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                      Synopsis 

     The remarkable advance has been achieved in the designing and exe-

cution of earth  darn in accordance with the development which has been made 

up to now in the soil engineering. Earth dams as high as 40 m have been 

constructed also in our country. It is often the case that the earth dams 

above all other kinds of dams may be constructed on the sites where the 

foundations of earth ground are comparatively weak. Therefore, the dams 

should be expected to be subjected to large seimic forces, and once they col-

lapse, the failure will cause unforeseen disaster to the downstream region. 

Accordingly, it is a matter of course that the study on earthquake resistant 

properties of earth dam is extremely important. 
    This paper discusses, in part I as the first step toward the clearer 

understanding of earthquake resistant properties of earth dam, the elastic vibra-

tion of the two-dimensional dam surrounded by the ground foundation of  rect-

angular boundary, and clarifies the limit of the possibility of treating the 

problem as the one-dimensional by comparing the above mentioned vibration 
with that of the one-dimensional dam. In part II, discussions are made on 

the seismic coefficient to be  used for the earthquake resistant design of the 

two-dimensional earth dam, and a seismic coefficient of design is proposed. 

          Part I On the Vibration of Earth Dam 

                     1. Introduction 

     The stability of earth dam subjected to seismic forces is used to be 

computed by the method of calculating the statical stability  of the sliding 

surface under the condition of uniform seismic coefficient. It is, however, 

considered that there is a great need for  us  to  use the calculation method 

based on the dynamical standpoint taken into account the deformation of 

the dam, especially for high earth dam. 

     The studies by M.  Matsumura" and by E. E.  Esmiol2 were made on 

the deformation of dam on the basis of the above mentioned standpoint. M. 

Matsumura discusses that the shear vibration is far important than the bend-

ing one for the structures, the base widths of which are large compared  with 

the heights as seen in the earth dams, and studies each of the free vibration
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and the forced vibration due to stationary motion of ground, etc. one by one, 

for the one-dimensional dam infinitely long in the direction of dam axis. He 

also insists that the dam should be  dsigned by using the acceleration taken into 

account the dynamic behaviour. E. E. Esmiol also proposes the method of 

designing the earth dam, aimed at the stresses caused in the dam subjected 

to the stationary vibration. 
    This paper discusses in the first place the effect of bending moment 

on the fundamental earth dam sections by using the beam theory, clarifying 

that the shear vibration may be considered more important than the bending 

one for the earth dam, and then takes up on the vibration behaviour of the earth 

dam as the first advance toward the investigation of its earthquake resistant 

properties. Considering that the actual dam is not of one-dimension but is 
affected by the foundation grounds of both sides, the  disccusion is mainly 

made on the basis of the two-dimensional point of view, presenting the limita-

tion in which the one-dimensional treatment may be acceptable. 

           2. Vibration Characteristics of Dam 

                 with  Fundamental Section 

     The studies on vibration of dam, discussing its  stability under  the action 

of seismic forces, have been made by M. Matsumura and by T. Hatano. 

M. Matsumura's study is made, as described above, on the shear vibration for 

the earth  darn; and T.  Hatano's31 mainly on the bending vibration of  he asym-

metric fundamental triangular section, aiming at the gravity dam. The differ-

ence between their treatments is due to the magnitude of the grade of faces 

of slope. Accordingly, in this paper, the vibration taken into account the 

shearing force at the same time the bending moment based on the beam 

theory, (for simplicity's sake,  this vibration is called, for the time being from 

now, as the shear-bending  vibration,  ) is discussed, and the variation in the 

vibration character with the grade of faces of slope is studied. In consider-

ing the vibration character of gravity dam, it is insufficient to regard the 

vibration as the bending vibration only, but it is also necessary to take account 

of the vibration due to shearing force to some extent. 

     On the other  hand; in case of earth dam, the author clarified that it 

is appropriate to  regard, the vibration as the shear vibration with satisfactory 
accuracy judged from the technical point of view.
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     The relations between displacement and stress are expressed by 

 62w1 M    (3) 
 8y2  El  ' 

 82w  _  M 1  0   (   Q  
 ay2 ElG  ay\  ay (4) 

    Eliminating M, Q, and w1 from the above four equations, we  have the 

following equation representing the shear-bending vibration, considering the 

inertia of rotation, 

        (Y3vj_566tvc85w_Lc84tv 82y3  85w284w      EI128y74Y20y68y66y4Pate{020515ay4 

         y( 3 _ 1 \62wi_(2_3\02w1pE62(y30.5w764w              a2ay3-Fa28y21G at2k126'8314

as shown in Fig. 1, and we consider the 

vibration in the direction of z-axis. For 

simplicity's sake, the following assump-

tions are made: 

 a) Dam section is symmetrical. 

 b) Young's modulus E, modulus of 

   rigidity G and density p are constant. 

 c) Bernoulli's assumption is valid, and 

   the distribution of shearing stress is 

    uniform. 

   Let  wi be the deflection due to  bend-

ing, w2 the deflection due to shear, w the 

sum of  wi and w2, and  I the geometrical 

moment of inertia of section, then the 

equations of motion are given by 

 82zo aQ
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         03w 15 62w)p2 04  (y3a3w 11 62w 7 Ow) 
      +4Yay3+4 ay2+G at“12 ay312aye+3y—Y2+3ay+w =0. 

 (5) 

     Neglecting the effect of the inertia of rotation, as it is generally so 

small, we get 

                    \      E          (v264wv a3w 162w'           12 oy42  0y3+2  63,2) 

 62  r  E ,„20215E  Ow E1 
              0112G-7ay2-r12Gay4Ga2)14)nu"  (6) 

     When  G--->x in the above equation, Eq. (6) becomes 

                   +Y63w1O2w\pOzw   (7)             126)142 ay3+ 2 ay2i+a2at,°' 

and when  E—>co, Eq. (6) becomes 

            G(y2  04w y 03w62w\               112 a
y4 2 0y3  2  0,3121 

 82  ((y2 02w 5y  aw  w                —P 
at21.12 ay2 + 12 ay+  4  ) (8) 

     Both Eqs. (7) and (8) are nothing other than the equations of bending 
and shear vibration, respectively. 

2.2. Numerical calculation 

     Numerical calculations are made in the following, where we indicate how 
the period of free vibration and the form of vibration are affected by the 
magnitude of grade of faces of dam slope, in each of the three cases when the 
vibration of dam is considered only as the shear, the bending and the shear-
bending vibration respectively. 

     Neglect, for simplicity's sake, the inertia of rotation and we consider 
firstly the shear-bending vibration. If we put  z=  y/h,  w=  X(z)sin  cot, Eq. (6) 

• becomes 

                            d2XdX           A z2d4 X +6 Azd 3 X+( 6A + Bz3).z2+ 5Bz—dz            dz4dz3 

 +(3B+  C)X  =0  ,  (9) 

where  A  =  E  /12h2, B=  pEr02/12G, C= —  pw2/a2.
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     Expressing M=  ksin  cot,  Q=0- sin  rot, the boundary conditions may be 

expressed as follows: 

 Ty/  = 0,  0=0 at  x=0, 

       dXQ (10)                 X = 0,                             d
z =Gaz at  z=  1. 

