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Preface

There have been various discussions®~' on differential settlements of a
structure standing on soft foundation. As yet, however, enough attention has not
been paid to the effect on differential settlements of the rigidity of a structure
which certainly is very effective thereupon. In other words, although the effect
of this rigidity has heretofore been taken into consideration in connection with
the elastic settlements due to load on surface of foundation, its effect has been
rather neglected in the case of the settlements due to consolidation which as-
suredly occupy the major part of the differential settlements on soft foundation;
except that Biot!’ tried to solve this problem concerning the strip load. This
essay contains several discussions on the settlements due to consolidation of clay
stratum and on the settlements due to the elastic deformation of foundation,
considering the rigidity of the structure in both cases. The essay is divided
into Part A and Part B.

Part A is the discussion mainly on the case of the settlements due to con-
solidation. In this part, with the assumption that a structure deforms in
proportion to shearing force, it is pointed out that the effect of the rigidity
on differential settlements is very great. Some considerations are also given on
elastic settlements.

Part B contains the discussion on final quantities of differential settlements
which are necessary in the design of a structure, on the basis of Part A, and the
method of calculation of final quantities of differential settlements. The discus-
sion of derivation of the theories for Part B is shown in Chapter 10.

The assumptions adopted in this essay are as follows.

a) The Terzaghi’s Consolidation Theory is available for the underground clay
stratum.

b) Exclusively the one-dimensional and primary consolidation is under con-
sideration, and the effects of the two-dimensional and secondary consolidations
are not taken into consideration. :
¢) Whether there is permeable or impermeable stratum or not,y the distribution
of stress through foundation is displayed by the Boussinesq’s formulas.

d) The structure is to be deformed completely elastically and its creep deforma-

tion is under no consideration.



Part A The settlement process of a structure due to the
consolidation of underground clay stratum

§ 1 The consolidation equation in connection with pressure

fluctuation

Primarily it is assumed that underground clay stratum infinitely extends ho-
rizontally between the two, upper and lower, permeable strata, and only the
vertical or one-dimensional consolidation is under consideration.  Further it is
assumed that the pressure on clay stratum is constant through the thickeness and
equals to the value at the centre of the thickness.

According to the assumptions mentioned above, the following settlement
equation is obtained for the constant increase of pressure on clay stratum by

means of the Terzaghi’s Consolidation Theory.

(R, = 2 —-MT
—A(H— _y e TRl
where . 2=ad/(1+e) : final quantity of settlement at p—p1=1,
ys4 : excess hydrostatic pressure at ¢,
n : initial value of p,
a : coefficient of compressibility,
d : thickness of clay stratum,
c : coefficient of consolidation,
{ : time,
e : void ratio,
M=2m+1)m/2, T=4ct/d>.
When p—p1=q is assumed‘, (1) approximately becomes
y=Ag(l—e¥), (2)
where
_n
N= i 7.

When p is a function of N and accordingly ¢ is its function as well, the
following equation is obtained by means of the Duhamel’s Theorem.

i~
y=le-N§0 gevdy. e 3



The case when several clay strata exist among permeable strata can be
discussed in the like manner, though it is not stated here. (For the criticism
on the treatment that approximately (2) instead of (:l) is used in this chapter,
see Appendix 1.) 4

§ 2 Differential equations concerning settlements of a structure

It is considered that there is such a structure as in Fig. 1 on the surface
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of foundation and assumed to treat as a two-dimensional problem, the pressure
of columns on a line perpendicular to the figure is approximated by a line load
extending infinitely in the same direction.
If notations as follows are assumed under the column 7,

ay : effect of reaction of base i on pressure on clay stratum under base 7,

B : effect of settlement of base i on reaction of base 7,

8y : effect of settlement of base z on pressure on clay stratum under

base 7,
vy : effect of reaction of base Z on elastic settlement of base 7,
ps + effect of settlement of base Z on elastic settlement of base 7,

then, the following relations exist as to @, 8, &, v and p,

Qi =qt s
B1=Pis
8;5=§d}/¢ﬁu, N e PP (4.)
Ti=7t)h

pit= Zkaﬂc.Bu-

When it is assumed that a structure has equal span lengths, the following
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expression is obtained.

au Gz G13°CGin\ " ‘a1 Gz as ‘an

Q21 COgzz2 Qz3°**Q2n Gz Gz **O0n-1

as1 Oasz. A3 *°Asp as az a1 ***On-2 ” ( )
\ @nt @nz @nyGen/ \ Gn Gn-1 Gn-zirar

Furthermore, as for ayu, when the foundation is_-taken as uniform semi-
infinite elastic solid, the following equation is obtained by means of the formula
of Boussinesq concerning line load in Fig. 1.

21 2 n
aﬂ=7;;coss¢”=;m. .................. (6)
When base reaction is shown as
Rt=Pi+Z ‘B“,yk, (Pl :10ad Of COl'llmIl i), .................. (7)
k

the increase of pressure on clay stratum is

qt=§auR¢=;}au(P;+§ﬂ;kyk)=Kz+%) Bt iy veeverrenerens (8)
where
Kt= %}a“P,.

When elastic settlement is considered in addition, the settlement equation of
base 7 at N=N is

y(=ze-zvﬁ’q_teydy+ ;rzaR}- .................. (9)

When (7) and (8) are substituted into (9),

N .

Y= 18‘”50 (K+ %‘.O‘myk)e“dy+ ;m(Pr‘l- Zk'.ﬂﬂcyk), """"" (10)

therefore
%\tr = %}puﬁ*— jZTu (Ps+ 2Bswye) =yt A (Kot %‘.tmyrc)
or
d d
Cou— 1)[%; +%‘.pmﬁj\)’@+('pu+lau— Dy
+ %‘(mﬂh) Vet QA AKi=0 (ixk), -(11)

where

) Ql=§:TﬂPJ-



(11) becomes at N=0
y(1_Mﬂ)y£=l(](5+);5wyk)_ .................. (12)

§ 3 The solution when clay stratum is single

To solve the fundamental settlements’ equations (11), those solutions are

assumed as-

»=3 Am (1 —e "My B, ]
% =%}Amqf,,.e—q”’"N J .................. (13)
Substituting (13) into (11),
(o= 1) (Fm = 1)~ 20} Aem+ gé{puwm—1)-zau}Amje“"’mN
+(pz¢+16,t—1){%A,m+Bt}+ Zk;(ptk'l'lé‘m){%:Akm'l-Bk}
+Q+AK,=0. e (14)

There the following two conditions are obtained.

{(pu—l)(@'m—l)/l—ﬁu} A+ ;{pik(qu" 1)/A—0u} Aim =0, €15)

Cout+Adu —1){%Atm+Be}
+ Zk(ﬂlk'l'l&tk){%Akm'l'Bk} +@i+1K;=0. e ¢16)

In order that (15) may be satisfied,

(pr1=1)%—011  praX—B1g eereeene pn%—0B1n
pmf—ﬁm Cozz —El)x—dzz ---- Pén‘s"—ﬁfm N, O (17)
om—bm ons—dware Comn—1)%—Oun
where
x=(Tmn—-1)/A

From (17) ¥ are obtained as # roots, and the ratios of A;; are determined
from (15). From (16) ( 3 Am+B;) are determined.

And as the initial condition at N=0, from (13)

y,L=B¢_ .................. (18)



Therefore, (18) being -substituted - into (12),
(1_15”)31.___1(‘}{[,,_,%: 5[1¢B]¢~), .................. Q%)

from which B; are obtained. Thus Asm=amdn being set, from (16)

(pu+0u— 1S amAn+ By}
+%:(pu-l-ll?tk){zaxm/lm-l'Bk}-l-Qz+1kz=0, ------------ 20

where A are determined and solutions (13) are-obtained.

Below, first the case concerning consolidation of clay stratum only, then the
case concerning elastic deformation of foundation only are considered, and lastly
both cases are considered together at the end of Chapter 9.

