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                         Abstract 

   For the stability computation of so-called embankment type structures 
such as an earth dam, levee and railway embankment built on a soft founda-
tion, it is necessary to have a comprehensive knowledge as to the rupture 
phenomena of the earth foundation during the consolidation of soft clay. In 
this paper, taking the standpoint that the pore water pressure, which has 
the dengerous effect on the stability of the foundation during or just after 
the fill construction, must be diminished by the adequate control of execution 
speed, a theoretical treatment is performed to clear the mechanism of the 
plastic flow of the foundation containing the pore water pressure, whose 
distribution is determined in the following way. 

   Starting from the fundamental theoretical equation of the two-dimensional 
consolidation, the research is performed for the foundation which has infinite 
depth or under which a perfectly rigid and smooth rock base exists at any 
depth. First, applying Neuber's theory of elasticity, the stress distribution 

just after loading is obtained, and using this as the initial condition, the 
solution of the consolidation equation is represented in the form of  Fourier's 
integral or Fourier's series with regared to each boundary condition. Next, 
performing the numerical calculation for the case of a uniformly distributed 
load, the pore water pressure is computed as to the sudden loading and also 
as to the gradually increasing load on the semi-infinite foundation with an 
allowable precision. It is also shown that such a solution is obtained for 
the foundation where the permeability is different in its vertical and hori-
zontal directions, and for the case of parabolic load whose distribution is 
closer to the actual dam foundation. Comparing the results of these calcula-
tions with each other, the change of the distribution of the pore water 
pressure in respect to situation and time is studied for each loading condition.
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           1. Fundamental Theoretical Equations of 
                  Two-Dimensional Consolidation 

   Generally in the construction of earth dams, the pore water pressure 
occurs in the dam foundation at an early period of the construction, since 
at the instance of loading, the total load is charged by the pore water, and 
then as the water escapes while time elapses, a part of load is transmitted 
to soil particles gradually. If the load is constant, the water pressure 
vanishes with the  time, and it depends upon the permeability and the situa-
tion in the foundation. 

   In the first part of this paper, the distribution of the pore water pressure 
which occurs in the dam foundation is cleared as a two-dimensional problem. 
The general theory of three-dimensional consolidation which has been introduc-
ed by  Bioti) is applied to the two-dimensional consolidation process of the 
embankment foundation. The following assumptions are made for the 
development of the theoretical  equations  ; the foundation is of homogeneous, 
isotropic, perfectly elastic material and the pores between soil particles are 
fully saturated with water. (Anisotropy of the permeability of the foundation 
is treated in Appendix III.) The former assumption is acceptable for the 
reason that it is very rare that the stress concentration phenomenon occurs 
in the soft foundation consisting of a clay layer when it is loaded, and the 
latter assumption is permitted for the boundary condition of dam foundation. 
As the velocity of the pore water flow is very slow, it follows the rule of 
Darcy's law. In the following article, the distribution of the surcharged load 
is treated as a uniformly distributed load on the surface of the foundation, 
and the parabolic load is treated in Appendix I. 

   In the two-dimensional consolidation caused under the above assumptions, 
the following partial differential equation is deduced respecting the pore 
water pressure  w”: 

 --=  crw  ,   (  1  ) 

where the coefficient of consolidation c  =  k/Tv is assumed constant. 
   As the initial condition for solving this equation, it is necessary to find the 

distribution of the pore pressure when the load is applied. Stresses caused in 
the foundation whose surface is loaded by a long embankment can be treated as 
a plane-strain problem in the plane perpendicular to the axis of the embank-
ment. According to  Neuber3) in this two-dimensional problem, let it be 
assumed that u is strain vector,  coo scalar harmonic function of  x,  y, 0 vector 
whose components  cox,  co?, are harmonic functions, r position vector, 0 
divergence of u and v Poisson's ratio. Then, 

           — grad  (coo  i-r0)  +4(1-00 , 
 6  =  div  =  —  div  grad  coo  —  div grad  r0  -I-  4  (1—  id)  div  0  •••(  2  ) 

 =  2  (1  —  2v)  div  . 

