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    Part II Considerations of the Earthquake Resistant 

                Properties of Earth Dam 

                    1. Introduction 

     The  vibration character of earth dams having various dam lengths is dis-

cussed in Part 1, in which the earth dams are assumed visco-elastic. In this 

paper  the author describes the earthquake resistant properties of earth dam 
from the standpoint of vibration on the basis of the results obtained in Part I. 

He also describes what size of seismic coefficient is to be adopted for dam 

design, when the conventional design method of seismic coefficient is used for 

evaluating the effect of seismic forces upon the structures. The method is 

based on such a way of thinking that the horizontal  force of the magnitude of 
"the weight of structure multiplied by seismic coefficient" is assumed to act 

statically on the structures; and finally he makes a proposal concerning the  seis-

miL. coefficient of design. 

        2. Seismic Coefficient of One Mass System 

     Since the forced vibration of solid body is generally ex- 

pressed by the summation of the free vibrations, each of theu. 
vibrations of the normal mode can be treated as the vibration 

of one  mass system having one freedom. Hence, according 

to M. A. Biot's  theory," at first the seismic coefficient of one 

mass system shall be discussed. 

     Letting u be, in Fig. 1, the displacement measured refer-

ring to the moving coordinate having the origin  0,. M be the  °' 
                                                           Fig. 1 

mass, k the spring constant and uo the ground motion, the 

vibration of the structure assumed as one mass system may be given by 

 Mit+  DU+  ku=  —M-1409 

 Or 
 -1-2511+  Y/22t  =  a  (i) ,  (1) 

where D : coefficient of viscous resistance, 

 n2=  k/M,  2s  =  D/M,  a  (t)=  —?uo.
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    When the vibration begins at the initial state of stillness, the solution 

of Eq. (1) will be given as follows under the condition of  u = 0, it = 0 at 

 t=0, 

 u-  e  —T)  a  (r)sin  co  (t  -  r)  dr  ,  (2) 
 a)  0 

 where 

 =  //n2  e2 

    When the horizontal force F acts statically on the mass M causing de-

flection y, the  force F which should be applied statically so as to cause M the 

dynamic deflection u is, using the relation  F=  ku  , 

          F= Mn2uM—n2e-E(i-7) a  (y)  sin  co  (t-r)  dr  , 
                          co0 

and the  seismic  coefficient  K given by  K=  F/Mg is 

     A     -(3) 
                         g 

where 

 A-   t e —e(t—T) a (r) ;in ) dr.                       co .Jo 

     Therefore, when the external force  W-K—the weight multiplied by the 

 seismic coefficient K given by Eq. (3) — is assumed to act statically, the deflection 

occured in this case is nothing but the one occured during the vibration ex-

pressed by Eq. (2). Thus, if the maximum value of Eq. (3) is used as the 
design seismic coefficient,  • the conventional design methed may be used quite 

rationally in designing the structure. When the acceleration of ground motion 

a  (t) is as complicated as seen in the actual earthquakes, the torsion  pendulum' ,2) 

or the analyzer using the electrical  method3' can be used for determining 

the value of A. 

      3. Determination of Seismic Coefficient on Dam 

     Expressing the vibration of dam by the moving coordinate  having the ori-

gin at the crest of dam, and letting u be the displacement and  a  (x,  t) the 
acceleration of ground motion, the equation of motion of two-dimensional dam 

is given by



                                                        25 

 62U 2(02uev2u/ a3uc .,21 au 
                  ax2+aye) c1219x2at ay2atly ay 

                  1 a2u au   —()4                      +c12 
              yayatOat+ a(x,t),   

where  a(x,t)=  —io(x,t) and c2 is the coefficient of viscous resistance pro-

portional to the velocity, which is expressed by the moving coordinate. The 
boundary conditions are given by 

 u=0 at  x=0,  u=0 at  x  =a, 

 (5 
          ay) 

              —= 0 at y=0,  u  =  0 at  y  =h.  j 

     The initial conditions are considered to be given by 

            u=0,  it=  0 at  t=0.  (6) 

     Assume that  u and a  (x,  1) can be developed respectively by using the 
"Eigenfunctions" as follows : 

