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                          Preface 

   There have been various  discussions1)-10) on differential settlements of a 

structure standing on soft foundation. As yet, however, enough attention has not 

been paid to the effect on differential settlements of the rigidity of a structure 

which certainly is very effective thereupon. In other words, although the effect 

of this rigidity has heretofore been taken into consideration in connection with 

the elastic settlements due to load on surface of foundation, its effect has been 

rather neglected in the case of the settlements due to consolidation which as-

suredly occupy the major part of the differential settlements on soft foundation; 

except that  Biotw tried to solve this problem concerning the strip load. This 

essay contains several discussions on the settlements due to consolidation of clay 

stratum and on the settlements due to the elastic deformation of foundation, 

considering the rigidity of the structure in both cases. The essay is divided 

into Part A and Part B. 

   Part A is the discussion mainly on the case of the settlements due to con-
solidation.  In this part, with the assumption that a structure deforms in 

proportion to shearing force, it is pointed out that the effect of the rigidity 
on differential settlements is very great. Some considerations are also given on 

elastic settlements. 

   Part B contains the discussion on final quantities of differential settlements 

which are necessary in the design of a structure, on the basis of Part A, and the 

method of calculation of final quantities of differential settlements. The  discus-

sion of derivation of the theories for Part B is shown in Chapter 10. 

   The assumptions adopted in this essay are as follows. 

a) The Terzaghi's Consolidation Theory is available for the underground clay 

stratum. 

b) Exclusively the one-dimensional and primary consolidation is under con-

sideration, and the effects of the two-dimensional and secondary consolidations 

are  not taken into consideration. 

c) Whether there is permeable or impermeable stratum or  not, the distribution 

of stress through foundation is displayed by the Boussinesq's  foxmulas. 

d) The structure is to be deformed completely elastically and its creep deforma-

tion is under no consideration.
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  Part A The settlement process of a structure due to the 

           consolidation of underground clay stratum 

   § 1 The consolidation equation in connection with pressure 

 Iluctuation 

   Primarily it is assumed that underground clay stratum infinitely extends ho-

rizontally between the two, upper and lower, permeable strata, and only the 

vertical or one-dimensional consolidation is under consideration. Further it is 

assumed that the pressure on clay stratum is constant through the thickeness and 

equals to the value at the centre of the thickness. 

   According to the assumptions mentioned above, the following settlement 

equation is obtained for the constant increase of pressure on clay stratum by 

means of the Terzaghi's Consolidation Theory. 

                                2—M2Ti  (1) 
              Y =—X---e                              M2                     17101 

where  ad/(  1+e)  : final quantity of settlement at  p-p,=1, 

 p : excess hydrostatic pressure at t, 

 pi  : initial value of  p, 
              a : coefficient of compressibility, 

 d : thickness of clay stratum, 

 c  : coefficient of consolidation,  

: time, 

 e  : void ratio, 

 M=(2m  +1)7/2,  T  4c1/  dz. 

   When  p-pi= q is assumed,  (1) approximately becomes 

 y  =  2q  (1—  e-11),  (2) 

where 
                                        2 

                          N=74T. 

   When p is a function of N and accordingly q is its function as well, the 

following equation is obtained by means of the  Duhamel's  Theorem. 

 y  =  2e-N.0  qevc11,.  (3) 

 0
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     The case when several clay strata exist among permeable strata can be 

  discussed in the like manner, though it is not stated here. (For the criticism 

  on the treatment that approximately (2) instead of (1) is used in this chapter, 

 see Appendix  1.) 

     § 2 Differential equations concerning settlements of a structure 

 It is considered that there is such a structure as in Fig. 1 on the surface 

 11111111111111111111111111111111111111111111111111111111111111111111111111111111 

 1  2 3                         t    

E • I 

                  ///////1/1///////// If/ /I/if/ill/if/  1/7/1/1/11/11////1//11/// 
                    Clay////////////////,Stratum                                                          ////////////i///1/////////////////  ////  

                                  Fig. 1 

  of foundation and assumed to treat as a two-dimensional problem, the pressure  

, of columns on a line perpendicular to the figure is approximated by a line load 
  extending infinitely in the same direction. 

     If notations as follows are assumed under the column j, 

 ajt : effect of reaction of base i on pressure on clay stratum under base j, 

       Qjt  : effect of settlement of base i on reaction of base j, 

 80  : effect of settlement of base i on pressure on clay stratum under 

            base j, 

 rj,  : effect of reaction of base i on elastic settlement of base j, 

       pjt  : effect of settlement of base i on elastic settlement of base j, 

  then, the following relations exist as to a,  Q,  8, r and p, 

 col=a1), 

 Rit=  ,821, 

 1:=  Za  IOW,  •  (4) 

 nt=n17 

 pit  =  D'ikigki• 

 k 

     When it is assumed that a structure has equal span lengths, the following
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expression is obtained. 

             /  au  aiz  ais•••ain  ai  az  as  -•.an 
 asi  az2  azs•••asn  a2  al  as 

           asi assass•••asn as a2al am-2 (5) 

 ani  ans  ans•••ann/ \  an  an-/  an-s.,.ai 

   Furthermore, as for  ajt, when the foundation is taken as uniform semi-

infinite elastic solid, the following equation is obtained by means of the formula 

of Boussinesq concerning line load in Fig. 1. 

            12h3                 aji=---2—COS",co51=— (6)                                rjt 

   When base reaction is shown as 

 R1=P,+  X  Palk,  (P,: load of column i), (7) 

 k the increase of pressure on clay stratum is 

           qi= X af1R1=  ali (Pi+ XThicY fc)= Kt+ X fitkyk,  (8) 

where 

 Kt=  XceijPj. 

   When elastic settlement is considered in addition, the settlement equation of 

base i at N=N is 

 yf  =  qtedv+  X  ri  1RJ.  •  (9) 

   When (7) and (8) are substituted into (9), 

 yi=  2e--61  0(K,+ IfYikyk)e'idv+ Er(P 1+ ER yak),  (10) 
therefore 

     dyf „dyk,,„ 
 dNf,PikdN1-Pak)—  y:+ (Kf+  aikyk) 

or 

          ,,dyf,dyk, ,,„     (p if —pikAOIt— ) Yi 

 I(Pikt  Ma)  Yk+Q2±Âtifi=0  (i*k),  (11) 

where 

 Qt=  Xrz
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(11) becomes at  N=0 

 (1  —28t,)Yt  =  TamYk).  (12) 

   § 3 The solution when clay  stratum is single 

   To solve the fundamental settlements' equations (11), those solutions are 

assumed as 

 yi=E  Ai.  (1  —e—gin'N)+Bi,1 
 7YL 

     dye = (13)                dN 

   Substituting (13) into (11), 

 CX.RPt:-1)(7.-1)—  Attm+  Z{Pik(T  711,  —1)—  kik}  Akm)e—FMN 

 k 

 ±(Pti+2811-1){EAtm+Bt}±  E(Pik+  28  ik){ZAkm+Bk} 
 7n  k  7Th 

 +  =O.  (14) 

   There the following two conditions are obtained. 

 {(  pit  —  1  )  (T.  —1)/2  —  zi}  Aim+  Z{pik(  7.  —  1  )/2  —  ik}  Aknz  0,  (15) 

 (p2i+2822-1){XA2.+.1371 
 71L 

              +  X(  Pik+11820{EAkm+  21-i—Alfe=  0.   416) 

   In order that (15) may be satisfied, 

 (pii-1)x—  P12X  812    P173X  —  81n 

 P21X  821  (P22-1)  X  —  822    P273X  a2n _0, (17) 

 pnix—  8ni  Pn2  874   (Pnn  —  1  )X  —Onn 

where 

 x  =(T  —  1  )/2. 

   From (17)  T. are obtained as n roots, and the ratios of  Ali are determined 

from (15). From (16)  (  BO are determined. 

   And as the initial condition at  N=  0, from  (13) 

 yi=  Bi.  (18)
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   Therefore, (18)  being  substituted  into (12), 

 (1  —  =2(1C1+  E  skBk),  (19) 

 k from which  Bs are obtained. Thus  Ains=  asnsAns  being, set, from  (16) 

 (Pii+  —1)-(TamAns+ 

             +Rm- FpAask)f Eak.A.++Qs+ 2ks — 0,  (20) 

where  A. are determined and solutions  (13) are obtained. 

   Below, first the case concerning consolidation of clay stratum only, then the 

case  concerning elastic deformation of foundation only are considered, and lastly 

both cases are considered together at the end of Chapter 9. 

   First, when consolidation of clay stratum only is considered, the equations 

above are simplified as follows, 

  from  (11) 

            dys 
           dN+(1 — 28 ii)ys =(Ki-,Z 8104)  (i*k), (21) 

  from (13) 

                            i =1, n 
        ys =EA sm(1 — e-7mN) (22)            titm=1, 2,•••  n, 

  from (15) and (16) 

 {(Vm—l)/A+8u}Atm+.  &Asc.=  0  (i*k),  (23) 

 (AO  is  —  1)Z  AlM±  2E  ik  E  F  2Ks=  0  (ilk),  (24) 

                                  k 

  from  (17) 

 811+x 812    81. 

