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Synopsis

The remarkable advance has been achieved in the designing and exe-
cution of earth dam in accordance with the development which has been made
up to now in the soil engineering. Earth dams as high as 40m have been
constructed also in our country. It is often the case that the earth dams
above all other kinds of dams may be constructed on the sites where the
foundations of earth ground are comparatively weak. Therefore, the dams
should be expected to be subjected to large seimic forces, and once they col-
lapse, the failure will cause unforeseen disaster to the downstream - region.
Accordingly, it is a matter of course that the study on earthquake resistant
properties of earth dam is extremely important.

This paper discusses, in part I as the first step toward: the clearer
understanding of earthquake resistant properties of earth dam, the elastic vibra-
tion of the two-dimensional dam surrounded by the ground foundation of rect-
angular boundary, and clarifies the limit of the possibility of treating the
problem as the one-dimensional by comparing the above mentioned vibration
with that of the one-dimensional dam. In part II, discussions ar¢ made on
the seismic coefficient to be used for the earthquake resistant design of the

two-dimensional earth dam, and a seismic coefficient of design is proposed.

Part I On the Vi.bration of Earth Dam

1. Introduction

The stability of earth dam subjected to seismic forces is used to be
computed by the method of calculating the statical stability 'of the sliding
surface under the condition of uniform seismic coefficient. It is, however,
considered that there is a great need for us to use the calculation method
based on the dynamical standpoint taken into account the deformation of
the dam. especially for high earth dam.

The studies by M. Matsumura® and by E. E. Esmiol? were made on
the deformation of dam on the basis of the above mentioned standpoint. M.
Matsumura discusses that the shear vibration is far important than the bend-
ing one for the structures, the base widths of which are large compare:l"vﬁth

the heights as seen in the earth dams, and studies each of the free vibration
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and the forced vibration due to stationary motion of ground; etc. one by one,
for the one-dimensional dam infinitely long in the direction of dam axis. He
also insists that the dam should be dsigned by using the acceleration taken into
account the dynamic behaviour. E. E. Esmiol also proposes the method of
designing the earth dam, aimed at the stresses caused in the dam subjected
to the stationary vibration.

This paper discusses in the first place the effect of bending moment
on the fundamental earth dam sections by using the beam theory, clarifying
that the shear vibration may be considered more‘important than the bending
one for the earth dam, and Athep takes up on the vibration behaviour of the earth
dam as the first advance toward the investigation of its earthquake resistant
properties. Considering that the actual dam is not of one-dimension but is
affected by the foundétion ‘grounds of both sides, the disccusion is mainly-
made on the basis of the two-dimensional point of view, presenting the limita-

tion in which the one-dimensional treatment may be acceptable.

2. Vibration Characteristics of Dam

with Fundamental Section

The studies on vibration of dam, discussing its stability under the action
of seismic forces, have been made by M. Matsumura and by T. Hatano.
M. Matsumura’s study is made, as described above, on the shear vibration for
the earth dam; and T. Hatano’s® mainly on the bending vibration of the asym-
metric fundamental triangular section, aiming at the gravity dam. The differ-
ence between their treatments is due to the magnitude of the grade of faces
of slope. Accordingly, in this paper, the vibration taken into account the
shearing force at the same time the bending moment based on the beam
theory, (for simplicity’s sake, this vibration is called, for the time being from
now, as the shear-bending vibration,) is discussed, and the variation in the
vibration character with the grade of faces of slope is studied. In consider-
ing the vibration character of gravity dam, it is ‘insirfficient to regard the
vibration as the bending vibration only, but it isalso necessary to take account
of the vibration due to shearing force to some extent. '

On the other hand, in case of earth dam, the author clarified that it
is appropriate to regard the vibration as the shear vibration with satisfactory

accuracy judged from the technical point of view.



2.1. Fundamental equations

Determine the coordinate axis as shown in Fig. 1, and we consider the
vibration in the direction of z-axis. For

0 % simplicity’s sake, the following assump-
N tions are made:
«® a) Dam section is symmetrical.

P b) Young’s modulus £, modulus of

' rigidity G and density p are constant.
) ¢) Bernoulli’s assumption is valid, and
M the distribution of shearing stress is

= uniform. _
/— N Let 2; be the deflection due to bend-
= 934 ing, w. the deflection due. to shear, w the
e 5 sum of w; and w;, and I the geometrical
Fig. 1 moment of inertia of section, then the
equations of motion are given by

oay %271;):?)_3 ) eereeeeererr e ¢))
pl%(%:%)=_%+g ........................... (2)

The relations between displacement and stress are expressed by

0%w M
W;=—E—I’ ................................. (3)
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Eliminating M, @, and w; from the above four equations, we have. the

following equation representing the shear-bending vibration, considering the

inertia of rotation,
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Neglecting the effect of the inertia of rotation, as it is generally so
small, we get
E(y_zéﬂ Y Pw Lé‘z_w)
120yt * 2 0y* * 2 oy2

9¢( E 0w S5E 0w

E 14.)
~ P58112G6” 672 T 1267 ay+(4_G“ )

w J;=0, ............ (6)
When G—>oc in the above equation, Eq. (6) becomes

yow  y ow 10w, p dw_
E(IZ 6y4 +2 W+2 6y2) - W—O’ ..................... N

and when E—>o0, Eq. (6) becomes

G(y- tw  y 0w 62w>
120yt 2 5y* " 28y

0% /y20%w 5y ow , w
p6t2(126y2+12 6y+4> 0. covvrrrreeeereeneennnns (8)
Both Eqgs. (7) and (8) are nothing other than the equations of bending

and shear vibration, respectively.
2.2. Numerical calculation

Numerical calculations are made in the following, where we indicate how
the period of free vibration and the form of vibration are affected by the
magnitude of grade of faces of dam slope, in each of the three cases whenthe
vibration of dam is considered only as the shear, the bending and the shear-
bending vibration respectively.

Neglect, for simplicity’s sake, the inertia of rotation and we consider
firstly the shear-bending vibration. If we put z=y/k, w=X(2)sinw?, Eq. (6)

‘becomes

41X asX X

Az dz4+6A —+(6A+B ")d 2+SB

F(BBHCYIX=0, orevrrererrnmrraeneaiennen, (9)

where A=E/12h?, B=pEw?/12G, C= - pw?/da®.



Expressing M= Msin wf, @ =@ sinw?, the boundary conditions may be

expressed as follows:

=0, Q=0 at x=0,
B iX_ 0 R (10)
X =0, T U z=1.