     When we use the following power series as the solution satisfying 

Eqs. (9) and (10) 

       X=  bne.  (11) 
 n=0 

the coefficient  bn in Eq. (11) can be determined from Eqs. (9)  and  (10), and 

the form of free vibration may be found. The period of free vibration cap be 

solved from the roots of the following Eq. (12), where  B/A=ph2oNG=m is 

used, 

    511           (7K7-5K6 –T4Ifo–6-+K4 + 3K5 K2 – KoK3 –2-01C3K2) m3 
               +( 5K5 – 3K4+ K3 K2–103–3-K+12—K2)m2 

                -1-(3K3 —Ka–1 )M+1 =0 ,  (12) 
where  K2, K3,   are functions of b2, b3,  respectively. But in this case we 

take up the vibration of fundamental mode only, because of its  predomi-

nance, and neglect the coefficients of the terms of higher order  than m4 as they 

are so small. Letting  m0 be the minimum positive root of Eq. (12), the 

period  Tas of the fundamental mode may be given  by' 

              2n2n          T
BS=—V h.    (13)                    co^moG 

    Assume that the Poisson's ratio  a is 0.15 for concrete and  0.35- for earth 

and use the  relationship' of  G=E/2(1+a), then we get 

                  9.528/p  T  
Rs=  — h  (a=  0.15),  ^

Mo E ' 
 (14) 
                  10.324/p 

                  llS= mo Pt,  (a=  0.35). 

    As to the bending vibration, also neglecting the inertia of rotation and 

denoting z=y/h,  w=X(z)sin  cat, we have
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 Az2  d4  X                  +  6  Azd3X d2X +6A B' X— 0,  (15)  dz4  dz3  dz2 

where  A  =E/12h2,  B'  =  p(02/a2. The boundary conditions connected with this 
equation can be expressed as follows: 

              d2Xd (3 d2X _0 at z= 0       z3 
d z2=0',I          dz 

(16)dz2—                    dX 
 X=  0,dz at  z=1. 

     The solution can also be given by using the power series expressed by Eq. 

 (11), and if we perform  the calculation just in the same way as in the case of 
shear—bending vibration, we get the following equation corresponding to Eq. (12): 

 m3+672.69  m2+121551.92  m  —2915613.4d  0.  (17) 

     In this case the  coefficients' of the terms of higher order than m4 are also 
omitted. Since the minimum root of Eq. (17) is  mo  =  28.205, the period  Tn 
of the fundamental mode is 

                   TB= 4.098P(18)                               E 
a' 

and the form of the fundamental mode can be obtained as follows:

 Xn =  (1  +  2.3503  z2 

+  0.2762  z4 + 0.0061  z'') 
— 2.5763 (z + 0.3914 z3 

+  0.0184z6 +  0.0002z7). 

 (19) 

    The period of the 

fundamental mode of the 

shear vibration is, as every-

one knows, expressed by the 

following Eq.(20) regardless 

of the grade magnitude of 

faces of slope, 

 27r            T
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 I0

I-..' 8 

 

i  b
4

 2

 0L-
  0   0 

Fig. 2

 —Ph= 3 964 

 G 

 Ts=  4.293,/4,--

 Relation 
 to height 

63 \ -P—h  E' 

 P h 
 E'

between the 

of the dam

        Tax  (P.M 
 7i 

 7  /r-a./5)

 2 3 

ratio  a of base width 

and period T.

              

^ 

 (a  =  0.15), 

 (a  =  0.35),

(20)
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Table 1 Relation between the period T of 

              of base width to height

and the form of vibration is given 

by 

 Xs  =J0(2.4048  y/h)....(21) 

    Table 1, Fig. 2 and Fig. 3 

show how the period T of free 

vibration and the form X of vibra-

tions vary with the various values 

of the ratio a of base width to 

height of the dam, by using  the. 

above-mentioned equations. 

free vibration and the ratio  a 

of the dam.

 a,(w=0.15)
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When we

of the vibration characteristics due to the 

form of dam 

calculate the shear-bending  and bending vibrations, numerically
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the terms of higher order than m4 are omitted for the period, and the terms 

of higher order than  n=9-11 are also neglected for the deformation . The 

former procedure is corresponding to omitting the terms of higher order than 

 n=8, but the convergency of the power series is considerably good and so that 

the solution may have the technically gratifying accuracy. For instance, the 

period of the bending vibration given by Kirchhoff is as follows: 

 T  =  1.183,\/   PA  h4098N/ Ph 
 El2 =* 

which is identical to the solution obtained from Eq. (18). This fact shows 

that such a degree of accuracy of the calculation is quite adequate. 

     We may summarize a conclusion from Fig. 2 indicating the relation be-

tween a and the period of the fundamental mode, as follows: 

(a) The period  TRs of shear-bending vibration approaches to the period 
 TR of bending vibration when a becomes smaller, and to the period  TS of 

shear vibration when a becomes larger. Suppose that the errors which might 

be involved by assuming the shear-bending vibration as the bending or 

shear vibration are expressed by  (  TBS—  TR)/TES or  (  TilS—  Ts)/TRB 

respectively and confine the errors less than 10  %, then it can be con-

sidered that the gravity dam  (a=0.15) causes the bending vibration for 

the value of a less than a 0.6 and the shear vibration for that larger 

than a 2.0. 

     The same consideration leads to the fact that the earth dam  (a  =  0.35) 

causes the shear vibration even in the case when the grade is considerably 

steeper than  a=2.0, because of the error involved for  a:=-:.3.0 being about  2%. 

     As to the vibration curve, we can also draw the conclusion from 

Fig. 3 as follows: 

(b) The form of vibration curve approaches to that of bending vibration when 

a becomes smaller, and to that of shear vibration when a becomes larger, 

and takes the intermediate deformation curve for  a  =1.52.0  (a  =  0.15), 

approaching to a straight line. 

     Similarly to the already mentioned example, suppose that the errors 

which might be involved by assuming the shear-bending vibration as the 

bending or shear vibration are expressed by the ratio  (  XRs -  XR)/XER 

or  (Xs-  XR3)/XBs respectively of the amplitudes at the level of 1/2 of the 

dam height, then the errors are expressed as follows:
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                  about  32 for  a=0.75  (o  =  0.15), 
 ii 17  (V) for  a=3.0  (a=  )  , 

 ii  11  % for  a  =  3.0  (a  =  0.30)  . 

     Comparing (a) with  (b), it may be seen that as for the errors which 

might be introduced by assuming the shear-bending vibration as the bending 

or shear vibration, those due to the deformation are considerably larger 

compared with those due to the period for even the same value of  ba. Thus, 

as a rule, it is obvious that both the bending and shear should be taken into 

account for the range of about  0.75<a<3.0. 

    Accordingly the period of free vibration may be obtained within the 

error of less than  1004 for the dam section as seen in the gravity dam, but the 

errors may become considerably larger in the calculated stresses or forms of vi-

bration than  the  error of the period. In addition, it can be assumed with  technically 

satisfactory accuracy, that the earth dam with the gentle grade  • of faces of slope 

causes the shear vibration. 