First, when consolidation of clay stratum only is considered, the equations

above are simplified as follows,

from (11)
%+(1—1511)y1=1(Kz+%:5:7;)’/:) (i2ck), ooverenninnenenn (21
from (13)
= S Am(1-e~Tnly D=L 2on 22
1= tm —€ T Y deeiisereanes A
m ) m=1, 2, n, (22)

from (15) and (16)

{(?lfm—l)/).+8,,}A,m+§ StxAem=0 (F26k), woveeeennnnnn (23)
(A8u— 1)%[] Am+2%] Oie % Aim+ 2K =0 (ixk), «oveenen (24)
from (17)-
dutx G1z e O1n ’
Jz1 BZZE'H’ """" Jan [ T (25)
5.711 5.1:2 """" '51m+x

§ 4 The case in which the shearing rigidity of a structure i_s’

considered

It is assumed that a structure has uniform span lengths and uniform rigidity,
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and that, for the simplication, the plane of framework of each span is deformed
in proportion with its shearing f_'orce. Then, with reference to Fig. 2, . are
for the intermediate columns

Bi-1st= Brs1i= 6, Bi=—2B, e (26)

for the end columns,

BuX1l=BuX(n-2), B+ Brr=Pa, }
- ,8(1/1'6)=.311/l1 ,80=B761/l7

. accordingly 8 take the values as follows,
Bu=Bm=—-(n-2)p/(n-1), 1

Bin=Pm = —‘B/(n—l), j .................. (28)
Br-1,n= Par=p.

Except the above mentioned (26) and (28), B:; become zero.
Further when

da=apm—as, Aloy=das—Ado-1= a1 -2+ a1, oo (29)

where
A0y =24

are assumed, &y are expressed by each row of the following matrix being multi-

plied by 8,

Aa1+(a1—an)/(n—1) 42a2 A%ag - A%an— —Aan—x—(m—an)/(n—-l)
—day+(az—an-1)/(n-1) B2ay  Aaz - Aan-2 —dan-2—(az—an-1)/(n—1)
—Aaz+(qs—an-z)/(n—l) Loz Loy - Mg —Aan-s—(a_s—-}zn—z)/(n—l)

' — dan+Can=a)(n=1) Lan-1 Lan-z - Aaz +dar—(an— o )(n—1)

If a structure is under symmetrical loads the matrix of the coefficients of
A;; of (23) hecomes, in the case of n=2m+1,
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‘ (Aal—Aan_1)+x Azaz'i—dzan—l Azas','dzan—‘z"‘
—(Aa1+4an—z) (Aza1+AZan—2)+x Aza2+42an_

Lom+ Aomas Aamir \

Azam-l +Aza‘m+1 Azam

_(All'/nr—l"‘dllmu) Azam—1+42am+1 Aza/m,-z+42am+1 (Aza1+42as)+x Azaz
—(dam~+ dam) A2am+ A20m A2am—1 + A2am-1+-- L2az+ A2az Lay+x/,

where x=(¥;—~1)/B4. The case at #=2m also is solved in the same way. The
equation corresponding to (25) is obtained by putting the determinant of (31)

into zero.

§ 5 Considerations on solutions in the case of settlements due

to consolidation

If the solutions concerning (2741 )-span and 27z-span symmetrical rigid
frames under uniform distribution of load and with uniform rigidity are obtained

on the basis of the above mentioned theoretical formulas, it is experessed as

follows.
f(E) A1 e—N>+gu(s,r> 21—y
...... + g (g, ) D A LS T YUY
2 =f&YGA - =Ny 4 gy (6, DAL - =Ty 4
..... +g2,,,_1(5,y)Pll(l—e—WnrlN) ceeeeen(32)
sm=r&YE2 20, - 6Ny + gn(e, )R- e - P+
------ +gunr (6N A1 e~ FaalVy,

Therefore the differential settlements, the differences between settlements of

neighbouring couple of bases, are

y1+l 1= yt+l~yt— 2 {gt+1sM(ny)"gi’m(E!r)}Pll(l fre—TmN)a """ '(33)

é=l/hs 5= pA/l,
For example, (32) and (33) become in the

where

¥n=1+Qn(&) and Pi=wl/2.

case of 3 spans



1

yi= (Aa1 +Aaz’)K;+(Aa1 —Aas )Kz PJZ (1__ )
(24ay' + daz' — das’)

(Kz —Kl)(Aaa —Aa1') P]i

il _e¢—¥N
+ V(24a,' + day’ — das') 1 (1-e )
......... (34)
y y (Aa1’+daz’ )K1+(Aa1 —Aaal)Kz P1X (l )
2= (2Aa1’+Aa2 —Aasl)
(Kz—Kl)(Ath +Aa2 )Pd —¥N
+W(2Aa1'+'Adzl —Aas’) Vl‘ (1 —€ )
and 2 _R.P
yg_,,:yz_yl:Kz;,& —lﬁ(l—e‘WN), .................. (35)
where da) = dad=(o1—a) I=ai' —a;',

Ki=a)'+2a:' +2as' +as', Ko=2a)"+3a' +as',
¥=1-(24a\"+ daz' — day') 7.

If the units of various coefficients are given as a reference, 8, 4, P; and
1_1/1 are kg/cm?, cm®/kg, kg/cm, and cm respectively, and a’, &, and % are zero
dimension.

The characters of (32) and (33) are explained below mainly through
(34) and (35).
a) As shown in (32) and (33), the settlement of each base can be divided

2N
w2 -
S 3
b~ \
B X
S \
» a
| "N \
e AT f(5)
Q:/ N
N e

\ \‘\ —

\\2*‘0 Jar (54> e S

1 2 i s

. — o0
o |
_;‘0 4u(5.9)
/]
-03 -
§ 70

—— s o %

Fig. 3 Final quantities of uniform (A-type) settlement and non-uniform (B-type)
settlement due to consolidation in the case of a 3-span symmetrical rigid frame.
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Fig. 4 Final gnantities of uniform (A-type) and differential settlements due to con-
solidation when 7 is considerably great in the case of a 3-span symmetrical
rigid frame.

into two parts, i.e. term. of uniform settlement f1 (E)Pl—lx(l —e— ™) (denoted: as

settlement type A) and terms of non-uniform settlements Zg,mpli(l —e—¥ulV)

(denoted as settlement type B). Here the coefficient of term of settlement type
A is inversely proportional to the depth of clay stratum from the surface of
foundation and independent of the rigidity of the structure. The greater rigidity
B is, the more rapidly the coefficient gim of each term of settlement type B
decreases, and it converges into zero when % (=pB3/l)—co. The effect of rigid-
ity B intends to decrease with the increasing of the depth of the location of the
clay stratum. In the case of 3 spans in (34) and (35), f(£), gu(&7%) and
£21(€,%) are shown in Fig. 3. And in Fig. 4 are shown f(&) and final quantity
of differential settlement {ng(E,v) —gu(éy)} in case 7 is great.
b) At constant ¢ and %, settlement of each base approaches to the maximum with
N—o0. The greater § is, the greater the settlement function (1 —e~¥V) of each
N
)

at =0, and it intends to approach’ asymptotically to settlement function of type

term type B is, and it coincides with function of settlement type A (1-¢
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A for smaller-¢. Examples of curve (1—e~¥N)~N in the case of 3 spans
are shown in Fig. 5.

1.0

. =8 L/;//
?N //

¥

S

0.5
22117

N i1/4

o I/

7 2 g 4 5

Fig. 5 Function of settlement due to consolidation, (1—e ¥¥)~N curves when
7 varies in the case of o 3-span symmetrical rigid frame.