                    821  822+x    82n 
 =  0.   (25) 

 ni  8n2   Onn  +  X 

   § 4 The case in which the shearing rigidity of a structure is 

       considered 

  It is assumed that a structure has uniform span lengths and uniform rigidity,
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 0  I 

 t  t 
 -A  P2, 

                                Fig. 2 

and that, for the  simplication, the plane of framework of each span is deformed 

in proportion with its shearing force. Then, with reference to Fig. 2,  th) are 

   for the intermediate columns 

 ,81-1,r=  182+152  =  =  —219,  (26) 

   for the end columns, 

 1811x1  ---13.1X(n  —2), PR                                             .,--21,  1. 
            R(1/1-0)= thr/i.180=Rni//, (27) 

      accordingly  p take the values as follows, 

 thr=lenn=  —  (n  —2)  An  —1), 

 Rim=  fini  =  —  ,8  —  1),  (28) 

 13n-i,  .=  R•21=  fi• 

   Except the above mentioned (26) and (28),  )9/5 become zero. 

Further when 

 zlar  at+i—  42a1=  464  —  al+i—  2at-f-  at-i,  (29) 

where 

 112  al  =2z 

are assumed,  oaf are expressed by each row of the following matrix being multi-

plied by  13, 

 zlai  +(ai—an)/(n—  1)  42a2  42a3  •  •  •  42  an-  —  dan-3  —  (al—  an)An  —  1) 
 —4a1+(az—an--1)/(  n  —  1)  42a1 42a2  •  •  •  42an-2  —  %Ian  -2  —(a2  -1)/(  n  —  1) 

 —  Jaz+  (  a3—an-2)An-1) 42a2  /Pal  •  •  •  42ari-  3  —  Jan  -  3  —  (  a  3  —  an  -2)A  n  —  1) 

 —  ai)/(n  —  1)  42an-i  42.  an--3  •  •  •42(22  +  (an—  al)/(n—  ) • 

 (30) 

   If a structure is under  symthetrical loads the matrix of the coefficients of 

 Ai  j of (23) becomes, in the case of  n  =2m±  1,
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 (dal—  ilan-1)+  x  42a2+  42a.-1  426t3+  42  an_  2  42am+  .412a.+2  112am+1 
 —(dai+dan-2)  (42a1+1126e.-2)+  x  42a2+  an-s  •  •  •  42am-i+  d'am+1  42am 

 —(464.-1+  ilam+i)  42am-  +.42a.+1  tlact.--2+  •  .(42a1+  .d2a3)--F  x  z12a2 

 \—(zIam+  ..dam)  il2a.+  42a.  42am-1+  42a.-i•  •  •  z12a2+  42  a2  42a1+  x  , 

 (31) 

where  x--(g  I—  1)/192. The case at  n=2m also is solved in the same way. The 

equation corresponding to (25) is obtained by putting the determinant of (31) 

into zero. 

   § 5 Considerations on solutions in the case of settlements due 

        to consolidation 

   If the solutions concerning  (2n+1)-span and 2n-span symmetrical rigid 

frames under uniform distribution of load and with uniform rigidity are obtained 

on the basis of the above mentioned theoretical formulas, it is experessed as 

follows. 

            Pi2       .Y1=--./(E)—/—( 1 — e—N )+(E,  72)P12(  e  —71N)-F 

 + g1,22-1(E,7i)P3.2(1e—Fn-1N) 

       y2--..f(e)PiA(1—e—N)+g2i(E,72)PiA0  _  e—(1N).+- 

                        +g2,74-1 (g,)112(1— eN) (32) 

    PiAPiA        Yn= f(E)(1— e—N)+ gni(E,72)(1—e—vr1N)+ 
                                  Pi2  +g

n,n-i(E,72)7—(1—e—rn-iN) 

   Therefore the differential settlements, the differences between settlements of 

neighbouring couple of bases, are 

     n-1Pi2 
    y2+1--yi=X 11{gi+1,m(E,7))---gi,m,(E,0}(1 e—r?AN)' (33)   7n= 

where  =l/h,  72=  Igo,  yin,=1±Q„,($0;) and  P1=w1/2. 

   For example, (32) and (33) become in  the case of 3 spans
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 (Jai'  +  Jaz'  )R1+(  Jai' – Jaz' )1f2 1:',2 (1 –e–N )      yi =Y4 =  (
2Ja1i+Jaz'  –  das'  )  1 

                   (R2 – ki)(zIa3' – Jai') PIA (1 – e–r1V)                    +
W(2.elai' + 4012' – das') 1 

  34  (J
ai'  + Jaz' )Ri+(tlai' –zit:WA P1A (1 - e– N)()      Y2 =Y8 =  (2J

aii+Jaz'  –Jaz')  1 

                  (R2 – RI)( Jai' +Jaz' ) Pail                              (–FN)                                                        1–e                    + 
r(2z/aii-rzta2' –zla31) 1 1 

and 
                          ,,172- KI.PlAt,            .y,–, =Y2–Y1=--------^,1-e-rN), (35)               W1 

where  Jai'  =  dail=(ai+i–  at)  1=  al+i'  –  ceE'  , 

 R1=  al!  +2a2'+2a8'±a4r,  R.2  =  2a11-1-3a2'+az', 

 VI'  =  1  –  (2Jait  +Jaz'  –  Jaz'  )7;. 

   If the units of various coefficients are given as a reference,  13,  2, P1 and 
Pa —
Iare kg/cmz,  cms/kg, kg/cm, and cm respectively, and  a',  E, and  7; are zero 

dimension. 

    The characters of (32) and (33) are explained below mainly through 

(34) and (35). 
a) As shown in (32) and (33), the settlement of each base can be divided 

miz2   I 
e‘t   
 Is  % 

          ^  ts 
         ̂   a 

             .\f«) 4:^
^  ,1 .  .17. .. 

        ...,  

                               --
-- 

 o Illiall-•,r  
                  INIIIIIINI.                         0111.

..'',,.,.;•----- 

      To•po-i„4.L 
 -0.3 r  
  ---- //or5 10 

 Fig. 3 Final quantities of uniform  (A-type) settlement and non-uniform  (B-typel 
       settlement due to consolidation in the case of a 3-span symmetrical rigid frame.
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  Fig. 4 Final qnantities of uniform  to-type) and differential settlements due to con-
         solidation when n is considerably great in the case of a 3-span symmetrical 

        rigid frame. 

into two  parts, i.e. term" ,                     of uniform settlementP11(1 —0— N)  (denoted, as 

settlement type A) and terms of non-uniform settlements.g.t„,PiA — ,2N) 

(denoted as settlement type B). Here the coefficient of term of settlement type 

A is inversely proportional to the depth of clay stratum from the surface of 

foundation and independent of the rigidity of the structure. The greater rigidity 

  is, the more rapidly the coefficient  gi„, of each term of settlement type B 

decreases, and it converges into zero when  7;  (  =132/1)—>co. The effect of rigid-

ity  /3 intends to decrease with the increasing of the depth of the location of the 

clay stratum. In the case of 3 spans in (34) and (35),  AO,  gii($,6) and 

 g21(,72) are shown in Fig. 3. And in Fig. 4 are shown f(E) and final quantity 
of differential settlement  {g21(E,6)  —gii(e,6)) in case  6 is great. 

b) At constant and  6, settlement of each base approaches to the maximum with 

 N---->co. The greater  13 is, the greater the settlement function  (1  —  e  iN) of each 

term type B is, and it coincides with function of settlement type A  (1  —e—N) 

at  =0, and it intends to approach asymptotically to  settlement function of type
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       A for smaller E. Examples of curve  (1—  e--WN)--N in the case of 3 spans 

       are shown in Fig. 5. 

         10 
                              ,opso 

     ,$AAPPgra=    oe  I                    e .0.0 0 
                Ar 

                 ko'D  
 0,5    

           si 

 23 4 
                A I 

             Fig. 5 Function of settlement due to consolidation,  (1  —e–`111)----N curves when 
 n varies in the case of  a 3-span symmetrical rigid frame. 

       c) An example of final quantities of settlements, in case the number of span 

       increases, is shown in Fig. 6. In the case of infinite number of spans, in dif-

       ferential equation (21) 

 1 

 (36) 
 =  K  X  at  ;Ph 

       therefore, as  .X8ik=0, the following equation is obtained 

 Y =  /W(1—  e—ls  7).  (37) 

 In Fig. 6, it is known that final quantity of maximum settlement in 

       the case of 7 spans is  OM times that in the case of infinite number  of spans, 

       and that with the increasing of number of spans settlement of each base con-

       verges considerably fast. 

       d) Further in case  7; is great enough, clay constant comes to be not remark-

       ably effective on differential settlements. For example, in the case of 3 spans, 

       as shown in (34),  r; of  gii(E,72) and  gzi(E,ri) are included in  T. of denomina-

       tors, but in the case of  (24a1 r+.4a2' —  4a3'));>1, 1 can be neglected. In gen-

       eral, in the case of the number of spans  2n+1 and 2n,  gi„,(6,72) becomes the 

        equation in which denominator is of n-th degree of  7; and numerator is of
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   2 3  

02  

  04—     = 

 0      ,6="c'  g .1000  g  
= 

      ,iguirmire-s.an 
 "10 

     "—"\ile-ESErirdriM               'A 1
.2'via" 

 B111111^1111 
    1.6  

 18  

 2.0  

 2.2  
        Fig. 6 Final quantities of settlements of bases due to consolidation 

          when the number of columns varies.  (1=0.5) 

 (n-1)-th degree of  72, and if others are 
neglected for the term with the greatest 

power of each term of type B, i.d. final                                          4 
quantities of differential settlements can2 3  fi 
be regarded to be independent of A, for 

A is cancelled out in denominator and  7  M.V. 

numerator. Thus it is pointed out that  ct,  y  = d2/c1 

with the increasing of  )9 differential settle- Fig. 7 Clay stratum with section in 
ments come to be little dependent of the form of lens. 

the property of clay. 

e) When the thickness of clay stratum changes under each base and according-

ly changes, if section of clay stratum in the form of lens as shown in Fig. 

