscillating force for each case from the actually measured relations, 
with the consideration that the actual oscillating force increases in propor-
tion to the square of frequency. It is seen that the resonance frequency 
appears in the neighbourhoods of 10 c. p. s. and 35 c. p. s. and peaks change 
with the oscillating force, showing the nonlinear vibrational characteristics. 

    An Approximate Determination of Restoring Characteristics 

   In order to determine restoring characteristics of the model gravel bed, 
such a simple vibration system is assumed as to be given by the following 

 equation  ;
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                      d2x                    M
dt2  +  f  (x)  =  P  cos  cot  ,  (46) 

where 
 M: equivalent mass, that is the summ of mass of the oscillator and 

         effective virtual mass of foundation per unit area of the base 

        plate of the oscillator 
 x  : vertical displacement of the base plate 

  f(x) : restoring force of the foundation per unit area of the base plate 
 P  : oscillating force per unit area of the base plate 

 co  : circular frequency of oscillation. 

   According to the D. Hartog's  method,' 

 x  =  a  cos  cot  (47) 

is assumed, then the maximum value of the inertia force is given by  Maco2  , 
and if both the oscillating force and the restoring force become their maxi-
mum values when the inertia force is its maximum, we get 

 f  (a)  =  Maco2  +  P  =  Maco2  +  mrco2  ,  (48) 

where m and  r denote the eccentric mass and its eccentric radius respec-
tively. As no  reliable and practicable methods have been developed which 
would permit the numerical determination of M, it is assumed that the 
equivalent mass M is given by the following equation, 

 M  =aF(Mitt+ M2a2+143a 3)  (49) 

where 

 F  : area of base plate of the osicillator 

 Ml  : mass of oscillator 

 fro)  t  =  San  a"  11Zne  S=10-6  mm  12 
 li•  •  •  •  f=  50  cal

              free surface 

Fig. 12. Location of measur-
 ing points to determine a2 

 and  a3.

Fig. 13. 

 model

0  0010 0030  0010 
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gravel bed.
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        mass of whole vibrating gravel layer 

 M3: mass of whole vibrating sponge rubber 
 a,: average value of vibration displacement of gravel layer 

 a,: average value of vibration displacement of sponge rubber 

   The approximate values of  a2 and  a, are obtained by measuring the 
vibration amplitudes of the embedded small wooden rods in each material, 
whose locations are shown in Fig. 12. The restoring forces obtained by 
substitution of these values into Eq. (48) are given in Figs.  13-15. In these 
figures, static characteristics are added to compare with dynamic ones.

  ,fir) 
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   model gravel bed. 
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   The modulus of the gravel bed (K) is expressed by the first derivative 
of f(x), that is, the inclination of the tangent line on each curve in Figs. 

 13-15, so it can be seen that the dynamical modulus of the gravel bed 
varies with various factors. The modulus K for  co  27rx  35  c.p.s. relating 
to the thickness  and the area of the gravel layer and the grain size is ob-
tained with the model experiments as shown in Fig. 16. 

        Experiments with Full-size Rail road Ballast Bed 

   The test track is made of river ballast (size 15 mm-65 mm) 15 cm 
thick, placed on soft silty clay with sleepers 70 cm apart and 37 kg - rails 
10 m long in narrow gauge (1067 mm) as shown in Fig. 17. 

 io  oscillator 
 o  displacement vibroyaph  

1176  /5  14  /3  /2  ii /0 9 8  7  6 5 4 .3 2  I'                                                 Fig.17. Planof the test 

I                                                      trank and the arrange- 

' 

   0 0 0  3  0 02E33c00 0 3ment of measuring appa- 
                l_1_ratus.

176 /5 14 /3 /2 // /0 9 8 7 6 5 4 3 2

 0  o  o dL  3z)  o  z

 o
 ^.1

   This track is vibrated by a two-mass oscillator fixed on a trolly on the 
rails. The oscillator weighs about 100 kg and is driven by a variable speed 
motor of  1/24 HP., and can generate about 600 kg of oscillating force at 25 
c.p.s. by twelve detachable eccentric masses weighing 0.16 kg each.
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  oscillator. 