¢) An example of final quantities of settlements, in case the number of span

increases, is shown in Fig. 6. In the case of infinite number of spans, in dif-
ferggtialpquation 2n

Yi=Yx=JY, 1

U (36)
Ki=K= } atu;j '
el
therefore, as >.84=0, the following equation is obtained
k
y=AK(l-¢— Ny, (3D)

In Fig. 6, it is known that final quantity of maximum settlement in
the case of 7 spans is 0.84 times that in the case of infinite . nufnber of spans,
and that with the increasing of number of spans settlement of each base con-
verges considerably fast.

d) Further in case 7 is great enough, clay constant comes to be not remark-
ably effective on differential settlements. For example, in the case of 3 spans,
as shown in (34), % of gu(é;v) and g21(&,%) are included in ¥ of denomina-
tors, but in the case of (24a,'+ daz’ — das')y>1, 1 can be neglected. In gen-
eral, in the case of the number of spans 2z+1 and 27, gim(&7%) becomes the

equation in which denominator is of #-th degrée of 7 and numerator is of
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Fig. 6 Final quantities of settlements of bases due to consolidation *
when the number of columns varies. (£=0.5)

(n-1)-th degree of 7, and if others are
neglected for the term with the greatest
power of 7, each term of type B, i.d. final
quantities of differential settlements can 4
be regarded to be independent of 2, for
A is cancelled out in denominator and W
numerator. Thus it is pointed out that dy Y =%2/q,
with the increasing of B differential settle- Fig. 7 Clay stratum with section in
ments come to be little dependent of the form of lens.
the propert}' of clay.

/ 2 4

e) When the thickness of clay stratum changes under each base and according-
ly 2 changes, if section of clay stratum in the form of lens as shown in Fig.
7 is assumed, for the case of 3 spans

SEWay_ (day' + daz")+ (day' — das")

f(E)V=1_L(Aall"‘Aaz,)'f'(Aal'—Aaa’)u ) emeereeriereiiiieians (38)
Yaciwey _ Ki—vKe {(dar'+ 40 )+(day' —dasHyy—1 (39)
Ye~1v=1 Ki1— Ko {(dai'+daxYr+(dar’ — das )}y — 1

Fig. 8 shows the case in which 7 becomes great enough and 1 in denominator
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Fig. 8 The effect of » (ratlo of thickness in F ig. 7) on final quantities of A-type
and differential settlements tdue to consolidation in the case of a 3-span symmetrical
rigid frame. (when (24’4 4z’ —day' m>1 in Eq. (39))

and numerator can be neglected in (38) and (39). From this figure it is clearly
known that the slight change of » is greatly effective on differential settlements.
f) when structures are extended

Although only the cases of symmetrical settlements are treated above, the
case of extended structures in which such damages of structure as cracks and
plastic hinges of members of structure are apt to occur belongs to the case of
asymmetrical Joad situation. The column numbers of an original structure
are denoted as 1, 2, -++--: m, and that of its extended part as m+1, m+2, -
-, If it is assumed that the original structure is through with the settlément
phenomenon by the consolidation of clay stratum, the settlement equation of
each column when the structure is extended is

%‘i‘yz:Ri(Kt‘{' Zkaﬂcyk) E=1,2y0m0e TR 40)

where K= ZjauP 1
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Pi=Py= oo — Pp1=0, Pp=Py=wl/2,

hence equation (40) is solved as in Chapter 3. The differences of A among ¢
which come from the consolidation by loads of the original structure are usually

so little as to be neglected, so A; can be let as A in (40).
§ 6 When the rigidity of a structure changes

So far, from Chapter 2 to Chapter 5, rigidity 8 has been let as constant
from N=0. As the result, it has been concluded that, as later shown in Chap-
ter 9, there can be cases in which the major part of diﬂ‘erenj:ial settlement
takes place as early as in the first few months. This shows that the effect of
variation of rigidity with the hardening of concrete must be thought in the
case of a reinforced concrete structure. Therefore the further consideration
comes from the assumption that rigidity changes in the way of approaching to
constant value in the interval of infinite time.

The rigidity of a structure is assumed as Bp(V). Here

#(0)=0, G(Nyow— 1 e, 41
If the constancy of load is assumed from IV -0,
21) are
ay, _af
FYi=MHEKi+ S 0up(N)yi} e 42)
aN %
z=]’2, ......... n,
k = ]’2’ ......... n

Those solutions are put as follows,

—.\':vyf J'dNSNeSjW JAN

y«l=;Aue . AN . e (43)

(43) being substituted into (42), the following two conditions are obtained

—j:"qf Jd Ngﬂejjw JdN
0

from the coefficient terms of ¢ dN  and constant terms,

A‘U(l - W}’)—x§6lk(p(N)Akj=0, .................. (44)
SAu-IK=0 e (45)

In order that (44) may be satisfied,
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311¢>(N)+x 312¢(N) ............ 5m¢,(N)
dz210(N) 0220 (N2 eveeerenen dznp(N)
: : : =0, ceeeereeerenerens (46)
On1p(IN) Onzp(N)  ceveenennns Onno(N)+x
where
=¥, -1)/1.

Therefore, ¥ 4" are obtained from (46), and A:; can be determined from
(44) and (45), and accordingly (43) can be determined.

§ 7 Solution and consideration in the case of gradual
increase of rigidity

If the case of 3-span structure (uniform span length, uniform rigidity,

and uniform distributed load) is solved, the following equations are obtained,

. (day'+ dax YR+ (day' — dzs Kz Pl ~-Ny
V1=Ye= 24a,"+ daz' — das’ l (I-e ™)
+(K2—K1)('Aas’— Aal’) Qe —quT’dN"Ne S:yf’dN
24&1""4&2’—4&3’ l 0 dN’
............ 47y
_ _(Aa1’+Aaz’)I—(1+(Aa1’—Aas’)l?z' P2 r —N.
Ya=de= 2day' + oy’ — das’ rd-e )

(B:— K )(day' + 4"y Pid e—ﬁvyf'dN Nej':’yr'dzv
24&1’+Aaz' —Aas’, l dN

0 2
where U'=1—-2da’+ daz’ — dasYyo(N).

K, and K; are the same that are in (34).

In comparison with solutions (34) in the case of rigidity 8=constant, it
is clearly known that solutions (47) also are divided into two parts of uniform
settlement (type A) and non-uniform settlement (type B), and that the terms
of uniform settlement are both alike and independént of rigidity. The coefficients
of type B terms are completely the same except ¥ in the denominator of (34),
_ENT’dNSNeSiV ¥'dN

0

and there is the ratio of ¢ 7° dN : (l—e_ny)/Yf between the

differential settlements y2~: in both cases. In the case of o(N)=1, (47) com-
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pletely coincides with (34).

§ 8 The case of elastic settlement

Although only the case of settlements due to consolidation has been con-
sidered above, the case of ‘exclusively elastic settlement comes to be expressed
by equation (12) as the terms concerning N disappear. Further, for the sake
of simplification, as for 7, only the effect just under load is considered and the
effects to the other bases are disregarded.

In the case of a symmetrical structure of 3 spans,

2 -
Y= (T+ Zéz‘ﬁ)\ﬂ s e, 48)
28+ )
V2= ( gﬁr-i- l)P" s ek SUST (49)
and o y271= 24?7%131 e easacsesassenaenes (50)

This case is also-divided into. uniform settlement (type A) of rP; and
non-uniform settlement (type B). Settlement type A is independent of 8 and
differential settlement rapidly decreases with the increasing of 5.

§9 Numerical example 1.

| J.0m 1 5-0m 1

B rigid frame of
the example in the In- Py =239 By P
structions for Calcula-

= 23.9
tion of Reinforced Con- Ps B3 B3

crete Structures'® writ- 2 = 286 £z B2
ten by the Architectural i

‘. . P = 28.6 B: V<l
Institute of Japan is
adopted as an example | Po =729 fo l B |
ding calcu- 1
of the preceding calen- 75 ~250  R=250  Pums25
lation, as is shown in
) Fig. 9 The 3-span, 4-story rigid frame adopted in
Flg' 9’ Capter 9.

structure : 4-story; 3-span, reinforced conerete rigid frame
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rigidity of base beam : Bo=129 kg/cm?,
rigidity of 1st floor beam : B1=28.6 kg/cm?, [ 1)
S
total rigidity of beams:  B=3,=234 kg/cm?, [
P,=125 kg/cm , =500 cm
For e, @ and k, the following numerical values are taken,
e=Ll, a=007 cm*/kg, |
F=5x10- om/soc. [ e (52)
Then
Elli ~0.00835d , 7= ‘@l—) ~0.015634. e, (53)
/.U e~
== d=500 cm —
//// -
patad ]
i - -
0. 5 - e = =
= // ~ - d= 1,000
N g
U -
N VAR —
T el e d= 2,000
= — " )
S
Year 4 g T a0IBSIPN 2
————— : /- e'”