   The stress components,  ax,  ay,  rzy are represented in the following form 
by Eq. (2), assuming G modulus of  rigidity  :
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 (Ix  -au-1_au+ 2v div             — a
x 1-2v=ox,             2G

avOv  ve  
                            1_ 2v 8.---y+ 2v div      2G=ay +  (  3  ) 

 v.?) _Ou  Ov 
          G ay  Ox 

   Two cases are treated by using the above  equation  : for the foundation 
which has infinite depth (in the following article), and under which a 

perfectly rigid and smooth rock base exists horizontally at any depth (in 
Appendix II). As the stress distribution is independent to Poisson's ratio 
v, v = 0.5 is adopted in the following calculation for simplicity.

     2. Stress Distribution when the Load Is Applied on the 
                    Semi-Infinie Foundation 

   Let the x-axis be taken as perpendicular to the axis of embankment on the 

ground surface, and the positive y-axis as downwards from the center of 
the dam base. Assuming 

 ype,  (Aexv+  Be-xv) cos  Ax  , 

 SPv  =  (Cexv+De-'v) cos  Ax  ,   (4  ) 
 cpx  =  0 (A, B, C, D,  A: consts.) 

and introducing the boundary conditions, and taking the load condition that 
the load  qo cos Ax is applied on the dam foundation, the stress components 
are given by 

 —ax  =  qz=  qoe-''v(1—yA)  cos  Ax, 1 
 —av  .=  qv  qoe-"(1+  yA)  cos  Ax  ,   (  5  ) 

 —rxv =  qzy =  qoe-xvyA sin  Ax  . 

Now,  p0(x) is considered as an arbitrary surface load symmetric about y-axis 
and is represented by the following Fourier's  integral  : 

 P  0  (x)  = o0dAdEpo() cos Ax cos 2$ ,   (  6  )      7r 

then, the pressure distribution q(x) is represented as follows when  po(x) is 
distributed uniformly between —a  <$  <a, namely for  po(E).  q: 

 qv(x) 2 dAclEpo(E)e-"(1+yA) cos Ax cos A$Jo7ro 

           = 2r f                     q cos  2$  d$} e"(1+ yA) cos Ax dA 
                  7rJo o 

            2q r 1   e_„(1+ yA) sin aAcos xAdA . 
           7rA
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Substituting yA = a, 

 4v  (x)  —  27r 

 = 

         = -117r[ 

 = 

 7r 

Similarly, 

 qz(x)  = ( 
 ir 

 qzy(x)=  qsi 
 7r

dA  =  daly,  then, 

- 1+a  e'  sin  a  (c±) cos a (----)da 
0  a  Y Y 

0(1.+j--) e-a {sin(x-4-la —sin(x—ya  aY 

 2aY(a2-Fy2  -x2)  t  --..-1.

 {(x+a)2+  y2}  {(x  —  a)2  +y2}

 sin  2e cos  20+2e) 

(  —sin  2e cos  20+2e), 

 in  2e sin  20  .

  Zia  V>1

 i

 11S.9:2  I

1

in(xYa)a}(la 
 +cot-, x2±y2a21  l ay        J

  (7) 

(see Fig. 1)

Fig. 1. Principal stresses  cri,  cr2 

 caused by the uniformly dis-
 tributed strip load q on the 

 semi-infinite foundation.