            3. Free Vibration of Earth  Dam" 

3.1. Equation of motion 

    The sectional form of actual earth dam is trapezoidal, but for simplicity's 

sake, in the following discussion we may regard it as the fundamental triangular 

section, because the effect of the upper-cut triangle on the form of dam vi-

bration is  small." In addition, the modulus of rigidity G, the shearing vis-

cosity coefficient  rt and the density p of the dam body material are also assumed 

constant. 

     Determine the coordinates as shown in Fig. 4, and consider the vibration 

in the direction of z-axis. Assume that the distribution of shearing stress is 

 x  w uniform along the 

                                                   z-direction. Then,  Akc •  c considering the  e-

     , 

                                         quilibrium of the  aD  .524rI    drforces  acting on the 

                           a'infinitesimal body as 

                                          shown  hatched  in 
              Fig. 4 Fig . 4, we have the

 Zs

A 

ID  

 a

ir4114



                                                        11 

following differential equation expressing the shear vibration of earth dam. 

 aew 1 a(ow+02101 a (GIawa2w 
          612p axle, ax&cat)pl ay\aya_rt oyat) 
     In the above equation, 1 can be given  by  1= ay for the triangular section. 

If we assume that p, G and  rt are constant along x- axis as well as y- axis and 

consider that the effect of vibration energy disperting into the ground as an 

elastic wave is expressed by the damping term 6  •  aw/at nearly proportional 

to the velocity, the above equation may be rewritten in the form 

           62w_2(a2w_i_a2w1,_c2( 03w63w1 aw 
         at=c°\ax2 aye) ay-at°y ay 

                      1ayat+C12  C2"                 yayatat• (22) 

where  cot  = G/p,  ci=rt/p, C22  =8/P. 

3.2. Free  vibration 

    The solution of the free vibration of earth dam is obtained as the one 

which should satisfy Eq. (22) under the following boundary conditions. 

 w  =0 at  x  =0 and  x  =a, 

   Ow  (23)                      =u at y=0,  w  =  0  at  y  =  h.  a
y 

    The initial conditions are, in general, given by 

 w  =  fo(x,  y),  =Fo(x,  y) at  t  =  O.  (24) 

    The solution which satisfies Eqs. (22)  — (24) is obtained under the 

assumption of no>e, as follows: 

    — 

     w=41nn7Ih7 nXi  A JizOs)sinax foLty elao.ro[fo(2,p) cos 04 
   +sin cal e ,-0,(25)              k.A9P)+Fo(2,p)risinnn 2J0(Aauks)d2dp.   

                                     a 

    And the period of free vibration is shown by 

 2n   (26)  T = 
Vno2  -22 

where  no2=c02(n2n2/  a2+282/h2),  e  -(1/2  ){C12(122n2/a2  A2//22  )+  C22}  , 

 cot  =  G/p,  ci2=rt/P,  C22  =  8/p,  n=1,2,3„  s  -1,2,3,  .
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3.3. Period of free vibration

     In order to calculate the period of free vibration, it is necessary to know 

the values of modulus of rigidity G, the density p, or the propagation  velo-

city of transversal wave  co, the shearing viscosity coefficient  rt and the factor 

of resistance  a proportional to the velocity, of the dam soil. And yet, there 

are little data concerning these values which have been investigated on the 

actual dams. Generally speaking, these values vary in a very wide range de-

pending upon the kinds of soil and water contents. K.  lida tested more than 
100 natural soils and gave  p=  1.4  —1.7,  rt  =  10  4-10  5,  CO  =500025000 (in C. 

G. S. Unit) and the Poisson's ratio  a=  0.15-0.48  51. The values, as given above, 

                                                 are the values  mea-
sec 7;

T-,

1

 a

Fig. 5

 -0-
2088  sec

2  k 6 8 10 

 Periods of free vibration of the earth dams.

sured dynamically 

by the resonance 

method in the la-

boratory and not 

those  measured in 

the actual dams. 

However, they may 

be considered more 

appropriate for the 

particular problem 
to be discussed here, 

than the usual val-

ues measured stati-

cally. 

    Fig. 5 shows, 

referring to the 

values described 

above, the period 

of the fundamental 

vibration calculated 

by Eq. (26) for the 

various values of 

height and rigidity 

of the dam.
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When the value of  rt is as large as given above, it has little effect upon the 

free vibration, and  8, in general, has also little  effect  ; so we put  E  =  0 in Fig. 5. 
As stated before, when the gravity dam of concrete is subjected to the seismic 

forces, the bending  vi-  Set' 

bration rather than the 

shear vibration is nre-  014                                                 rt-15=1 °                                                                  c =2000m/s  7;snear vioration is pre- 

dominant. Fig. 6, how-                             012 

ever, shows, for refe- 

rence, the  period of010 

shear vibration, in whichT, 

the height of dam is taken 008  - 

- as 100 m and three values 

 of  co  =  2000,  2500  and oo6 

 3000  m/sec  are  also  as- 

 sumed.  According  to  an 004 

  - example  of  the  measure- 

ment of actual dam, co                             002 

is as large as co = 2600 
 0 

 m/sec.5 a 

   Comparison between 

the period of free vibra-                              Fig. 

tion obtained in case of the  two-di 

 one-dimensional treatment shows tl 

     Putting  k=a/h and  ci2  =  0 

 T=271 

     Representing T for the  case 

compared with the height h by  7' 

which coincides with the period of 

     Therefore, considering the 

 T 
 T'7s!

 0 2 4  6 8 

 Fig. 6 Periods of shear vibration of 

two-dimensional treatment and that 

ows the following results. 

 L2=0 in Eq. (26), we have 

T=2nh/co11-11-21-t2+A2   
        k2g 

 le case when the dam length a is 

by  T'  , we get

the 

in

 8131  sec 

-0- 
 0105 

-0- 

0087

/0 

gravity dams. 

case of the

T'  =2nh/c02,  , 

 free  vibration 

ratio of both F 

 As  
 n27I2   2
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extremely

 of the one-dimensional 

 periods, we have

(27) 

large 
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 dam. 
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nt, the length is needed to be 4 times as  large as tin 

 iod of the fundamental mode and more than 8  times as  1, 

1st higher mode of vibration, and, moreover,  whet the  ex 

 3 than  101V, the length must be 3 or 6 times as  large as  tl 
 •od of the fundamental or the 1st higher mode of  vibration  

. Model experiments 

  In order to investigate the period of free  vibration and 

vibration of the two-dimensional dam, and to  compare  then 

cribed above, the vibration experiments were made  b using 

agar-agar of 3  (V) concentration. The dimensions of du 

Lows: the grade of surfaces of slope is  2: 1, the  crest  wid 

e width is 33.0 cm, the dam height is 8 cm, and as for 

 rinds of length 24 cm (a/h  =3), 40 cm (a/h  =5)  and 56 

 opted. In each experiment, the resonance due to  the  forcei 

vibration which is produced when the shaking  table is  su 

 I brake by switching the electric motor off, were  measured, 

tions at many points of the dam model were  magnified by 

 ice and recorded simultaneously on the oscillograph papers 

 •ng vibration of the upper end and the center  section of  tl

      Fig. 7 indicates 

    the above-mention-

   ed relationship  be-

   t ween the periods 

   of the fundamental 

   and the 1st higher 

   modes. It can be 

   seen also from Fig. 