Fig. 10 Function of settlement due to consolidation, (1—e ¥¥)~N curves when d
varies in the case of a 3-span symmetrical rigid frame. (8=234, £=0.2 and P;=
125)

If the functions (l—e—N) and (1_e—1VN) of uniform settlement and
differential settlement of 3-span symmetrical structure in Fig. 9 are expressed
by these numerical values above, Fig. 10 and Fig. 11 are obtained. The case
when the thickness of clay stratum 4 varies is shown in Fig. 10, and the case
when & varies is shown in Fig. 11. It is clearly known from these two figures
that the value of the function of differential settlement y.-: is somewhat great-
er than that of the function of uniform settlement, and that the deeper the

position of clay stratum is, the smaller the ratio between the two intends to
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10 :
//‘5=/ E—
/ A |
/ E=0J /
05 / |/_$ B —
S/ e
S/ A /// F=et
1z

Fig. 11 Function of settlement due to consolidation, (1—e ¥¥)~N curves when §
varies in the case of a 3-span symmetrical rigid frame. (8=234, P;=125 and
d=500)

be. An example of final quantities of uniform settlement and differential
settlement is shown in Fig. 12. A numerical example of the increments of
fibre stresses at ends of beams caused by final quantlty of differential settlement
is, for £=0.2 and d=500~1,000 c¢m,

A6EA _418~835em (350~7.00 cm),

‘ Yrty¥oee=0.302~0.541 ecm (0.900~1.545 cm), ) ............... (54)
Aoy =38.3~68.7 kg/cm? (114~196 kg/cm?),
doo=80.2~144 kg/cm?  (239~411 kg/cm?).

where 41 and' 4oz show the. increments of fibre stresses at ends of | the first
floor ‘beam and the base beam respectively, and, as for the calculation, the rein-
forcement are neglected and the beams are assumed to have rectangular full
sections of concrete. The parentheses show the case (v=1.25) when clay stra-
tum has the section in the form of lens as in Fig. 7.

The increments of stresses shown in the above example are considerably
large in comparison with allowable stress of concrete. In the case when there
exists such a clay stratum as above, in a design of structure, by the effective
Design Code, which disregards differential settlements, ]omts of frame are near-
ly in the state of plastic hinge and this fact is considered to prove the remark-
able deformation of structures on soft foundation. It is also known from the

above numerical example that the slight change of the thickness of - clay stra-
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Fig. 12 Final quantities of uniform
settlement (: the real curve) and dif-
ferential settlement (: the dashed
curve) due to consolidation when ¢
varies in the case of a 3-span rigid

the original

settlements.
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tum has great influence on differential

As a numerical example for the

case of the extension of a structure, a 4-
- span structure extended from 2-span struc-
/ ture is shown in Fig. 13. There are tak-
en £=0.2, d=500 cm. It is clearly known
A from this figure that in this case the
structure makes settlement type B as well
as rotation and uniform settlement as a
whole.. When 2-span or 4-span structures
under uniform distribution of load are

/ set from the beginning the final quantities
of differential settlements are different
i from the differential settlements
case mentioned above, and the differences

between them are shown in the upper
part of the figure for the comparison.
The maximum slope occurs at the span
between column 2 and 3, that means in
case of extension the adjacent span to
structure is apt_ to show

in the

frame. (B=234, P1=125 and d=
500)
/A
7 12 _ 3

s \\\\\ 5 — =
S e e

w—7

=

QW

5

= —

X7 F—0—= =

3 2-Span] Uniform Load

QS - f
. § - \\N_. — ]
S_, 4-Soa, Uniform Load

Fig. 13 Final quantities of settlements of bases due to consolidation in the case of

a 4-span rigid frame extended from 2-span rigid frame, and those in the cases of
a 2-span and 4-span rigid frames under uniform load which are not extended.

(B=234, {=0.2, P;=125 and 4=500)
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damages.

As an example for the case of varying rigidity due to the hardening of
concrete, ¢(IN) is assumed to be the curve of strength of concrete with re-
spect to time, and the formula of Prof. S. Ban'¥ is approximated to be

0.7¢

ng):mm (2: week),  creeeeeseeerensen (55)

If only the first story of the above 3-span, 4-story structure is assumed to
have been built and £€=1 and d=500 cm are taken, (55) becomes

N
Ny —m e SUPTUR (56)
o(V)=506231 1.,
where N=0.03588 ¢,
3y
2
B
Q
L
z 7
Ror < 2
N A/
3 /I Yz
nﬁ //-V
3 Wi
= L1
30 /4 "
T Y/ PIN) —eo
Y/
s |
8
{ .
i
—_— o1 Udweeks 02 03 o4 05 26 77

Fig. 14 The function of settlement due to consolidation. e*® dN~N

)

curves when the rigidity of structure inceases as B@(N) and the function of settle-
ment (1—e¥N)/¥~N curves when the rigidity B;=const. in the case of 4-span
symmetrical rigid frame. (8,=129, B8;=28.6, {=1 and @==500)

N N
—\ ¥/dN(N . ¥'dN
e

and Fig. 14 is obtained. Here suffix C shows the case in which rigidity 8 is
constant, and suffix N shows the case in which rigidity changes with So(N).
In the same figure, the cases of 8=0and Boo+ B0 are also shown. It is known
from this result that the cases of Bon+ Biy and Boc+1x have greater gradient
than that of Boo+ B1o at the beginning, and the formers reach the maximum
values and gradually decrease, approaching to the final value
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N N
(AT
}VIH::: o = lim e':v D (57)
5 vidN e g yan ¥
e Wig)o

It will be natural that the gradient of the curve in the case of Buwo+ Biv is
between the gradient of the curve in the case of B+ B10 and that in the
case of Bos. It is pointed out from the same figure that the maximum value
in the case of Boy-+ finy shows about 110 9 of the limit value and the varia-
tion of rigidity gives a dangerous effect in differential settlements. It is also
known that the case of Bog+ Bin is less different than the case of Bon+ SBiv
from the case of Bos+Bis, and, at the beginning of construction process of a

structure, to set a base beam is considerably effective. in decreasing differential

settléments.
70
— s —
|, ="
=T
/,//'
'/
A
05 /é/
Eﬁ y/4
b 74
¢ 4
\ /
oy 7
4
7 2

— Year
Fig. 15 The comparison among functions cf uniform settlement ( : the dash-dotted
curve) and differential settlement ( : the real curve) due to consolidation and elastic
def ormation of foundation both and that (: the dashed curve) due to consolidation
alone. (=234, P;=125, d=500, {==0.2 and «=6)
As a numerical example of the case which has elastic settlements as
well, if £=0.2 and d=500 cm are taken, the result of the calculation is shown
in Fig. 15 and Fig. 16.

Here the value of r is approximately

_o_r
‘r_P 1 - ICA, 1
where & : coefficient of subgrade reaction,J """"""""" (58)
A : area of base plate.
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The coefficient 7 will be expressed in Chapter 13 more in detail.

It is clearly
known from Fig. 15
that the curve of the
function of differential
settlement in the case
which is caused by con-
solidation and elastic
deformation of founda-
tion both is not much
different  from  that
curve in the case which
is caused by consolida-
tion only. As for Fig.