   Eq. (7) gives the stress components caused in the foundation by the 
surface load. As stated above, at the instance of loading on the clay  layer 
which is consolidatable all of the initial stresses are supported by the pore 
water. Since water cannot resist shear stress, it is charged only by the 
principal stresses. And the assumption that the average of maximun and 
minimum principal stresses charges water without regard to the intermediate 

principal stress has been justified by Biot's discussion. According to  this 
discussion, the initial pore pressure,  wo in the saturated clay layer when 
loaded should be satisfied by Laplace's equation  p2wo = 0. Then, 

 wo =1(al + a2) = 1zqcot(a+a ) =2e =--1 x2-4-y2 -a2  •••(  8)     -
2ay 

is the initial distribution of pore pressure in the foundation.
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3. Distribution of Pore Water Pressure in the Semi-Infinite Foundation 

   As the initial condition necessary to solve the partial differential equa-
tion (1) respecting the pore pressure w in the semi-infinite foundation has 
been obtained as Eq. (8), then the solution of Eq. (1) should be solved with 
the boundary condition that the foundation has infinite depth. First, the 
case in which the overburden uniform load q is suddenly loaded is treated, 
and then the case of gradually increasing load is studied. 

   (1) Suddenly applied load 
 Eq. (1) is 

     aw\                             02w+02w  ( 9 ) 
                   at—kax20.3,2) 

Boundary condition is 

 (w)v=0 = 0 .  (10) 

Initial condition is 

 (w)t=o  =  f(x, y)  Lcot-1 x2+Y2 — a2  (11)                  ir2ay 

   In order to obtain the solution of Eq. (9) which satisfies Eq. (10), and 
Eq. (11),  f  (x, y) in Eq. (11) is represented by Fourier's double integral 
as  follows  : 

 f  (x,  y) —FrdarclArdpf(A,p)cos  a  (x  A)  sin(3y sin  Op  . 
 7r00 

Then, the solution of Eq. (9) is 

w =  -J oclArdpf (A,p) exp— c (oz2 +132) t cos  a(x  A) sin fiy si0/2  7r00.0 

 =1dArdpf(A, piexp{—(x  A)2 + ( yp) 21exp.( (Y,a)2}] 
 47rct04 ct 4  ct 

  — qdASdpcot-1 22 ±P2a2rexpf— (x2)2+(Y11) 2} 
  47r2ct02,apL4 ct 

     —expf(x-2)2+ (Y±/42}] (12) 
 4  ct • 

For the convenience of the numerical calculation, Eq. (12) is put as  follows  : 

  w— q limcot-                        1A2 ±P2— aTexpf —  A)  2  +  (Y 21 
     47r2ct.dx4.o2apL 4  ct 

 A4.0 

 —  exp  (x—  2)2  +  (Y  12)2flzIA4,12.  (13)  4  ct 

   (2) Gradually increasing load 

   For the constant load the above equations indicate that the pore pressure
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decreases with time. In the case of the execution of earth dams, however, 
all the volume of earth mass is not placed at once, but is filled gradually. 

In such a case, the following fundamental equation is brought, adding to 

Eq. (9) Q(x, y,  1) which is the pore pressure increased in the unit time: 

 8w =
8y                       l8x2                         82w+282w  Ot)+Q(x,  y, t)  (14) 

Boundary condition is 

 (w)v-o=  0.  (15) 

Initial condition is 

 (w), 0=0.  (16) 

   In order to obtain the solution of Eq.  (14),  Q (x, y, t) is written in the 
form of Fourier's double integral: 

 Q(x, y, t) -2 o0dardOC°-dAVdp Q (A, p, t) cos a(x- A) sin [3y sinOp . 
                                   - Similarly, 

      w  = dcedOdpx(A, p, t)cos a(x- A)sin[33,sin  [3p 
 00000 

is put into Eq. (14), and  x (A, p, t) is determined so as to satisfy the initial 
condition of Eq. (16),  then: 

         2       w - no00dard6.°0.0clArdpexpf - c(a2 + [32) (t - r)). 