When we use the following power series as the solution satisfying

Eqgs. (9) and (10)

the coefficient &, in Eq. (11) can be determined from Eqs. (9) and (10), and
the form of free vibration may be found. The period of free vibration canbe
solved from the roots of the following Eq. (12), where B/A=ph*w?/G=m is

used,

(78 —5K,— 2K, 4+ K+ 3K, — KKy o Ko
+( 5K = 3Kt Ky Ka— i Ko+ Kt
+(3K3 —KZ_%)m—F 1=0, coreeeiririen, (12)
where K, Ky, -+ are functions of b, by, respectively. But in this case we

take up the vibration of fundamental mode only, because of its 'predomi-
nance, and neglect the coefficients of the terms of higher order than m* as they
are so small. Letting #2, be the minimum positive root of Eq. (12), the

period Tzs of the fundamental mode may be given by

_ 2n _ 27I 0
Trs= > __1/ v '\/Th .................................. (13)

Assume that the Poisson’s ratiosis 0.15 for concrete and 0.35- for earth
and use the relationship' of G=E/2(1+¢), then we get

9528 /o, .
TBS_}/WVT h, (0'—0.15),

_10.324 [
Tas= /=4 b, (5=0.35).

As to the bending vibration, also neglecting the inertia of rotation and
denoting z2=y/k, w=X(2)sin wf, we have




X X azx
AZ" —a— +6A d e +6A_JT—B"X 0 """""""" (15)
where A=FE/12h?, B'=pw?/a?*. The boundary conditions connected with this

equation can be expressed as follows:

2K d /. dX

Z2ia=0 dz( d)=0 atz=0, { a6
ol S

X=0, dz_O at Z—l./l

The solution can also be given by using the power series expressed by Eq.
(11), and if we perform the. calculation just in the same way as in the case of

shear-bending vibration, we get the following equation correspondingto Eq. (12):
M3 +672.69 m2+121551.92 7 — 2915613.40=0. -+eerevrereens an

In this case the coefficients’ of the terms of higher order than #¢ are also
omitted. Since the minimum root of Eq. (17) is 7,=28.205, the period T

of the fundamental mode is

TB=4'098\/E1_2_' ................................. (18)

and the form of the fundamental mode can be obtained as follows:

Xz = (1+2.350322 «
+ 0.2762z¢ + 0.0061 2%) SOl
— 2.5763 (z + 0.3914 23 Nosf
+ 0.0184.25 + 0.0002 27). T

............... (19)
The period of the ¢
£7§ (r=0/5)
fundamental mode of the .
shear vibration is, as every- 2| 7%
one knows, expressed by the I
following Eq.(20) regardless oL . . , . , :
/ z
f itude of ———
of the grade magn Fig. 2 Relation between the ratio @ of base width
faces of slope, to height of the dam and period 7'.

Ts= 24048\/6}; 3963y L. (g=o‘15),1\

TS=4.293J7§_h, (s=0.35), I



and the form of vibrationis given
by

Xs=7J(2.4048 y/h). ---(21)

Table 1, Fig. 2 and Fig. 3
show how the period T of free
vibration and the form X of vibra-
tions vary with the various values
of the ratio a of base width to
height of the dam, by using the.

L . —— ove-mentioned egnations.
0 02 04 06 Py 7] ab *

Fig. 3 Relation between « and vibration
form.

Table 1 Relation betwezn the period T of free vibration and the ratio

of base width to height of the dam.

,(5=0.15) " TB/L;}; TBS/ /L;h Ts//%h
0 0 o oo
0.50 1.162 8. 196 8.839
0.75 2.080 5. 464 6. 606
1.00 2.909 4.098 5.586
1.25 3.501 3.278 5.028 3.963
1.50 4.066 2.732 4.725
2.00 4.642 2. 049 442
2.50 5.007 1.639 4.220
3.00 5.279 1. 366 4.142
oo 5.783 0 3.962
3.00, (¢=0.35) 5.532 1. 366 4.389 4.293

2.3. Variation of the vibration characteristics due to the

sectional form of dam

When we calculate the shear-bending and bending vibrations, numerically
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the terms of higher order than 724 are omitted for the period, and the .terms
of higher order than #=9~11 are also neglected for the deformation. The
former procedure is corresponding to omitting the terms of higher order than
n=8, but the convergency of the power series is considerably good and so that
the solution may have the technically gratifying accuracy. For instance, the
period of the bending vibration given by Kirchhoff is as follows:

oA . _ ok
02 ne=1.08/ S

T=1.183\/

which is identical to the solution obtained from Eq. (18). This fact shows
that such a degree of accuracy of the calculation is quite adequate.

We may summarize a conclusion from Fig. 2 indicating the relation be-

tween a and the period of the fundamental mode, as follows:
(a) The period Tgs of shear-bending vibration approaches to the period
T of bending vibration when a becomes smaller, and to the period 7s of
shear vibration when a becomes larger. Suppose that the errors which might
be involved by assuming the shear-bending vibration as the bending or
shear vibration are expressed by (Tas—Tz)/Trs or (Trs—Ts)/Tas
respectively and confine the errors less than 10 9%, then it can be con-
sidered that the gravity dam (¢=0.15) causes the bending vibration for
the value of & less than @==0.6 and the shear vibration for that larger
than a = 2.0.

The same consideration leads to the fact that the earth dam (6=0.35)
causes the shear vibration even in the case when the grade is considerably
steeper than a=2.0, because of the error involved for a=3.0 being about 2%.

As to the vibration curve, we can also draw the conclusion from

Fig. 3 as follows:
(b) The form of vibration curve approaches to that of bending vibration when
a becomes smaller, and to that of shear vibration when a becomes larger,
and takes the intermediate deformation curve for a=1.5~2.0 (0=0.15),
approaching to a straight line.

Similarly to the already mentioned example, suppose that the errors
which might be involved by assuming the shear-bending vibration as the

bending or shear vibration are expressed by the ratio (Xps—Xr)/Xzas

or (Xs—Xps)/Xns respectively of the amplitudes at the level of 1/2 of the

dam height, then the errors are expressed as follows:



10

about 32 9% for a=0.75 (0=0.15),
vz 179 for a=3.0 (o=72 ),
2z 119 for a=3.0 (4=0.30).

Comparing (a) with (b), it may be seen that as for the errors which
might be introduced by assuming the shear-bending vibration as the bending
or shear vibration, those due to the deformation are considerably larger
compared with those due to the period for even the same value of .a. Thus,
as a rule, it is obvious that both the bending and shear should be taken into
account for the range of about 0.75<2<3.0.

Accordingly the period of free vibration may be obtained within the
error of less than 1094 for the dam section as seen in the gravity dam, butthe
errors may become considerably larger in the calculated stresses or forms of. vi-
bration than theerror of the period. In addition, it can be assumed with technically
satisfactory accuracy, that the earth dam with the gentle grade of faces of slope

causes the shear vibration.