                                     ,As 

                 = 

                                n= 

                   u=sina•Xjy )nsl 

                                                                             ' 

            a (x,t)= sinnnx.lo(i39Sbns(t), 
                          n=1 2.71 a 

where 

           4nn As  O
ns(t)         =-.1  fafn2 ,t)Jo( 

                                                                                                                                   . 

                   a (rip)p dA  dp,              ah2J12(29)Joo 

and  substitute the above into Eq. (4), we get the differential equation on T 

as  follows  : 

 Tns+2etns+n2Tns=cbms(1), 

where 

 no2=c02{(nn/a)2-1-(2,/12)21, 

 e= (1/2)  Cci2{(nn/a)2+(2,/h)2)+  6.22). 

    For the case  T=  0, = 0 at  t=  0, the solution of the above equation becomes 

                          t —e(t—T)  Tns  =—C0e  Ons  (2,,  r  )  sin a>  (t  —r)  dr, 
therefore,  u is given by 

    4 1   
 U.T            =E ft  Assin—(—  as. .h(2s)a°h
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 X—1e—6(f-7)i.00aa            0a (As,) sin").d2} sin  co  (t  -r)dr.  (7)  co 

     When the distribution of acceleration of ground motion in the longitudinal 

direction of dam is uniform, we may rewrite Eq. (7) in the following form, 

by the reason that  a(t) must be used instead of  a  (x, t), 

        8 — 1 nn,2,          u—,,,sin aXJ0(-h--Y)  n n=1,3,1•• s=1 nAsJ11..As) 

                 X  1  ft e                               a (r ) sin 0.) (t - r) dr.   (8)  co Jo 

     For the one-dimensional dam, the following solution may be obtained as 
the solution of the Eqs. (4), (5) and (6), in which all of the terms  relating 
to x are omitted. 

    u=2  1 \  1 ft--el(t—r)      u=`'L -' J (2)-"k Y col  ioe a  (r)sin (t-r)dr,    s=1 s 1 s • 
where 

 on=  -1/  no12  —£12,  noi2=c22(2,/1)2, 

 e=(1/2){e12(2,/h)2+c22},  CO2=  G/  p,  ci2=rc/p,  c'z'=  a'  /P  - 

    Though Eqs. (9), (7) and (8) are the equations which express the  de-

flections during the vibration of the one- and two-dimensional dams, one mass 

system can be considered per each mode of n or n, s. Considering the rela-

tion given by Eq. (3), the seismic  coefficient K1 and K2 of the one- and two-

dimensional dams can be shown respectively as  follows  : 

     For the  one-dimensional  dam  : 

 2 -           K
1  AgJh 

                  1 Jo(2')A  (10)                    s=128) 

 not  As  =  e  a(r)sincei(t-r)dr. 
 201 

     For the two- dimensional  dam  : 

   for the case where the acceleration of ground motion is not uniformly 

distributed along the dam length 

 K21 = —  gan=E1s=1AE,s./ 1\,,AS)sin nnax Jo(y)C•Ang.   (11) 

                     2 

       of
30e0a 

 C•Ans=nCOa (2,r) sin—nTh2c11} sin co (t-r) dr . 
   for the case where the acceleration of ground motion is  uniform-ly distri-

buted along the dam  length  ;
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                   E  27.1.t.As nns nx  Jo(y)Ang,    K2  —8 a(12)               gn n=1,1,1,•••s=11^ •h 

                 no2ct                Ang=e( t—T)                                 a (z) sin ro (t—r)dr. 

     Computing the shearing stress for the uniform motion of ground from the 

conventional seismic coefficient method, by the  Use of the above-mentioned 

seismic coefficients, 

     For the one-dimensinoal  dam  : 

         1 \  S,  =  —  2  hp  
s••2s2.11(28)J1k h y )As.   (13) 

  , For the two-dimensional  dam  : 

   the shearing stress in the direction of dam height  ; 

       8ph-11   S
u=  E                        21  s=1  nJi(2s)(n7r/k)2-1-2s2 

                              nn                   X sin-a-x J1L-hL y)Ans,  (14) 
   the shearing stress in the direction of dam length  ; 

 Sr=  8  ph  X 1   1   r(2\k{(
n002+292).                                            n=/,3,1,•••  s=/ AsJ1%,Asj 

 x  cos anxjc,/ 2h'y)A„,,                                            (15) 

where 

 k  =  a/h. 