          - 

 X  Q  (A,  p,  r)cos  a(x-  A)sin  sin  (3p 

          1ft dr1-                    c 1p Q (A,p, t)[expf  -(x-A)207— /42}        zincJot -r04c (t - r) 

           exp  (x  -  A)  2+  (Y  + p)211  (17)                        4c (t - r) J • 

   If  Q(x, y, t) is the increment of pore pressure caused by the increasing 
load q, uniformly increasing with time, then it becomes independent of time, 
and from Eq. (8)  : 

 Q(x, y, t)Cat-1 X2+y2_a2                 7r2ay 

And Eq. (17) is 

  w  -dpcot-'A2+1,2azfech.     47r2c-- 0 2ap  j0  t 

             x 

                      A4)2c(-It--(Yr)-it)2}-exp- A)2 + (3,+ P)2} [1                 exp
{- (x                                            4 c(t - r)



 — rcbirdp cot-, 22+122_a2[_Eifm                                (y,)2} 
  47r2c-02ap4ct 

            ±Eif__(x_ A)2+ (y+102)1  (18)                  4ct I • 

 Or,  approximately  : 

          4_)2_1_p2_azi _Eif(x _ 2)2+ (y.,...p)21     W=-A—Ern E Ecot-'2 ap L     ,t7rc 4x-oop=o4ct 

 +Eif (x— 2)2+ (Y Pi]zadp (19) 
                          4ct 

   Although it seems that the first exponential integral in Eqs. (18), (19) 
is infinite at the coordinate x A, y = p, it can be proved that the above 
integral gives a finite value at that point when the integration is finished 
about A and p. 

   Comparing Eqs. (12), (13) with Eqs. (18), (19), the difference is between 
the exponential function and the exponential integral. But in  the former 
equations, as the present time t exists in the denominator before the double 
integral, the pore pressure decreases with the time. On the other hand, by 
the latter equations, the pore pressure continues to increase as long as the 
uniformly increasing load is applied on the foundation. This difference is 
cleared by numerical calculations as follows. 

   The calculation is performed for the case where the uniformly distri-
buted load q having the width 2a = 10 is applied on the semi-infinite 
foundation. Fig. 2 (a) shows the initial distribution of the pore pressure 
when the load has been placed suddenly. The value of the contour is the 
ratio of  w, in Eq. (8) to the load intensity q. Fig. 2 (b) shows the result 
of the approximate calculation, giving the distribution of the pore pressure 

 C--  2a,  10 

 (a) Initial distribution  (t=0) (b) After the time t                                                          =  4c 

                                   (first approximation) 
Fig. 2. Contour of w/q in the semi-infinite foundation where the uniformly 

 distributed load q is applied on the surface.
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when  4ct = 1 is applied in Eq. (13). In the calculation, the foundation is 
devided into the square lattice  dpi,  zip= 1, and the contribution to the point 
under consideration from the self-point (x, y) and from the other nodal 

point (A, p) is accumulated. In this figure, as the first approximation, the 
contribution from the self-point (x, y) and from the nearest four points  is 
accumulated with regard to each nodal point. 

   Fig. 3 (a) is the result  of the more precise calculation with  42,  dp  = 0.5, 
and the contribution from the forty-one points including the self-point is 
adopted. The value of error is at most 8 % in regard to each point. Fig. 
3 (b) shows the ratio of the pore pressure w to the increased load  4 per 
unit time, which is applicable to the gradually increasing load represented 
in Eq. (19). The error of calculation is within 3-4 % only. 

   Next, in order to investigate the manner of change of the pore pressure 
in respect to time, Fig. 4 is shown at the nodal points (x 0, y = 1.5) and 

(x = 2.5, y = 2.5). According to this figure, upon suddenly loading the pore 
pressure decreases with the time. On the other hand, it can be shown that
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  Fig. 3. Distribution of 
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the pore pressure caused by the gradually increasing load continues to 

increase as long as the load increases. 