3- Free Vibration of Earth Dam®”

3.1. Equation of motion

The sectional form of actual earth dam is trapezoidal, but for simplicity’s
sake, in the following discussion we may regard it as the fundamental triangular
section, because the effect of the upper-cut triangle on the form of dam vi-
bration is small.” In addition, the modulus of rigidity G, the shearing vis-
cosity coefficient 7; and the density p of the dam body material are also assumed
constant.

Determine the coordinates as shown in Fig. 4, and consider the vibration
in the direction of z-axis. Assume that the distribution of shearing stress is

4 z 0 x  xedx : uniform aloag the
I

z-direction.  Then,

& ,,,7/ . considering the e-
//;;M’;,//////' quilibrium of the

WA .
S G forces acting on the

infinitesimal body as

shown hatched in
Fig. 4 Fig. 4, we have the
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following differential equation expressing the shear vibration of earth dam.

w_ 10 w1 6< Gw *w
ET ax(G +T’6x6t) ol oy\Cl gy t1ed 6y6t>

In the above equation, / can be given by /=ay forthe triangular section.
If we assume that p, G and 7. are constant along x-axis as well as y-axis and
consider that the effect of vibration energy disperting into the ground as an
elastic wave is expressed by the damping term §-6w/8¢ nearly proportional
to the velocity, the above equation may be rewritten in the form

0w _ (0w 0w w |, Pw 1 0w
a2z =6 (axz +552) +e( gt oot Byt | J+ery, Yoy
, 1 0w 0w e,
TS ovar ¢ bt (22)
where ¢t=G/p, C1=71:/p, C22=6/p.

3.2. Free vibration

The solution of the free vibration of earth dam is obtained as the one
which should satisfy Eq. (22) under the following boundary conditions.

w=0 atx=0 and x=a,

D TP 23
%)=0 at y=0, w=0at y=~A. (23)
The initial conditions are, in general, given by
w=fox,5), w=Fo(x,9) at £=0.,  ccoeeemreennnnns (24)

The solution which satisfies Egs. (22) ~ (24) is obtained under the

assumption of #,>¢, as follows:

™ o R zs . —ftlaftar
-4 x5 jlz(lz ssinx Ju( 4y e ﬁoﬁoLfo(z,y)cosO>t

+Sln (l)t( fo(l,ﬂ)'l-Fo(Z,,U)}JSIn_z ]0(___” )ﬂ dz drl ............ (25)

And the period of free vibration is shown by

2n
sz“ ................................. (26)

where mo2=co¥(m2n2/a2+22/h2), e=(1/2){c1¥(nPnt/a?+ AP /h?)+Cot} .
c2=G/p, C12=1:/p, C22=0/p, n=123, - , s=1,23,---- .
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3.3. Period of free vibration

In order to calculate the period of free vibration, it is necessary to know
the values of modulus of rigidity G, the density p, or the propagation velo-
city of transversal wave co, the shearing viscosity coefficient 7: and the factor

of resistance § proportional to the velocity, of the dam soil. And yet, there

are little data concerning these values which have been investigated on the

actual dams. Generally speaking, these values vary in a very wide range de-

pending upon the kinds of soil and water contents. K. Iida tested more than
100 natural soils and gave p=1.4~1.7, 7:=104~10%, ¢,=5000~25000 (in C.
G. S. Unit) and the Poisson’s ratio 6=0.15~0.48%. The values, as given above,

Sec bt
i £=40m_C,~ 5075 O
20} 20685ec
18}
L6}
=50 -O-1566
[ o fet0, &0 <o
Wk '_’ 149z
T l2f
[ - e T30, GmT0 olm
" /. ——’ ) N " -.
- #e20 G50, B0, G0 o o
Lor A 1044
4 //
- 7
i/
o8- // £-20_c=T0_ __ _F=30_Cm 100 o783
/ T .
- A P LTV R R U TIPS
26 ‘;, ///";"/ a69s
' /’/’ aszz
L/ o £e20 GrI00_ fei0, Gt0
e A= 10, C=50  R=30,Co=150
ol 7 // _E0.Cn 0 RHLe20 03TG g3
- [z ’-‘:T"?-a" 2750 - 008
/ - 20, -~ - . _
/ ///___ —Fe0 G £i=20, C= 200 2261
0zl /. _ aace
i /.-——--—.—--_.-____ﬂ B €150 o g
e 10 cmow O3
g L 1 " L ! N " R
4 2 4 ¢ 8 70

PR afg

Fig. 5 Periods of free vibration of the earth dams.

are the values mea-
sured dynamically
by the resonance
method in the la-
boratory and not
those measured in
the actual dams.
However, they may
be considered more
appropriate for the
particular problem
to be discussed here,
than the usual val-
ues measured stati-
cally.

Fig. 5 shows,
referring to the
values  described
above, the period
of the fundamental
vibration eslculated
by Eq. (26) for the
various values of
height and' rigidity
of the dam.



When the value of 1. is as large as given above, it has little effect upon the
free vibration, and 9, in general, has also little effect ; so we put e=0 in Fig. 5.

As stated before, when the gravity dam of concrete is subjected to the seismic

forces, the bending vi- Sec

bration rather than the a/w s %
shear vibration is pre- | ﬂ’”j ’Za-_fo;ai_ Ss=r 4131sec
dominant. Fig. 6, how- oer ///n.z SS_.: G

ever, shows, for refe- e ﬂ:‘l/s . cezsm

rence, the period of oy o105
shear vibration, in which % n-1, 5=/

the height of dam is taken [ ave e
as 100 m and three values

of ¢o=2000, 2500 and oer .2
3000 m/sec are also as- | ’

sumed. According to an | /,{/inl/.si?__s__:" 5=3 ____Cm2000 5
example of the measure- f"’/- *

ment of actual dam, ¢, ooty

is as large as co=2600

m/sec.®’ ’ 0 2 4 I p 5 70

a/
Fig. 6 Periods of shear vibration of the gravity dams.

Comparison between
the period of free vibra-
tion obtained in case of the two-dimensional treatment and that in case of the
one-dimensionsl treatment shows the following results.

Putting 2=a/% and ¢,2=0 in Eq. (26), we have

T= Znh/co\/ +Xx et (27

Representing T for the case when the dam lengtha is extremely large

compared with the height 2 by 7', we get
SRR Gy, v (28)

which coincides with the period of free vibration of the- one-dimensional dam.