    Measuring the vibration displacement of the ballast and the sleepers 
with moving-coil-type vibration pick-ups and an electro-optical recorder, the 
relations of  the vibration displacement of the sleepers to the frequency of the 
oscillator are obtained as shown in Figs. 18, 19 and 20, and the resonance 
curve is given by Fig. 21. In Fig. 21, a peak of the curve appears at about 
10 c. p. s., but it is somewhat questionable to conclude this to be  ...a resonance 

point since the peak is so low. But the next peak cannot be caught until 
about 25 c. p. s. which is the limit of the oscillator used. 

   According to the results of the measurement on the ballast, the vibration 
displacement of the ballast surface has a tendency similar to that of the 

 0.1r

 41.

 /0 /5 
                    No of  sleeper 

Fig. 22. Longitudinal distribution of 

 vibration displacement of sleepers and 

 ballast.

1 
E 

O

 o.2

            Na9, 779

Ballast81,75101 
t11 
  _iCaVI 

  44.4•  N
o.  6,  7215, 

        0. 
 No.9,59  k5 

 No.7  70  k5

 I_  

                  10167-01  pcsi  114,n 

Fig. 23. Lateral distribution of 
  vibration displacement of 
  sleepers and ballast.
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sleeper, but is somewhat smaller. Figs. 22 and 23 show the distribution of 
the vibration displacement of both ballast  and sleepers in the longitudinal 
and lateral directions of the track when the trolly is placed on the sleepers 
Nos. 9-11 (dotted lines) and Nos. 3-5 (full lines). From Fig. 23 it is 
seen that the sleeper jumps vertically, vibrating in the vertical plane, and 
the amplitude of its vibration seems to be extremely smaller than the amount 
of the jump. The reason why the transverse distribution of the vibration of 
the ballast is almost uniform seems to be due to this fact. 

        3. Free Transverse Vibration of Foundation Pile 

         Fundamental Equation of Transverse Vibration 

   In this section, the eigenfrequency of the foundation pile driven in the 

ground is researched. The fundamental differential equation of the trans-
verse vibration of the vertical pile subjected to the horizontal load f (x, t) is 

given by 

              EI—00:y4+ogAao2ty2+ yK(x)=f (x,  t)  ,  (50) 
where x  is a coodinate selected vertically downward from the center of the 

pile head, and y the horizontal deflection from x-axis,  El,  ,o and A are the 
flexural rigidity, unit weight and the sectional area of the pile, and K(x) 
the reaction force by the ground along the unit length of the pile. 

   On the free vibration, neglecting the term of the right hand side, Eq. 

(50) becomes 
                   a4a,a.„  El "

4"+yK(x)  —  0  .  (51)  ax gat' 

   If the distribution of the earth pressure reaction K(x), has complex form, 
the solution of Eq. (51) is hardly integrated analytically. To overcome such 
a difficult case, we try to calculate numerically by the following method newly 
divised. 

        A Numerical Solution of Eigenfrequency Equation 

   In order to solve eigenfrequency equations which are difficult or impos-
sible to solve analytically, the authors have devised a numerical solution. 
This method is an extension of the Kimball and Shortley's  method2) in quantum 
mechanics, and may be applied not only to the free vibration of an elastic 
body but also to general  'eigenvalue problems. Here we explain some general 
cases. 

A) Eigenfrequency problem of the second order 
   Suppose  the fundamental equation of the free vibration of a  string  : 

 02y(x,  t) 2 02y(x, t)  
         ateaxe(0x1) ,  (52)
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where c is a constant. By the suitable transformation of x and t, Eq. (52) 
becomes 

              82y (x, t)02y(.x, t)                               (0
x         atax��1).  (53) 

Substituting y(x,  t)  =  9(x)ew into Eq. (53), we get 

 d2-9(x)  +  Ay(x)  =0 ,  A p2.  (54)  dx2 

If there exists non-vanishing  9(x) under certain boundary conditions,  97(x) is 
called the eigenfunction and A the corresponding eigenvalue. Hereafter  y(x) 
is used instead of  9(x). 

