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Abstract

For the stability computation of so-called embankment type structures
such as an earth dam, levee and railway embankment built on a soft founda-
tion, it is necessary to have a comprehensive knowledge as to the rupture
phenomena of the earth foundation during the consolidation of soft clay. In
this paper, taking the standpoint that the pore water pressure, which has
the dengerous effect on the stability of the foundation during or just after
the fill construction, must be diminished by the adequate control of execution
speed, a theoretical treatment is performed to clear the mechanism of the
plastic flow of the foundation containing the pore water pressure, whose
distribution is determined in the following way.

Starting from the fundamental theoretical equation of the two-dimensional
consolidation, the research is performed for the foundation which has infinite
depth or under which a perfectly rigid and smooth rock base exists at any
depth. First, applying Neuber’s theory of elasticity, the stress distribution
just after loading is obtained, and using this as the initial condition, the
solution of the consolidation equation is represented in the form of Fourier’s
integral or Fourier’s series with regared to each boundary condition. Next,
performing the numerical calculation for the case of a uniformly distributed
load, the pore water pressure is computed as to the sudden loading and also
as to the gradually increasing load on the semi-infinite foundation with an
allowable precision. It is also shown that such a solution is obtained for
the foundation where the permeability is different in its vertical and hori-
zontal directions, and for the case of parabolic load whose distribution is
closer to the actual dam foundation. Comparing the results of these calcula-
tions with each other, the change of the distribution of the pore water
pressure in respect to situation and time is studied for each loading condition.



1. Fundamental Theoretical Equations of
Tweo-Dimensional Conselidatien

Generally in the construction of earth dams, the pore water pressure
occurs in the dam foundation at an early period of the construction, since
at the instance of loading, the total load is charged by the pore water, and
then as the water escapes while time elapses, a part of load is transmitted
to soil particles gradually. If the load is constant, the water pressure
vanishes with the time, and it depends upon the permeability and the situa-
tion in the foundation.

In the first part of this paper, the distribution of the pore water pressure
which occurs in the dam foundation is cleared.- as a two-dimensional problem.
The general theory of three-dimensional consolidation which has been introduc-
ed by Biot! is applied to the two-dimensional consolidation process of the
embankment foundation. The following assumptions are made for the
development of the theoretical equations; the foundation is of homogeneous,
isotropic, perfectly elastic material and the pores between soil particles are
fully saturated with water. (Anisotropy of the permeability of the foundation
is treated in Appendix III.) The former assumption is acceptable for the
reason that it is very rare that the stress concentration phenomenon occurs
in the soft foundation consisting of a clay layer when it is loaded, and the
latter assumption is permitted for the boundary condition of dam foundation.
As the velocity of the pore water flow is very slow, it follows the rule of
Darcy’s law. In the following article, the distribution of the surcharged load
is treated as a uniformly distributed load on the surface of the foundation,
and the parabolic load is treated in Appendix I.

In the two-dimensional consolidation caused under the above assumptions,

the following partial differential equation is deduced respecting the pore
water pressure w? :

W=cPiw, = eeeeeeeeeeeeeen '..“(1)

where the coefficient of consolidation ¢ = k/jv is assumed constant.

As the initial condition for solving this equation, it is necessary to find the
distribution of the pore pressure when the load is applied. Stresses caused in
the foundation whose surface is loaded by a long embankment can be treated as
a plane-strain problem in the plane perpendicular to the axis of the embank-
ment. According to Neuber® in this two-dimensional problem, let it be
assumed that # is strain vector, ¢, scalar harmonic function of x, y, @ vector
whose components ¢,, ¢, are harmonic functions, » position vector, :®
divergence of # and v Poisson’s ratio. Then,

2 — — grad (¢, +20)+4(1—1)0, ,
0 =dive = — div grad ¢,—div grad »0+4(1—)div @ e (2)
=2(1—-2) dive.