Therefore, considering the ratio of both periods, we have

T As
T = T [T PP ORI (29)
kz + zs
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10 P e = . Fig. 7 indicates
- sFoslse2 I - .
/' - z, /,\ ezl 0P o B B B the above-mention-
Vs o ol ’ Lo
a7 A g T ed relationship be-
L Lt |/ .
/’/ . tween the periods
. 08 F ;
ke i1 of the fundamental
R f
! and the Ist higher
t a7 ./ ]’ T _ As 1 B g b
; % z .
[ i3 75 A ? ‘e maodes. t can be
* seen also from Fig.
¢ 7 8
/ ] 1 [1s] 23] 5]7]10]ss 7 that, when the
; 5-1] 2607|4753 |36 0913 |2966 | 0962 | 0490|0995 . .
2 ’f» eIl 70867 (0935 0962|0992 |a994 | 0997|1400 | 1600 error in the period
+ s=7|0358 |0497| 0607|0757| 0885|0930 | 0966|0983 s :
241 I -2 [5-2]0640|0797] 6567|0935 |0975 | €987 | 0995 | 0798 of free vibration
| . is limited to less
o .
MR ER RN than 5 9 which
¢ 1 23 5 7 70 /5 might be involved
— = 4%
Fig. 7 Relation between the two- and one-dimensional due to_ the one-
periods of the earth dam. dimensional treat-

ment, the length is needed to be 4 times as large as the height for the
period of the fundamental mode and more than 8 times as large for that of
the Ist higher mode of vibration, and, moreover, when the error is limited to
less than 109, the length must be 3 or 6 times as large as the height for the
period of the fundamental or the Ist higher mode of vibration respectively.

34. Model experiments

In order to investigate the period of free vibration and the normal mode
of vibration of the two-dimensional dam, and to compare them with the theory
described above, the vibration experiments were made by using the models made
of agar-agar of 394 concentration. The dimensions of the models are as
follows: the grade of surfaces of slope is 2:1, the crest width is 1.0 cm, the
base width is 33.0 cm, the dam height is 8 cm, and as for the dam length
3 kinds of length 24 cm (a@/kh=3), 40 cm (a/k=5) and 56 cm (a/h=7T) are
adopted. In each experiment, the resonance due to the forced vibration, and
the vibration which is produced when the shaking table is subjected to a sud-
den brake by switching the electric motor off, were measured, and the defor-
mations at many points of the dam model were magnified by the optical lever
device and recorded simultaneously on the oscillograph papers. The deflections

during vibration of the upper end and the center section of the dam model are
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@ f/bn,z:/fmde rato shown in Fig. 8, in
3§ L
al = : .
0 =T o ,005 18 which the points as
2 N - o ! marked o show the
-0 ™~ '—7{4 g observed results and
2 3
N 0 afg =5 zg o & the solid lines repre-
%M ] Lq % sent the calculated
€ 2
<, 3 ones, and these values
IR N— e o show quite consistent
|1 o ] .
o5 @ with one another.
0 Table 2 indicates
0 0z as a6 8 10 1

BT

1
S
[V <

Amplitude ratio

=3

™
DO

-10 Q

0 0z 04 06 08
——= Length of doam

Fig. 8 Deflection curves during vibration
of the dam models.

10

the comparison be-
tween the observed
results and the calculated values
of the period of free vibration
of the dam model.

T' in Table 2 are the
measured values of the period of
the fundamental free vibration
obtained from the experiment
using the one-dimenional model
which was made by cutting off the
original model remainning the
central part of 15 cm long after
the two~dimensional model experi-
ments had been finished. The
calaulated periods Tnand Tz of

the two-dimensional model were

obtained from Eq. (29) by using the measured period 7' of the one-dimensional
model, for the main purpose of clarifying the difference between the one- and the

two—dimensional treatments. As seen from this table, the measured result are

in good accordance with the computed ones for the fundamental mode, but de-
viate considerablly from the theoretical ones when the 1st higher mode was
produced in the longitudinal direction of the dam, and the shorter the length of
dam compared with its height, the greater the deviation. This may be due to the

fact that the model made of agar-agar is so elastic compared with that of soil
that the bending vibration has much effect upon the higher mode of vibration.
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Table 2 Comparison of the mesurements and computed values of the period of free

vibration of the dam model.

alh 5 7
Measured periods of one~dimensional free 0.0410 0.0482 0.0530
vibration 7"y’ (sec)
¢g (cm/cec) 474.0 432.0 394.5
Obs'( oralne 0.0400 | 0.0470 | 0.0520
Two-dimensional periods of
G al
free vibration T'p, °“E§;c‘; ue 0.0402 | 0.0466 | 0.0520
n=1, s=1)
( s 0.5 —0.9 0
Ober rajue 0.0250 | 0.0350 | 0.0420
Two-dimensional periods of
Comp. valuc e |
free vibration Tz (gec) 0.0334 | 0.0426 | 0.0493
n=2, s=1)
¢ PH 25 18 15
Obs. value 0.909 0.975 0.982
Tu/T¢
Comp. value 0.913 0.966 0.982
Obs. value 0.568 0.726 0.792
Ta/T'y, ‘
Comp. value 0.757 0.885 0.930

Errors are computed from (Comp. value - Obs. value)/(Comp. value).

4, Forced Vibration

Let f(x,t) be the ground motion, and the boundary condition can

given as follows:

w=Jf(%,t) at x=0, w=/f(%,,1) at x=a,

ow

—=0 at y=0, w:f(x, 1)

0y

...........................

be

And the initial conditions, considering that the ground motion is pro-

duced suddenly from the still state, are given by



w=0, w=0 at Fam(). vvereneennneioeonnieeainneneneeninanins (3D)

In order to satisfy the differential equation (22), as well as the boundary
and initial conditions Eqs. (30), (31), the solution w, of f(x,7) which corres-
ponds to f(x,#) when the ground motion is independent of time, is to be given
in the first place, and then the Duhamel’s Theorem may be applied. Thus, the

solution is given as follows:

=z 1
W= % 2 TR e LRy

xn_ozst —G(t——’r)L ;LZ nn {f(xo,r)-i—(—l)"“f(xa, T)j

sz:f(g, ) sin%g dq SN @ (F—7) dr. coveeremeimreeenriennens (32)

xjo( )

4.1. Uniform ground motion in the longitudinal direction of dam

When the ground motion is uniform in the longitudinal direction of dam

and can be expressed by f(#), Eq. (32) may be rewritten as follows:

8 oo oo
wer B Sranncy e w5
xﬁug_z_st e_s(t—ﬂf(r)sin 0 (B—T) dr, wworererernnsnnmininrenennnns (33)
0

which shows that in this case the vibration can occur only when #=1,3, 5,
—that is —the symmetrical vibration in the longitudinal direction of dam
alone can occur and there can be no asymmetric vibration. There is no ques-
tion, when f(?#) can be expressed by the simple function, aud consequently
Eq. (33) can be easily integrated; but the unit graph method or the analyzer
must be required, when f(#) is so complicated as usually found in the actual
seismic motjon.