/
<5l
§ ’ Untform
® I Settlement
s H
T |
S { Due to
s [ Consolidation—| e e
g ! “2 _|-—=ES T ‘ 3
§ 4’/,—2;/ = — _teath =
< ./,’,,//10 //,’:’_— ___f_.--——
1 17 g T ey
e e 1
—  Year 7 5

Fig. 16 The curves of differential settlement due to con-
solidation and elastic deformation both when x varies.
(Lower dashed curves: when the inijtial settlements
are assumed zero, the dash-dotted curve and the real
curve : uniform settlement and differential settlement
due to consolidation alone, respectively)

16, the differential settlement at N=0 varies with the value of 7 or & and the

settlement proceeds with this value as the initial value. The rate of differential

settlemnent increases with the increasing of & at the beginning, while final

quantity of differential settlement due to consolidation and elastic deforma-

tion of foundation both has the tendency to become somewhat less than that

of differential settlement due to consolidation only, but not much less.
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Part B The method of calculation of final quantities
of differential settlements of a structure

§ 10 Some considerations on final quantities of settlements

In Part A the behaviors of settlements in the casz when underground clay
stratum is consolidated have been discussed. In this connection, in order to discuss
the characters of settlement process, some simplification could not be avoided
concerning the derivation of differential equations of settlements, the assumption
on load, the assumption of rigidity of a structure, and others. In fact, even as
to symmetrical rigid frame, the calculation is pretty complicated in the case of
more than 4 spans. However, if the consideration is confined to final quantities
of settlements in negligence of settlement process, the following conclusions are
gained from the above considerations and the treatment of equations become
very much convenient. What matter in fact are final quantities of differential
settlements.

1) When final quantities of settlements are considered, as for gradual increase
of load, it is sufficient to consider the amount of final value of load. The vari-
ation of load on the way is not effective on final quantities of settlements.
2) When rigidity 3 gradually increases, differéntial settlements at some stage can
exceed final quantities of settlements in the case of constant B as is shown in
Chapter 9. In a numerical example, final quantity of settlement in the case of a
3-span symmetrical structure with constant § was exceeded by one tenth. But
from the practical standpoint, in Part B this effect is disregarded.
3) As for the conditions of strata sandwiching clay stratum, final quantities of
settlements are equal whether they are onesidedly permeable or both-sidedly
permeable.
4) The approximate solutions by (2) assumed at the derivation of settlement
equation coincide with the strict solutions by (1) when N—co.
5) Even when there exist several clay strata and their thicknesses are not uni-
form, the treatment is simple.

Thus, below, the method of calculation for final quantities of settlements is

derived.

§ 11 The derivation of equations of final quantities
of settlements
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It is assumed that there exist several underground clay strata, whese thick-
ness and constants are not always uniform, and they extend infinitely in' the
direction perpendicular to the rigid frame so far discussed, so the treatment is

two-dimentional.
Equations. of " elastic. settlements are

Pa= Z‘{r‘”‘ R(N), e (59)

where  Re(IV): reaction of bass %2 which gradually increases with time as
Rk(N )N ,,.—)Rk N
rue :effect of reaction of base 7 on elastic setilement of base Z.

Equations of settlements due to consolidation, when pressure »g:- on clay
stratum fluctuates by means of Terzaghi’s formula of consolidation, are

ycL—Z.rltS w3i()rde’ (N v)dy , rereeeeeeeineen (60)
where__
"y (N)=1_7%2L23 SN 51,3, 5 e,
(W)= 2B e Ny,

ZTC :
N, = "’id,z“ L msaed /(1)

and gL N): pressure on the clay stratum under 7 base
(+@0)N-0 =rqs:
& : when permeable strata are on both sides of “clay stratum, £=1,
when permeable stratum is on one side of clay stratum, /c»=%,

(60) also are
yu—Z‘_, 2450 - J,./_“ ,.ql(],)e r!-t1s2(N lr)d),

= 4:‘4 2 7'1‘7.[_2 e s N (" j \ rqd(v)e TS d)y,
= 4? ;ryﬂ e e, (61)

If the case of N—oo is considered in (59) and (61), from.(59)



yct=%T£k’Rk1 .............. (62)

and from (61)

d 8 N .
éf;\;t =—A E r,lltz S%e — TﬂtszN-L r%(u)er#tszb dy +r'zt7%"‘ul ,.ql(N)

8
= —,.;z.;szrysrl-rl,n—zrm rql(N) ’
then N—co,

81
Wa=rdog geds e (63)

Accordingly final quantity of settlement of 7 base is
Yi=Yert+ 2251
r 5
= SraRet S5 L
< 1 k - sr tn_z SZT {
=ZkT‘lkRk+ SiArgs e ereeene ee(64),
When base reactions in the case when settlements are not considered or

bases are assumed to be completely fixed as in the ordinary design of structure

are expressed as R,
Rt=Rm+Zkﬂu;yk,, .............. (65)
r41=2kraikRk=Zkraik(Rk0ff'Zjﬂk}yi)1 ................... 66)

and when (65) and (66) are substituted into (64),
Y= Zk:Tik(Rko'i',?_:ﬂkiyi)*"-.kZ%rxt raol Reo+ ;ﬂk;y;)

= Z);.(Ttk‘i‘ 2.,-1( raax YRyo+ ij":( T+ erzt POk )PV ge verrereeees (67)
If O =T+ D2kt rGrs l
ay= kZﬁmﬂch .................. (68)
Kio= 20 wRxo,
e /
then (67) become
yz_zja“yt:Kw_ S e (69)

(69) are the simultanious equations of final quantities of settlements by
elasticity of foundation and consolidation. of clay strata. Terms of uniform

settlement and rotational settlement of a structure as a whole. independent of
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differential settlements are further eliminated from.(69).
If % is set for the distance between base ¢ and xo= 3 x;/# (centre of gravi-
7 )

ty) when the same weights are considered to be on the points of action of Ky,

Kx=Ko+cx, = cenereeens JRTTTR (70)

where if
;Kl*=2tKw=ift .................. (7D
and’ ZiKz*J_Ct= );ngi =M e (72)

are assumed, from (71)
9e=nz?o+c§fz=nl?u,

therefore

and from (72)

;Kq?ct+ Z{‘,CFEL” = C)_";?r[z =ClL,=",
therefore :
C=M/I,, ]‘,:;Ez, ............ eeeen(74).
Settlement equations by K;* are expressed as follows :

y“*“_;l}“al ’yj* :Kz*. .................. (75)

I y*=a+b%, then a;y#=0.
Therefore

y*¥=a+bx=K*=Ko+Cxy coreremenereinens (76)
hence the following equations are gained as equations of differential settlements,

i = Dauyy =K', = e N
J

where
Kon—K*=K,/, Yi—y*=y.

In the above equations, it is not always necessary to assume line loads
as.to R; and B as in Part A. The problem whether loads of columns in the
direction perpendicular. to the rigid frame so far discussed are taken as line

loads er series. of concentrated loads. will be discussed in Chapter 13..
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§ 12 On the method of solution of calculation

equations of settlements

As is clarified from the above description, the uniform and rotational
settlements obtained from (75) are indipendent of rigidity 8 and are determin-
ed by the total of R; and the deviation of each base from centre of gravity.
Equ'a'ti(')-n.s‘ of differential settlements (77) can be expressed as

(1 —au)y,’—jZaUy,’=Kt’ (j:i:i)_ ...... ereceseerans (78)

Therefore y;' are linearly proportional to K;' and Kj', accodingly to Rio and Rjo.
In this equation, coefficients (1 —a;) are in general greater than those of other
terms, so the solution by means of Iteration Method is possible.

§ 13 Coefficients

a)as to a .
If Boussinesq’s solution is taken to be available as in Part A and a for
line load is adopted, (6) becomes

2h?
a =
Y 3t

=2/nh{1+(x’l’/h)2}2=2/7rh{1+x’25’2}2, creennnemenn(79)

therefore

a”=a5’=2§/n’{1+x'25’2}2, TRy (8())

where I’ : span length of transversal rigid frame (to be assumed as equal span
length) in the perpendicular direction,
E'=U/h, x=x'l',
When loaded base plates which have constant dimentions are considered
to be set in a line infinitely with equal span length in the perpendicular direc-

tion, as for the calculation of a’’, from Newmark’s formulal®’,

143 ll l’Z 1 I
da'' = da =m]0=ﬁ -2

_ 10 2mnvmisnitl mPtwit2
T A mi 42+ mnt 1 m2n2+1
1 2mnV mi 4]
m2+nt+1—m?n?
B=rl'y m=D/h, n=L/h,

I

+ tan

therefore '’ is obtained by adding 4a’’ of each ‘loaded base plate by means of
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this equation (Fig. 17). The case of #=0.5 coincides with the case of strip
load'® which has the breadth 2x 0.5’

a'l = l—{sinZs 0052¢+2s}

2ny
I B €5 1) SEN €y ) 5
=2y U (x'+ 0y +1 (x'—b)E2+1-
L (b L by )
R P ST B ey (82).

with #=0.5, simplifies the calculation (Fig. 18).