The stress components, ¢, gy, T,» are represented in the following form
by Eq. (2), assuming G modulus of rigidity :



7o _Ou Oy _0u , .
3T oz V1T TogtdivO,

ay _0v v® oo

Z—G—afj+1——2u—a¥y+2ydivm" ............... (3)
Tay _ Ou 0OV
G '"6’y+6>x'

Two cases are treated by using the above equation: for the foundation
which has infinite depth (in the following article), and under which a
perfectly rigid and smooth rock base exists horizontally at any depth (in
Appendiz IT). As the stress distribution is independent to Poisson’s ratio
v, v = 0.5 is adopted in the following calculation for simplicity.

2. Stress Distribution when the Load Is Applied on the
Semi-Infinie Foundation

Let the x-axis be taken as perpendicular to the axis of embankment on the
ground surface, and the positive y-axis as downwards from the center of
the dam base. Assuming

9o = (Aer + Be=*) cos Ax , l
oy = (CeM+De M) cosAx, L e (4)
v2=0 (4, B, C, D, 1: consts.) [

and introducing the boundary conditions, and taking the load condition that
the load ¢,cos Ax is applied on the dam foundation, the stress components
are given by

— 0y =gz = qoe 2 (1—y4) cos Ax,
—0y =qy =qoe ML +yA) CosAx, ;  crreeerenees (5)
—Toy = oy = go¢ My sin ix. I

Now, p.(x) is considered as an arbitrary surface load symmetric about y-axis
and is represented by the following Fourier’s integral:

j)o(_x) = 2_ Sm di Sm dEﬁo(S) cos Ax cos /‘E, ............... ( 6)
T Jo 0

then, the pressure distribution ¢(x) is represented as follows when p,(x) is
distributed uniformly between —a < & <@, namely for p,(§) =¢:
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Substituting yA = &, dA = da/y, then,

qy(x z_q_S 1+d ._m Sina (i) CcOoS & (i) d‘x
T Jo y ¥
=42 Sw(l +—) {sin(x—+a)a—sin(x——_“)a} de
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= % (sin 2¢ cos 2¢+2¢)
Similarly,
x(x) = - ( sm2€c052¢+25), ( --------- (7))
, \
Gy (X) = - sin 2¢ sin 2¢ . ) (e Fig. 1)

Fig. 1. Principal stresses ¢y, o3
caused by the uniformly dis-
tributed " strip load ¢ on the
semi-infinite foundation.

Eq. (7) gives the stress components caused in the foundation by the
surface load. As stated above, at the instance of loading on the clay layer
which is consolidatable all of the initial stresses are supported by the pore
water. Since water cannot resist shear stress, it is charged only by the
principal stresses. And the assumption that the average of maximun and
minimum principal stresses charges water without regard to the intermediate’
principal stress has been justified by Biot’s discussion. According to this
discussion, the initial pore pressure, w, in the saturated clay layer when
loaded should be satisfied by Laplace’s equation p?w, = 0. - Then,

2 a2 2
w, :% (61+0,) =% (02+0y) :_7qr_25 :%cot’1x4423;y 4 ~(8)

is the initial distribution of pore pressure in the foundation.



3. Distribution of Pore Water Pressure in the Semi-Infinite Foundation

As the initial condition necessary to solve the partial differential equa-
tion (1) respecting the pore pressure w in the semi-infinite foundation has
been obtained as Eq. (8), then the solution of Eq. (1) should be solved with
the boundary condition that the foundation has infinite depth. First, the
case in which the overburden uniform load ¢ is suddenly loaded is treated,
and then the case of gradually increasing load is studied.

(1) Suddenly applied load

Eq. (1) is
ow _ (@f_.uz tw\
aT—c’axz_'—ayz) (9)
Boundary condition is
Wyeo =0. e a0
Initial condition is
2__ 2
(WYs—o = f(x, y) = %cot'lﬂéy . an

In order to obtain the solution of Eq. (9) which satisfies Eq. (10), and
Eq. (11, f(x, ) in Eq. (11) is represented by Fourier’s double integral
as follows:

Fa ) =2 S“’dag‘”dgg‘” daS”dﬂf(z,ﬂ)cosa(x—nsin By sin B

) [} -0 )