Next, consider the central part of the two-dimensional dam in order to
compare the two-dimensional vibration considering the effect of the dam length
with the one-dimensional one. Putting x=a/2 in Eq. (33), we get

a1 1.1 v 1 A
=835 (1-3+5 - ) gy Pl ?)
x’?—“z,S” e T f (Y sinw (£ 1) dr.
w 0

Assume that the length @ of the dam is extremely long and @—co,

. e—&(n?
then w may decrease with the decrement factor ") and may be
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so small for sufficiently large values of #.
Hence, when @a—coo, we have the following relations

E=co{(nn/aY+(A/h)y}y  —  c*(A/RYP,
e =(1/2)(er*{(nn/a)+(As/h Y} +c:2) —  (1/2){ei*(As/h )+ ca?},

and also, since
(U/mX1=1/341/5— ceereeeens ) . 1/4,

the vibration solution of the central part of the dam may be expected to

approach to a great extent to the solution for the one-dimensional dam, in other

words, the latter solution is given by omitting the terms relating to x in the

differential equation (22), the boundary and the initial conditions (30), (31).
The solution can be written as follows:

w= 22 23]11()) ]0(2}‘; y)”“—lzgz e_elu—,r)f(r)sinau(t—r)d'r,

w1

where
01=Vn"—&° , Ba?=Co(As/R)? e=(1/2 ){612(_ /)24 C2).

4.2. Comparison between the resonant amplitudes of one- and two-

dimensional earth dams

Let the ground motion be expressed simply by A cos p¢ and consider the
vibration when the sufficiently long time has been elapsed since the ground
motion began, then the terms of forced vibration will remain. Expressing such

terms for one- and two-dimensional dams by %, and i,

\ n012 .
wy = 2AZ Xs] R )]o ( ] Ty rr (pt-a61),
.................. (35)
where
o 2ap
J1 =tan™! Hor? — P2 N
—=8_ it =~ 7e?
“ T e S nlsfl(ls) sin 7 5/ (h 4 ) V (=D A
X sin (pt_a), .................................... (36)
where

¢ =tan™! 25?112 .
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Table 3 Values of 1/ 7rsJ1(As)

\ 1 3 5 7 9 11 13 15
1 0.8011 0.2670, 0.1602 0.1144| 0.0890, 0.0728 0.0618 0.0534
2 —0. 5323 —0.1774| —0.1065| —0. 0760| —0. 0591 —0. 0484/ —0. 0409| —0- 0355
3 0.4256| 0.1419] 0.0851| 0.0610; 0.0473| 0.0387 0.0327| 0.0284
4 —0.3647| —0. 1216/ —0. 0729| —0. 0521 —0. 0405/ —0- 0332| —0. 0281 —0. 0243
5 0.3225| 0.1075 0.0645 0.0461| 0.0358 0.0293| 0.0248/ 0.0215
6 —0.2948| —0. 0983| —0. 0590 —0. 0421| — 0. 0328 —0. 0268| —0. 0227| —0. 0197
7 0.2720] 0.0907| 0.0544] 0.0389; 0.0302[ 0.0247 0.0209] 0.0181
3 —0- 2539 —0. 0846{ —0. 0508| —0. 0363| —0. 0282| —0.0231] —0. 0195 —0. 0169
9 0.2390| 0.0797| 0.0478) 0.0341] 0.0266( O. 0217 0.0184| 0.0159
10 —0.2264| —0. 0755 —0. 0453| —0. 0323| —0. 0252 —0. 0206‘ —0.0174| —0. 0151
i

Table 3 shows the coefficient l/nl; J1(4:) in Eq. (36), in which #=1 cor-
responds to the case of one-dimensional dam. As seen from the table, the
vibration of higher mode in the longitudinal direction decreases with the ratio
of 1/n, but the one in the direction of dam height decreases with the ratio of

1/1.5, 1/1.9, 1/2.2,---- , and the rate of decrement in the latter is considerably
lower than that in the ; N
former. This fact shows 05 ) AsT (75) LGy
. . ) 05
that the vibrations of high- \ R} \ / g i
i

er mode have a comparative-
ly large effect upon the
direction of dam height.
Fig. 9 indicates {1/
AsJ1(As)}- Jo(Asy /), in which
the dotted lines show the
similar coefficient concerning
the column of rectangular
section with uniform mo-

dulus of rigidity and den-

sity. It can be seen that

the rate of decrement of Fig. 9 Normal modes of the earth dam and the

the vibration of higher mode homogeneous solid building.
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is small for the triangular section as seen in the earth dam, as compared with
that for the general building, and that the higher mode is so remarkable in the
crest part that the resonances of higher mode may be of serious problem.

Fig. 10 indicates that how the resonance-amplitude of the- fundament-
al mode in the central point of the
crest varies with the dam length, by “
plotting the calculated results obtained
from Eq. (36) for the various values
of dam height 2 and rigidity co. In
the process of calculation the author
takes the value of sin (p£—4) as unit
1, so that the curves in Fig. 10 does

a)y  C=50ms

/l=64“

oy

/g

not represent the very resonance am-

?

Fizpm
plitude in a strict sense, but gives the
general features of the resonance am-
plitude. The mark - found at the right wf
edge in the figure shows the similar //M .
value for the one-dimensional dam,

computed from Eq. (35). *Sheating oL

viscosity . was determined in order — ay
2 B) C,=100m/s 10
C) €,=200mfs
il
8 ‘“‘0-.
15 W
v ..
3
L ]
&
= ]
&. B
10
Ge2om .
.
.
5
| Relom 2
.
L ]
4 0
Ve 4 6 8 9

2 2 4 ] 8 10
ase

Fig. 10 Relation between the resonance amplitude and the ratio of lengh to height
of the earth dam. '

g

73
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that the following condition was satisfied, i.e., co=100 m/s, Z1=e1/n01= 0.1
for 2=20m in the one-dimensional dam. As known from Fig. 10, the one-
dimensional treatment may be acceptable for the larger values over about 3~5
of a/h. The critical limiting value for the above-mentioned period of the free
vibration, is also of such a magnitude. Such a consideration leads to a con-
clusion that the one-dimensiona] treatment may be carried out without involving

serious error for the larger values over 3~5 of a/h.

5. Coneclusion:

First of all, this paper discusses the'vibration character of earth dam as the
basis of establishing the rational method of earthquake resistant dam design.
All of the discussions are derived from the theory for the elastic dam model
having the particular sectional form, but there may be some problems left in
abeyance and expected to be solved in future. The summaries of the studies
reported in this paper are concluded as follows:

(1) The vibration of such structures having gentle grade of surfaces of slope
as earth dams can be considered as the shear vibration. For the gravity dam,
however, the bending vibration is more predominant and the effect of shear
vibration must be considered to a certain degree.

(2) For higher dams, the value of vibration period may be of such magnitude
that the resonance of higher order presents a problem, when we deal with the
period of the principal motion of the serious earthjuake which have been
oczurred up to now.

