Title: On the Crustal deformation due to Full Water and Accumulating Sand in the Sabo-dam

Author(s): TAKADA, Michio

Citation: Bulletins - Disaster Prevention Research Institute, Kyoto University (1958), 23: 13-29

Issue Date: 1958-07-20

URL: http://hdl.handle.net/2433/123677

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
On the Crustal deformation due to Full Water and Accumulating Sand in the Sabo-dam

by

Michio TAKADA

Abstract

We have been observing crustal deformation by extensometers and tiltmeters in the Ide Observatory of Disaster Prevention Research Institute of Kyoto University. As water filled the Sabo-dam near our observatory, some remarkable variations of ground-strain and ground-tilt were noted in the extensometric and tiltmetric observation. The mode of strain of the ground near the observatory due to this semi-artificial load is considered.

1. Introduction

Ide Observatory at Ide-cho Tsuzuki-gun, Kyoto-Pref., as shown in Fig. 1,

![Illustration of the observatory](image)

Fig. 1. Illustration of the observatory
A recording room B: adit C: position set up the tele-metrical extensometer D Sabo-dam O1: the 1st observation room O2: the 2nd observation room
Table 1. List of instruments of Ide Observatory

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>((10^{-8}/\text{mm}))</td>
<td></td>
<td></td>
<td></td>
<td>((10^{-8}/\text{mm}))</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Vertical</td>
<td>5.54</td>
<td>O₁</td>
<td></td>
<td>Horizontal N82°W</td>
<td>3.4</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal N88°E</td>
<td>4.92</td>
<td>O₁</td>
<td></td>
<td>Horizontal N82°W</td>
<td>5.5</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Horizontal N 2°W</td>
<td>10.74</td>
<td>O₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dip 50° N88°E</td>
<td>3.46</td>
<td>O₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dip 66° N2°W</td>
<td>2.78</td>
<td>O₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Horizontal N77°W</td>
<td>2.30</td>
<td>O₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>Horizontal N2°W</td>
<td>6.12</td>
<td>O₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>Horizontal N82°W</td>
<td>2.80</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. High magnification Extensometer

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Vertical</td>
<td>0.329</td>
<td>O₁</td>
<td></td>
<td>Horizontal N88°E</td>
<td>0.492</td>
<td>O₁</td>
</tr>
<tr>
<td>II</td>
<td>Horizontal N88°E</td>
<td>0.492</td>
<td>O₁</td>
<td></td>
<td>Horizontal N2°W</td>
<td>0.892</td>
<td>O₁</td>
</tr>
</tbody>
</table>

3. Changing inductance type Extensometer (Tele-metrical Extensometer)

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>(water level mm/mm)</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁</td>
<td>Horizontal N82°W</td>
<td>7.5 5.3\times10^{-2}</td>
<td>O₁</td>
</tr>
</tbody>
</table>

4. Photocell type Extensometer (Tele-metrical Extensometer)

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₂</td>
<td>Horizontal N82°W</td>
<td>3.7 1.7\times10^{-2}</td>
<td>C</td>
</tr>
</tbody>
</table>

5. Wise resistance strain meter (Tele-metrical Extensometer)

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₅</td>
<td>Horizontal N82°W</td>
<td>(10^{-8}/\text{mm})</td>
<td>3.4</td>
</tr>
<tr>
<td>E₆</td>
<td>Horizontal N82°W</td>
<td>(10^{-8}/\text{mm})</td>
<td>5.5</td>
</tr>
</tbody>
</table>

6. Horizontal pendulum type Tiltmeter

| T.M. | A | Horizontal N45°E | (10^{-2\circ}/\text{mm}) | 2.0 | O₁ |
| T.M.′ | A′ | Horizontal N45°W | 3.0 | O₂ |

7. Photocell type Tiltmeter (Tele-metrical Eiltmeter)

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.M.′</td>
<td>A′</td>
<td>N45°W</td>
<td>3.0</td>
</tr>
</tbody>
</table>

8. Discharge meter (water level mm/mm)

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Horizontal N82°W</td>
<td>7.5 5.3\times10^{-2}</td>
<td>O₁</td>
</tr>
<tr>
<td>D′</td>
<td>Horizontal N82°W</td>
<td>1.7\times10^{-2}</td>
<td>C</td>
</tr>
</tbody>
</table>