Then, the solution of Eq. (9) is
w= %rdardﬁr dlrdﬂf(l, wexp{ —c(a?+p2¢t)cos a(x—A) sinfysinBu
T [¢] 0 — o0 0
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For the convenience of the numerical calculation, Eq. (12) is put as follows:
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N Y 12 '~ % —
lim > > ocot exp
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— exp {_ x=4 4+ct(y+#) }]Ald,u L e 13)

(2) Gradually increasing load
For the constant load the above equations indicate that the pore pressure
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decreases with time. In the case of the execution of earth dams, however,
all the volume of earth mass is not placed at once, but is filled gradually.
In such a case, the following fundamental equation is brought, adding to
Eq. (9) Q(x, », t) which is the pore pressure increased in the unit time:

2 2
g;ﬂ — C(g;z“gy?) FQr, 9, 1) e (14)
Boundary condition is
Wyeo =0. e (15)
Initial condition is
(w‘)'=0:0_ ............... (16)

In order to obtain the solution of Eq. (14), Q(x, ¥, t) is written in the
form of Fourier’s double integral : '

Qx, 3, ) = %S:dardﬁrwdls:du Q(4, u, 1) cosa(x—2) sin By sin fu.
Similarly,
w= Swdardﬁr dlgwdﬂ 2 (A, #, t)cos a(x—2)sin By sin u
4] 4] —o0 0

is put into Eq. (14), and % (4, &, #) is determined so as to satisfy the initial
condition of Eq. (16), then:
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If Q(x, v, t) is the increment of pore pressure caused by the increasing
load ¢, uniformly increasing with time, then it becomes independent of time,
and from Eq. (8):

Q(_x, 9, t) = icot'lu_—az
id 2ay
And Eq. (A7) is

w= —{lérwdls:du cot™! MSF _dr.
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Or, approximately :

w= o tim 5 5 e ALl GoD (=)
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Although it seems that the first exponential integral in Egs. (18), (19)
is infinite at the coordinate x = 4, y = g, it can be proved that the above
integral gives a finite value at that point when the integration is finished
about A and g.

Comparing Egs. (12), (13) with Eqs. (18), (19), the difference is between
the exponential function and the exponential integral. But in the former
equations, as the present time ¢ exists in the denominator before the double
integral, the pore pressure decreases with the time. On the other hand, by
the latter equations, the pore pressure continues to increase as long as the
uniformly increasing load is applied on the foundation. This difference is
cleared by numerical calculations as follows.

" The calculation is performed for the case where the uniformly distri-
buted load ¢ having the width 2¢ = 10 is applied on the semi-infinite
fpundation. Fig. 2 (a) shows the initial distribution of the pore pressure
when the load has been placed suddenly. The value of the contour is the
ratio of w, in Eq. (8) to the load intensity ¢. Fig. 2 (b) shows the result
of the approximate calculation, giving the distribution of the pore pressure

(a) Initial distribution (#=0) (b) After the time ¢ =z

(first approximation)
Fig. 2. Contour of w/g in the semi-infinite foundation where the uniformly
distributed load g is applied on the surface.



when 4ct =1 is applied in Eq. (13). In the calculation, the foundation is
devided into the square lattice 44, 4.2 = 1, and the contribution to the point
under consideration from the self-point (x, ¥) and from the other nodal
point (4, ) is accumulated. In this figure, as the first approximation, the
contribution from the self-point (x, y) and from the nearest four points is
accumulated with regard to each nodal point. ' ‘

Fig. 3 (a) is the result of the more precise calculation with 44, du = 0.5,
and the contribution from the forty-one points including the self-point is
adopted. The value of error is at most 8 % in regard to each point. Fig.
3 (b) shows the ratio of the pore pressure w to the increased load g per
unit time, which is applicable to the gradually increasing load represented
in Eq. (19). The error of calculation is within 3~4 % only.

Next, in order to investigate the manner of change of the pore pressure
in respect to time, Fig. 4 is shown at the nodal points (x =0, y = 1.5) and
(x =25, y=25). According to this figure, upon suddenly loading the pore
pressure decreases with the time. On the other hand, it can be shown that
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Fig. 3. Distribution of pore pressure in the semi-infinite foundation.
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Fig. 4. Change of pore pressure in respect to time,



the pore pressure caused by the gradually increasing load continues to
increase as long as the load increases.