       4. Plastic Flow Mechanism of the Ground where the 
                   Pore Water Pressure Exists 

   In this article, as the second part of this paper, the theory of the execu-

tion control of fill work is investigated with respect to the pore pressure in 

the foundation. 
   During the execution of fill work upon the soft foundation, on the basis 

of piezometer measurement, the pore water pressure must be reduced lest the 

pore pressure becomes so high that a danger would approach respecting the 
shear strength of the  foundation°.  In respect to this execution control, Fig. 5 
represents the pore pressure-time diagram. The upward part of this wave 

curve represents the pore pressure in the foundation increasing as the fill 

work proceeds, and the downward part gives the descrease of the pore 

pressure after the work stops. The horizontal dotted line in the figure is 
a critical line giving the max-

imum allowable pore pressure, 
and so if the peak of the wave

 exceeds  this  line,  it  should  be  11 
known that the danger of rup-
ture is approaching in the  z 
foundation. The writers wish `41. 
to give the important key 
to solve such an execution 
problem, keeping the standpoint 
that the plastic flow mechanism 
of the ground where the pore pressur 
using the theoretical equations in re 

pressure in the foundation. 
 It has been cleared that, when  tl 

pore pressure has existed and when  t: 
the plastic region formed by points 
begins to grow at the corner edges of 

 increases.5) But this phenomenon is  N 

pressure which varies with the time. 
   Here, it is assumed that Eq. (2( 

ground where the pore pressure exists 

 r  =  C+  (c 

where a is the normal stress applied  ( 
at the position under consideration,  y 

and C  cohesion, As the pore  pressur

                                      Time 

        Fig. 5. Pore pressure-time diagram. 
 a 

pressure exists can be cleared by means of 
s in respect to the distribution of the pore 

when the load is applied on ground where no 
when the load is being increased gradually, 

 ^ints where the plasticity condition is satisfied 
dges of the load and to enlarge as the load 

 on is very complex if the ground has a pore 
 time. 

Eq. (20) represents the shear strength of the 
e  exists  : 

= C +  (a — w) tan  ,  (20) 

pplied on the shear plane, w the pore pressure 
 -ation ,  to the angle of internal friction of soil, 

pressure w in Eq. (20) is, during the con-
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solidation process, the function of the time as well as of the situation, the 
shear strength  z varies not only with the situation but with the time. 

   The representation of the equation giving the plasticity load q, of the 

ground in such a case becomes the following equation, applying Mohr's flow 
condition to Eq. (20), and assuming that the coefficient of earth pressure at 
rest is unity. In the preceding description, the plasticity load means the 
surcharge load which causes principal stresses  a„  a, in the foundation whose 
ratio satisfies Mohr's flow condition. 

              q  72,C  +72brd3  ; 
 2  cos  co   =  

Pi—  P2—  (121+  P2)sin  +2w*  sin  (21) 

                       co cos 2e + cos 20           rib =  72,  tan  2  sin  2e 

where  Ts is the unit weight of soil, B the width of the load,  72,,.7h, the 
coefficients of plasticity load,  p1,  /22 the specific stresses under ground 

 (pi =  a1/q,  P2  =  6'214).  Ze=  wig is the new term introduced with the 
existence of the pore pressure, and is a function of the time, with the result 
that the coefficients of plasticity load  77, ,  72/, are functions of the time. For 
the above reason the plasticity load q varies with the time. 

   Let such a case be considered where a uniformly distributed load whose 
width is B = 2a is applied on the  surface of the homogeneous foundation. 
Under this condition the coefficients of plasticity load in Eq. (21) are represent-
ed in the following form, using Eq. (12)  : 

 7r  cos  CO  
 sin  2e  -2e  sin  co  ±  nw*  sin  co 

 72,  =  72,  tan  co  cis  2e+  cos  20  2  
sin  2e  

•  •  •  (22) 

w*=47c ctV-thq0 d. cot-1A2 +p2a2  2ap 

    x [exp- A) 2(Yex-(x2) 2 ± ( y12) 211 
     4ct 4ct 

By means of Eq. (22), the coefficients of plasticity load in respect to situa-
tion and time can be determined when the value of  co and the distribution 
of pore pressure  w* at the arbitrary time t are known. 

   In a particular case, namely, when the load is just applied at t  = 0, 
w*(0) =  2e/ir  :.  72,  (0)  =  7r cos  co/sin  2e. And after the consolidation process 
of the foundation finishes at t  =00,  u;*(00)---•0 and the above Eq. (22) becomes 
the customary representation for the foundation where no pore pressure exists. 