7 is assumed, for the case of 3 spans 

 f(E),  _   (dal  zla2')+  (dal'  -  zia3')  (38) 
 f(()v-i zla2') + (dal' - das')1- 

  _  FC1-1S2   {(tIcti'  +  zlaa')±  (dal'  -  zlast)}7;  -  1                                            (39) 
 Ri  -172  {(tlai'  zla2')v+  (Jai'  -  zlas')17;  -  1 

Fig. 8 shows the case in which  7; becomes great enough and 1 in denominator



 J5 

           /11111 
        A...  I1ME111W1.-  

 A A 

 .•-^•-.,iiIIPIP"-           W1
,........,,,...,    ripomi,„,  

    3 

 ANM  
 e%1111=11r7  ......%1^-- 

          ,..      tb 

 3 WANIEV3iii-  
        -..] 

     'XS 

  ,IIIIMMIIII°.5 _......%1 

 1  1 

   c12   si^141.4.7.Aii-l—    ITANTIP/ 
 _4 4 Ilre: 

 4"44‘: V /ffl.:-.---_-_-.--'- - - - - - - - - -  ..,..-Tomo.5 

  11;4'IMINIM—----a-3-3T- __  a
mow   11

1111111111-____0 2______ --------  
          ,... 

                                           cx. 

        Mili1111-,77--  -

    

I I I I I I  I I 
      1,520253 .0          —_.- y 

 Fig. 8 The effect of  7,  (ratio of thickness  in Fig.  7) on final quantities of A-type 
   and differential settlements due to consolidation in the case of a 3-span symmetrical 

   rigid frame. (when (2.dcri'-1-zia2'—zices?)77>>1 in Eq.  (39)) 

and numerator can be neglected in (38) and (39). From this figure it is clearly 

known that the slight change of  1. is greatly effective on differential settlements. 

f) when structures are extended 

     Although only the cases  Of symmetrical settlements are treated above, the 

case of extended structures in which  such damages of structure as cracks and 

plastic hinges of members of structure are apt to occur belongs to the case of 
asymmetrical load situation. The column numbers of an original structure 

are denoted as  1, 2,  m, and that of its extended part as m+1, m+2,  ••• 

 --n. If it is assumed that the original structure is through with the settlement 

phenomenon by the consolidation of clay stratum, the settlement equation of 
each column when the structure is extended is 

   dyii=1,2, n 
     dN+yi—'1,M+ TOirak) (40)  k —  1,2, n, 

where  .K,=  XatiP1  , 

 i
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 Pi—  P2  —  —Pm-1=07  Pm=  13.=w1/2  , 

hence equation (40) is solved as in Chapter 3. The differences of Ai among i 

which come from the consolidation by loads of the original structure are usually 

so little as to be neglected, so  Ai can be let as 2 in (40). 

     § 6 When the rigidity of a structure changes 

     So far, from Chapter 2 to Chapter 5, rigidity  19 has been let as constant 

from N=0. As the result, it has been concluded that, as later shown in Chap-

ter 9, there can be cases in which the major part of differential settlement 

takes place as early as in the first few months. This shows that the effect of 

variation of rigidity with the hardening of concrete must be thought in the 

case of a reinforced concrete structure. Therefore the further consideration 

comes from the assumption that rigidity changes in the way of approaching to 

constant value in the interval of infinite time. 

     The rigidity of a structure is assumed as  Rco(N). Here 

 yo(0)  =  0 ,  yo(N)2,7_,-- 1  (41) 

 If the constancy of load is assumed from N=0, 

(21) are 

             dyi                    -Fyt=2{.K1+ Iaikco(N)Yk}   dN (42) 

 i  =1,2, n, 

 k  =  1,2, n. 

Those solutions are put as follows, 

                  —Pt i'd/s1C1`1
0i'dN  y  i=  ZAile°e ° dN .  (43) 

(43) being substituted into (42), the following two conditions are obtained 

                 _rrlid/TrrisciN 
from the coefficient terms of e°                                  oe° dN and constant terms, 

 &JO  —  2ZOikyo(N)Aki=  0,  (44) 

 ZAIJ-21C1=0  (45) 

In order that (44) may be satisfied,
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 anco(N)-Fx  812co(N)   Oinco(N) 

 82iya(N)  822co(N)+x   8274o(N) 

 =0, (46) 

 anico(N)  8n2q)(N)   Onnco(N)+x 

where 

 x=(T  j'  —1)/2  . 

    Therefore,  TY are obtained from (46), and  Ati can be determined from 

(44) and (45), and accordingly (43) can be determined. 

     § 7 Solution and consideration in the case of gradual 

         increase of rigidity 

    If the case of 3-span structure (uniform span length, uniform rigidity, 

and uniform distributed load) is solved, the following equations are obtained, 

          (Jai1+,41a21)./fi + (Jai 1— Ja3')R2 P
i12 (1— e—N)    y1 =Y4= 

      +(Ks— ki)(zfas'—zlai') P12--51vrdN'ilvfNiigdN                    -e 9 

        2Jaii+Jaz'—Gas'  1j0e °  dN, 
 (47) 
          (Jal'+z1a2').Rid-(Jal.'  —Ja31)iC2°  P12  

 1(1 —e—N)  2Ja1'+Jaz'  —Jas' 

     +(kz—Tcooaii+da2') P12 —flyrdNINrdN,          2zIaii+Ja21-4a3'  Ie o0e° 

where  7'  =1—  (2Ja1'  +  Jaz'  —  ilas')rco(N). 

 Ri and  R2 are the same that are in (34). 

    In comparison with solutions (34) in the case of rigidity  19= constant, it 

is clearly known that solutions (47) also are divided into two parts of uniform 

settlement (type A) and non-uniform settlement (type B), and that the terms 

of uniform settlement are both alike and independent of rigidity. The coefficients 

of type B terms are completely the same except  ¶ in the denominator of (34), 

            —rVTrrdN 
and there is the ratio of e°e°dN  : (1 —e-71V)/Tbetween the 

                                      0 differential settlements  y2-1 in both cases. In the case of  co(N)=1, (47)  corn-
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pletely coincides with (34). 

     § 8 The case of elastic settlement 

    Although only the case of settlements due to consolidation has been con-

sidered above, the case of exclusively elastic settlement comes to be expressed 

by equation (12) as the terms concerning N disappear. Further, for the  sake 

of simplification, as for r, only the effect just under load is considered and the 

effects to the other bases are disregarded. 

     In the case of a symmetrical structure of 3 spans, 

         3,1=4r+ 2131+2 (48) 

          y2= (r+ r2184-r (49)                      219r+  1) 

andr  p           Y2-1= 23r -I-1  (50) 

    This case is also divided  into uniform settlement (type A) of  r/31 and 

non-uniform settlement (type B). Settlement type A is independent of  ,8 and 

differential settlement rapidly decreases with the increasing of  B. 

     § 9 Numerical example  I 

 5.0m I 5. Om I 
    B rigid frame of 

the example in the In-  /14  =  23.9 

structions for Calcula-                 /3
3= 23.9 133 /33 

tion of Reinforced Con- 

crete  Structures12) writ-  = 28.6 132  132 

ten by the Architectural                  A  = 28.6 P 
Institute of Japan is 

adopted as an example  ° P.  /29 °  po  pa 

of the preceding  calcu-                  R  =  125  5  =  2,5o  p,=2,50  P.-/25 
lation, as is shown in  Fi

g. 9 The  3-span, 4-story rigid frame adopted in Fi
g. 9, Capter 9. 

 structure  :  4-story,  3-span,  reinforced concrete rigid frame
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     rigidity of base beam :  ISO  =  129 kg/cm2, 

     rigidity of 1st floor  beam  :  pi=28.6 kg/cm2, 
 (51)     tot al rigidity of  beams  :p= Epg= 234 kg/cm2, / 

 s=0 

 P1=125 kg/cm ,  1  =  500 cm 

 For e, a and k, the following numerical values are taken, 

 e  =1.1  ,  a  =  0.07 cm2/kg  , 
 k=  5  x  10-8 cm/sec.  f   (52) 

Then 

           Pi11.= 0.00835d , r =P-2= 0.01563d.  (53)           1 

   d-,500  cm 

 Al 
 1,000 

 CANE   ct)W 

 f 11-4111  -   

  

• r. I 1_, a r 1111 
 Yea  r _e-C1+00/653rN2   

: — e 

   Fig. 10 Function of settlement due to consolidation,  (1  —e-")----N curves when d 
     varies in the case of a 3-span symmetrical rigid frame.  (e=234,  =-0.2 and P1= 

   125) 

     If the functions  (1-e-N) and  (1-  e-FN) of uniform settlement and 

differential settlement of 3-span symmetrical structure in Fig. 9 are expressed 

by these numerical values above, Fig. 10 and Fig. 11 are obtained. The case 

when  the thickness of clay stratum d varies is shown in Fig. 10, and the case 

when  e varies is shown in Fig. 11. It is clearly known from these two figures 

that the value of the function of differential settlement  y2_1 is somewhat great-

er than that of the function of uniform settlement, and that the deeper the 

position of clay stratum is, the smaller the ratio between the two intends to
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   /0 

     /11111111111111111_  
    WA. 