   7 that, when the 

   error in the period 

   of free vibration 

   is limited to less 

   than 5 tY, which 

 might be involved 

 due to the  one-

   dimensional  treat-

    ; height for the 

 )s as  large for that of 

 the  error is limited to 

 ge as  ie height for the 
 ibration respectively. 

 in and the normal mode 

 re  them with the theory 

 ,y using the models made 

of the models are as 

 est  width is 1.0 cm, the 

as for the dam length 

 aid 56  cm  (a/h  =7) are 

 forced vibration, and 

 e is  subjected to a  sud-

msured, and the  defor-

ied by the optical lever 

papers. The deflections 
 in of  ie dam model are
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   MMIMMIllitliEll•EV;marked o show the      _imosmanini.,-.-,=ii                     MN% 

  r,0„MIMMMMMMMM^I.ma.gobserved results and 

        , 

   ,,CZIA  =  5.'3the solid lines repre-    ,.mipo•ffir.010”IIMI •                                                                  '13 

  VS^IMFIRMillIMEI^ME1.,sent the calculated  4EIMMIIIIMIINE
.ME  0ones, and these values 

              = 

 1 10  0/5  =3toMMIshow quite consistent  01111M1111111E.111oMIMI=7                                               with one another. 

    0 

  5
.ISill 1.11.1111.1ISE=FM                             MINTable 2 indicates 
0  0.2 04  a  6  as  10  1,MINII 

 Length of  clam the comparison  be-  ',SUMO  •11  ^ tween the observed 
 °- rA.1111.       .11...1resultsand the calculated values 

     0' ' 

  _ 05....M11111111111.of the period of free vibration 
    10 
   11111......11liof the dam model. 

  10mr-Am
ih,'-...4... T' in Table 2 are the    as4irmeasured values of the period of    0r•I ythe fundamental free vibration 

 i -05 obtained from the experiment 
 1 ,..  -10 using the  one-dimenional model 

    10  '.-3-„Ii.e.•. 
 iMNIIMMMMMMMilwhich was made by cutting off the  I65 
    0•••••••,,,,,,,....,.original model  remainning the 

  ,AINIEwt•111111.ummmicentral part of 15 cm long after 
  _o  IMIIIIIMMEMIPM the two-dimensional model experi-

     o 02 04  06  1711  10 ments had been finished. The 
         --.-  [myth of  data 

  Fig. 8 Deflection curves during vibration calaulated periods  Tii and  Tai of 
        of the dam models. the two-dimensional model were 

obtained from Eq. (29) by using the measured period  T' of the one-dimensional 

model, for the main purpose of clarifying the difference between the one- and the 

two-dimensional treatments. As seen from this table, the measured result are 

in good accordance with the computed ones for the fundamental mode, but de-

viate considerablly from the theoretical ones when the 1st higher mode was 

produced in the longitudinal direction of the dam, and the shorter the length of 
dam compared with its height, the greater the deviation. This may be due to the 

fact that the model made of agar-agar is so elastic compared with that of soil 

that the bending vibration has much effect upon the higher mode of vibration.
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Table Comparison of the 

 vi

mesurements 

bration of the

and computed 

dam model.

values of the period of free

 a/h

Measured 
vibration

periods of  T
o' (sec)

one-d  imensiona 1 free

 co  (cm/sec)

Two-dimensional periods of 

free vibration T11 

     (n=1, s=1)

Two-dimensional periods of 

free vibration T21 

     (n=2, s=1)

 TnIT  01

 T21/7"0,

Obs. value 

 (sec)

Comp.  value 
 (sec)

Error 
 %)

 Obs. value 
  (sec)

Comp.  value 

 (sec)

Error 
 (56)

 Obs. value

Comp. value

 Obs. value

Comp.  value

3

 0.0410

474.0 

0.0400

0.0402

0.5

0.0250

 0.0334

25

0.909

0.913

0.568

0.757

5

0.0482

432.0 

0.0470

 0.0466

 —0 .9 

 0.0350

0.0426

18

 0.  975

0.966

0.726

0.885

7

0.0530

  394.5 

 0.0520

0.0520

  0 

0.0420

0.0493

15 

0.982

0.982

0.792

0.930

given

duced

Errors are  computed

Let  f  (x,  t) be the ground motion, and the  bout 

as follows: 

 w=  f  (x0,1) at x=0,  w=  f  (xa,  t) at  x=  a, 

 Ow  
 8y=0 at y=0,  w=  f  (x,  t) at  y  =  h. 

And the initial conditions, considering that the 

suddenly from the still state, are given by

from  (Comp.  value-Ohs.  value)/(Comp. value). 

4. Forced Vibration 

ground motion, and the  boundary condition ndary condition can be 

 (30) 

 ground motion is pro-



                                                            17 

 w  =0,  =  0 at  t  =  0.  (31) 

     In order to satisfy the differential equation (22), as well as the boundary 

and initial conditions Eqs. (30), (31), the solution  wo of  f  (x,  r) which corres-

ponds to  f  (x,  t) when the ground motion is independent of time, is to be given 
in the first place, and then the Duhamel's Theorem may be applied . Thus, the 

solution is given as follows: 

  4  —  1        W=
ah2s=1E                J 1(1,^){(nn/a)2 +(As/ h)2}sina11n  xy) 

 X  n02 ft e-E(t-T)r-  112  -nn f (X0, r)±( — 1)n+If( xa 7)1.  co J0 L As  a  ( 

        Asf'f(A,-1-) sin  nn(121sinco(t7-) dr.  (32) 
                       a 4.1.  Uniform ground motion in the longitudinal direction of dam 

     When the ground motion is uniform in the longitudinal direction of dam 

and can be expressed by f (1), Eq. (32) may be rewritten as follows: 

    8 -1       w=—  E „ ,sin an  x J 
               nn=1,3,5,—s-1nAsj1 \As)a0 ) 

                                          a 

          X no2 Jct  ( )  sin  CO  (t  r)  dr,  (33) 

which shows that in this case the vibration can occur only when  n=1,3,5,  
— that is — the symmetrical vibration in the longitudinal direction of dam 

alone can occur and there can be no asymmetric vibration. There is no ques-

tion, when  f  (t) can be expressed by the simple function, and consequently 

Eq. (33) can be easily integrated; but the unit graph method or the analyzer 

must be required, when  (t) is so complicated as usually found in the actual 

seismic motion. 

     Next, consider the central part of the two-dimensional dam in order to 

compare the two-dimensional vibration considering the effect of the dam length 

with the one-dimensional one. Putting x=a/2 in Eq. (33), we get 
      - 1 1 1  w=  8 —(1-+ 5-  1 

     0=1 71AsI 10s) 11/' 

             Xn°2f(r) sinco(t- r) dr. 
 0)0 

     Assume that the length a of the dam is extremely long and  a-*co, 

 e-E(n2) the
n w may decrease with the decrement factorand may be
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so small for sufficiently large values of n. 