4. Plastic Flow Mechanism cf the Ground where the
Pore Water Pressure Exists

In this article, as the second part of this paper, the theory of the execu-
tion control of fill work is investigated with respect to the pore pressure in
the foundation.

During the execution of fill work upon the soft foundation, on the basis
of piezometer measurement, the pore water pressure must be reduced lest the
pore pressure becomes so high that a danger would approach respecting the
shear strength of the foundation*>. In respect to this execution control, Fig. 5
represents the pore pressure-time diagram. The upward part of this wave
curve represents the pore pressure in the foundation increasing as the fill
work proceeds, and the downward part gives the descrease of the pore
pressure' after the work stops. The horizontal dotted line in the figure is
a critical line giving the max-
imum allowable pore pressure,
and so if the peak of the wave
exceeds this line, it should be
known that the danger of rup-
ture is approaching in the
foundation. The writers wish
to give the important key
to solve such an execution
problem, keeping the standpoint
that the plastic flow mechanism
of the ground where the pore pressure exists can be cleared by means of
using the theoretical equations in respect to the distribution of the pore
pressure in the foundation.

It has been cleared that, when the load is applied on ground where no
pore pressure has existed and when the load is being increased gradually,
the plastic region formed by points where the plasticity condition is satisfied
begins to grow at the corner edges of the load and to enlarge as the load
increases.’> But this phenomenon is very complex if the ground has a pore
pressure which varies with the time.

Here, it is assumed that Eq. (20) represents the shear strength of the
ground where the pore pressure exists:

Rore Pressure

Time

Fig. 5. Pore pressure-time diagram.

r=C+(o—w)tang, = e (20)

where ¢ is the normal stress applied on the shear plane, w the pore pressure
at the position under consideration, ¢ the angle of internal friction of soil,
and C cohesion, As the pore pressure w in Eq. (20) is, during the con-
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solidation process, the function of the time as well as of the situation, the
shear strength 7 varies not only with the situation but with the time.

The representation of the equation giving the plasticity load ¢, of the
ground in such a case becomes the following equation, applying Mohr'’s flow
condition to Eq. (20), and assuming that the coefficient of earth pressure at
rest is unity. In the preceding description, the plasticity load means the
surcharge load which causes principal stresses ¢, ¢, in the foundation whose
ratio satisfies Mohr’s flow condition.

q = 1.C+n7:B;

7. = 2cos ¢ \
¢ i —t— (i psin e+ 2w¥sing T ) L, @
— 5 tan o %8 2¢+cos 2¢
7o = 1 AN T Gin 2¢

where 7; is the unit weight of soil, B the width of the load, 7., 7, the
coefficients of plasticity load, u,, u, the specific stresses under ground
(¢ =01/q9, p,=0,/9). w* =w/q is the new term introduced with the
existence of the pore pressure, and is a function of the time, with the result
that the coefficients of plasticity load %., 7, are functions of the time. For
the above reason the plasticity load ¢ varies with the time. 8

Let such a case be considered where a uniformly distributed load whose
width is B = 2z is applied on the surface of the homogeneous foundation.
Under this condition the coefficients of plasticity load in Eq. (21) are represent-
ed in the following form, using Eq. (12):

7 = 7T COS ¢
¢ 7 sin2¢—2esin ¢ +wwk sin ¢’
_ cis 2e+ cos 2¢
T = o tang 2sin2
1 (= = 2+ pt—a? @
M— = -1 TA TG
dnict S -m‘“S , G cot 2an
=D -mF {_(x—/l)2+(y+ﬂ>2]
x[exp { 4ct } exp 4ct } .

By means of Eq. (22), the coefficients of plasticity load in respect to situa-
tion and time can be determined when the value of ¢ and the distribution
of pore pressure w* at the arbitrary time ¢ are known.

In a particular case, namely, when the load is just applied at =0,
w¥(0) = 2¢/n .. %.(0) = mcos ¢/sin 2¢. And after the consolidation process
of the foundation finishes at ¢ =co, w*(oc)—0 and the above Eq. (22) becomes
the customary representation for the foundation where no pore pressure exists.