   As the result of the numerical calculation corresponding to the above 
equations, using the assumptions co = 30°, C = 0.2  kg/cm',  Ts  = 1.6, Figs.  6(a), 
(b) and (c) are obtained for the line of equi-plasticity load with regard to
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    (a)  t= 0 (b)  t= 1/4c (c)  t= 
      Fig. 6. Line of equi-plasticity load in the semi-infinite foundation. 

 the, time t  = 0,  1/4c and  00, respectively. According to these figures, it can 
be seen that, at the early period of the consolidation, as the high pore 

pressure exists in the foundation, the plasticity load at every point is very 
small compared with the later period. 

                        5. Conclusion 

   In this paper, starting from the fundamental theoretical equation of the 
two-dimensional consolidation, the distribution of the pore water pressure in 
the embankment foundation is studied theoretically. Next, by using the 
above solutions, the plasticity load in the foundation where the pore pressure 
exists is obtained through numerical calculation. 

   In closing, it becomes clear that the above plastic flow mechanism during 
the consolidation process is a serious factor in the execution control of 
fill work. 

                               References 

1) M. A.  Biot  ; General Theory of Three-Dimensional Consolidation, J. Applied 
     Physics, Vol. 12, pp. 155-164, (1941). 

2) K. Terzaghi; Theoretical Soil Mechanics, pp. 290-296, (1948). 
3) V. H.  Neuber  ;  Ein neuer Ansatz zur  Losung  raumlicher Probleme der Elastizit-

      atstheorie, Z. angew. Math. Mech., Vol. 14, pp. 205-212, (1934). 
4) K. Terzaghi & R. B.  Peck  ; Soil Mechanics in Engineering Practice, pp. 394-406. 

    (1948). 
5) 0. K.  Frohlich  ; Druckverteilung im Baugrunde, pp. 36-81, (1934).



12 

Appendix  I  ; Distribution of Pore Water Pressure in the Semi-Infinite Founda-
           tion Caused by the Parabolic Load 

   The Pressure distribution on the embankment foundation can be con- 
                                           B + B  sidered such a shape as a parabola whose average intensity q isiHr                                            2B8, 

where H is the height, B,  B, are the lower width and upper width of the 
embankment respectively, and  rs is the unit weight of the embankment 
material. Under this loading condition,  po(c) in Eq. (6) is written in the 
form of the  following  : 

                                              2 

                   3             P°($) =2q(1cz2)a<E<a.  (23) 
Putting Eq. (23) into Eq. (5)  : 

 -ay  :=  qy(x) = 72rL''dAdepo ($)e-xu(1+ yA)  cos  Ax  cos  Ae 
 = 3q5de (1 aS-dAe-'‘"(1 + yA) {cos  (x  +  e)  A  +  cos (xA }      27r 

           -3a Cde(1---e-2-)11  
             27r0a2Ly2 + (x+ E)2+  y+  (x-e)2 

                         y2 - (x+E)2 y2 - (x--E)2  
                       {y2+ (x+E)2}2-T  {Y21-  (X  —e).}.] 

       aa                27r 
                   ±a2 +y2  x2 (tan-1x +a - tan-x -a)       2y 

                        2,2                       --F(tan-' x a+ a tan-ix-a a)} 

     a 

           ,3q cos 2e +cos 20  
                   sin2 2e (sin  2e-2e  cos  2e)     7C 

Similarly, 

  -ex =  q(x)7=- sin2 3q  cos  2e+  cos  20{                           2e (cos  2e  +  2 cos  20 -3 sin 2e 
     7r 

                                      cos3,•••(24)  +2  sin  20  log 
 cos 

 Txvqxy(x) sin 2ecos2e+cos 20{2e sin 20                     7r 

                       --(cos 2e +cos 20) log cos 01  }cos  [32 
   The initial distribution of pore pressure  wo  is  : 

           ,1                aw
0=--1+0'2)=—2(Clx 

      3q cos 2e +cos 20 { cos 0,  
 2e  cos  20-sin  2e+  sin  20 log     ir sin2  2ecos 192 }



The solution 

      3q  Cw :=----  4
rczcti-

   x[exp-

   The  rest 
Figs. 7(a), ( 

 )—z4.1./c.