      Hence, when  a---4co, we have the following relations 

 not =  co2{(n7r/a)2+(As/h)2}  co2(As  /  h )2, 
 =(1/2  )CCi  a{(  n7r/a  )3+  (  2s/h  )2}±c22)  (1/2){c12(Asfity+c0}, 

and also, since 

 (  1/7r)(  1  -  1/3+  1/5  ) 1/4, 

the vibration  solution of the central part of the dam may be expected to 

approach to a great extent to the solution for the one-dimensional dam, in other 

words, the latter solution is given by omitting the terms relating to x in the 

differential equation (22), the boundary and the initial conditions (30), (31). 

     The solution can be written as follows: 

     w=2E  Jo(2Syno12e-si(t -,)                                        f(r) sin an(t - .1-) dr, 
          i As.7-1(2.)hon3o 

 (34) 
where 

 col  =1/n012-612  no12  =co(As/h )2,  ei  -(1/2){c12(2s/h)2+c22}. 

4.2. Comparison between the resonant amplitudes of one- and two-

    dimensional earth dams 

    Let the ground motion be expressed simply by A cos  pt and consider the 

vibration when the sufficiently long time has been elapsed since the ground 

motion began, then the terms of forced vibration will remain. Expressing such 

terms for one- and two-dimensional dams by  iTh and  rci, 

                                                   2 

      1 nol       =2AZJ(Asy)    sin  (pt—  al), 
             AsL(2,)h(noi2 -P' )2 +461'P' 

 (35) 
where 

 2e1P                         8
1  =tan-1  n oi2  -P2 

             w2=8A1 sinno                              —;In               n =1,3,5,-•  s=1 1,ASjAax.fo (A:y h(no' -P')= + 4E2p2 
 x  sin  (pt-8),  (36) 

where 

                     2eP                            8 =tan--1 
                              no2 pz
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Table 3 Values of  1/nAsJi(Ns)

 s
1

1 

2 

3 

4 

5 

6 

7 

3 

9 

 10

 0.  8011 

 -0.  5323 

 0.  4256 

 -0.  3647 

 0.  3225 

 -0.  2948 

 0.2720 

 -0.  2539 

 0.  2390 

-0. 2264

3 5 7 9

 0. 2670 

 -0.  1774 

 0.  14.19 

-0. 1216 

 0. 1075 

 -0.  0983 

 0.  0907 

 -0.  0846 

 0. 0797 

 -0.  0755

 0.  1602 

 - .0.1065 

 0.  0851 

 -0.  0729 

 0.  0645 

 -0.  0590 

 0.  0544 

 -0.  0508 

 0. 0478 

 -0.  0453

 0. 1144 

 -0.  0760 

 0.0610! 
 -0.05211 

 0. 0461 

 -0.  0421 

 0.  0389 

 -0.  0363 

 0.  0341 

 -0 .  0323

 0.  0890 

 -0.  0591 

 0. 0473 

 -0.  0405 

 0.  0358 

 -0.0328 

 0.  0302 

 -0.  0282 

 0.  0266 

-0. 0252

11 13

 O. 072'     81 

 -0.0484! 

 0.  0387 

 -0.  0332 

 0.  0293 

 -0.  0268 

 0.  0247 

 -0.  0231 

 0.0217 

-0. 0206

15

 0.  0618 

 -0.  0409 

 0.  0327 

 -0.  0281 

 0.  0248 

 -0.  0227 

 0.  0209 

 -0.0195 

 0.  0184 

 -0 .0174

 0.  0534 

 -0.  0355 

 0.  0284 

-0. 0243 

 0.  0215 

 -0.  0197 

 0.0181 

 -0.  0169 

 0.  0159 

-0. 0151

   Table 3 shows the coefficient VnAgL(29) in Eq. (36), in which  n=1 cor-
responds to the case of one- dimensional dam. As seen from the table, the 

vibration of higher mode in the longitudinal direction decreases with the ratio 

of 1/n, but the one in the direction of dam height decreases with the ratio of 

1/1.5, 1/1.9,  1/2.2,  and the rate of decrement in the latter is considerably 

lower than that in the 

former. This fact showsiiszeAs) T (Y)  -05  0

that the vibrations of high-

er mode have a comparative-

ly large effect upon the 

direction of dam height. 

   Fig. 9 indicates {1/ 

 28.11(28)}10(20/h), in which 

the dotted lines show the 

similar coefficient concerning 

the column of rectangular 

section with uniform mo-

dulus of rigidity and den-

sity. It can be seen that 

the rate of decrement of 

the vibration of higher mode

 Fig. 9 Normal

 to  7 

modes of the earth dam and 

homogeneous solid  building.

the
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is small for the triangular section as seen in the earth dam, as compared with 

that for the general building, and that the higher mode is so remarkable in the 

crest part that the  resonances of higher mode may be of serious problem. 

     Fig. 10 indicates that how the  resonance-  amplitude of  the- fundament-

al mode in the central point of the 
                                                                                        C. 

crest varies with the dam length, by a)- 50 ./s 

plotting the calculated results obtained/1.4/p, 
from Eq. (36) for the various values 

of dam height  h and rigidity co. In 

the process of calculation the author 

takes the value of sin  (pt-  8) as unit 

1, so that the curves in Fig. 10 does 

not represent the very resonance am- IA.„, 
plitude in a strict sense, but gives the 

general  features of the resonance am-

plitude. The mark - found at the right  10  • 

edge in the figure shows the similar 

                                                                                                                    • value for the one-dimensional dam, 

computed from Eq. (35).  ghearing  0  
                     0 2 4 6 8  10 

viscosity  rt was determined in order 

     1') C..100,./s 10 
 C)  C.  =200.15 

 deo, 
   • • 

                  84i.40,4i.40,• • 
 /5" 

                                                                        is 

 170 •  • 

 4 

                    O  •  • 

    5
. 

 11./o•  
•  4=10. 

                                                                                                           • 

 0  2 4 6  6  /0 0 2 4 6  8  10 

  Fig. 10 Relation between the resonance amplitude and the ratio of lengh to height 

                                of the earth dam.
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that the following condition was satisfied, i.e.,  co  =100 m/s,  h1=Ei/noi = 0.1 

for  h= 20 m in the one-dimensional dam. As known from Fig. 10, the  one-

dimensional treatment may be acceptable for the larger values  over about 3-5 

of a/h. The critical limiting value for the above-mentioned period of the free 

vibration, is  also of such a magnitude. Such a consideration leads to a con-

clusion that the one-dimensional treatment may be carried out without involving 

serious error  for the larger values over 3-5 of a/h. 

 5.  Conclusion, 

     First of all,  this paper discusses  the'vibration character of earth  dam as the 

basis of establishing the rational method of earthquake resistant dam design. 

All of the discussions are derived from the theory for the elastic dam model 

having the particular sectional form, but there may be some problems left in 

abeyance and expected to be solved in future. The summaries of the studies 

reported in this paper are concluded as follows: 

 (1) The vibration of such structures having gentle grade of surfaces of slope 
as earth dams can be considered as the shear vibration. For the gravity dam, 

however, the bending vibration is more predominant and the effect of shear 

vibration must be considered to a certain degree. 