   In order to integrate numerically Eq. (54), this equation is approximately 
replaced by the difference equation. The domain 0 x  S 1 is divided into 
N equal parts, and the divided points are denoted by  xi (i = 1, 2, ...  ,  N-1) 
and the extreme points by  xo and  xN  (xo = 0, xN = 1). If  x is an arbitrary 
value which satisfies  xo < x  <  x1, the value of the corresponding y is given 
by Stirling's interporation formula as  follows  : 

       Y= Y°              u•2dy,+dy0 'Y-1 '2u (u23!1) .45,-2+4331-1+(55)    11+2! 

            x—xox —  xo 
where u=  .DifferentiatingE  x

,—xoq. (55) twice, we have the 
following equation as

(thefirst approximation.                 d2y             \dx2)x=x0'---1(yy+y 06)                            ( jx) 2-2                                     10 - 1)• 

   For every divided point  xk  , Eq. (54) is replaced approximately by the 
algebraic  equation  : 

          +2Yk  (57)        A
.Yrz•                            (4x)2 

   Here Eq. (57) is generally rewritten as the summation  form  : 

 (4x)247, =  E  bkiN  (58) 
 =o 

The coefficient  bid in Eq. (58) is the element of the following matrix  (bki) , 
which can be expressed as the  form  :

 (bkt)
 0 2  —1 

 1  2  —1 

  —1
.2.-1. 

 •
1  •o 1  2  —1 

 —1  2 0

 (59) 

(k, i -.= 1, 2, ... ,  N-1)
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for the case of both ends fixed. The symbol 0 denotes that every matrix 
element in that part is zero. 

   Multiplying Eq. (58) by  yk and summing it up over all values of k, we 
have 

                      N N  (dx)  2A =1; bktAYil  >j  y  .  (60) 
 k=0  4=0  k=o 

   The lowest solution of Eq. (58) is the function  yk (k = 0, 1, 2, , N), 
which minimizes the right hand side of Eq. (60), and the corresponding  A 
is the lowest eigenvalue. This is true only if the quadratic form in the 
numerator of Eq. (60) is symmetric, i. e. if  bki =  bik  • 

   Let us choose any function  OP) (k = 0, 1,  2,  ...  ,  N) as a rough approxi-
mation to the solution  yk and then change each point in such a way as to 
lower A at each step. The conditions for the vanishing of  8A/ey5k suggest 
that A will be lowered by replacing  cb,T) by 

 AO) -  ibbtOP/{  bkk—  A(dx)2}  (61) 
Where E' denotes summation of all values of i except i  h. We shall now 
show that this change actually lowers A if the lattice is not too coarse. Let 
401, 7= O(I) —02)then 

 20)-A co) {Amjx^2GOO2r 4„4                               Ivkk I[1]cbrk1.32 vlWO3 I (62) 
is obtaind. If the number of lattice points is large, the second term may be 
neglected in comparison with the first one in the bracket [ ] of Eq. (62), 
and A will be decreased by the change in  Øk if  Ao)(dx)2-bkk is negative. 
But  Am  (4x)2  -bkk may be certainly made negative by using a sufficiently 
fine lattice, since  Ao) is obtained in access to a certain value as  dx decreases. 

   Therefore, we may continuously decrease  . by using Eq. (61) as an 
improvement formula. As A converges to the true lowest eigenvalue, the 
function must converge to the true lowest eigenstate. 