As the result of the numerical calculation corresponding to the above
equations, using the assumptions ¢ = 30°, C = 0.2 kg/cm?, 7, = 1.6, Figs. 6(a),
(b) and (c) are obtained for the line of equi-plasticity load with regard to
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Fig. 6. Line of equi-plasticity load in the semi-infinite foundation.

the time f =20, 1/4c and oo, respectively. According to these figures, it can
be seen that, at the early period of the consolidation, as the high pore
pressure exists in the foundation, the plasticity load at every point is very
small compared with the later period.

5. Conclusion

In this paper, starting from the fundamental theoretical equation of the
two-dimensional consolidation, the distribution of the pore water pressure in
the embankment foundation is studied theoretically. Next, by using the
above solutions, the plasticity load in the foundation where the pore pressure
exists is obtained through numerical calculation.

In closing, it becomes clear that the above plastic flow mechanism during
the consolidation process is a serious factor in the execution control of
fill work.
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Appendix I; Distribution of Pore Water Pressure in the Semi-Infinite Founda-
tion Caused by the Parabolic Load

The Pressure distribution on the embankment foundation can be con-
B+B, .
2B 18
where H is the height, B, B, are the lower width and upper width of the
embankment respectively, and j; is the unit weight of the embankment
material. Under this loading condition, p,(§) in Eq. (6) is written in the
form of the following :

sidered such a shape as a parabola whose average intensity ¢ is

2®=24(1-5), —a<e<a. (23)
Putting Eq. (23) into Eq. (5):

—ay = gy(x) = ~721— S:dl S:d&po(é)e‘*”(1+yl) cos Ax cos A§

= SZ_ S:d&(l——i—:) S:dxe‘w(l +32) {cos (x+&)A+cos (x—&) A}

-1 N7 U A T S S S
_2nSod5(1 az)y[y2+(x+5)2+y+(x—5)2
yi—(x+6)* Yy —(x—§)* ]
(P+ @+ (¥ + (x—§)*%)*
34{2y+az+3;22_x2 (tan“x—_l—a—tan" ﬂ)

2rla Y
2 —_
_@(tan-x xta_ oo ac_a)}
a a a
=% w (sin 2e —2¢ cos 2¢)
T sin? 2¢
Similarly,
0y = go(%) = 37:’ mﬁ:—fz‘fz‘/’{ze(ms 2¢+2 cos 2¢)) —3 sin 2¢
i cosf, |} e (24)
+2sin 2¢ log ‘ YRR
—Toy = gy (%) = 3;? cos ifg;_zoss 2¢ {26 sin 2¢
cos 3,

}

~ (cos 2e+cos 2¢) log ‘ cos B,

The initial distribution of pore pressure w, is:

Wy = ;" (a,+0a,) = %(ﬂz‘i’dﬂ

— 3q cos 2¢+cos 2¢

m  sin®2e {25 cos 2¢ —sin 2e +sin 2¢ log ‘ cos B,

cos 3,

}
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_31{“24_3,2__1;2 _lxz+yz___az y y2+(x+a)z‘}
=7 227 cot zay P 2a log ‘m (25)
The solution of Eq. (9) for the above initial condition is:
3q S S {az+,u’—/12 NS L+ (A+a)? }
W= tntct da 2a? cot™ 2au 2a pi+ (A—a)?
_Mi(y;ﬂ)f}_ {_ M}] ............
x[exe it oxp 4ct : (@6)

The result of the numerical calculation for Egs. (25), (26) is shown in
Figs. 7(a), (b) respectively.

(a) Initial distribution (¢ = 0) (b) After the time £ = ll-c
(first approximation)

Fig. 7. Contour of w/q in the semi-infinite foundation where the parabolic
load ¢ is applied on the surface.