  = Yfq 

      R solution  of  l 

 47ect  - 

 3q ''.*  dAS

{-
result 

), (b)
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a2 +",2_x2_1x2 +y2 _ a2',xa,y2+ (x + a)21„ 
 2a 2cot    laya+j'a,log                                   y2+ (x— a)21''' 

Eq. (9) for the above initial condition  is  : 

 P  2ap pfaz + Az — 22 cot- 122 +112 _2  a /1 A-21210g1A2 + ("ar 02a2 a 2a,u2+ (A — a)2 

(x — A)2 4ct(y — pr).exp1—(x— A)4ctj+(y+ p)21i •1                                     (26) 

of the numerical calculation for Eqs. (25), (26) is shown in 
respectively. 

          ?a A  -TiriMJIIIllq. 1

 1...,...„„
f- -+ 

 . 

 =4---4.--1--1-/-1__+ 
 -,_-]__+_1•1._+_'/__1,___ 

 2 

                    - _4__4__+--11-_ ,-;,--I---1--4-  1.11v ..?1 1  0.2 
-i--4 -i--Fi--4- —I- ..._4.II  1  ji 

.1 I ! i 1  i  17  

 1 

I  1 

 t  t 
 Ai- -4- -  

I 
1-- -4- -+ - - 

 I

 4-  -I-  -  A-  -  +  -   
1  i . 

 4-4--  4-  -  -i-  -

I I Ai.,  

I  I  

I 
 - - - 

 

I  I 

   - - 

 - - - 

I I

     (a) Initial distribution (t = 0) (b) After the time t  4c 

                                            (first approximation) 
    Fig. 7. Contour of  w/  q in the semi-infinite foundation where the parabolic 

     load q is applied on the surface. 

Appendix  II; Distribution of Pore Water Pressure in the Foundation of a 
           Finite Depth 

   Let it be assumed that the embankment foundation has a perfectly rigid 
and smooth rock base horizontally at the depth h. In this case, the horizontal 
surface of rock base is taken as the x—axis and the positive y—axis as down-
wards from the center of embankment base. Assuming the stress functions 

 coo  =  A  cosh  Ay  cos  Ax  , 

 coy  B  sinh  Ay cos  Ax  ,  (27) 

 cog = 0 (A, B,  A: consts.) ) 
and introducing the load condition of  qo cos Ax on the embankment founda-

tion, the stress components become as  follows  :
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— .= 2 ( — Ah cosh  Ah cosh  Ay  +  Ay sinh  Ah sinh  Ay  +sinh  Ah cosh  Ay)

 2  (Ah cosh  Ah  cosh  Ay  —

sinh  2Ah+2Ah 

 Ay sinh  Ah sinh  Ay  +  sinh  Ah  cosh  Ay)

 qo cosAx,

 -  =  qv  =

 2( —

          sinh  2Ah  -F  2Ah 

 Ah  cosh  Ah  sinh  Ay  +  Ay  sinh  Ah  cosh  Ay)
 qo cos Ax

 qo cos Ax 1

 rzy  =  qzy

Using Fourier's

where

integral

sinh  2Ah+2Ah

for the uniformly  distributed

 (28)

load  po()  =q,

 qv  (x) = .('00g(a) sinkada—r g(a) sin  bzadal 
                                      g  (a) =2(0a cosh(3a cosh  a—  a sinh(3a sinh  a+  sinhOa cosh a)   a  (sinh  219a  +20a) 

                        — 

 a  =  y  A,igh=—bi —x+a,b2=                             x     Y'YYa

   Boundary conditions for Eq. (9)  are  : 

                        (49w                            k
ay )v=0— 

 (w)v-h=  0  . 