N
-

— &,

&S il

/L—z/

.

T
s |
L

VRN
0\

VA

1.
4 o
Fig. 17 The application of

Newmark’s equation to
caleulate .

z'-.?’ |

Fig. 18 The calculation of

a'! caused by strip load. a

Fig. 19 The comparison among a'’ caused by line load
(: the thick real curves), infinite scries of concentrated
loads (:the-dashed curves) and series of square loaded
plates (:the fine real curves).

Equivalent line load (kg/cm) has been taken as unit 1 in (81) and (82)
for the mutual Acorfnp&rison of @'" a'' for x'=0, 1, 2 in (80) through (82) are
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shown in Fig. 19. In the figure, the curves by infinite series of concentrated
loads have been calculated by

_3en s 1 1
al = 4 {2")::1 {(x12+n2)512+1}?,/7 +{xrzérz+1}s/z}_

As is seen in this figure, a'’ by a series of square loads differ only by less than
one tenth from a'’ by line load at 1/£=15 or ~=150' in the case of
x'=0, and both rapidly approach to each other with the increasing of depth.
Further the differences are very small at ¥’=1 and rapidly decrease with the
increasing of x'

It is known from the above consideration that it is sufficient to use the
equation for line load in general and to consider the dimentions of base plate

when clay stratum is shaﬂowly located.
b) as fo r

As to 7, Boussinesq solved the case of uniformly distributed 7load on a
circular area on the surface of semi-infinite elastic body and Schleicher?®’,'” dis-
cussed the case of uniformly distributed load on a circular area and a rectan-
gular one. According to them, in the case of distributed load on a circular area
(radius is @), the ratio of seitlement to equivalent line load 1 at S from centre

of load is
(1= S
v g F(3,3) s<a | .
—4‘51,(1_;2) @ x S
T"‘ n2a*FE [FZ(S7§)~(\1—SZ)F1(§, —Z_)J S>E,J
where
=
F;(k, =0 V1—Fsinte do,
(b 3)-f
F(rZ —Sgyl d
‘( ’2)_ V1Rt
In the case of loaded rigid plate,
r'=zfz—E(1—v’) ssa,]
/ . S iiveeesreereneiees (85)
r’=n_aE(l—u2)sin'1S— Sza.j
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The values of 7' by (84) and (85) are shown.in Fig. 20. Therefore 7 are

obtained as follows,

Tii =T's=0F2 2 Ts=pr',

.................. (86)
Tij=1's_5 T2 ,él’”s—n/r}- 2y (Al
—2 s It isalso shown
JE—— /a 5 i 10 ](i)'
- according to Schleicher
that, value 7’ due
' 7 to. distributed  load

on a square grea does

pot differ much from

TV X
Cqa-ngg %)~ —

~

S

/
[~ that due to distributed
— $a 5 10 load on a circular area.
- 1 O e e A A According to refer-
!,, ence'®, 7', through the
® / experiments on foun-
EE""’ dation, decreases more

Fig. 20 7' due to distributed load on a circular area (upper) rapidly than in the
and due to load on circular rigid plate (lower). above: theory with the

increasing of s.

¢)asitof

As to B, it was determined in Part A with the assumpt'ion that the struc-
ture deforms in proportion to shearing force, but here it is treated more actu-
ally as follows.

Tt is assumed that CL=1)s4r Is+1 (E+1)g41

rigid frame is composed of ko (a 1o
. : Ks Ks__|
wn (
such elements as shown in  (;_ -2y 1>s Cl*”s {ti+2)s
u [ u

Fig. 21 and rigidity of
members is equal among

ti- I)s; ls- (z+1)5_
beams and columns respec-

. . Fig. 21. Element of a ngld frame for ealculation of .
tively in each story and

span lengthes / are also equal. The derivation of values below will be shown
in Appendix 2, here are only the results, where 4 is for the case of line load,

and is 1/1' of rigidity of ordinary rigid frame.
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In the case of intermediate columns
‘4 Ks
Bi= — %[y— 27s)ffsﬁu ,
Bi-1,0= B z—sz B
-1yt — +1,t= Qhgi30 o
37T ) (87

Bt-2,t= Pragu= — Zf Bo
Bilj<i—3 or j=i+3)=0.
In the case of columns at both ends
_ _ "’fs(l—’fs/fs)
,Bu—,Bnn— Zs:’:s{ f;zs ’fsz/fs 3 f}ﬁo ’

Bz21=Pn-1,n= ;M{%-*——}ﬁo ,

_ f;zs fS
Bs1=Prn-2,n= — Zfs For/ T PO

Bu=Bm=0 (=4, j<n-3),

ﬁ12=,@mn—1=_Zsilcs{f:fi(g(l{{};*_l{{fe;))(l ks/fs)— ES‘*‘ }’}90, ~+(88)

_ —£:3(1/ fo—1/fes
ﬂzﬂ—ﬁn—l,n—l— Z’cs{fs—lfsz(l/fs-l—]./f; ) s(l/f;as—l_l/fs)'l_ },B(h

k2(1/fe=1/fes) 2
.832 AB"'Z’"I—_Z {fs ’Csz(l/fs'*'l/feS)_*_—}ﬂo

_ _ ) fs—zxs?‘/fes
Ba2=Pn-3,n-1 Z:fE fs— xs?‘(l/fs-*—l/fes)ﬁo ’

Biz=PBpn-1=0 (i=5, j<n-4)

where
Bo=18EK,/I2l',

K, : standard rigidity of member,

ks : rigidity ratio of beam of s-th story,

fs © twice the total of rigidity ratios of members joined together at each
intermediate joint of s-th story,

fes = twice the total of rigidity ratios of members joined together at each
joint of both ends of sth story.

Thus the coefficients of a’’, v, and B are determined. The theoretical

equations in Chapter 11 for line load can be expressed as follows.

When in (68)



!
O = ( Txu:l +Zr,ut Tailc”) ;—7=(Cu+27,&n rdu;”)

and

0

\

- '
Giy= 500 bes =iy
k

— 2 -
Kio = Zkatk Rko ﬁ = Kto
rﬂi‘:TXl/xﬂ,

ﬁ=§i@

I={o=ﬁ/n,

KIO—KL*=K’1 ’

then from (76) and (78)

and

Ao
F’

Cie=rd'/ A0,

M= ZI_{M);! ’

i

E=@/IO )

y¢*=(1=(¢+37c;)#

2

I ~ L L.
(T—au)yt"gatiy.”:Kt' (j=F=)
0 J

I

‘EM: ;Tos

Then it is convenient to make such a table as shown in Fig. 22 for cal-

culating coefficients and composing settlement equations on the basis of soil

profil. In this figure, the case of 3-span structure over two clay strata is treated.

§ 14 Numerical example 2

Such a 4-story, 4-span symmetrical rigid frame (D rigid frame in the In-

—44 m P4 Jm | 45m™ | 4gim |
o244 044 0.4l o4y
0379 024 024 0.2k a37s
044 Ol o4y o044
060 o4 44 o4 0.60
a.59 059 0.59 0.59
090 065 065 065 0.90
059 0.59 0.59 0.59
125 085 a8s5| o35 125
272 272 2.72 272

base plate 2.2™« 227

45™
pom
yo™

4.0m

Fig. 23 The 4-span, 4-story symmetricn_;l- rigid frame adopt-
ed in Chapter 14. The value on éach member expresses
ratio of its rigidity.

structions for Cal-
culation of Rein-
forced  Concrete
Structures'®’), as
shown in Fig. 23
is -adopted as a
numerical example
for the method of
calculation above.
For. the under-

ground clay stratum

- d=3m and 2=10

m’are assumed, and

for clay constants
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Fig. 22 Table for calculating coefficients and composings

settlement equations on the basis of soil profil.
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the same values as in (52) are taken. As-to 1, (85) and (86) are adopted, and
the effect of base reaction is assumed to work up to the neighbouring base and
not farther. That is, #=1 is set in (86).