9. Thermometer

<table>
<thead>
<tr>
<th>Mark</th>
<th>Azimuth</th>
<th>Sensitivity</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Horizontal N82°W</td>
<td>0.034° (°C/mm)</td>
<td>O₁</td>
</tr>
</tbody>
</table>
is a reformed adit of an abandoned copper mine. In the 1st observation room situated at the most secluded place of the adit, 6 components of extensometers, 3 components of high magnification extensometers, horizontal pendulum type tiltmeter and the discharge meter are set up as shown in Fig. 2. The constants of these instruments are indicated in Table 1. In front of the observatory, the Tama River runs without much water except it rains. The river brings down sand, especially the quantity of washed-out sand has increased after Minamiyamashiro flood disaster. The Sabo-dam was constructed, as one of flood disaster preventive measures, near our observatory. The water is pouring out through a weeping hole at the bottom of the dam, where the sand is not much accumulated usually but when the stream swells, the water and sand stays with the dam. We had rainfall amounting precipitation 180mm for 3 days from 26 Sept. 1956, the water began to overflow the dam at about 9 a.m. on 27 Sept. when the extensometers and tiltmeters caught a specific variation on them. This is presumed that the foundation of the ground strained by the load of pooled water and accumulated sand. The writer tried to compare the result of observation with the result obtained theoretically. We will describe in detail of the above.

2. Result of the Observation

Fig. 3 and 4 show the result of observation by the extensometers, tiltmeter and the discharge meter at this observatory and the precipitation measured after 5 Sept. 1956 at Kyoto-prefectural laboratory of gardening and seedlings which is located at Tanabe-cho, Tsuruki-gun, Kyoto-Pref. about 3km from our
observatory. Both of them show the monotonous variation until 26 Sept. when the specific variation was manifest. Photo. 1 shows the records obtained by instruments before and after the full water. On the variation of the extensometer component "1" had been extending at the rate of 8.5×10^{-9}/day until the time of rainfall on 26 Sept. but it was extended 7.2×10^{-7} suddenly, component "2" and "3" had been compressing at the rate of 11.5×10^{-9}/day and 15.0×10^{-9}/day, but they were compressed 2.4×10^{-7} and 12.6×10^{-7} respectively. On the variation of tiltmeter, it had been inclining at the rate of $0.0175"$/day towards south, but it was inclined $0.335"$ towards the direction of the dam suddenly. Also it increased on the discharge meters. These variations on the instruments obviously caused by the load of the water and the sand but we can say that some part of the variation are caused by the rainfall itself. In order to see how much variation was due to the load of the water and the sand, the

![Graph](image-url)

Fig. 3. The variation of strain, volume dilatation and discharge of water in the mine at Ide Observatory and the precipitation at Tanabe-cho about 3km from Ide Observatory, from 5 Sept. to 20 Oct. 1956.
annual variation and the variation caused by the rainfall must be eliminated. The elimination of the annual variation was mentioned in another report already. The variation of strain observed by extensometers, eliminated of annual variation

![Diagram](image1)

Fig. 4. The tilting motion of ground at Ide Observatory from 5 Sept. to 15 Nov. 1956 and annual variation. Double arrow shows the theoretical tilting.

is indicated in Fig. 5. The annual variation of tilt for these period is illustrated in vector diagram in Fig. 4 left bottom. The effect of annual variation on variation for short period of 25 or 30 days seems to be so small that we left it uneliminated. Secondly on the elimination of variation caused by the rainfall, the variation affected by the rainfall can be obtained from the variation of discharge of water in the adit considering the relation between the discharge

![Photo](image2)

Photo. 1. Records obtained with many types extensometers and tilimeters and discharge meter before and after the full water in the Sabo-dum.

(A) Super-inver-bar-extensometer (1, 2, 3, 5)
(B) Super-invar-bar-extensometer (4, 6, 3') and discharge meter (D)

(C) High magnification extensometer (I, II, III)

(D) Tiltmeter (T, M, A, B)
(E) Tele-metrical instruments
1. (E1) Changing inductance type extensometer
2. (E2) Wire resistance strain meter
3. (E3) Photocell type extensometer
4. (A1') Photocell type tiltmeter (A'-component)
5. (B1') Photocell type tiltmeter (B'-component) (Hitting light runs away the photocell)

of the water and the strain, that is to say the relation of Fig. 6.

The variation curve of the strain which was caused by the rainfall for these periods is shown dotted line curve in Fig. 5. Therefore the difference

Fig. 5. The variation of strain and discharge of water in the mine, eliminated of annual variation.
between—line and...line in Fig. 5 and the arrow in Fig. 4 are able to define
the strain caused by the load of the water and sand. That is to say, it extended
4.1\times10^{-8} to the direction of extensometer, component "1" (vertical) and com-
pressed 22.8\times10^{-8} to the direction of "2" (horizontal, E2°N, parallel to the
ger) and compressed 81.0\times10^{-8} to the direction of "3" (horizontal, N2°W, almost
perpendicular to the river) and inclined 33.5\times10^{-2°} to the direction of
N64.6°W.