(3) For the dam having the length larger than 3~5 times as large as the
height, the vibration period and the amplitude of central part are of the same
magnitude as found in the one-dimeusional dam; therefore, the one-dimen-
sional treatment’may be allowable. This limiting value is very significant, when
the distribution of seismic coefficient in the direction of the length must be
taken into account.

The author, in addition, has been studying on the seismic coefficient to be
used in designing the earth dam, from the dynamic standpoint based on the
theory described in this paper, and is intending to make public the above-men-
tioned research results in the next part.
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Part Il Considerations of the Earthquake Resistant

Properties of Earth Dam

1. Introduction

The vibration character of earth dams having various dam lengths is dis-
cussed in Part 1, in which the earth dams are assumed visco-elastic. In this
paper the author describes the earthquake resistant properties of earth dam
from the standpoint of vibration on the basis of the results obtained in Part L.
He also describes what size of seismic coefficient is to be adopted for dam
design, when the conventional design method of seismic coefficient is used fqr
evaluating the effect of seismic forces upon the structures. The method is
based on such a way of thinking that the horizontal force of the magnitude of
‘‘the weight of structure multiplied by seismic coefficient’” is assumed to act
statically on the structures; and finally he makes a proposal concerning the seis-

miz coeflicient of design.
2. Seismic Coefficient of One Mass System

Since the forced vibration of solid body is generally ex-

pressed by the summation of the free vibrations, each of the
vibrations of the normal mode can be treated as the vibration
of one mass system having one freedom. Hence, according
to M. A. Biot’s theory,?’ at first the seismic coeflicient of one

mass system shall be discussed.

Letting # be, in Fig. 1, the displacement measured refer-

0

ring to the moving coordinate having the origin O, M be the
© Fig. 1

mass, k the spring constant and #, the ground motion, the
vibration of the structure assumed as one mass system may be given by
Mii+ D+ ku= — Mi,,
or
4 2ets+ n2u=q (1), IS @ D

where D : coefficient of viscous resistance,

nt=k/M, 2:=D/M, a(t)= —i.
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When the vibration begins at the initial state of stillness, the solution
of Eq. (1) will be given as follows under the condition of # = 0, # = 0 at
=0,

u=;l_jte —E(t_T)a(z-)sinw(t_T) dT, .................. (2)

@ JO

where
o=v"n?—¢’

When the horizontal force F acts statically on the mass M causing de-
flection ¥, the force F which should be applied statically so as to cause M the

dynamic deflection # is, using the relation F'=ku,

F=Mn2u=M n_ZSE e —e(i—T)
' ' () (

0

a(t)sinw (¢-7)dr,

and the seismic coefficient K given by K=F/Mg is

where

A= ﬂSt e —e(t=m) a(r)gihm(t—T)dT:

@ JO

Therefore, when the external force W-K—the weight multiplied by the
seis,rp{c coefficient K given by Eq. (3) — is assumed to act statically, the deflection
occured in this case is nothing but the one occured during the vibration ex-
pressed by Eq. (2). Thus, if the maximum value of Eq. (3) is used as the
design ‘seismic coeflicient, -the conventional design methed ‘may be used quite
rationally in designing the structure. When the acceleration of ground motion
a(?) is as complicated as seen in the actual earthquakes, the torsion pendulum?’»%
or the analyzer  using the electrical method®’ can be used for determining
the value of A.

3. Determination of Seismic Coefficient on Dam

Expressing the vibration of dam by the moving coordinate having the ori-
gin at the crest of dam, and letting # be the displacement and a(x, ¢) the
acceleration of ground motion, the equation of motion of two-dimensional dam

is given by
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o*u 0% | 6%, oPu | 0u .1 0u
g8 = Co (6x~ aye) T (axzat +ay_za‘t)+ Yoy
1 0% 0%
+¢,2 S ayor © 2t QX 1), wreeerrrnreninine e, (4)

where a(%,2)= —#%,2) and cz is the coefficient of viscous resistance pro-
portional to the velocity, which is expressed by the moving coordinate. The

boundary conditions are given by

u=0 at x=0, =0 at x=a,}

ou 3 B Y veeresenacciniiiaines (5)
a—y—=0 at y=0, u=0 at y—h.J

The initial conditions are considered to-be given by
u=0, =0 at I=0. ceereiiiiiiiii (6)

Assume that # and a (x,¢) can be developed respectively by using the

““Eigenfunctions’ as follows :

where
1 a. (n . ¢ As
Pns (1) = ah2 T S Su a(4,t) sm’—'gl ]0(,7’1)‘” didp,
and substitute the above into Eq. (4), we get the differential equation on 7
as follows :
Tns+2ETns+”ZTns=¢ns(t)»
where

B2 = 602{(7‘75/‘2 )2 +(Zs/h )2}’
e= (1/2) Cer{(nn/a)+(Ae/BY)+cs2).

For the case T=0, 7'=0 at £=0, the solution of the above equation becomes

1 \': ¢ —e(t—7)

‘Tm=? @ns (As,7) sinw (¢—7) dr,

therefore, # is given by

4 oo
U =—
a

2 Soanan 0 (3)
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x{t e TPt a(he)sin da} sine (E—)dr. oo <0

[

When the distribution of acceleration of ground motion in the longitudinal
direction of dam is uniform, we may rewrite Eq. (7) in the following form,
by the reason that a(#) must be used instead of (%, £),

8 & pod 1 . nn As
s G @ ¥ °(_h_y )
'x'lg' o ¢ _")a (t)sinew (F=t)dr.  weereenens (8)
® Jo

For the one-dimensional dam, the following solution may be obtained as
the solution of the Egs. (4), (5) and (6), in which all of the terms felating
to x are omitted.

u=2 22‘]1(2 )jo( ) 1 Sfe_ﬂl(t—rr) a(r)sine (£—7)dr, o (9)

w1 Jo
where

1=V nui—a? Bal=CH(As/h),
e=(1/2){e:* (As/hY+c?}, €o?=G/p, ci®=11/p, €2*=8"/p.
Though Egs. (9), (7) and (8) are the equations which express the de-
flections during the v1brat10n of the one- and two-dimensional dams, one mass
system can be considered per each mode of # or #, s. Considering the rela-
tion given by Eq. (3), the seismic coefficient K; and K; of the ome- and two-
dimensional dams can be shown respectively as follows :

For the one-dimensional dam :

2 oo
k=23 z,]l(l )]0( ) .................. (10)
A‘=ﬂ25te—eg_ “a(r)sine (£-1)dr.