If 8 and ¢ are calculated in the above example, the first and the second
tables are obtained. Here

—107.7 +148.1 —65.6 0 0
+157.3 —315.0 +237.9 —64.1 0

—49.6 - +231.0 —344.6 +231.0 —49.6

0 —64.1 +237.9 —315.0 +157.3

0 0 —65.6 +148.1 —107.7

Table 1 Table of Bgj.

1.32 0.40 0 0 -0
0.40 1.32 0.40 0 0
0 0.40 1.32 0.40 0
0 0 0.40 1.32 0.40
0 0 0 0.40 1.32
(1—v2)l"2
2aE\

Table 2 Table of {;j.

0.3183 0. 2201 0. 0972 0. 0400 0.0177
0.2201 0. 3183 0.2201 0.0972 0.0400
0.0972 0.2201 0. 3183 0. 2201 0.0972
0.0400 0.0972 0. 2201 0. 3183 0. 2201
0.0177 0. 0400 0.0972 0.2201 0. 3183

Table 3 Table of a4,

Ko=2x10* ecm?®, I=4.5m, 1'=5.0 m, 20=10 cm?/kg,
Ry=R,=R;=132 kg/cm, R;=R;=R,=1.1R,,
where the self weight of the underground part of the base is not considered.

At the calculation of rigidity, the whole sections of concrete of members are
considered and £=210,000 kg/cm? is set. Therefore - B0=74.67 kg/cm®. In the
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case of considering elastic settlement, (1—12)l"2/2Eajy=0.05 is set. This value

is as much as in the case of dry fine sand.

a'’ of the case in which a structure stands on the ground is as shown in
the third table, and the result of calculation by (91) and (92) is as shown in

Fig. 24. In this figure the settlements in the case caused by consolidation of

clay stratum alone and in the case caused by both consolidation and elastic de-

formation of foundation are shown, and in its upper part the distributions of

differential settlements are shown for comparison.

Ro 11Ro 11Ro 11Ro Ro
) ) 4 4 )
7 TN NN | /7/}\\\\Y7 NN
) t t ) t %
Wo 2Wo 2 Wo 2 Wo Wo

~
I

Guantity of Settlement (cm)

/
_:":zN:___________ A =
Thecase| S=7m
- . N L -
L \\\ \/ ’11
_v___\‘_\t ___________ _’/_/L _____
3 —. Theccse | S=0m

Fig. 24 Final quantities of settlements of bases in the case of
a 4-span, 4-story rigid frame, where 4=3m, #=10m when
it stands on the surface and #=9m when it has semi-base-
ment. The real lines represent the cases due to consolidation
alone and the dashed lines represent the cases due to consoli-

.dation and elastic deformation of foundation.

In the
case of a struc-
ture with base-
ment or semi-
basement, it is
admitted by
Terzaghi  and
Peck® too as a
method of the

reducing of dif-

ferential settle-
ments that, for
settlement due to
consolidation, the
weight of soil
driven out can
be omitted from
base reaction. In
this connection,
the whole base
reactions must
be  considered
for elastic settle-
ments. In Fig. 24
are shown the
final quantities
of  settlements
m  the case

when the structure mentioned above is constructed being founded on the
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ievel as deep. as 1m from the surface. A structure with basement is more
effective than a structure without it on differential settlements, and . to have-
semi-basement or basement is considered to be very effective in the ~r¢d~uc.i'ng of
differential settlements.

As the result of two kinds of calculations -above, the differential seitle-
ments in the case of a structure on the surface of foundation are the greatest
at both end spans, and

the moment distribu-
tions in members of

structure caused by both

elasticity of foundation

and consolidation are
caloulated -as in Fig. 25.
The left half of the fig-

are is for _a‘ structure

on the surface of foun-
dation and the . right
half is for a structure

o /0 20 30¢tn
0 tm.

Fig. 25 Moment distributions on members of the rig-
id" frame of Fig. 23 owing to final iuantities of
differential settlements due to consolidation and elas: Therefore the maximum
tic deformation of foundation in Fig. 24. (The left increments of  fibre
balf : the case in which the rigid frame stands on !
the surface of foundation, the right half : the case
in which the frame has semi-basement.) base beam and 1st floor.

with the semi-basement.

stresses to be caused in

beam are as followings.

structure on the surface of structure with the semi-basement -
foundatien
Vo1 - =0.4408 cm, Y21 =0.1463 em,
Mi,maz.=20.45 ton-m, Mi,maz-=8.07 ton+m,
M} ,mez.=12.65 ton-m, M, maz.=4.26 tonem,  ( creeeeeer (93)
40o,maz.=31.8 kg/cm?, doo,maz.=14.8 kg/cm?,
401 ,maz-=51.7 kg/em?, 401,maz. =174 kg/cm?.

As in Chapter 9, 400 and 4oy show the increments of fibre stresses to
be caused in base beam and lst floor beam respectively. But here the whole
rectangular section of concrete is taken as beam l section and the reinforcement -
are not considered. The damages caused by differential settlements on a structure

can be explained to some extent from these numerals,
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As a supplement, rigidity is somewhat greater in the definition of 8 in
Chapter 4 than in its definition in Chapter 13, and the differential settlements
become slightly smaller.

§ 15 Remarks on the application of the above method
of calculation

A few remarks are to be added concerning the actual application of the
method of calculation mentioned above on the basis of soil profile.

a) as to the thickness of stratum

For the sake of theorization, in order to calculate excess hydrostatic pres-
sure on clay stratum, the applied value at the depth of centre of thickness of
the stratum has been abopted and agsumed to be constant through the thick-
"ness of the stratum. This assun;ption is available for thin stratum., but cannot
helf result in inexactness with the inceasing of the thickness of the stratum.
For higher approximacy, solutions are to be obtained by dividing the thickness of
stratum into some strata, and by adopting the applied value of each depth of
centre of thickness for each stratum with the assumption that there exist several
clay strata. Because the condition of the direction of permeation is not effective
on final quaniities of settléments (cf. § 10).

b) as to a'

It was stated in *Chapter 13 that @'’ must be amended by considering
breadths of rectangular base plates when the clay straum is shallowly located,
but definitions of a'’ are all unified for equivalent line load, so (81)~(83) can
be used as it is. This remark is to be applied for the defmitions of 8 and 7 as
well.

¢) Remarks on the numbers of transversal spans

The effect due to the difference between loads on the actual structure
with finite transversal spans and the assumed line loads of infinite length in this
essay is now to be discussed. In this connection, a’’ by means of (81) and that
by means of (83) are expressed as the sum of infinite series, whose convergency
intends to become the function of depth, so the deeper the location of the
clay stratum is, the more terms must be calculated. The numbers of terms are
given in the Table 4 to obtain the value of more than 90 9% of the convergent
value gained through the calculation -of Fig. 19. Thus when the structure has
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‘ R/l 0~0.6 | 0.8~1.5 ‘ 2 { 3 | s
\ n 0 ‘ 1 ] 2 3 7
Table 4

transversal spans whose number exceeds at least that numeral at each point
of depth in the table, this method of calculation can be adopted by the
exactness of more than 90 9%. Here n=0 shows the case of only loaded plate
just above.

Conclusion

As mentioned above, in Part A mainly the procésses of settlements due
to consolidation have been considered; and- accordingly it has been clarified that
the rigidity of a structure is“greaﬂy effective on differential settlements:and does
much work for reducing them. And the greater rigidity is, the greater the func-
tions of differential settlement (1—e_W‘N) are in comparison with the func-
tion of uniform settlement (1 —e—N), so it is pointed out that the rates of dif-
ferential settlements are promoted by rigidity. It has been considered that dam-
ageé of structure intend to occur at the extention joints in the case of an ex-
tended structure, that the differences of thickness of underground clay stratum under
bases intend to be greatly effective on differential settlements, and that damages of
structure are likely to occur in the process of settlement in the case of such a
structure as a reinforced concrete strucmfe the rigidity of .which gradually in-
creases.