 (2) For higher dams, the value of vibration period may be of such magnitude 

that the resonance of higher order presents a problem, when we deal with the 

period of the principal motion of the serious  earthquake which have been 
occurred up to now. 

 (3) For the dam having the length larger than  3--5 times as large as the 

height, the vibration period and the amplitude of central part are of the same 

magnitude as found in the one-dimensional dam; therefore, the one-dimen-

sional treatment may be allowable. This limiting value is very significant, when 

the distribution of seismic coefficient in the direction of the length must be 

taken into account. 

     The author, in addition, has been studying on the seismic coefficient to be 

used in designing the earth dam, from the dynamic standpoint based on the 

 theory described in this paper, and is intending to make public the above-men-

tioned research results in the next part.
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    Part II Considerations of the Earthquake Resistant 

                Properties of Earth Dam 

                    1. Introduction 

     The  vibration character of earth dams having various dam lengths is dis-

cussed in Part 1, in which the earth dams are assumed visco-elastic. In this 

paper  the author describes the earthquake resistant properties of earth dam 
from the standpoint of vibration on the basis of the results obtained in Part I. 

He also describes what size of seismic coefficient is to be adopted for dam 

design, when the conventional design method of seismic coefficient is used for 

evaluating the effect of seismic forces upon the structures. The method is 

based on such a way of thinking that the horizontal  force of the magnitude of 
"the weight of structure multiplied by seismic coefficient" is assumed to act 

statically on the structures; and finally he makes a proposal concerning the  seis-

miL. coefficient of design. 

        2. Seismic Coefficient of One Mass System 

     Since the forced vibration of solid body is generally ex- 

pressed by the summation of the free vibrations, each of theu. 
vibrations of the normal mode can be treated as the vibration 

of one  mass system having one freedom. Hence, according 

to M. A. Biot's  theory," at first the seismic coefficient of one 

mass system shall be discussed. 

     Letting u be, in Fig. 1, the displacement measured refer-

ring to the moving coordinate having the origin  0,. M be the  °' 
                                                           Fig. 1 

mass, k the spring constant and uo the ground motion, the 

vibration of the structure assumed as one mass system may be given by 

 Mit+  DU+  ku=  —M-1409 

 Or 
 -1-2511+  Y/22t  =  a  (i) ,  (1) 

where D : coefficient of viscous resistance, 

 n2=  k/M,  2s  =  D/M,  a  (t)=  —?uo.
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    When the vibration begins at the initial state of stillness, the solution 

of Eq. (1) will be given as follows under the condition of  u = 0, it = 0 at 

 t=0, 

 u-  e  —T)  a  (r)sin  co  (t  -  r)  dr  ,  (2) 
 a)  0 

 where 

 =  //n2  e2 

    When the horizontal force F acts statically on the mass M causing de-

flection y, the  force F which should be applied statically so as to cause M the 

dynamic deflection u is, using the relation  F=  ku  , 

          F= Mn2uM—n2e-E(i-7) a  (y)  sin  co  (t-r)  dr  , 
                          co0 

and the  seismic  coefficient  K given by  K=  F/Mg is 

     A     -(3) 
                         g 

where 

 A-   t e —e(t—T) a (r) ;in ) dr.                       co .Jo 

     Therefore, when the external force  W-K—the weight multiplied by the 

 seismic coefficient K given by Eq. (3) — is assumed to act statically, the deflection 

occured in this case is nothing but the one occured during the vibration ex-

pressed by Eq. (2). Thus, if the maximum value of Eq. (3) is used as the 
design seismic coefficient,  • the conventional design methed may be used quite 

rationally in designing the structure. When the acceleration of ground motion 

a  (t) is as complicated as seen in the actual earthquakes, the torsion  pendulum' ,2) 

or the analyzer using the electrical  method3' can be used for determining 

the value of A. 

      3. Determination of Seismic Coefficient on Dam 

     Expressing the vibration of dam by the moving coordinate  having the ori-

gin at the crest of dam, and letting u be the displacement and  a  (x,  t) the 
acceleration of ground motion, the equation of motion of two-dimensional dam 

is given by
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 62U 2(02uev2u/ a3uc .,21 au 
                  ax2+aye) c1219x2at ay2atly ay 

                  1 a2u au   —()4                      +c12 
              yayatOat+ a(x,t),   

where  a(x,t)=  —io(x,t) and c2 is the coefficient of viscous resistance pro-

portional to the velocity, which is expressed by the moving coordinate. The 
boundary conditions are given by 

 u=0 at  x=0,  u=0 at  x  =a, 

 (5 
          ay) 

              —= 0 at y=0,  u  =  0 at  y  =h.  j 

     The initial conditions are considered to be given by 

            u=0,  it=  0 at  t=0.  (6) 

     Assume that  u and a  (x,  1) can be developed respectively by using the 
"Eigenfunctions" as follows : 

                                     ,As 

                 = 

                                n= 

                   u=sina•Xjy )nsl 

                                                                             ' 

            a (x,t)= sinnnx.lo(i39Sbns(t), 
                          n=1 2.71 a 

where 

           4nn As  O
ns(t)         =-.1  fafn2 ,t)Jo( 

                                                                                                                                   . 

                   a (rip)p dA  dp,              ah2J12(29)Joo 

and  substitute the above into Eq. (4), we get the differential equation on T 

as  follows  : 

 Tns+2etns+n2Tns=cbms(1), 

where 

 no2=c02{(nn/a)2-1-(2,/12)21, 

 e= (1/2)  Cci2{(nn/a)2+(2,/h)2)+  6.22). 

    For the case  T=  0, = 0 at  t=  0, the solution of the above equation becomes 

                          t —e(t—T)  Tns  =—C0e  Ons  (2,,  r  )  sin a>  (t  —r)  dr, 
therefore,  u is given by 

    4 1   
 U.T            =E ft  Assin—(—  as. .h(2s)a°h
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 X—1e—6(f-7)i.00aa            0a (As,) sin").d2} sin  co  (t  -r)dr.  (7)  co 

     When the distribution of acceleration of ground motion in the longitudinal 

direction of dam is uniform, we may rewrite Eq. (7) in the following form, 

by the reason that  a(t) must be used instead of  a  (x, t), 

        8 — 1 nn,2,          u—,,,sin aXJ0(-h--Y)  n n=1,3,1•• s=1 nAsJ11..As) 

                 X  1  ft e                               a (r ) sin 0.) (t - r) dr.   (8)  co Jo 

     For the one-dimensional dam, the following solution may be obtained as 
the solution of the Eqs. (4), (5) and (6), in which all of the terms  relating 
to x are omitted. 

    u=2  1 \  1 ft--el(t—r)      u=`'L -' J (2)-"k Y col  ioe a  (r)sin (t-r)dr,    s=1 s 1 s • 
where 

 on=  -1/  no12  —£12,  noi2=c22(2,/1)2, 

 e=(1/2){e12(2,/h)2+c22},  CO2=  G/  p,  ci2=rc/p,  c'z'=  a'  /P  - 

    Though Eqs. (9), (7) and (8) are the equations which express the  de-

flections during the vibration of the one- and two-dimensional dams, one mass 

system can be considered per each mode of n or n, s. Considering the rela-

tion given by Eq. (3), the seismic  coefficient K1 and K2 of the one- and two-

dimensional dams can be shown respectively as  follows  : 