     When comparing the maximum value of  Sr with that of  S, for the  two-

dimensional dam,  SE is smaller than  S, when  k  =  a/h is about  2--3 or larger. 

The value of k found in the actual dam is usually larger than the above obtain-

ed, hence  S, alone may be considered. 

    Eqs. (10), (11) and (12) give the rational value of seismic coefficient of 

each of the one- and two-dimensional dams, and the vibration of each mode has 

its particular phase difference  8. Considering this point, the vibration of each 

mode must be added up. The maximum of the above-stated values must be 

adopted as the seismic coeffcient of design. For this purpose, for example, 

 A. and  Ang must be determined to be the maximum obtained by means of 

synchronizing and summing up the amplitudes which can be got by recording 

the shakes of the torsion pendulum as to each mode of  vibrations  ; so that the
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procedure requires much time and labour. However, in general, the nearest 
mode of vibration to the period of ground motion is most influential and the 

other modes are considerably small, so that the most dangerous seismic coef-

ficient — the seismic coefficent of design — can be obtained by comparing 

several terms of n or n, s with each other by using the acceleration spectrum 

measured as the one mass system. The distribution of seismic coefficient, 

when the dam is subjected to one or  two ground motions, will be considered 

in the following space. 

3.1. One example of the actual earthquake 

     Fig. 2 shows the acceleration spectrum, obtained by means of above-men-

tioned torsion  pen-
                                             0, 
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where  e  =  0) for the period of each mode of the free vibration of the dam from 

the acceleration spectrum shown in Fig. 2, and computing the maximum 

seismic coefficient of each mode on the crest by Eqs. (10) and (12), and then 

expressing them as the ratios to the seismic coefficient of ground  Ko, we get 

following Table. Figs. 4 and 5 show the distributions of the seismic coefficient and 

of the shearing stress of the one-dimensional dam, respectively. As  seen from 

the figures, in the shearing stress, if there is no damping, the 1st higher mode 

is larger than the fundamental mode. This means the resonance of the 1st high-

er order. It can be seen that there may occur the resonance of the 1st higher 

order  for the ground motion having such periods as expected  usually, provided 

the dam is as high as  3040 m. However, when there is a damping force 

due to internal viscosity  (h1=  0.05,  h2= 0.12), the shearing stress is smaller 

           Table Ratio  K/Ks between maximum seismic  coefficients of 
                       the  earth' dam and the ground. 

       One-  Two-dimensional'  dam.  a/h=  3 Two-dimensional dam.  a/h=  5 
  s dimensio-   nal dam n=1  1 n=3 n=5 n=7 n=1 n=3 n=5 n=7 

  1  4.60  7.  15  -3.  64  1.  15  -1.  10  6.  11  -2.40  2.  54  -1.  31 

  2  -8.70  -11.  15  1.44  -1.  10  0.  71  -10.95  2.  04  -1.15  0.  59 

  3  3.40  4.28  -1.45  0.82  -0.  31  4.36  -1.45  0.82  -0.56 

  4  -1.46  -1.46  0.71  -0.46 -  -1.86  0.71  -0.43  0.  38 
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than that of the fundamental mode all over the dam height. Therefore, if the 

dam of such size as stated above is subjected to such a ground motion, it is 

in safety side to design the dam by using the distribution of seismic  coefficient 

for the fundamental mode of vibration (the curve corresponding to  S  =1  in Fig. 

 4),' notwithstanding that the resonance of the 1st higher mode occurs at this time. 

By the way, the location where the maximum shearing stress occurs in the 

above case is not at the base, but is nearly at the level of one-fourth of the 

height above the base. 

    The fact stated above is one example of the case where the dam is subject-

ed to the actual seismic motion. For the case of a peculiar ground motion, at 

the present when little data of the seismic motion of the peculiar region are 

available for us, the appropriate ground motion must be presumed. From such 

a standpoint, let us consider the initial state of vibration of the dam, when 

it is subjected to the seismic acceleration of sinusoidal form having the same 

period as that of free vibration of the dam, in the following space. 