-As for Part.B, as the result of Part A to provide the enough. rigidity for
a structure against differential settlements become necessary, a method of calcu-
lation for final quantities of differential settlements has been shown. Further it
is pointed out in a numerical calculation that differential settlements are consid-
erably smaller in a case of a structure with basement or semibasement than
in the case of a structure on the surface of ground.

And it has been pointed out that in many cases base beams occupy the
eonsiderable part of the rigidity of structures and accordingly the rigidity of
base beams is greatly effective on differential settlements.

It is natural that two-dimentional consolidation has influence when clay
stratum is thick, although the assumption mentioned in the preface has not been

rélated, and it will be necessary to examine the effect of the two-dimnentional
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consolidation and the flow of clay, and that of creep deformation of a structure.
However, these problems have to be left to the further study.
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Appendix 1

By setting' (1) approximately as (2), the simlification of the treatment
of equations in Chapter 2 and the. following chapters has been intended. In
order to examine what effect this approximation results in, the solution by (1)
is derived in the following and is compared with the solution by (2) by means
of ‘calculations.

In (1), when g is a function of N, from Duhamel’s theorem,
T
y=21 ze—MzTSo o)MTdr. e an

If (8) is substituted into (1),

T
Ye=222 e—MZTSO(K,,+)§5,ky,c)eMzrdr, .................. 2
It
vy
y5m=2le_MzTSO(Kc+Zk15zk2yrcn)eMszT, .................. 3"
then
%=2?‘T’" = —Zszm+ZZZe_M2TeMZT(Kz+26t,¢2ym)1
m m m k n . 4’)
m=0,1.2,+00nee- o j (
”_0,1’2’ ......... oo

Therefore the following equations are obtained for each value of .,

%+(M”—223:;)y57n—'22Kz—222k8m2 Pin=0, cerereereeinens (5"

where (=i, n=m) is assumed to be not satisfied simultaneously.

In order to solve (5'), it is assumed to be sufficient to consider as far
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as m=n' according to' the convergency. of (1). If the form of solutien -is put

as
yt?Iz.:ZL:Atml(l—e—WlT) e e 6"
which is substituted into (5'), then ,
—(MZ'—ZMM—?’z)Am'ﬁZXZk}Bqu]pAmFO , et <D
(MZ—Tleatz);Atmf—Zlgazp%gAmlez,th:O , e (8"
7, k: number of columns 1,2,------ k',
m, ns 01,2, c0meeen n'.

" “Thus from determinant of coefficient ‘terms ~of (7') ratios .of A¢m: are
obtained, from (8') A;m: are determined, and solutions (6') are obtained. Thus
the solution by (1) can be obtained. However, the calculation by means of this
method is greatly troublesome. The convergency of (1) is excellent except the
vicinity of 7'=0. But, in order to satisfy the initial condition Yr-¢=0, consid-
erable number of terms are necessary. ‘Therefore, in order to satisfy the. initial
condition and to give high approximacy to the curve of (1), the following
equation is set.

y=1q{l—ce V—(1-c)""Ny

where ¢=8/a2, N=n2T/4.

The comparison of this curve with the curves of (1) and (2) is shown
in Fig. 1'. In order to be compared with the case by the assumed curve of

70
T~
/:f/ -
-~ -
A s
P
'/
.05 -
-
r -MT
/,- Z _ [1-2 2™ I~ TCurve
#— 4 — i [1-c€ r-02€” T Curve)
/ ———=:i(1-€M~T Curve
/7
1 | L1
T o5 1.0

Fig. 1' Comparison among functions of (2), (9') and (11').
(£#=0.2 and 4=10m)’
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(2), the case when the 3-span symmetrical rigid frame adopted in Chapter 9
and the same clay constant as in that chapter are used and £=0.2 and d=10m
are set is considered.

In the case by (9")

$1=3.6619(1 — =¥ )+0.8558( 1 —e~25% ) +0.4072( 1 — ¢-1+1958)
+0.1222( 1 —g-20-238 ),

esenssron !
o= 3.6619(1 —e-)+0.8558(1 —¢-5o) +0.8235(1 —g-vasoy [ L10D
1£0.2472(1 —e-2°238Y,
and in the case by (2)
y1=4.5159(1 —e=¥)+0.5204( 1 — g~1-258%), }
.................. !
¥2=4.5159(1 —e-¥)41.0708(1 —e-1-258¥), (119

where N=0.4678¢', (¢ year).

From (10") the first two terms become settlements of type A and the
following two terms become settlements of type B, thus it is known that settle-
ment of each base in this case is also considered to be divided into two parts.
Moreover the functions of settlements type B are greater than that of uniform
settlement. As for final quantities of settlements,

uniform settlements :

from (10’)  4.5177 cm, \
from (117)  4.5159 cm,

differential settlements :

from (10") 0.5413 cm,
from (117) 0.5414 cm,

and both coincide within the range of error. Then, in order to compare settle-
ment curves, if they are shown by setting both final quantities of settlements
type A and differential settlements 100 9% respectively, Fig. 2’ is obtained. As
known from this figure, the case of (107) is somewhat faster than that of (11")
at initial N, and both cases intend to approach gradually to each other with
the increasing of N.

As ;he result of the above consideration, with the assumption that N
is highly approxima'te to (1), if (1) is compared through (9") with (2), both
equations almost coincide in final quantities of settlements. But it is pointed
out that the rates of differential settlements in the case caused by (2) intends
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Fig. 2/ A-type and differential settlements due to consolidation in (10’) and
(11"). (£=0.2 and 4=10 m)

to be somewhat smaller than that in the case caused by (1) at initial N. How-
ever, to adopt (2) will be sufficient in the qualitative discussions of settlement
process.

Appendix 2

As to the process of determining S values in Chapter 13 the case of in-
termediate columns is examined here. ' ’

If the standard degree of rigidity of member is set as Ky, in Fig. 21
rigidity of each member is expressed as follows.

ko=Kors, ko=Koko and ly=Koiy  cveeeerveereeionns (141

With the assumption that unit 1 of settlement is given at joint 7, if the half
of Fig. 21 is considered, moments at joints ¢ and -1 of s-th story are

st—-l =2EKQ¢3(201+01-1 - 3R)=(2(M+(pl—1+¢‘)’fn
M1, =2EKok( 2011+ 0, — 3R )= 2pe-1t it Iug, ) (151
here Rl= —-¢l/6EK,=1, then. ¢=—6EK,/l.

From the e;qiiilibrium of moments at joi_nt G-D

2(2ks+ Ko+ Ku)pi-1+ K0 =0,

therefore
_ _ ks, _ K OEK, !
Qt-1= fg(ﬁ = fn T 0 e (16 )
where S5+ twice the sum of ratios of rigidity of beams and

columns joined together at joints s.
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Therefore

sMi-1,1 =’Cx(2901+¢)= 2Es(’5s+xo+’cu)¢/fsv \]
s Mays-1= £ 01+ ¢) =2x:(1.56,+ ko + K0 )/ 5

V. ‘ eerrreri a7
éMt—l,z—z=2IngDt= —2lcsz¢/fs; I
xM—z,tﬂ:ICs(P'l: "ﬁsz‘p/fsa )
accordingly in Fig. 3'
Qi-1,0-2 Qrsi-2 | Qi Qz-:,zl
Ll } =
i3 L AL
(-2 -1 t I
by
s/zj-z sg-r sh;
Fig. 3’
2K 3k
tha-l’t'_— ‘(sM—1,¢+th9i~l)/l= _L( —ijd}’
l 2f s
ges [ 18"
sQi-130-2= —(Mi-1y0-2+ s Mi-24-1) /1= 'lfs ¢:
. /s
Then reactions at joints are
25 ¢ -
s[gt——ll=th—IAl_th-hi—Zz '—'%_'d} » 1
_4IC3 é& isessnessasidisade !
!‘ﬁi’= —2sQl—11t— T( _2f3)¢ ’ (19 )
32
B2’ = sQ-1,1-2= ;Td}

Thus rigidity equation (87) for an unit of load is obtained by dividing
(19") by  span-length !’ in the perpendicular direction and by summing up
about s. The same derivation as above is available in the case of columns in
end spans.
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