                 ,P1.11.-5=0.3MM. 
 a  5WMn111.11111.    1121111=MPII  ' = 3 3 

                                               (I-e  ) 

  11,11MEM = ;0./ 
  1111111111211111Eigii 5=41 

 -- Year  01 0.2 03 

   Fig. 11 Function of settlement due to consolidation,  (1--e-TR)---,N curves when  t 
    varies in the case of a 3-span symmetrical rigid frame.  (0=234, P1=125 and 

 d  =500) 

be. An example of final quantities of uniform settlement and differential 

settlement is shown in Fig. 12. A numerical example of the increments of 

fibre stresses at ends of beams caused by final quantity of differential settlement 

is, for  .=0.2 and  d=500-1,000 cm, 

 f(E)—T  =4.18-8.35 cm  (3.507.00 cm), 
 y  =0.302-4.541 cm  (0,900-1.545 cm),  (54) 

 dal=  38.3--68.7 kg/cm2  (114-196  kg/cm2), 

 tlao=  80.2  ,.--144 kg/cm2  (239  -411 kg/cm2). 

where  dal and'  den show  the increments of fibre stresses at ends of the first 

floor  'beam and the base beam respectively, and, as for  the calculation, the rein-

forcement are neglected and the beams are assumed to have rectangular full 

sections of concrete. The parentheses show the case  (v=1.25) when clay stra-

tum has the section in the form of lens as in Fig. 7. 

     The increments of  stresses shown in the above example are  considerably 

large  in comparison with allowable stress of concrete. In the case when there 

exists such a clay stratum as above, in a design of structure,  by the effective 

Design Code, which disregards differential settlements, joints of frame are near-

ly in the state of plastic hinge and this fact is considered to prove the remark-

able deformation of structures on soft foundation. It is also known from the 

above numerical example that  'the slight change of the thickness of  clay  stra-
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       Quantity of Settlement (cm) turn has great influence on differe
ntial  —7 

11111111111111111111 settlements. 
                                    numerical exple for the 1€ 111111111111 case of the extension of a structure, a 4- 

o52tiiitimirinn                               span structure extended from 2-span struc- 

air,3eLillirillilture is shown in Fig. 13. There are tak- 
                            en C = 0.2,  d= 500 cm. It is clearly known 

                            from thisfigure that in this case the 0245:1111111111111111111structure makes settlement type B as well 
 1111111111111 as rotation and uniform settlement as a  whole.. When 2-span or 4-span structures 

 11111111111111 under uniform distribution of load are                             set from the beginning the final quantities 

 111111111111 of differential settlements are different 
  111111111111from the differential settlements in the                              case mentioned above, and the differences 

 of i o 1111111111111between themareshown in theupper                              part of the figure for the comparison. 
Fig. 12 Final quantities of uniform The maximum slope occurs at the span 

 settlement (: the real  curve) and  dif-                             between column 2 and 3
, that means in  ferential settlement (: the dashed 

 curve) due to consolidation when  E case of extension the adjacent span to 
 varies in the case of  a 3-span rigid 

frame.  ($=234,  P1=125 and d= the original structure is  apt _ to show 500) 

 ?it 
 11111111111111111111111111111111111111111111111111 

 I 2 3 4 5  
      ___._--- -- - _- 

  .._
...- 

e-__ -        -- 
__---                    __

______ 

 -..., - I 

  .4. -ii.).'s•2 ---- __ _____ _    2--Span, Uniform Load  ,.-. .  cz
. 

N._q---  
                                                                                _- -....-- - - - 

t4•----_                     _ _ _ 

Q:, 4-Span , Uniform Load  -4   

  Fig. 13 Final quantities of settlements of bases due to consolidation in the case of 
    a 4-span rigid frame extended from 2-span rigid frame, and those in the cases of 
    a 2-span and 4-span rigid frames under uniform load  which are not extended. 

 ($=234, =-•-0.2,  P1=125 and  d=500)
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damages. 

    As an example for the case of varying rigidity due to the hardening of 

concrete,  co(N) is assumed to be the curve of strength of concrete with re-

spect to time, and the formula of Prof. S.  Ban131 is approximated to be 

 0.7  t  
 co(t)—  1.203+0.7 t  (t  : week),  (55) 

If only the first story of the above 3-span, 4-story structure is assumed to 

have been built and  E=1 and d=500 cm are taken, (55) becomes 

                    N(56) 
                  Ca(N)— 0.06231+N , 

where N=0.03588  t, 

      / 
per—.._._._._._._..                           /                             / 

                                                                                       .--      /.---,,, —                      ,,p,.0..„--------—  /31,_._.__.-------                                                  PoR .,.---Po, 

 C /,'''oil!'-----F—                                               ..- ,....--p,.^.  4t,  #...-..-• 
 Q  /..--•-- 

                   • 

 /./..- 
                                --..,  

  d01  / ./.;"  -t  /  /x 
 kt),..            4.,,  IA..,  

                 P (N) N —  m  / 
____   

1 lir" 1  
 —N01 aiveeleS 02 03  01 05  060.7 

                                    —IN gridllNeINF'dN  Fig. 14 The function of settlement due to consolidation.  e  °o dN--N 
 o 

   curves when the rigidity of structure inceases as  sco(N) and the function of settle-
   ment  (1  —e'EN)IF----N curves when the rigidity  $0=const. in the case of 4-span 

   symmetrical rigid frame.  (00=129,  01=28.6,  6=1 and  d=-500) 

and Fig. 14 is obtained. Here suffix C shows the case in which rigidity  23 is 

constant, and suffix N shows the case in which rigidity changes with  tho(N). 

In the same figure, the cases of  13  =  0  and  Roo+tho are also shown. It is known 

from this result that the cases of R4-Rand-I-                                   ,oN•,-.1.N_n_,A0C.1N have greater gradient 

than that of  '3w+  Rio at the beginning, and the formers reach the maximum 

values and gradually decrease, approaching to the final value
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                 e0             rYf'dNdN                          .CT'dN 
     bm —lim  e "° = 1  (57) 

         rdNCNT'dN 
 e °° 

It will be natural that the gradient of the curve in the case of  Boo+,8iN is 

between the gradient of the curve in the case of  )950+13w and that in the 

case of  /Soo• It is pointed out from the same figure that the maximum value 

in the case of  /30N+13IN shows about 110 (V) of the limit value and the varia-

tion of rigidity gives a dangerous effect in differential settlements. It is also 

known that the case of  goo+  )811,7 is less different than the case of  RE  + 

 

.  ,1N 

from the case of  1800+  tho, and, at the beginning of construction process of a 

structure, to set a base beam is considerably  effective. in decreasing differential 

 settlements. 

10  

 05    / • 

   Year1 2     ---- 

   Fig. 15 The comparison among functions cf uniform settlement  ( : the dash-dotted 
 curve) and differential settlement ( : the real  curve) due to  consolidation and elastic 

     deformation of foundation both and that (: the dashed curve) due to consolidation 
     alone.  (0=234, P1=125, d=500,=--0.2 and  tc=6) 

     As a numerical example of the case which has elastic settlements as 

well, if  E=0.2 and  d=500 cm are taken, the result of the calculation is shown 

in Fig. 15 and Fig. 16. 

Here the value of r is approximately 

 8  7 =P
1  =  trA, 

 wherea: coefficient of subgrade reaction,  (58) 

            A  : area of base plate.
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The coefficient r will be expressed in Chapter 13 more in detail. 

 • 

    It is clearly 
                       ,i Unifotm known from Fig.15Settlement 

that the curve of thei  

                                         Consolidation  function of differential%DueConsolidation 
settlement in the  case  6 - 

                                              --

                                        which is caused by con-' 

solidation and elastic—-----------  

deformation of  founcia-       -  Year  1 2 

tion both is not much Fig. 16 The curves of differential settlement due to con-

different from that solidation and elastic deformation both when  ,c varies. 
                          (Lower dashed  curves  : when the initial settlements curve in the case which are assumed zero, the dash-dotted curve and the  real 

is caused by consolida-  curve  : uniform settlement and differential settlement 

tion only. As for  Fig,due to consolidation alone, respectively) 

16, the differential settlement at  N=0 varies with the value of  r or and the 

settlement proceeds with this value as the initial value. The rate of differential 

settlement increases with the increasing of  it at the beginning, while final 

quantity of differential settlement  clue to consolidation and elastic deforma-
tion of foundation both has the tendency to become somewhat less than that 

of differential settlement due to consolidation only, but not much less.
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    Part B The method of calculation of final quantities 

             of differential settlements of a structure 

   § 10 Some considerations on final quantities of settlements 

    In Part A the behaviors of settlements in the case when underground clay 

stratum is consolidated have been discussed. In this connection, in order to discuss 

the characters of settlement process, some simplification could not be avoided 

concerning the derivation of differential equations of settlements, the assumption 

on load, the assumption of rigidity of a structure, and others. In fact, even as 

to symmetrical rigid frame, the calculation is pretty complicated in the case of 

more than 4 spans. However, if the consideration is confined to final quantities 

of  settlements in negligence of settlement process, the following conclusions are 

gained from the above considerations and the treatment of equations become 
very much convenient. What matter in fact are final quantities of differential 

settlements. 