(B) Eigenfrequency problem of the fourth order 
   Next, let us suppose the transverse vibration of uniform bar. The funda-

mental equation of the free vibration is given by 

                 84,„A02                   E I+ - --'„                   0  (0x1) ,  (63)  ex  gat2 

 where  El,  p  and  A  are  the  flexural  rigidity,  unit  weight and the cross sectional 
area of the bar respectively. By the suitable transformations of coordinate 
and time, we obtain 

                   6x4                    0,„02,  —  0 (0x1)  (64)                      et2
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   When we consider only the simple harmonic oscillation, 

                    d'y 
                      dx°         -A—yop2  (65) 

is obtained from Eq. (64). Replacing Eq.  frErj-- by a set of the algebraic 
equations, we have 

 (4X)41Vic  Yt (k = 0,  1,  2,  ,  N) .  (66) 

 o 

   As the boundary conditions, let us consider one end fixed and the other 
free. Then 

 Yo  =  0,  Y,  =  Y-, 

 N+1-2Y  N±  Y  N-1  (67) 

 N+2-3Y  N+1+3vN  —  yr.-1  =  0. 

These are the algebraic boundary conditions. 
   In this case, the coefficient matrix takes the  form  : 

 7  —4 1 
 (bu) —4  6  —4 1 

 1  —4  6  —4 1 

 1  —4  6  —4 1          

. . . .   (68) 

                

. . . . .                    
. . . .                        

. . .              
. . . .                  

. . . . . 

 1  —4  6  —4 1 

                             1 —4 5  —  2                                               (k
, i = 0, 1,  2,  ...  , N) 

 0  1  —2 1 

which is obviously symmetric. Thus, the 

procedure may be developed similarly to 
that in (A).  1.0 

(C) Further investigations to check the  ,  d-"- 
     numerical solution 

   The rigorous solution  of  : the free  .6 
vibration of a string whose both ends are 
fixed was already solved as.Sin 

 y  =  A  sin  VT  x, 
            (n 1, 2, ...) . .2 

   Therefore, the minimum eigenvalue  0 
 is  n2(= 9.869604). On the other hand,  4.  A  V  e  1  4-

the numerical results are given by Fig. 24 Fig . 24. Approximation for 
and Table 2. In spite of the rough trial eigenfunction of case (A).



function, the results well agree with the theoretical 

gate the case (B) whose eigenvalue is known as A 
The results of the numerical calculation in this case 

             Table 2. Approximation for solution of
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ones. Next we  investi-
-=, (1.875104)4  = 12.362. 
are seen in Table 3. 

case (A)

                        ,sf
00")

0 

1 

2 

3

 0 

 0 

 0 

 0

 0,(t)

0.2 

.24386136 

.25483644 

.25868611

 02(t)

0.4 

.45903317 

.48377971 

.49180914

030)

0.6 

.66406246 

.67454276 

.68018181

 040)

0.8 

.84999997 

.82151409 

.80936909

 05(1)

1.0 

.84999997 

.89549414 

.86421445

 A(t)

11.7647 

10.1607 

9.8818

   A  =  Ir2 9.8696,  du = = 0, 1, 2, 3, 4) 

Table 3. Approximation for solution of case (B)

1 

2 

3

 b,  A 
 i

1 

 2 

3

 oo

 0 

 0 

 0

 <N

0.253 

,252996 

.252893

1 

2 

3

 ,h6

.716 

.715231 

.715426

 cbi

.011 

.009545 

.005023

 4,9

.302 

.301851 

.301867

 017

.783 

.783465 

.783196

4)2

.032 

.031273 

.030200

 'ha

.353 

.353427 

.353462

 03

.058 

.058280 

.058154

 011

.408 

.407644 

.407774

 o,

.090 

.089480 

.089594

 412

.465 

,465014 

.464771

 4318  4'19  4'20

.852 

.852467 

.852859

.925 

.924200 

.923614

1.000 

.998000 

.995933

4,5

.125 

.125238 

.125002

 013

.524 

.524190 

.524300

 A(t)