3.2. Distribution of seismic  coefficient in the initial state of 

    vibration 

     Consider, for simplicity's sake, the case where such a ground motion as stat-

ed before acts on the dam under the condition of no damping. Since the mode 

having the same period as that of the ground motion becomes remarkably lar-

ger compared with the other modes, the vibration of whole dam may be ap-

proximately expressed by the  resonant mode. Therefore, the accelerations of 
the ground motion ao  (s),  ao  (n, s) having the same period as that of each 

mode of the dam will act on the dam, and the seismic coefficients of the dam, 

after one period passes, are given by 

            2 r2.                K
1-  gAsji1(20.10(T, ao  77, 

 8  1  n—nx J(—hAs (16)  K2  = 
                                 a                   n2.11(2.) sin0 y )ao (n,^) n. 

     When the ground accelerations ao (s) and ao (n, s) are constant, the coeffi-

cients in the above Eqs. show the ratios of the seismic coefficients in the re-

sonance of  S th and n,s th order for the constant acceleration, respectively. 

Similarly, for the case of constant velocities the coefficients are given by
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      K1 2co          =  
gh ji(A`s)  JohyvoL.s )7z,            1 Ar 

 ••           8co  1 nn )2211/2 nn2, 
        K2=          gnh nAsii(2,)[a+ 2,ifsin—ax Jo(-,-y)(17)                                              vo(n,^)n, 

where  vo(s),  vo(n, s) mean the constant velocities. Moreover, the shearing 
stresses can be computed from Eqs.  (13)-.(15) as follows: 

     For the case  of  constant acceleration 

 S1, = - 2hp As.,j1i(As)fhs y)  ao(s)n, 
    8hp 1 1     say =sin—n7zxy)a(ns)7r 

 n11.11(2s) (nn/k)2+ 2,2 ah°"-(18) 

  1 1      Sax = 8ph cos—n7rx Jo(-y) ao(n,^)  it.            AI(2,) k{(n7r/k)2+ 2,2}a 

     For the case of constant  velocity  ; 

 Sly=  -  2  cop A
s ji1               ()s)Ji(iy)  vo  (s)  7r, 

     2cop 1 1                             sin"x Ji(Asy)v(ns) 7r-(19)        S2y——             n.A(As)1/(n7r/k)2+ 2,2ah°" 

            1 1 coma(A,\vo(n,^)                           cos—ax0—hy)7r.      Sax =8CoPAsJi(23)kv/(n7r/k)2+ 2,2 

     Fig. 6 and 7 illustrate the distributions of seismic coefficient and of shear-
ing stress for the one-dimensional case. Since there hardly occur the resonances 
of higher order for the sake of the correlative relation with the period of the 
seismic motion,  the resonances of the higher order less than the 2 nd are shown 
in the Figs.. 

     As seen from these Figs., for the case of the constant acceleration without 
damping, the shearing stress shows the maximum value in the resonance of the 
fundamental mode; accordingly, the dam is safe for the resonance of higher 
order, only when  the distribution of seismic coefficient of the fundamental mode 
is taken into account in the design. For the case of constant velocity, however, 

 the stress in the resonance of higher order is larger in the upper part than that 
in the resonance of the fundamental mode. The dotted lines in  Fig. 7 b) show 
the distribution of the shearing stress, when the internal viscous damping (h1 

 =0.05,  h2=  0.12,  h3=  0.18)  actg. It also shows that there is no remarkable dif-
ference between the stress distributions in the resonance of the fundamental 
mode and in that of higher order. Therefore, it may be safe as well for the re-
sonance of higher order to take into account the distribution of seismic coefficient
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 only for the fundamental mode. 

    Fig. 8 gives the distribution of the 

shearing stress  Sz in the direction of the 
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crest length of the two-dimensional dam subjected to ground motion having con-

stant velocity (damping coefficient  h=0), showing that the vibration characters 

of the fundamental mode in the direction of the height and of the mode of 

higher order in the direction of the length  (2,12,  s  =1) give the larger stress 

in the central part of dam than that caused by the resonance of the  fundament-

al mode (n=1, s=1). 