1) When final quantities of settlements are considered, as for gradual increase 

of load, it is sufficient to consider the amount of final value of load. The vari-

ation of load on the way is not effective on final quantities of settlements. 

2) When rigidity  Is gradually increases, differential settlements at some stage can 

exceed final quantities of settlements in the case of constant  13 as is shown in 

Chapter 9. In a numerical example, final quantity of settlement in the case of a 

3-span symmetrical structure with constant  13 was exceeded by one tenth. But 

from the practical standpoint, in Part B this effect is disregarded. 

3) As for the conditions of strata sandwiching clay stratum, final quantities of 

settlements are equal whether they are onesidedly permeable or both-sidedly 

permeable. 
4) The approximate solutions by (2) assumed at the derivation of settlement 

equation coincide with the strict solutions by (1) when  N—K:o. 

5) Even when there exist several clay strata and their thicknesses are not uni-

form, the treatment is simple. 

   Thus, below, the method of calculation for final quantities of settlements is 

derived. 

   § 11 The derivation of equations of final quantities 
         of settlements
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    It is assumed that there exist several underground clay strata, whose thick-

ness and constants are not  alWays uniform, and they extend infinitely in the 

direction perpendicular to the rigid frame so far discussed, so the treatment is 

two-dimentional. 

 Equations of  elastic settlements are 

 Y  et=  X"racRk(N)  (59) 

where  Rk(N): reaction of base k which gradually increases  with time as 

 Rk(N) .67  , 

 nk  : effect of reaction of base i on elastic settlement of base k. 

     Equations of settlements due to consolidation, when pressure  rqi on clay 

stratum fluctuates by means of Terzaghi's formula of consolidation, are 

 Y  el =  ZrAtj  rqi(v)rOti(N ,  (60) 
 r  0  - 

where 

 rsbi (N)=1- -8--Z-Le s  =  1, 3, 5,• • •-• • •-, 
                            71.2 ss2 

                 drcbi(N)  
           ry5t1(N)=dN  r  Pi=  r.N  N 

                 kerCit  
 rNir2i= raird i/( 1+ rei)                  rch2, 

and  rqi(N): pressure on the clay stratum under i base 

 (r9i)A7-,0.2=  rqt? 

 : when permeable strata are on both sides of clay stratum,  lc  =1, 

                                             1            when permeable stratum is on one side ofclay stratum,=—4 ' 

    (60) also are 

                    N  8          yet =Er/140 7r22,a ()e- 71-02(N 

                8 

            =_.r ote—rpis21Nrq,(v)e rttiS2vd, 
    sr0 

 =  XErYst  •  (61) 
                   s r 

    If the case of  N-->co is considered in (59) and  (61),  from (59)
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 Yet  =  ZrZkRiel  (62) 

and from (61) 

      d
dry si 

 = —reli—8r 0PiNr2  S2e— riliS2NSq (v)erttis21-± rtitirtlit  rqt(N)    7r2                                        

,   = —  rit2S2rY s2+rA,8rPirqi(N)  3 
 7r 

then  N—>  co  , 

 8  1 
        rY st=7',— (63)                                 71-2s2 

    Accordingly final quantity of settlement of i base is 

 Yt  =Yet   4-  TrY  sr 
 r  s 

 

2  8                      = X rtkRk+X LrA1-42 
                                    rs7r2s2 

 =  ZriteRk+  rqi   (64) 
 k  r 

     When base reactions in the case when settlements are not considered or 

bases are assumed to be completely fixed as in the ordinary design of structure 

are expressed as  kto, 

 Ri=Ro  (65) 

          42=EraaRk =Zratk(Rk0+ Eigka .07   (66) 

and when (65) and (66) are substituted into (64), 

        Yi=

aZra(Rko+X/3kiY,)+EkD21raik(Rk0+.1j) 

                                                    r 

 =rik+ Xraf raik)Rk0+rek+Ir2i ratkVkj . YJ.  (67) 

 

J  k 

    Iftk= rue+ /A  raft, 

            azi= X8 JO eh 111  (68) 

 KM=  TaikR7c0, 

 then (67) become 

 yt—  Elko  I=  Kt°.  (69) 

   (69) are the simultanious equations of final quantities of settlements by 

 elasticity of foundation and  consolidation of clay strata. Terms of uniform 

 settlement and rotational settlement of a structure as a whole independent of
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differential settlements are further eliminated  from (69). 

   If  Tci is set for the distance between base i and  xo=  Zxi/n (centre of  gravi-

ty) when the same weights are considered to be on the points of action of  Kio, 

 =  d-cYt,  (70) 

where if 

 ZKio  (71) 

 and  Ift*:x"i  =  EKtoxt  (72) 

are assumed, from (71) 

 91  =  nRo+c  nRo, 

therefore 

 Ro=  Vt/n, (73) 

 and from  (72) 

 ER0.T1+  EC-X-1,2  =  =  Clo=  gt, 

therefore 

 C--931/10, 1o= E-Xt2.   (74) 

     Settlement equations by  Kt* are expressed as  follows  : 

 yoc.—  j* =,K,*.  (75) 

If  yi*=a+bYt, then  atjy1*=0. 

Therefore 

 yt*=  a+  b3i1=  Ki*=170-Fai,  (76) 

hence the following equations are  gained, as equations of differential settlements, 

 )4'  —  Zaiiy  =Kt',  (77) 

where 

 Yt  —Yi*  =34'. 

     In the above equations, it is not always necessary to assume line loads 

as  to  Rt  and  8 as in Part  A.. The problem whether loads of columns in the 

direction perpendicular  to the rigid frame so  far discussed are taken as line 

loads or  series- of concentrated  loads, will be discussed in Chapter, 13..
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     § 12 On the method of solution of calculation 

          equations of settlements 

    As is clarified from the above description, the uniform and rotational 

settlements obtained from (75) are indipendent of rigidity  /3 and are determin-

ed by the total of  Ri and the deviation of each base from centre of gravity. 

 Bquations of differential settlements  (77) can be expressed as 

 (1—a„)yi'  —  =Ks'  (f*i)•  •••  ••••  ........  ••-(78) 

Therefore  yi' are linearly proportional to  Kt' and Ks', accodingly to  Rio and  Rio. 

In this equation, coefficients  (1  —alt) are in general greater than  those of other 

terms, so the solution by means of Iteration  Method is possible. 

    § 13 Coefficients 

a) as to a 

     If Boussinesq's solution is taken to be available as in Part  A  • and a for 

line load is adopted, (6) becomes 

       21
40       a2/7rh-(1 +(x '1'/h )212 —2/7rh{1 + x '2E12}2,•(79) 

            o 

          nr 

therefore 

 a"  =  2041  +x  '2E'212,  (80) 

where  l'  : span length of transversal rigid frame (to be assumed as equal span 

        length) in the perpendicular direction, 

 E'=l'/h,  x=x'l'.. 

     When loaded base plates which have constant dimentions are considered 

to be set in a line  infinitely with equal span length in the perpendicular direc-

tion, as for the calculation of a", from Newmark's  formulalo, 

 l'2 1 
            ,da"=Qa1' = 4B24b2 

               1 r  2mnVm2+n2+1  m2+n2+2 
           4nLm2+n2+m2n2+1 m2+n2+1  (81) 

                + tan-12mni/1122+na+11                         m2+n2+1—m2n2  , 

 B=r11., m=D/h, n=L/h, 

therefore  a" is obtained by adding  da" of each loaded base plate by means of
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this equation (Fig. 17). The case of  r  =  0.5 coincides with the case of strip 

 load16) which has the breadth  2x0.51' 

            a" = 27r1                r  isin2s  cos2cb  + 

               

1   I   (x'+ b)$' _  —  b)E'  
 .2trr  I (xi+b)2$12+1—  (x'  —  b)2E12+ 

             +sin-1,(x'b)(x'b)e'                                            (82)                       v(xie2+1sin-11/(x, --bre2+1 I 

with r  — 0.5, simplifies the calculation (Fig. 18). 

                                               3                                           2 

 Pr 
 11 r'"1111111n—                       ,111_0040"02            YfII  I 

 lx; 
 4  ;ewe'  I  XI   

Fig. 17 The application of 

 Newmark's equation to    *V- 828    calculate  a". 

 M^    *Alp.  z 
 .r=2 

              4Itirof  'c I2 41te 
      2R  

 z 
 MIIIIIIIIIIIIIIIII 

 or 

                                                B= 

                                x 
                                                = 

Fig. 18 The calculation of • 
 a" caused by strip load. 

                        Fig. 19 The comparison among  a" caused by line load 
 (:  the thick real  curves),  infinite  Geries of concentrated 

                            loads (:the dashed curves)  and  series of square loaded 
                              plates (:the fine real curves). 

    Equivalent line load (kg/cm) has been taken as unit 1 in (81) and (82) 

for the mutual  comparison of  a",. a" for x'  = 0,  1, 2 in (80)  through (82)  are
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shown in Fig. 19. In the figure, the curves by infinite series of concentrated 

loads have been calculated by 

 a" = 312{211  

                                     ) 

           2ir{(x12+n2)612+ 1}42+{x12$12+1}512 (83                                 } • 
As is seen in this figure, a" by a series of square loads differ only by less than 

one tenth from a" by line load at  1/6=1.5 or  11=1.51' in the case of 

 x'  =0, and both rapidly approach to each other with the increasing of depth. 