22.24 

14.16 

12.87

 06

.164 

.164071 

.164291

 4)14

.586 

.585679 

.585724

.207 

.206856 

.206792

 4'15

.649 

.649577 

.649506

     A  *  (1.875104)4* 12.362 

   In order to improve the approximation, we consider the higher difference 
in Eq. (55). The relations corresponding to Eq. (56) got by using the first 
three terms of Eq. (55) as the second order approximation and the first four 
terms as the third one, are given as follows 

 2y for 2nd approx. (—) (y—16yk+,+30yk —16y+Vk+2)                                                                                                                        k-1-1.•               dx2z=z7c 12(z1x)2k— 
   2y1(69)     ) for 3rd approx. (( —2v.vv 

                 dx2z=074—  180(4x)  2-••••—3+27k—2—270k—  +490yk 
                        — 270yx +1  +  27Yx  +1  —  2yx  +0 . 

More improved results for Table 2 are shown in Table 4 using the relations 
(69).
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  Table 4. More developed approximation 

             Formula 
                          1st. approx. 

  No. of 

    0 10.9091 

    1 10.2135 

    2 9.9385 

    3 9.8275 

    4 9.7952 

    5 9.7902 

    6 9.7890 

    7 9.7888 

    8 9.7887

for eigenvalue 

2nd approx. 

  9.9172 

  9.8764 

  9.8721 

  9.8693 

  9.8688 

  9.8686

of case (A) 

3rd. approx. 

  9.87035 

  9.882625 
  9.869643 

  9.869617 

  9.869591 

  9.869590

             The Vibration Experiment of a Pile 

   As shown in Fig. 25, the test pile  I=  Oscillator 
is oscillated horizontally by the oscil-
lator (max. oscillating force 600 kg) 
mounted on the reinforced concrete 
hollow pile. The dimensions of the  subsoil 

pile are as  follows  ; Length of  pile  :  Sand  : 
7.13 m, outer dia. of cross section of  \\<,  M  Distribatton of  earth  pressure  ?radian 

 pile  : 30 cm, inner dia. of cross  section  : 
16 cm. 

   On the transverse vibration tests, 
the resonance curve of the pile and Fig. 25. Diagram illustrating 

the reaction force of soil were studied.vibration test of pile and                                         assumed parabolic distri -
   The eigenfrequency for this case bution of earth pressure 

is evaluated by the numerical method reaction. For numerical 
described above. The fundamental calculation. Earth pressure 

                                      reaction is  6  kg/cm3 at the 
equation is lowest end . 

               EI a4y +'oA-82y + 2ayk(x)  —  0  (70) 
                       g ate 

and  k(x) is assumed as shown in Fig. 25, considering some experimental 
results. In the upper portion of the embedded pile, k(x) is considered to 
vanish, because the ground surface has been loosened. Substituting y 
=  y(x)e"" into Eq. (70), we have the difference  equation  : 

                             pA            Ayk = bki Yt , A =-)-  (71)           1-1gEIp„ 

As the k-th diagonal element of the matrix  (bki) is 6 +2ak(xEI)  (4x)4 and the

 Oscillator

 Distriba
 earth

"xxisic

 ubsoil

 Sand  :
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matrix is symmetric, a similar successive approximation to that used in the 
above method may be performed. The constants which are used in the 
numerical calculation are as  follows  : 2a = 0.3 m, A = 5.05 x  10-2m2, p 
2.4  Om', E = 3.5 x 106t/m2, I = 3.65 x  10'm' and  zlx = 0.3565 m (N 20). 

   The result of the calculation is given by Table 5, and this value fairly 
agrees with the experimental value Texp = 0.13  sec.3), so that the distribution 
of  the reaction force seems to be proper. But the question was left, because 
the vibration period is computed from the resonance curve by the forced 
vibration in this experiment. 

        Table 5. Comparison of numerical approximate eigenfrequency 
                  to experimental one.