For the two- dimensional dam :
for the case where the acceleration of ground motion is not uniformly
distributed along the dam length ;

R - | . nn A
Kz’_ga élszll msn} a—x]o(-hy)c Anh ............ (11)

C-Ay= _25‘ e Tt {S a(Ae) sin” R d} sin w (1~ ) dr .

w Jo

for the case where the acceleration of ground motion is uniformly distri-
buted along the dam length ;
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8 s L g
K, = e n=12 g}l YRAE )sm 2 x]o(.h....y)Am, ............ (12)
—
Amznog * )a(‘r)sinw(t—‘r)d‘r.
w Jo

Computing the shearing stress for the uniform motion of ground from the
conventional seismic coefficient method, by the use of the above-mentioned
seismic coeflicients,

For the one-dimensinoal dam :

s=1

Sy=—2hp 5 232]1() )]1<h y)A ..................... (13)

¢ For the two-dimensional dam :
the shearing stress in the direction of dam height ;

__ 8k & & S S
S”_ 2 nzl:'{ 5, ; ] ( )(ﬂﬂ/k)z‘f‘sz
Xsm—x ( ) RSy trerrrertereesesesiaiians (14)

the shearing stress in the direction of dam length ;

L= = 1 1
52280k 2 & TG HGm/ky+ 48

(Zs

XCos—x]o

where

k=a/h.

When comparing the maximum value of S. with that of S, for the two-
dimensional dam, S is smaller than S, when k=a/k is about 2~3 or larger.
The value of % found in the actual dam is usually larger than the above obtain-
ed, hence S, alone may be considered.

Egs. (10), (11) and (12) give the rational value of seismic coefficient of
each of the one- and two-dimensional dams, and the vibration of each mode has
its particular phase difference 8. Considering this point, the vibration of each
mode must be added up. The maximum of the above-stated values must be
adopted as the seismic coeffcient of design. For this purpose, for example,
A, and Ane must be determined to be the maximum obtained by means of
synchronizing and summing up the amplitudes which can be got by recording
the shakes of the torsion pendulum as to each mode of vibrations; so that the
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procedure requires much time and labour. ~However, .in general, the nearest
mode of vibration to the period of ground motion is most influential and the
other modes are considerably small, so that the most dangerous seismic coef-
ficient — the seismic coefficent of design — can be obtained by comparing
several terms of # or », s with each other by using the acceleration spectrum
measured as the one mass system. The distribution of seismic coefficient,
when the dam is subjected to one or two. ground motions, will be considered

in the following space.
3.1. One example of the actual earthquake

Fig. 2 shows the acceleration spectrum, obtained by means of above-men-
tioned torsion pen- 2
dulum by using the |
ground acceleration of
Tanabe Bay Earth-
quake which was re-
corded? at the Kobe

Marine Meteorological

——= Jeacleration

Observatory on Nov. ,
6, 1950. The figure ? “ ” e -

is drawn for various Fig. 2 Acceeleration spectrum.

values of the damping coefficient 4.

[/0 f”/

0

w
E

e

Fig. 3 Record of acceleration of Tanabe Bay Earthquake, Nov. 6, 1950,
recorded at the Kobe Marine Meteorological Observatory.

Now, consider, as one example, the case* where ¢;,=95m/s, the height
h=40 m and the length @=200 m. Determining the acceleration (A;, Augs,

* The period of the lst higher mode of free vibration of the one~dimensional dam
in the case as shown here, is corresponding to the peak of 0.47~0.48 sec in the
acceleration. spectrum.
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where ¢=0) for the period of each mode of the free vibration of the dam from
the acceleration spectrum shown in Fig. 2, and computing the maximum
seismic coefficient of each mode on the crest by Eqgs. (10) and (12), and then
expressing them as the ratios to the seismic coefficient of ground Ko, we get
following Table. Figs. 4 and 5 show the distributions of the seismic coefficient and
of the shearing stress of the one-dimensional dam, respectively. As seen from
the figures, in the shearing stress, if there is no damping, the Ist higher mode
is larger than the fundamental mode. This means the resonance of the Ist high-
er order. It can be seen that there may occur the resonance of the lst higher
order -for the ground motion having such periods as expected usually, provided
the dam is as high as 30~40 m. However, when there is a damping force
due to internal viscosity (2:=0.05, zz= 0.12), the shearing stress is smaller

Table Ratio K/K, between maximum seismic coefficients of
the earth’ dam and the ground.

One-~ Two—-dimensional'dam. a¢/A=3 Two-dimensional dam. a/2=5
s | dimensio- -
nal dam n=1 n=3 n=5 ‘ n="7 n=1 n=3 n=>5 n="7

4. 60 7.15| -3.64 1.15 | -1.10 6.11 | -2.40 2.54 | -1.31
-8.70 | -11.15 1.44 | -1.10 0.71 | -10.95 2.04| -1.15 0.59
3.40 4.28 | -1.45 0.82 | -0.31 4.36 | -1.45 0.82 | -0.56

BOWw N

-1.46 | -1.46 0.71 | -0.46 - -1.86 0.71 | -0:43 0.38

-10 -05 o 45 10
Sy

Fig. 4 Distributions of the Fig. 5 Distributions of the shearing stress.
seismic coeciffient.
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than that of the fundamental mode all over the dam height. Therefore, #f the
dam of such size as stated above is subjected to such a ground motion, it is
in safety side to design the dam by using the distribution of seismic coefficient
for the fundamental mode of vibration (the curve corresponding to s=11in Fig.
4), notwithstanding that the resonance of the lst higher mode occurs at this time.
By the way, the location where ‘the maximum shearing stress occurs in: the
above case is not at the base, but is nearly at the level of one-fourth of the
height above the base.

The fact stated above is one example of the case where the dam is subject-
ed to the actual seismic motion. For the case of a peculiar ground motion, at
the present when little data of the seismic motion of the peculiar region are
available for us, the appropriate ground motion must be presumed. From such
a standpoint, let us consider the initial state of vibration of the dam, when
it is subjected to the seismic acceleration of sinusoidal form kaving the same

period as that of free vibration of the dam, in the following space.

3.2. Distribution of seismic coefficient in the initial state of

vibration

Consider, for simplicity’s sake, the case where such a ground motion as stat-
ed before acts on the dam under the condition of no damping. Since the mode
having the same period as that of the ground motion becomes remarkably lar-
ger compared with the other modes, ths vibration of whole dam may be ap-
proximately expresszd by the resonant mode. Therefore, the accelerations of
the ground motion a0 (s), a0 (#, s) having the same period as that of each
mode of the dam will act on the dam, and the seismic coefficients of the dam,

after one period passes, are given by

2 1 As
S L e iy EILIOL |
o P T JER (16)

. A g [ Ae
Kz =—g'_7l mSln 71 ]0(7}’ >a0 (ﬂ,s) .