Further the differences are very small at  x' =1 and rapidly decrease with the 

increasing of x' 

     It is known from the above consideration that it is sufficient to use the 

equation for line load in general and to consider the dimentions of base plate 

when clay stratum is shallowly located. 

 b)  as  to  r 

     As to r, Boussinesq solved the case  of uniformly distributed  load on a 

circular area on the surface of semi-infinite elastic body and  Schleicher16)0?" dis-

cussed the case of uniformly distributed load on a circular area and a rectan-

gular one. According to them, in the case of distributed load on a circular area 

(radius is a), the ratio of settlement to equivalent line load 1 at S from centre 

of load is 

          4P(1(S7r)        r=—.L' 2S<a,1                 7r2aEa ,2 
  (84) 
      ,_4S/'(1 —1.2)F a7r\_a2\F ja7C\-1  r — 7r2a2E a  \I)—(1Y2/–2- S  >a' 

where 

             F2  (k, 7r‘l=--Vi —k2sin2co  dcc, 

              

/  0 

         F1(k,n   
             \2 /—k2sin2q, 

In the case of loaded rigid plate, 

            rr=2aE(11)2) S<a  ,) 
  (85) 

                               a 

     'r  �—n.aE(1Sa .1
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The values of r' by (84) and (85) are  shown,  in Fig. 20. Therefore  ri, are 

obtained as follows, 

 rii  =r'  s  =  0+2 Tr's.----nr , 

           T 

 (86) 
              rii-r's=0 +2 7.-17's=vi- .72+(nir)2 

 i___IIt is also shown 
 111111111—Sk 5  JO15) 

                                          according to Schleicher  1_____74 - that, value r' due 

 t 

 to distributed load 

AkI 0on a square areadoes A:.M not differ  much from 
                                         that due to distributed   !, 

   1111111111  —  Pa 5 io load on a circular area.  
I 1 I 1 I 1According to refer-  1'  rir-- ence16),  r', through the 

-..-experiments  on faun - 
 i,.....-, r 

 AZto  dation, decreases more 
   sr 

 Fig. 20 7' due to distributed load on a circular area (upper)rapidly than in the 
    and due to load on circular rigid plate  (lower). above theory with the 

                                             increasing of  S. 

c) as to  B 

     As to  19, it was determined in Part A with the assumption that the  struc-

ture deforms in proportion to shearing force, but here it is treated more actu-

ally as follows. 
                                       (t:-1 )s-rt is+ t (i+1 )8+ I    It is assumed that 

rigid frame is composed of  Ko  Ka  '  Ka 

 4Cs is(Cs+14(Cs such elementsasshown in  (1_2) I Ks1-la+Os          (ci Fi
g. 21 and rigidity of  Ku  Ki, ,  Ka 

members is equal among  , — — — 

beams and columns respec- ', (1--/)s-, is-, (i+i)s../                             Fi
g. 21.  Element  of a rigid frame for calculation of  $. ti

vely in each story and 

span lengthes 1 are  also equal. The derivation of values below will be shown 

in Appendix 2, here are only the results, where  R is for the case of line  load, 
and is  1/1' of rigidity of ordinary rigid frame.
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     In the case of intermediate columns 

               ,flit= ——2ttrsf3o 

 19t+i,  =  II/Cs/(30 
                   fli+24=-7:,80 , 

 (87) 

 Rii(ji  —3 or  j>i+3)=0. 

    In the case of columns at both ends 

                 Ks{—g('—ics/f.)2 +—1-43 
 sfes—Ks2/fs 3 fs° 

         ,821=,3.-1,.=TKsi")+21,80                           Ls—KS2/fS3 

              31 =19n-2,n =TK82  fe9                           sfsfes—Ks2/fs  °  ' 

 j�n  —3)  , 
                 —Kg2(1/1/fes) (i  2) 

      N12=n-1 =/Csf RKs(fsvfes).-'LS/ S )—fess-1-3 fPO,..(88) 

    th2 = fin-1,n=-1s 1/f55)(1/f+1/f)+--4g             -I 
sgfs_xs2(1/ f+Wes)SeSS 

        = /3n-2, n- 1 =Ksa( }Ifs1/fe9) +2}b' 
                      fs—xs2(1/fs+1/fes)  3 

                                          f5-2xs2es             /342 = Bn-3, n-1 = Txg2                          f s—Ks2(1/fs/f+1/fes)0  , 

 let,2=i9.1,  n-1=0  (i?_-5,  jn  —4) 

where 

 i30-18EK0/121', 

 Ko: standard rigidity of member, 

     ks  : rigidity ratio of beam of s-th story, 

 fs : twice the total of rigidity ratios of members joined together at each 
        intermediate joint of s-th story, 

 f„: twice the total of rigidity ratios of members joined together at each 

        joint of both ends of s-th story. 
     Thus the coefficients of a", r, and  /3 are determined. The theoretical 

equations in Chapter 11 for line load can be expressed as follows. 

When in (68)
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         _( rtrerj_x-,..._.1)1_3=(1.j_v,       (ilk—Aoi-17.,rizzrack1,..,,21c-FGr Ptraikil) ;2,= 42kdill, , 
              ati= Xaik ilk, -114i= do -13,  , 

 k (89) 

                         D20T720                Kip = ILAxle°IF=.3‘,0-IT  1 

 k 

               tilt= rili/ 20,Cik= rikli / 20, 

and 

 91=  XRio,  -0=  XRiOit  , 

 ko=#i/n, C =TV I 0  ,              )  (90)  17,0-1?,*=ki  , 

then from (76) and (78) 

                   .-.i.•--2o           Yi-=(.11-od-Uci)r, - (91) 

 and 

          (IA:T, — ei,i)yi'—ei,iy,'= Ri' (j*i)  (92) 
     Then it  is convenient to make such  a table as shown in Fig. 22 for cal-

culating coefficients and composing  settlement equations on the basis of soil 

profil. In this  figtire,  the case of 3-span structure over two clay strata is treated. 

     § 14 Numerical example 2 

     Such a 4-story, 4-span symmetrical rigid frame (D rigid frame in the In- 
                                                 structions for Cal-     i 4.5"7I 4.517, I4.5 m  1a,3- mi 

    0.44  0.44  0.44 0.44 culation of  Rein-

                         - 

                                               forced Concrete 
0375 024  024  024  0375  45" 

     a44- 044- 0.44  0.44 Structures12)), as 
                                           shown in Fig. 23 
 060  044  044  044  a60 4.0m 

    0.59 0.59  o.59a59is adopted as a 

                         — 0900.65 0.650.65 0.90 4.0mnumerical example 
 059 0.59 059  059 for the method of 

                                                 calculation above. 
1.25  0.350.85  o.851.25 4.07" 

 2  72 2 72  2.72  .  272 For the under-
  ZS L.n..6.LI—ground claystratum 

          base plate 2.21, 22m 

  Fig. 23 The 4-span, 4-story symmetrical rigid frame adopt-                                            d= 3m and h= 10 
   ed in Chapter 14. The value on each member  expresses m are assumed, and 

  ratio of its  rigidity. for clay constants
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 6=  flu  flu  ou 
 Al  0=  13..  P. 
 flu  /3=  the  fin 
 fin  fin  Po  0.= 

 

..--  Xi  -  li   I                                             -
.tri_....  X2   3.3 -  Xli L-X2 -:—.. 

     Rio  R20  I Rso X4 way  I.-  5110  
 ra  Ca  Tal  Cal  rm  C..  r31  C.. 

 T111xfl'=Cu r. x.5_1'= Cri MI x =Cell T a x.,._.1'= Co 
       7=  4 C15 Ma .4  Cu  rn  A.  Cm.  r33  ..,  C.. 
 To  C,,  T.  Co  ro  Co  TIIS  Css   — ._ ————,  ...0 

       r(111)3,1.1_=‘ad'12x1—=It1̂e.                               },lax1=II2,x1= .r1A .vn3,e.:1.3-.Ira:.:113.ips333w,A, ‘e, 

 o,"  x  vh  ohe  /0  31,2  inn"  xtm  sae'  3,p. 

 en"  4'  Ian"  4,  Ian"  4'  [an"  4' 
 Ian"  %  In's"  &  1003"  4'  OW"  4, 

      tale ,'la a"4' W.."  4'lase 4, 

       :5‘1.2, X-1-=112}1X1-I}A.*1-11•                                             },au"                                                                         1.1A                  4onasaa2T—apa13a3—,—-ors3Aa—=-- 
  e,es4.29. 

        tau" 919,oat" 3 spa awe 9W. sae  x  ap, 
 sale  e.,  2a="  4'  on"  e.,  Sae e/ 
 fan"  '5'  aa="  e,  saw" 9  on"  4' 
 ot"  4'  Vise e,  sa33"  4'  tau"  4' 

               X1 eto  '----  X  R‘.X  Rlo:X/210 
              R  XR= xR=XR=           X

xz  .XR=xR=  XR  so 

    xR=xR=, X R= XRss  . 

 D3,,R,--Tc.  ZNVR  i=  KII0  Z&  RI=  Rao  X3  4,1?  r=  ke  -.ZIC4.=71  %  )4  ..  R. 
 R.  X  RI  R.  X  Ns  if=  X  gi- .R..xl. -.ZXAR..-111 ifixi;  C 

 TC^'  (t:e  Ka'  R.'  •  1 
 -4

1x6a  310,,  61,6.  a„  6,. 
 ;fa  X  /3al  &Os,  826.,  8tafis. 