Appendix II; Distribution of Pore Water Pressure in the Foundation of a
Finite Depth

Let it be assumed that the embankment foundation has a perfectly rigid

and smooth rock base horizontally at the depth %. In this case, the horizontal

surface of rock base is taken as the x—axis and the positive y-axis as down-
wards from the center of embankment base. Assuming the stress functions

¢, = A cosh Ay cos ix, |
¢y = Bsinh Ay cos ix, ;
0. =0 (A, B, A: consts.) )

and introducing the load condition of g,cos iz on the embankment founda-
tion, the stress components become as follows :
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2(— Ak cosh Ak cosh Ay + Ay sinh A% sinh 4y +sinh A/ cosh Ay)  cosi,
== sinh 24k + 2k
- 2(Ak cosh Ak cosh Ay — Ay sinh A4 sinh 4y +sinh Ah cosh /Iy)
T== sinh 22k + 2k 9o c0s Az, {
2(— Ak cosh Ak sinh Ay + Ay sinh A% cosh 4y) g
Ty = Gay = sinh 2Ak + 24k 0 c0s Az J
............... (28)

Using Fourier’s integral for the uniformly distrituted load p,(§) =g,

gy(x) = %{Smg(a) sin b,ada — Smg(a) sin bzada} l

2(Ba cosh Ba cosh @ —a sinh Ba sinh @ +sinh fa cosh a)

where  g(a) = a(sinh 2Ba+2Ba)
a=yl, B="2 b =200 b =T
............... (29)
Boundary conditions for Eq. (9) are:
aw ——%).  ssewsessvessans
(52),.=0 (30)
W)yer=0. e +(31)
Initial condition is:
(w)t———o :f(x, y) L e (32)

Under these conditions, putting w(x, 3, £) = T(®) X(x) Y(y) into Eq. (9), the
following solution is obtained.

2.5 _(@2n+1) zn'”ct} 2n+1) Ty
Trh%’o { 4h? €S on

S dag ‘HS duf(d, 1) exp { —ca’t} cos a(x— k) cos (2”2‘;1)7_'

o\ { @Cn+1)x ct} (2n+1)n'
h/nct_' exp Py €oS = 2h

X S:md}.So duf(a, ) exp{— (x‘l_c?) z} cos (2”;111)7‘ [ e (33)

Appendix III; Distribution of Pore Water Pressure in the Semi-Infinite
Foundation of Anisotropic Permeability

The average permeability of a natural soil deposit in a horizontal
direction (coefficient of permeability, k) is from 2 to 10 or more times that
in the vertical direction k,. The fundamental equation of two-dimensional
consolidation for this embankment foundation of anisotropic permeability is:
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ow 0w 0*w
e = cm As +Cy A5 ;
ot 0x oy \ ............... (34)
— kz — kll J
Co =">» Cy —_—
v JU -

The coefficient of consolidation c¢,, ¢, defined in Eq. (34) is assumed constant
in each axis direction. Let it be assumed that a uniformly distributed load
having the width B = 22 and the intensity ¢ is surcharged on the surface
of a semi-infinite foundation.

Boundary condition for Eq. (34) is:

(W)y=o=0. e (35)
Initial condition is same with Eq. (11), namely:
- — 4 ¥y e
W)t—o =f(x, ) = - cot 50y (36)

Putting w(x, 3, ) = T(H)X(x) Y(») into Eq. (34), and applying Egs. (35),
(36), the solution of the fundamental equation becomes as follows:

4 (= g A pt—at _G=-D_ (y—m?
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_ x-=2* +mw?] rrararaaes
exp} - ot Ao H- S

If the permeability of the foundation is isotropic, putting ¢, =¢y =c¢ in.
Eq. (37) gives the same equation as Eq. (12).
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Fig. 8. Distribution of pore pressure
in the semi-infinite foundation of
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As the numerical calculation of Eq. (37) under the conditions 2a = 10,
k, =9ky, and 4c,t =1, Fig. 8 is shown, giving the distribution of pore
pressure w/q. Comparing Fig. 8 with Fig. 3 (a), which gives w/q for the
foundation of isotropic permeability, it may be concluded that the intensity
of pore pressure in the former type of foundation is about as small as 60%
of the latter, and that the type of the pressure distribution is similar in both
Fig. 3 (a) and Fig. 8.