   4. One Proposition for the Seismic  Coefficient of Design
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    The seismic coefficient as des-

cribed above  is obtained by presuming 

the constant acceleration or constant 

velocity. According to the latest stu-

dies, it is clarified that the constant 

velocity occurs in general. For ex-

ample, the seismic spectrum propos-

ed as the seismic coefficient of 

design of the upper part of building 

by R.  Tanabashi  and  others". on the 

basis of the data recorded in Kanto 

Earthquake (1923), is of the con-

stant velocity type much the same 

as the standard acceleration  spec-

trum" proposed by the Joint Com-

mittee of the San Francisco, U.S.A., 

and it is practised in general that 

small seismic coefficient will be ad-

opted for the structures having long 

period of vibration. T.  Hatano7) also 

points out that the stability during 
the earthquake is more widely affected 

     As to the absolute value of the 

building is not always the same as tha 

remains unexplained on the character 

to the value of seismic coefficient  co] 

author dare propose a seismic coeffic 

space. 
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affected by the velocity than by the acceleration. 

of the seismic coefficient, the discussion made on 

as that on dam. Nowadays, many points still 

 tracter of ground motion. Hence, with reference 

 Lent conventionally used in designing dam, the 

coefficient of design described in the following
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in both sides, and the distribution of the  coefficiet 

tirely the same way as that was done in  order  to  d 

the direction of height, examining the stresses 

Eqs. (18) and  (19). As stated before, however, 

has little effect upon the central part of dam when 

is larger than  3--5;  thus, the distribution of sei 

termined in such a way that it decreases in a  sin 

dimensional value at the central part to the zero yak 

parts having the length two times as large as the  ( 
shown Fig. 9, c). Fig. 9, c) corresponds to the case ol 

usually built  decrease generally in heights from the'  c 

is necessary,  considering one-dimensionally, to  assum 

at the part of  smaller height. In such dams, the  dist 

in the direction  of the dam length mav be assumed

 coefficient may  1 

 der  to  determnie

 tnus, tne custrinution ot seismic  coemcient  may  De  =- 

 a way that it decreases in a  sinusoidal form from the  one-

; at the central part to the zero value at both ends, at each of the 

length two times as large as the  lam height from each end, as 

Fig. 9, c) corresponds to the case of constant height, but the  dams 

 ease generally in heights from the  central parts to both sides. It 

 dering one-dimensionally, to  assume the larger seismic coefficient 

 iller height. In such dams, the  distribution of seismic coefficient 

 )f the dam length may be assumed to be nearly constant.

     The seismic spectrum 

and the distribution of 

 seismic coefficient proposed 

above are illustrated in Fig. 

9 a) and b). Since the 

 earth dam, in  general, has 

 a constant grade of faces 

of slope in the length di-

 rection, it may be built 

 uniformly of the same 

material and by the same 

construction method. There-

fore, if the height is 

 also constant, the dam may 

 have the one-dimensionally 

 uniform safety over its 

whole length, but, judging 

 two-dimensionally, seismic 

 coefficient is too large  in 

 both sides. Accordingly, 

 the smaller seismic coef-

 ficient should be adopted 

 t may  be determined, in  en-

termnie the distribution in 

in two-dimensional dam by 

the  restraint of both sides 

the ratio of length to height 

 mnic  coefficient  may  L_  de
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                       5. Conclusion 

     This paper discusses mainly the distribution of seismic  coefficient of design , 
and presents its absolute value, only as a provisional standard. Of course , the 

absolute value of seismic coefficient should be determined by taking into ac-

count the regional distribution of earthquake  frequency8) and the character of 

subbase  soi1.9) 

    The studies reported in this paper are based on the theory that the dam is 

visco-elastic, but such a theory may have something to be questioned, as to 

considering the soil visco-elastic. However, consideration that the dam deforms 

due to seismic forces leads to the conclusion that the seismic coefficient to be 

used in dam design cannot be uniform in every part of the dam. Further inves-

tigations are needed in solving such problems. 
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