 6=  X  An  Nufin  anftss  6-13/3i. 
 if=  X  Xi  8,46.2  LP=   Im6.4  
 .VY1  )0  n=  fin  Zal,1112=  dm  23145.=  an  Zoup  14  =  a  1. 

 -8-
In  XXI  Tian  77413  L6,. 

 a=  X  ft=  a9919211  a„,€?.,  a..6= 
 a,.  X  fist  6../332  30=  antis. 
 33.x6.,  .  fisas$32  anti.,  -44" 
 rea  OA=  aal  E-4,3fi  n  =5121  Z  Na  10  33  =  ass  Z  603  A  =  6=4 

 Spiffily. Ia. 44 n = an  Zas  0  0  =  au  DT=613=633  Z3,16u=6“ 
 Z6-=6n=  9=  Z3=flia  =a=  Ifi  a  la  =6=  ZN=6  A  =  OSA 

 _Accordingly ye = (k+ri)!°-                                   0iI, 

                         / (4$_), __,__,_,,,                                 -4-ony,a13Y3ossy.-any.-Al 

                          - an ye + (--it-:-  a33)  ye  —  any,'  —  eils.Y.'  =TC11. 
 -a .,  y  ,,  -  a  .02' + (14; -  do)  y.' -  On  y.'  -  173' 
                          \ --,^^^,,h' -.oh' - a.sYe' -I- (hi:- - a..)y.' -R.' 

           Fig. 22 Table for calculating  coefficients and composings 

              settlement equations on the basis of soil  profil.
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the same values as in (52) are taken. As to  r, (85) and (86) are adopted, and 

the effect of base reaction is assumed to work up to the neighbouring base and 

not farther. That is,  n=1 is set in  (86). 

     If  19 and  C are calculated in the above example, the first and the second 

tables are obtained. Here 

 -107 .  7  +148.  1  -65.6  0  0 

 +157.3  -315.0  +237.9  -64.1 0 

 -49 .6  +231.0  -344.6  +231.0  -49.6 

 0  -64.1  +237.9  -315.0  +157.3 

   0  0  -65.6  +148.1  -107.7 

                       Table 1 Table of  thj. 

 L.32  0.40 0 0 0 

 0.40  1.32  0.40 0 0 

 0  0.40  1.32  0.40 0 

 0  0  0.40  1.32  0.40 

  0 0 0  0.40  1.32 

                                                          (1 -V2)112   X  
2aEA0 

                       Table 2 Table of  Ci  j. 

 0.  3183  0.2201  0.  0972  0.0400  0.0177 

 0.2201  0.  3183  0.2201  0.0972  0.0400 

 0.0972  0.2201 0. 3183  0.  2201  0.0972 

 0.0400  0.0972  0.2201  0.  3183  0.2201 

 0.0177  0.0400  0.0972  0.2201  0.  3183 

                        Table 3 Table of  crif. 

 K0  =  2  x  10'  ems,  1=  4.5 m,  P=  5.0  m,  20=  10  cma/kg, 

 Ra=R1=R5  =  132 kg/cm,  R2  =  R3  =R4=  1.1Ro, 

where the self weight of the underground part of the base is not  considered. 

At the calculation of rigidity, the whole sections of concrete of members are 

considered and  E= 210,000  kg/cm2 is set. Therefore  182 = 74.67  kg/cma. In the
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case of considering elastic settlement,  (  1  —1.2)P2/2E220= 0.05 is set. This value 

is as much as in the case of dry fine sand. 

     a" of the case in which a structure stands on the ground is as shown in 

the third table, and the result of calculation by (91) and (92) is as shown in 

Fig. 24. In this figure the settlements in the case caused by consolidation of 

clay stratum alone and in the case caused by both consolidation and elastic de-

formation of foundation are shown, and in its upper part the distributions of 

differential settlements are shown for comparison. 

    Re 11Ro 11 RD 11Ro  Ro In the 
 4 4  4  4  4 case of a struc-

                                                  ture with base-

                                                          ment or semi-  --7
51./A1. etAkW7 w\C1/47/zA w.N,7                                                     basement, it is 

 Wo 2Wo  2  wo  2  Wo  Wo admitted by 

                                               Terzaghi and 

 Peck18) too as a 

                                             method of the 

 - 

 reducing  of  dif-

                                                  ferential  settle-
 - meats that, for 

o e,z)                                                   settlement due to 
 -- consolidation, the 

 The  case  3=  1  m weight of soil 

                                                    driven out can 
 2 - be omitted from 

                                                       base reaction. In 

                                                    this connection, 

 - the whole base 

                                                       reactions must 
 3  -  The  ccse  3  =  o  m                                                   be considered 

                                                  for elastic settle-
  Fig. 24 Final quantities of settlements of bases in the case of 

    a 4-span, 4-story rigid frame, where  d=3m, h=-10m when meats. In Fig. 24 
    it stands on the surface and h=9m when it has semi-base- are shown the 

 malt. The real lines represent the cases due to consolidation final quantities 
    alone and the dashed lines represent the cases due to consoli- of settlements 

    dation and elastic deformation of foundation.                                              in the case 

 when the structure mentioned above is constructed being founded on  the



level as  deep as 1 in from the surface.  A structure with basement is more 

effective than a structure without it on differential  settlements, and to  have-

semi-basement or basement is considered to be very effective in the reducing of 

differential settlements. 

     As the  result  of two kinds of calculations above, the differential  settle-

ments in the case of a structure on the surface of foundation are the greatest 

 at both end  spans,  and 
 -----  the moment  distribu-

  i                                           tions in  members of      —11111Mstructure caused by both 
                                          elasticity of foundation 

     ."1111,11111111
1and consolidation are   )1                                           calculatedasin Fig. 25. 

  MI111111..                             in..."Theleft halfof the fig- 1
iI 
   i!!!„It;  ure is for a structure 

                         gipon the surface of foun-
      II  dation and the right 

                      

i O  10 20 30 tm 
                                          half is for a structure 

 Fig. 25 Moment distributions on members of the rig- 
   id frame of Fig. 23 owing to final,quantities ofwith the semi-basement. 

   differential  settlements due to  consolidation and  elas7 Therefore the maximum 
   tic deformation of foundation in Fig. 24. (The  left increments of  fibre 

   half  : the case in which the rigid frame stands on 
   the surface of foundation, the right half : the casestresses to be  causedin 

   in which the frame has  semi-basement..) base beam and 1st  floor. 

beam are as followings. 

   structure on the surface of structure with the semi-basement 

   foundation 

 Y2-1  =0.4408 cm,  Y2-1  =  0.1463 cm, 

 Moonaz.  =  20.45  ton•m,•8.07  ton•m, 

 Mi,mar.  =12.65  ton•rn,  MI  ma..  =4.26  ton•m,  %  (93) 

 dao,..x.=37.8  kg/cm2,  zlao,ma..=  14.8 kg/cm2, 

 =  51.7 kg/cm2,  zlaion4..=17.4 kg/cm2. 

     As in Chapter 9,  Liao and  dal show the increments of fibre stresses to 

be caused in base beam and 1st floor beam respectively. But -here the whole 

rectangular section of concrete is taken as beam section and the  reinforcement 

are not considered. The damages caused by differential settlements  on a  structure 

can be explained to some  extent from these numerals.



 39 

     As a supplement,  rigidity is somewhat greater in the definition of  Q in 

Chapter 4 than in its definition in Chapter 13, and the differential settlements 

become slightly smaller. 

     § 15 Remarks on the application of the above method 

          of calculation 

     A few remarks are to be added concerning the actual application of the 

method of calculation mentioned above on the basis of soil profile. 

a) as to the thickness  of stratum 

     For the sake of theorization, in order to calculate excess hydrostatic pres-

sure on clay stratum, the applied value at the depth of centre of thickness of 

the stratum has been  abopted  and  assumed to be constant through the thick-

ness of the stratum. This assumption is available for thin stratum, but cannot 

 helf result in inexactness with the inceasing of the thickness of the stratum. 

For higher approximacy, solutions are to be obtained by dividing the thickness of 

stratum into some strata, and by adopting the applied value of each depth of 

centre  .of thickness for each stratum with the assumption that there exist several 

clay strata. Because the  condition of the direction of permeation is  not effective 

on final  quantities of  settlements (cf. § 10). 

b) as to a" 

     It was stated in Chapter 13 that a" must be amended by considering 

breadths of rectangular base plates when the clay stratum is shallowly located, 

but definitions of a" are all unified for equivalent line load, so  (81)--(83) can 

be used as it is. This remark is to be applied for the definitions of and r as 

well. 

 c) Remarks on the numbers of transversal spans 

     The effect due to the difference between loads on the actual structure 

with finite transversal spans and the assumed line loads of infinite length in this 

essay is now to be discussed. In this connection, a" by means of (81) and that 

by means of (83) are expressed as the sum of infinite series, whose convergency 

intends to become the function of depth, so the deeper the location of the 

clay stratum is, the more terms must be calculated. The numbers of terms are 

given in the  Table 4 to obtain the value of more than 90  0 of the convergent 
value gained through the calculation of Fig. 19. Thus when the structure has
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 hll  0-0.6                    0. 8--1. 5 235 

 n0             1  I 2 3 7 
                             Table 4 

transversal spans whose number exceeds at least that numeral  at each point 

of depth in the table, this method of calculation can be adopted by the 

exactness of more than 90 %. Here  n=0 shows the case of only loaded plate 

just above. 