Initial condition  is  : 

 (w) t=0  =  f  (x, 

Under these conditions, putting w(x,  y,  t)  T(t)X(x)  Y(y) 
following solution is obtained. 

 w  —  2 exp              —(2n + 1) 2rc2ct}cos(2n+ 1) n 
  ichn-o4h22h 

    xC*dar000             dTdpf (A , p) exp—ca2t} cosce(x— A) cos    0- 

      1-a        —"">1exp—(2n + 1) 2n2ct}cos (2n +1)7r 
   in/nct,771--o4h2 2h 

       dAPf (A, p) exp{—(x4ct)2} cos (2n +1)r    02h '""

 (29)

 (30)

 •••.(31)

 (32) 

into Eq. (9), the

 (2n  -F1)rc
2h

 -

(33)

Appendix  III; Distribution of Pore Water Pressure in 
             Foundation of Anisotropic Permeability 

   The average permeability of a natural soil deposit 

direction  (coefficient of permeability,  trz) is from 2 to 10 or 

in the vertical direction  kv. The fundamental equation of 
consolidation for this embankment foundation of anisotropic

the Semi-Infinite

in a horizontal 

more times that 

two-dimensional 

permeability  is  :
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             Ow 62w Ozw 
                  at  = czaxz  +  Cy  0  ;   (34) 

 cz=k
v,  vv  =-14  Tv  • 

The coefficient of consolidation  cz,  cv defined in Eq. (34) is assumed constant 
in each axis direction. Let it be assumed that a uniformly distributed load 
having the width B 2a and the intensity q is surcharged on the surface 
of a semi-infinite foundation. 

   Boundary condition for Eq. (34)  is  : 

 (w)v-o  =  O.   (35). 

Initial condition is same with Eq. (11),  namely  : 

 (w)r--c.  =  f  (x, y) =5- Car 1 X2 +Y2a2                  2ay (36) 

Putting  w(x, y, t)  T(t)  X(x)  Y(y) into Eq. (34), and applying Eqs. (35), 

(36), the solution of the fundamental equation becomes as  follows  : 

                         A2+122—a2exp 1_(x-2)2 CY—,12)21   w-=A2^/q cot-' 
     ycvvt–02apL4czt4cytj 

          —exp{—(IC— A) 2(YP)2}] (37) 
 4czt  4cvt 

   If the permeability of the foundation is isotropic, putting  c,,  =  cv  =  c in 
Eq. (37) gives the same equation as Eq. (12). 

 2a=lo 

 MINI  F1111111111111111111 
 (p)  o)  aS  I)• 15  MN  Frilla  (3) 

 579t2582  2379  .361  .2544  250, 244-  2333 
 (a-9  Nowrommi 

04.0.3 

  ") 
    4209142/64209.4/85 .4/40  /00 .79SJ .3776 Fig. 8. Distribution of pore pressure   ---)

I II-7h-                4467.4108.4317418.3990 in the semi-infinite foundation of 
 (1.5)—1     

.4237 V2641.4257 1.42/71.4/321.4035  .  9/7 .34(93 anisotropic permeability. 
 (2)      1 

    970+199 1139701.39 4 .3866 .37751.3642 .3470 (25)IIII 
    .369? .37/2 1 3699 36/13517..3504 .3311  .3225 

  (3) 

   As the numerical calculation of Eq. (37) under the conditions 2a  =  10, 
 =  9k0, and  4cyt = 1, Fig. 8 is shown, giving the distribution of pore 

pressure  w/q. Comparing Fig. 8 with Fig. 3 (a), which gives  w/q for the 
foundation of isotropic permeability, it may be concluded that the intensity 
of pore pressure in the former type of foundation is about as small as 60% 
of the latter, and that the type of the pressure distribution is similar in both 
Fig. 3 (a) and Fig. 8.