No. of approx

 0th 

1st 

2nd

experimental

 19.9x0-4 

 4.73X10-' 

 4.94x10-'

 fsec- i Tsec

18.0 

 8.78 

 8.69

0.055 

0.113 

 0.115

i 
I

7.7 i  0.13

I

~~ 

i

           4. The Measuring Instrument  for Vibration 

 General Consideration of the  Piezoelectric Crystal Vibration Pick-up 

   In research of the dynamic behavior of the foundation, the study of the 
measuring instrument must not be disregarded. 

   Recently in this branch, it is very remarkable that electronic means have 
come to be in frequent use in compliance with various objects. As the 

piezoelectric crystals used for a vibration transducer, there are quartz, ADP, 
rochelle salt and barium titanate  ceramics'). Here we shall explain the 
accelerometer which was devised on trial, considering its stability, frequency 
characteristics and light weight due to barium titanate ceramics. 

   This may also be applied to the displacement vibrograph, the vibration 
earth pressure meter, etc., if they are modified in their design. 

   As one of the most important properties of the piezoelectric pick-up is 
that of the output circuit, the electric characteristics as an accelerometer are 
investigated, using following  nomenclature  : 

 M: loaded mass on the surface of the crystal 
 a: acceleration given to the mass M  

: piezoelectric modulus 
 Q  : electric charge excited in the crystal electrode by external force M 

 Co: capacitance of the crystal 
 C1: distributed  capacitance of transmission lines 

 C2:  capacitance between cathode and grid of the first step vacuum-tube
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 R: equivalent  resistam 

      cathode and grid 

 E: Output voltage of 

 is electric current in 

   

I G 

Fig. 26. Equivalent circuit 
  electric vibration pick-up 
  output circuit. 

   Removing i from eqs. 

   If CR is sufficiently 
negligibly small compared 

This shows that the  outp-t 
to the mass. In the  case 
amplitude of the accelerat 

is derived from Eq. (74; 
ration. The solution of E 

 E  = 

 e  tan-' 

where  P is a constant w 
denotes the phase  differs 
consider only the secom 

 1/1/i  +1/  (PCR)  2 in the 

represents the frequency  cl 

that  e  0 and  E  =  Oltfce 

meter.

equivalent  resistance combin 

 cathode and grid of the  fi: 

Output voltage of the crysta 

electric current in resistance

Fig.  26.  Equivalent  circuit  of  piezo-
 electric  vibration  pick-up  and  its 

 output circuit. 

   Removing i from eqs. (72) and  0 

                dE E 
                    dt+ CR = 

   If CR is sufficiently  large, in  th 
negligibly small compared  with the  fir 

This shows that the output voltage is 
to the mass. In the case of simple 
amplitude of the  acceleration, 

 d. 
 d.                        + C—R = - 

is derived from Eq. (74), where p  i 
ration. The solution of Eq. (76) is 

 Man,            E = Pe-CR c  .  

                             -                            1 

                 1                   = tan-1                       PC
. 

where  P is a constant  whichis detei 
denotes the phase difference.On till 
consider only the secondterm,as 

 1/1/i+ 1/  (PCR)  2 in the  secondterm 

represents the frequency  characteristics. 
            O that e0 and E-Ma whichare m

combined with grid leak and resistancebetween 
f the first step vacuum-tube 

 crystal 
 istance R. 

        Then, the equivalent circuit is shown 
         in Fig. 26,5) and the relations are 

        obtained as  follows  : 

           EiR—1(Qidt)(72) 
 piezo- 

 ad itsQ =  8Ma  (73) 

        where CCo+Ci + C2 . 