     For the  one-dimensional  dam  : 

 2 -           K
1  AgJh 

                  1 Jo(2')A  (10)                    s=128) 

 not  As  =  e  a(r)sincei(t-r)dr. 
 201 

     For the two- dimensional  dam  : 

   for the case where the acceleration of ground motion is not uniformly 

distributed along the dam length 

 K21 = —  gan=E1s=1AE,s./ 1\,,AS)sin nnax Jo(y)C•Ang.   (11) 

                     2 

       of
30e0a 

 C•Ans=nCOa (2,r) sin—nTh2c11} sin co (t-r) dr . 
   for the case where the acceleration of ground motion is  uniform-ly distri-

buted along the dam  length  ;
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                   E  27.1.t.As nns nx  Jo(y)Ang,    K2  —8 a(12)               gn n=1,1,1,•••s=11^ •h 

                 no2ct                Ang=e( t—T)                                 a (z) sin ro (t—r)dr. 

     Computing the shearing stress for the uniform motion of ground from the 

conventional seismic coefficient method, by the  Use of the above-mentioned 

seismic coefficients, 

     For the one-dimensinoal  dam  : 

         1 \  S,  =  —  2  hp  
s••2s2.11(28)J1k h y )As.   (13) 

  , For the two-dimensional  dam  : 

   the shearing stress in the direction of dam height  ; 

       8ph-11   S
u=  E                        21  s=1  nJi(2s)(n7r/k)2-1-2s2 

                              nn                   X sin-a-x J1L-hL y)Ans,  (14) 
   the shearing stress in the direction of dam length  ; 

 Sr=  8  ph  X 1   1   r(2\k{(
n002+292).                                            n=/,3,1,•••  s=/ AsJ1%,Asj 

 x  cos anxjc,/ 2h'y)A„,,                                            (15) 

where 

 k  =  a/h. 

     When comparing the maximum value of  Sr with that of  S, for the  two-

dimensional dam,  SE is smaller than  S, when  k  =  a/h is about  2--3 or larger. 

The value of k found in the actual dam is usually larger than the above obtain-

ed, hence  S, alone may be considered. 

    Eqs. (10), (11) and (12) give the rational value of seismic coefficient of 

each of the one- and two-dimensional dams, and the vibration of each mode has 

its particular phase difference  8. Considering this point, the vibration of each 

mode must be added up. The maximum of the above-stated values must be 

adopted as the seismic coeffcient of design. For this purpose, for example, 

 A. and  Ang must be determined to be the maximum obtained by means of 

synchronizing and summing up the amplitudes which can be got by recording 

the shakes of the torsion pendulum as to each mode of  vibrations  ; so that the
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procedure requires much time and labour. However, in general, the nearest 
mode of vibration to the period of ground motion is most influential and the 

other modes are considerably small, so that the most dangerous seismic coef-

ficient — the seismic coefficent of design — can be obtained by comparing 

several terms of n or n, s with each other by using the acceleration spectrum 

measured as the one mass system. The distribution of seismic coefficient, 

when the dam is subjected to one or  two ground motions, will be considered 

in the following space. 

3.1. One example of the actual earthquake 

     Fig. 2 shows the acceleration spectrum, obtained by means of above-men-

tioned torsion  pen-
                                             0, 

dulum by using the

ground acceleration of 
Tanabe Bay Earth-

quake which was  re-
cordedo at the Kobe 

Marine Meteorological 

Observatory on Nov. 
6, 1950. The figure 

is drawn for various 
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where  e  =  0) for the period of each mode of the free vibration of the dam from 

the acceleration spectrum shown in Fig. 2, and computing the maximum 

seismic coefficient of each mode on the crest by Eqs. (10) and (12), and then 

expressing them as the ratios to the seismic coefficient of ground  Ko, we get 

following Table. Figs. 4 and 5 show the distributions of the seismic coefficient and 

of the shearing stress of the one-dimensional dam, respectively. As  seen from 

the figures, in the shearing stress, if there is no damping, the 1st higher mode 

is larger than the fundamental mode. This means the resonance of the 1st high-

er order. It can be seen that there may occur the resonance of the 1st higher 

order  for the ground motion having such periods as expected  usually, provided 

the dam is as high as  3040 m. However, when there is a damping force 

due to internal viscosity  (h1=  0.05,  h2= 0.12), the shearing stress is smaller 

           Table Ratio  K/Ks between maximum seismic  coefficients of 
                       the  earth' dam and the ground. 

       One-  Two-dimensional'  dam.  a/h=  3 Two-dimensional dam.  a/h=  5 
  s dimensio-   nal dam n=1  1 n=3 n=5 n=7 n=1 n=3 n=5 n=7 

  1  4.60  7.  15  -3.  64  1.  15  -1.  10  6.  11  -2.40  2.  54  -1.  31 

  2  -8.70  -11.  15  1.44  -1.  10  0.  71  -10.95  2.  04  -1.15  0.  59 

  3  3.40  4.28  -1.45  0.82  -0.  31  4.36  -1.45  0.82  -0.56 

  4  -1.46  -1.46  0.71  -0.46 -  -1.86  0.71  -0.43  0.  38 
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than that of the fundamental mode all over the dam height. Therefore, if the 

dam of such size as stated above is subjected to such a ground motion, it is 

in safety side to design the dam by using the distribution of seismic  coefficient 

for the fundamental mode of vibration (the curve corresponding to  S  =1  in Fig. 

 4),' notwithstanding that the resonance of the 1st higher mode occurs at this time. 

By the way, the location where the maximum shearing stress occurs in the 

above case is not at the base, but is nearly at the level of one-fourth of the 

height above the base. 

    The fact stated above is one example of the case where the dam is subject-

ed to the actual seismic motion. For the case of a peculiar ground motion, at 

the present when little data of the seismic motion of the peculiar region are 

available for us, the appropriate ground motion must be presumed. From such 

a standpoint, let us consider the initial state of vibration of the dam, when 

it is subjected to the seismic acceleration of sinusoidal form having the same 

period as that of free vibration of the dam, in the following space. 

3.2. Distribution of seismic  coefficient in the initial state of 

    vibration 

     Consider, for simplicity's sake, the case where such a ground motion as stat-

ed before acts on the dam under the condition of no damping. Since the mode 

having the same period as that of the ground motion becomes remarkably lar-

ger compared with the other modes, the vibration of whole dam may be ap-

proximately expressed by the  resonant mode. Therefore, the accelerations of 
the ground motion ao  (s),  ao  (n, s) having the same period as that of each 

mode of the dam will act on the dam, and the seismic coefficients of the dam, 

after one period passes, are given by 

            2 r2.                K
1-  gAsji1(20.10(T, ao  77, 

 8  1  n—nx J(—hAs (16)  K2  = 
                                 a                   n2.11(2.) sin0 y )ao (n,^) n. 