                       Conclusion 

     As mentioned  above, in Part A mainly the processes of settlements  due 

to consolidation have  been considered, and  accordingly it has been clarified that 

the rigidity of a structure is greatly effective on differential settlements  and does 

much work for reducing them. And  'the greater rigidity is, the greater the func-

tions of differential settlement  (1  —e—FIN) are in comparison with the func- 

tion of uniform settlement(1—N                      —e), so it is pointed out that the rates of dif-

ferential settlements are promoted by rigidity. It has been considered that dam-

ages of structure intend to occur at the extention joints in the case of an ex-

tended structure, that the differences of thickness of underground clay stratum under 

bases intend to be greatly effective on differential settlements, and that damages of 

structure are likely to occur in the process of settlement  in the  case of such a 

structure as a reinforced concrete structure the  rigidity of  which gradually in-

creases. 

     As for  Part. B,  .as the result of Part A to provide  the  enough rigidity for 

a structure against differential settlements become necessary, a method of  calcu-

lation for final quantities of differential settlements has been shown. Further it 

is pointed out in a numerical calculation that differential settlements are consid-

erably smaller in a case of a structure with basement or semi-basement than 

in the case of a structure on the surface of ground. 

     And it has been pointed out that in many cases base beams occupy the 

considerable part of the rigidity of structures and accordingly the rigidity of 

base beams is greatly effective on differential settlements. 

     It is natural that  two-dimentional consolidation has influence when clay 

stratum is thick, although the assumption mentioned in the preface has not been 

related, and it will  be necessary to examine the effect of the  two-dimentional
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consolidation and the flow of clay, and that of creep deformation of a structure. 

However, these problems have to be left to the further study. 
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 Appendix 1 

    By setting (1) approximately as  (2), the simlification of the treatment 

of equations in Chapter 2 and the following chapters has been intended.  In 

order to examine what effect this approximation results in, the  solution by (1) 

is derived in the following and is compared with the solution by (2) by means 

of calculations. 

    In (1), when q is a function of N, from Duhamel's theorem, 

 y=22Xe—M271  q(r)eM'rctr.  (1') 
 m  0 

If (8) is substituted into (1'), 

          yi= 22E e—M1 (Kt+ XOlkyk)eM2rdr.  (2') 
 0 If 

 T 

 yt.=  22e  —M2  /  (Ki+EOikEYk.)emzrdr,  (3') 
           0 k 

then 

               yi.   vd= _Em23,im+22ze—maT em2T(Ki+Eoikzy,en)  dTdT
k n 

                                                                                                                                                                                                                 • 

 m=0,1,2,  COf•.(41) 
 n=0,1,2,  no. 

Therefore the following equations are obtained for each value of m, 

     dY' +(M2 22822K
i22Z8aZ,       dTtiVi.---- k  n(5') 

where  (k  =  i,  n  =  m) is assumed to be not satisfied simultaneously. 

     In order to solve (5'), it is assumed to be sufficient to consider as far
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as  m=n' according to the  convergency. of (1). If the form of solution is put 

as 

 in=  (1--e—riT)  4  (6') 

which is substituted into (5'),  then 

 —(M2—  228ii  —  T011inz;  +  22E  8ikZ.A.55j=  0 ,  (7') 
 k  n 

 (M2  —22ati)ZAtinl  —22I6  ZAkaz  —22Ki=  0 ,   (8!) 
                           IC  7L  1 

 k  : number of columns 1,2, k', 

                  m,  n: 0,1,2,  n'. 

 Thus from determinant of coefficient terms of  (7')  ratios  of  Aiwa are 

 obtained, from (8')  Alta are determined, and solutions (6') are obtained. Thus 

the  solution by (1) can be obtained. However, the calculation by means of this 

method is greatly troublesome. The convergency of (1) is excellent except the 

vicinity of  T=0. But, in order to satisfy the initial condition  yr=0--- 0, consid-

erable number of terms are necessary. Therefore, in order to satisfy  the, initial 

condition and to give high approximacy to the curve of  (1), the following 

equation is set. 

 y  Aq{1  —ce—N—  (  1  —  c)e-52N}  ,  (9') 

where c =  8/2r2 , N= n2 T/4  . 

     The comparison of this curve with the curves of (1) and (2) is shown 

in Fig. 1'. In order to be compared with the case by the assumed curve of 

LO  

 05  

                                       _ 1-142e-1427.1-v TCurve 
 (r-ce-fa-oll-7-  Curve 

 1-  ev)—  T  Curve  

I  I  

  T0.5  tO 

         Fig. 1' Comparison among functions of (2), (9') and (11'). 
 (E=0.2 and  d=-10  m)
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(2),  the case when the 3-span symmetrical rigid frame adopted in Chapter 9 
and the same clay constant as in that chapter are used and  $=0.2 and  d  —10m 
are set is considered. 

    In the case by (9') 

 yi=  3.6619(1  —e-N)+0.8558(1—e-26N)+0.4072(1 —e-1.199N) 
 +0.1222(1—e-26.23N), 

     y2 =3.6619(1 —e-N)+0.8558(1 —e--26N)+0.8235(1 — e-1%199N)  (10') 
 +0.2472(1  —e-26-23N), 

and in the case by (2) 

 =  4.5159(1  —e--N)+  0.5294(1—e-1468n, 

 y2=  4.5159(1  —e-11)+1.0708(1  —e-1.268N),  (11') 
where  N=0.4678t',  (t':  year). 

     From (10') the first two terms become settlements of type A and the 
following two  terms become settlements of type B, thus it is known that settle-
ment of each base in this case is also considered to be divided into two parts. 
Moreover the functions of settlements type B are greater than that of uniform 
settlement. As for final quantities of settlements, 
uniform  settlements  : 

             from (10') 4.5177 cm,   (12') 
             from (11') 4.5159 cm,  f 

differential  settlements  : 

            from (10') 0.5413 cm,  ) 
 (13')              f

rom (11') 0.5414 cm, 

and both coincide  within the range of error. Then, in order to compare settle-

ment curves, if they are shown by setting both final quantities of settlements 

type A and differential settlements 100  % respectively, Fig. 2' is obtained. As 

known from this figure, the case of (10') is somewhat faster than that of (11') 

at initial N, and both cases intend to approach gradually to each other with 

the increasing of N. 

     As the result of the above consideration, with the assumption that (9') 

is highly approximate to (1), if (1) is compared through (9') with (2), both 

equations almost coincide in final quantities of settlements. But it is pointed 

out that the rates of differential settlements in the case caused by (2) intends
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 asp Solution (11')            —aiiiiIME11011111117-      ••^.g3 

   r...Solution (10') 
 -- Year 2 

     Fig. 2' A-type and differential settlements due to consolidation in (10') and 
        (11').  (=0.2 and d=10  m) 

to be somewhat smaller than that in the case caused by (1) at initial N.  How-

ever, to adopt (2) will be sufficient in the qualitative discussions of settlement 

process. 

Appendix 2 

     As to the process of determining values in Chapter 13 the case of  in-

termediate columns is examined here. 

    If the standard degree of rigidity of member is set as  Ko, in Fig. 21 

rigidity of each member is expressed as follows. 

 k8=Koks,  ko=Koxo and  k.---Kok..  (14') 

With the assumption that unit 1 of settlement is given at joint i, if the half 

of Fig. 21 is considered, moments at joints i and  i-1 of s-th story are 

               =  2EKoms(  20i  -F0i-  i  —3R)=(2gol-Fgoi-i+0)/cs, 

  ('15') 
here  Rl  =  —  ol/6Elfo=  1, then  0=  —6EKVI. 

    From the  equilibrium of moments at joint  (j  —1) 

 2(2ts+xo-FrO4pi-i-Exs0=0, 

therefore 

 6EK0  
 cot -i=  f .  1   (16') 

where  fs  : twice the sum of ratios of rigidity of beams and 

             columns joined together at joints s.
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Therefore 

 SM.  i-1,t=  Ks(2pi+(G)=2x,(xs+Ko+Ku)tfs, 

 iMi,t-i=Ks(pt-rcb)=2&s(1.51cs+Ko+K.00/  is,    (170 

 sMt-  1  ti-2=  asPi  = —2Xs2Ofs, 

                      sM-1-2,t- 1= xscoi= —Ks20/f„ 

accordingly in Fig. 3' 

                                                               . - 

 01:41-2  01-4i-2  QL-1,1 
 .....  ^• 

 2)  i-1) 

 $11-2  S11-1  s/3 
                                 Fig. 3' 

                                                      /,                            —  —
2fs 

  (18') 
                                                       /I3Xs2,,,            s(012-1/i-2+ sMi-2,e-1)/= 

Then reactions at joints are 

           sth-11  =  slat-1,t=2  = , 

                                                      s 

       slat' =_i—(1—2fjw (19') 
                                           3K2,,                           s132-21 = sQ1-1,t-2= g  If s 

     Thus rigidity equation (87) for an unit of load is obtained by dividing 

(19') by span-length in the perpendicular direction and by summing up 
about s. The same derivation as above is available in the case of columns in 

end spans.
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