72)and (73), we have 

dEEOMda + —•  (74) 
       C dtCR—dt 

 tge,in  .e left hand side the second term is 
 viththe first term, so that    

.  (75) 

voltageisproportional to the acceleration given 
ofsimpleharmonic vibration, if an,denotes the 

 EEO —a -+——p cos pt  (76) 
tCRC 

wherep  .s the circular frequency of the  accele- 

(76)iseasily given by 

 Man, . 
 CIsin  (pt+e)  , 

 (PCR)2  (77) 

R' 

 ch is  determined by an initial condition and  e 
 the stationary state, it is sufficient to 

term, as the first term vanishes. The term 

 cond term is the coefficient of sensitivity which 
 -acteristics . If  pcR> 1 in Eq. (77), it is obvious 

 hich are  most convenient conditions for accelero-
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   Mechanical Characteristics and Structure of the Piezoelectric 

                     Crystal Accelerometer 

   For the sake of brevity, suppose a simple vibration system which consists 
of a mass M and a spring s as shown in Fig. 27. In order to make the 
motion of the mass proportional to the acceleration of the casing of this 

                               system, it is necessary that the 

        r Ay. eigenfrequency  fo  1/2n/M/s) of 

         /1the system should be adopted to be far 
                               larger than the frequency of the 

                               external force. And if a piezoelectric 

                               crystal is used as a spring of the system 
   Fig. 27. Vibration system with                                satisfying the above frequency condi-
     mass and spring 

                                tion, a favourable accelerometer will 

                                be obtained. 

             fra/inass1 

                                    For our trial accelerometer, its 
                                eigenfrequency is taken as 500 c. p. s., 

     kocigwhich is far larger than the actual 

y 

                                  frequency 5-50  c.p.  s. expected on the 
  • measurement in soils . A barium 

                                nate ceramic bar of 0.55 mm  X2.2 mm 
                                 X 18 mm is used as a cantilever, one   Fi

g. 28. Structure of piezoelectric 
   accelerometer. end of which is fixed and the other 

                               attached to a mass and kept free (see 

Fig. 28). The attached mass is 1 gr in weight. The total weight of the 

pick-up is about 100 gr and can be adjusted to have the same unit weight 
with soils. 

          The Amplifier and the Results of Calibration 

   As described above, the condition PCR 1 should be satisfied in the out-
put circuit of the accelerometer. It is, however, trivial to insert higher 
resistors than the grid resistance of a vacuum-tube, which is generally 108 

 —109 ohm. On the other hand, the capacitance should be restrained to be 

not so large from the view of sensitivity, but the trial amplifier is inserted 

  6C4JyN7                                              with a certain capaci- 
                                             tance. As the result 

                               I_ of this, the sensitivity 
                             —IF 

                                             is lowered to some ex- 

pu,LP;I                                              tent, but there occurs      /2k h „,”a merit of decreasing 
                                         effect of leak in the 

                                             transmission lines. If 

         Fig. 29. Network of trial  amplifier. it is assumed that the
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minimum freqency is 5 c. p. s., R = 20 M2 and C =  0.02 pF., then the error 
of the amplitude of acceleration is calculated as nearly 3% and the angle 

of the phase difference 30'. The amplifier circuit thus made is shown in 

Fig. 29, and it is desirable to use a galvanometer of about 100 c. p. s. 

   The calibration test of the 

 O

above accelerometer and the am-

plifier has been made by using 

the electro-dynamic testing  v  i-

brograph, and the result is shown 

in Fig. 30. This figure repre-

sents the combined characteris-

tics of the accelerometer and the 

amplifier obtained, excluding that 

of the galvanometer of 30 c. p. s. 

which was used in our test for 

an unavoidable reason. From the 

figure, the frequency characteris-

tics are perfectly constant. If a 

galvanometer with eigenfre-

quency of more than 100 c. p. s. 

is used, the synthetic characte-

ristics would be also flat. 

   This accelerometer is  desig 

graph. With this accelerometer, 

by integrating the record of  al 

such as the analogue computor.

ab 

Qi 
k. 

 8

 V  /0  5  30  410  _00— 
 nfre-                                   frepency 

 P.  s.              Fig . 30. Frequency characteristics of 
 :acte- trial accelerometer and amplifier . 

designed for both a vertical and horizontal  vibro-

neter, the vibration displacement can be obtained 

of acceleration by means of a suitable integraph
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