When the ground accelerations ao ($) and ao (#, s) are constant, the coeffi-
cients in the above Eqgs. show the ratios of the seismic coefficients in the re-
sonance of sth and #,5th order for the constant acceleration, respectively.
Similarly, for the case of constant velocities the coefficients are given by
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2¢o
Bo=gn ](z ) ]"(hy)”"(s)”’

8, 1 an gL Y =(17)
Kz gﬂh nls]l(l ){( ) +Zs I‘ SlII;x]o( y)yo(n 5)71,

where v¢(S), vo(7, 5) mean the constant velocities. Moreover, the shearing
stresses can be computed from Egs. (13)~(15) as follows:

For the case of .constant acceleration

1 s
Su= 2 7y ) ko
1

8k 1
Sy=-="% njl(xs)(nn/m T sin le( )ao(n,s)n:, J...(18)
1
S22 =80k 7 sjl(xs) KGR 2 4 "]"(hy) a(#,8) 7.

For the case of constant velocity ;

Slu=—20;pﬁ)]1(‘%y) vo(S)m, \
_ 2Cop 1 1 - N )-s ' p
Sw=~=1 njl(x S e ‘( B ) vk m G (19)

S2.=8 Cop 1
xs]l(l Yev (nr/k)+ 2, 3¢

Sn;ﬂx]o<%y‘) vo(n,s)n-.

Fig. 6 and 7 illustrate the distributions of seismic coefficient and of shear-
ing stress for the one-dimensional case. Since there hardly occur the resonances
of higher order for the sake of the correlative relation with the period of the
seismic motion, the resonances of the higher order less than the 2nd are shown
in the Figs..

As seen from these Figs., for the case of the constant acceleration without
damping, the shearing stress shows the maximum value in the resonance of the
fundamental mode; accordingly, the dam is safe for the resonance of higher
order, only when the distribution of seismic coefficient of the fundamental mode
is taken into account in the design. For the case of constant velocity, however,
the stress in the resonance of higher order is larger in the upper part than that
in the resonance of the fundamental mode. The dotted lines in Fig. 7 b) show
the distribution of the shearing stress, when the internal viscous damping (%
=0.05, 22=0.12, 23=0.18) acts. It also shows that there is no remarkable dif-
ference between the stress distributions in the resonance of the fundamental
mode and in that of higher order. Therefore, it may be safe as well for the re-
sonance of higher order to take into account the distribution of seismic coefficient
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only for the fundamental mode.
Fig. 8 gives the distribution of the
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coefficient. Fig. 7 Distributions of shearing stress.

crest length of the two-dimensional dam subjected to ground motion having con-
stant velocity (damping coefficient 2=0), showing that the vibration characters
of the fundamental mode in the direction of the height and of the mode of
higher order in the direction of the length (#22, s=1) give the larger stress
in the central part of dam than that caused by the resonance of the fundament-
al mode (n=1, s=1).

4. One Proposition for the Seismic Coefficient of Design
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The seismic coefficient as des-
cribed above is obtained by presuming

the constant acceleration or constant

velocity. According to the latest stu-
dies, it is clarified that the constant

velocity occurs in general. For ex-

ample, the seismic spectrum propos-

ed as the seismic coefficient of A N o ///

design of the upper part of building 1 o { N o
by R. Tanabashi and others®’, on the ol 4 /
basis of the data recorded in Kanto WW=7
Earthquake (1923), is of the con- s / Nz

stant velocity type much the same / AN

as the standard acceleration spec- \se3

trl.lm‘” proposed by the Joint Com- o s // ps

mittee Qf the San Francisco, U.S.A., ! . \ o
and it is practised in general that 0 y

small seismic coefficient will be ad- \» \ \ \
opted for the structures having long -0l / “\\ =
period of vibration. T. Hatano™ also / '

points out that the stability during  ©* "5 Tn the diseetion of dem Tengih.

the earthquake is more widely affected by the velocity than by the acceleration.
As to the absolute value of the seismic coefficient, the discussion made on
building is not always the same as that on dam. Nowadays, many points still
remains unexplained on the character of ground motion. Hence, with reference
to the value of seismic coefficient conventionally used in designing dam, the
author dare propose-a seismic coefficient of design described in the following
space.
For the top of dam:
usually 0.3/7T instead of 0.2/7 proposed by R. Tanabashi and others, the
upper limit 0.5 and the lower limit 0.15 (corresponding to the upper limit 0.3
and the lower limit 0.09 for the uniform distribution of seismic coefficient).
Along the height:
the Bessel’s distribution
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Q) Spectrum of seismic coefficient The seismic spectrum

as and the distribution of

k=2 1%y)

seismic coefficient proposed

X above are illustrated in Fig.
9 a) and b). Since the

> L TS earth dam, in general, has
°, 10 70 30 sec a constant grade of faces
— T of slope in the length di-

rection, it may be built

b) Distribution of the seismic coefficient in the divection of dam ﬁei]ﬁr
L)
1.0

uniformly of the same
material and by the same
construction method. There-
fore, if the height is
also constant, the dam may

Y —

have the one-dimensionally

uniform safety over its

C) Distribution. of the seismic coefficient inthe divectionot dam fength whole length, but, judging
two-dimensionally, seismic

Ch = ficient is too large i
e oeflicient 1s too large In
’/’ }I\ ~< /\ cO 1 g'
z s A both sides. Accordingly,
Z% ZE

the smaller seismic coef-
Fig. 9 Seismc coefficient of design. ficient should be adopted
in both sides, and the distribution of the coefficient may be determined, in en-
tirely the same way as that was done in order to determnie the distribution in
the direction of height, examining the stresses in two-dimensional dam by
Egs. (18) and (19). As stated before, however, the restraint of both sides
has little effect upon the central part of dam when the ratio of length to height
is larger than 3~5; thus, the distribution of seismic coefficient may be de-
termined in such a way that it decreases in a sinusoidal form from the one-
dimensional value at the central part to the zero value at both ends, ateach of the
parts having the length two times as large as the dam height from each end, as
shown Fig. 9,¢). Fig. 9, ¢) corresponds to the case of constant height, but the dams
usually built decrease generally in heights from the central parts to both sides. It
is necessary, considering one—dimensionally, to assume the larger seismic coefficient
at the part of smaller height. In such dams, the distribution of seismic coefficient
in the direction of the dam length may be assumed to be nearly constant.
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5. Coneclusion

This paper discusses mainly the distribution of seismic coefficient of design,
and presents its absolute value, only as a provisional standard. Of course, the
absolute value of seismic coefficient should be determined by taking into ac-
count the regional distribution of earthquake frequency® and the character of
subbase soil.

The studies reported in this paper are based on the theory that the dam is
visco-elastic, but such a theory may have something to be questioned, as to
considering the soil visco-elastic. However, consideration that the dam deforms
due to seismic forces leads to the conclusion that the seismic coefficient to be
used in dam design cannot be uniform in every pal.-t of the dam. Further inves-

tigations are needed in solving such problems.
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