     When the ground accelerations ao (s) and ao (n, s) are constant, the coeffi-

cients in the above Eqs. show the ratios of the seismic coefficients in the re-

sonance of  S th and n,s th order for the constant acceleration, respectively. 

Similarly, for the case of constant velocities the coefficients are given by
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      K1 2co          =  
gh ji(A`s)  JohyvoL.s )7z,            1 Ar 

 ••           8co  1 nn )2211/2 nn2, 
        K2=          gnh nAsii(2,)[a+ 2,ifsin—ax Jo(-,-y)(17)                                              vo(n,^)n, 

where  vo(s),  vo(n, s) mean the constant velocities. Moreover, the shearing 
stresses can be computed from Eqs.  (13)-.(15) as follows: 

     For the case  of  constant acceleration 

 S1, = - 2hp As.,j1i(As)fhs y)  ao(s)n, 
    8hp 1 1     say =sin—n7zxy)a(ns)7r 

 n11.11(2s) (nn/k)2+ 2,2 ah°"-(18) 

  1 1      Sax = 8ph cos—n7rx Jo(-y) ao(n,^)  it.            AI(2,) k{(n7r/k)2+ 2,2}a 

     For the case of constant  velocity  ; 

 Sly=  -  2  cop A
s ji1               ()s)Ji(iy)  vo  (s)  7r, 

     2cop 1 1                             sin"x Ji(Asy)v(ns) 7r-(19)        S2y——             n.A(As)1/(n7r/k)2+ 2,2ah°" 

            1 1 coma(A,\vo(n,^)                           cos—ax0—hy)7r.      Sax =8CoPAsJi(23)kv/(n7r/k)2+ 2,2 

     Fig. 6 and 7 illustrate the distributions of seismic coefficient and of shear-
ing stress for the one-dimensional case. Since there hardly occur the resonances 
of higher order for the sake of the correlative relation with the period of the 
seismic motion,  the resonances of the higher order less than the 2 nd are shown 
in the Figs.. 

     As seen from these Figs., for the case of the constant acceleration without 
damping, the shearing stress shows the maximum value in the resonance of the 
fundamental mode; accordingly, the dam is safe for the resonance of higher 
order, only when  the distribution of seismic coefficient of the fundamental mode 
is taken into account in the design. For the case of constant velocity, however, 

 the stress in the resonance of higher order is larger in the upper part than that 
in the resonance of the fundamental mode. The dotted lines in  Fig. 7 b) show 
the distribution of the shearing stress, when the internal viscous damping (h1 

 =0.05,  h2=  0.12,  h3=  0.18)  actg. It also shows that there is no remarkable dif-
ference between the stress distributions in the resonance of the fundamental 
mode and in that of higher order. Therefore, it may be safe as well for the re-
sonance of higher order to take into account the distribution of seismic coefficient
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 only for the fundamental mode. 

    Fig. 8 gives the distribution of the 

shearing stress  Sz in the direction of the 
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crest length of the two-dimensional dam subjected to ground motion having con-

stant velocity (damping coefficient  h=0), showing that the vibration characters 

of the fundamental mode in the direction of the height and of the mode of 

higher order in the direction of the length  (2,12,  s  =1) give the larger stress 

in the central part of dam than that caused by the resonance of the  fundament-

al mode (n=1, s=1). 

   4. One Proposition for the Seismic  Coefficient of Design
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    The seismic coefficient as des-

cribed above  is obtained by presuming 

the constant acceleration or constant 

velocity. According to the latest stu-

dies, it is clarified that the constant 

velocity occurs in general. For ex-

ample, the seismic spectrum propos-

ed as the seismic coefficient of 

design of the upper part of building 

by R.  Tanabashi  and  others". on the 

basis of the data recorded in Kanto 

Earthquake (1923), is of the con-

stant velocity type much the same 

as the standard acceleration  spec-

trum" proposed by the Joint Com-

mittee of the San Francisco, U.S.A., 

and it is practised in general that 

small seismic coefficient will be ad-

opted for the structures having long 

period of vibration. T.  Hatano7) also 

points out that the stability during 
the earthquake is more widely affected 

     As to the absolute value of the 

building is not always the same as tha 

remains unexplained on the character 

to the value of seismic coefficient  co] 

author dare propose a seismic coeffic 

space. 

    For the top of dam: 
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affected by the velocity than by the acceleration. 

of the seismic coefficient, the discussion made on 

as that on dam. Nowadays, many points still 

 tracter of ground motion. Hence, with reference 

 Lent conventionally used in designing dam, the 

coefficient of design described in the following
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in both sides, and the distribution of the  coefficiet 

tirely the same way as that was done in  order  to  d 

the direction of height, examining the stresses 

Eqs. (18) and  (19). As stated before, however, 

has little effect upon the central part of dam when 

is larger than  3--5;  thus, the distribution of sei 

termined in such a way that it decreases in a  sin 

dimensional value at the central part to the zero yak 

parts having the length two times as large as the  ( 
shown Fig. 9, c). Fig. 9, c) corresponds to the case ol 

usually built  decrease generally in heights from the'  c 

is necessary,  considering one-dimensionally, to  assum 

at the part of  smaller height. In such dams, the  dist 

in the direction  of the dam length mav be assumed

 coefficient may  1 

 der  to  determnie

 tnus, tne custrinution ot seismic  coemcient  may  De  =- 

 a way that it decreases in a  sinusoidal form from the  one-

; at the central part to the zero value at both ends, at each of the 

length two times as large as the  lam height from each end, as 

Fig. 9, c) corresponds to the case of constant height, but the  dams 

 ease generally in heights from the  central parts to both sides. It 

 dering one-dimensionally, to  assume the larger seismic coefficient 

 iller height. In such dams, the  distribution of seismic coefficient 

 )f the dam length may be assumed to be nearly constant.

     The seismic spectrum 

and the distribution of 

 seismic coefficient proposed 

above are illustrated in Fig. 

9 a) and b). Since the 

 earth dam, in  general, has 

 a constant grade of faces 

of slope in the length di-

 rection, it may be built 

 uniformly of the same 

material and by the same 

construction method. There-

fore, if the height is 

 also constant, the dam may 

 have the one-dimensionally 

 uniform safety over its 

whole length, but, judging 

 two-dimensionally, seismic 

 coefficient is too large  in 

 both sides. Accordingly, 

 the smaller seismic coef-

 ficient should be adopted 

 t may  be determined, in  en-

termnie the distribution in 

in two-dimensional dam by 

the  restraint of both sides 

the ratio of length to height 

 mnic  coefficient  may  L_  de
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                       5. Conclusion 

     This paper discusses mainly the distribution of seismic  coefficient of design , 
and presents its absolute value, only as a provisional standard. Of course , the 

absolute value of seismic coefficient should be determined by taking into ac-

count the regional distribution of earthquake  frequency8) and the character of 

subbase  soi1.9) 

    The studies reported in this paper are based on the theory that the dam is 

visco-elastic, but such a theory may have something to be questioned, as to 

considering the soil visco-elastic. However, consideration that the dam deforms 

due to seismic forces leads to the conclusion that the seismic coefficient to be 

used in dam design cannot be uniform in every part of the dam. Further inves-

tigations are needed in solving such problems. 
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