3. Study and examination of strain theoretically
caused by the load of water and sand.

In the research of the earth tide, reports by many scholars have described
how the load of sea water affects on the crust, most of them taking the crust
as isotropic semi-infinite elastic solid and inquiring the crust deformation
cased by the surface load on the stage of elastic theory by use of Bossinesq's
problem. We have also studied how the load of water and sand effect on the

crust on the same stage. In case the river water increases, the vertical force
is presumed to be the main force affecting on the river-bed, but as there are
more or less ups and downs on the river-bed, the horizontal forces must be
be also in action. Let P_1 be the increase of vertical force when the water
increased as high as \Delta h, P_2 and P_3 be the increase of x-component and the
increase of y-component of horizontal force. If the feature of river-bed is
z=h(x, y), P_1, P_2 and P_3 are given as follows.

\[P_1 = \frac{\rho \cdot g \cdot \Delta h}{\sqrt{1 + \left(\frac{\partial h}{\partial x} \right)^2 + \left(\frac{\partial h}{\partial y} \right)^2}} \]
\[P_x = \frac{-\rho \cdot g \cdot \Delta h \frac{\partial h}{\partial x}}{\sqrt{1 + (\frac{\partial h}{\partial x})^2 + (\frac{\partial h}{\partial y})^2}} \]

\[P_y = \frac{-\rho \cdot g \cdot \Delta h \frac{\partial h}{\partial y}}{\sqrt{1 + (\frac{\partial h}{\partial x})^2 + (\frac{\partial h}{\partial y})^2}} \]

Where \(\rho \) is the density of the river water and \(g \) the gravity acceleration. Secondly in case a force acts on a point of surface of isotropic semi-infinite elastic solid, we look about the displacement on another point. Let the origin be the point where the force acts. Let \(x, y \) and \(z \) be Cartesian rectangular co-ordinates, the axis of \(z \) being directe downwards and let \(u, v \) and \(w \) be \(x, y \) and \(z \) component of displacement respectively and that putting the suffixes of 1, 2 and 3 on them to show displacements caused by \(P_1, P_2 \) and \(P_3 \) are given in following equations.

\[
\begin{align*}
\begin{cases}
 u_1 = \frac{P_1}{4\pi \mu} \frac{zx - x}{R^3} - \frac{P_1}{4\pi(\lambda + \mu)} \frac{x}{R(R+z)} \\
 v_1 = \frac{P_1}{4\pi \mu} \frac{yz - y}{R^3} - \frac{P_1}{4\pi(\lambda + \mu)} \frac{y}{R(R+z)} \\
 w_1 = \frac{P_1}{4\pi \mu} \frac{z^2 + P_1 \frac{\lambda + 2\mu}{4\pi \mu} \frac{1}{\lambda + \mu} \frac{x}{R}}{R^3}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 u_2 = \frac{P_2}{4\pi \mu} \left(\frac{1}{R} + \frac{x^2}{R^3} \right) + \frac{P_2}{4\pi(\lambda + \mu)} \left(\frac{1}{R} + \frac{x^2}{R(R+z)} \right) \\
 v_2 = \frac{P_2}{4\pi \mu} \frac{xy}{R^3} - \frac{P_2}{4\pi(\lambda + \mu)} \frac{xy}{R(R+z)^2} \\
 w_2 = \frac{P_2}{4\pi \mu} \frac{zx}{R^3} + \frac{P_2}{4\pi(\lambda + \mu)} \frac{x}{R(R+z)}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 u_3 = \frac{P_3}{4\pi \mu} \frac{xy}{R^3} - \frac{P_3}{4\pi(\lambda + \mu)} \frac{xy}{R(R+z)^2} \\
 v_3 = \frac{P_3}{4\pi \mu} \left(\frac{1}{R} + \frac{y^2}{R^3} \right) + \frac{P_3}{4\pi(\lambda + \mu)} \left(\frac{1}{R} + \frac{y^2}{R(R+z)} \right) \\
 w_3 = \frac{P_3}{4\pi \mu} \frac{yz}{R^3} + \frac{P_3}{4\pi(\lambda + \mu)} \frac{y}{R(R+z)}
\end{cases}
\end{align*}
\]

Where \(R^2 = x^2 + y^2 + z^2 \), \(\lambda \) and \(\mu \) are Lamé's constants. The extension and the tilt of \(x \) direction and the extension of \(z \) direction are given by following equations from above mentioned equations on the surface \(z=0 \).
22

\begin{align}
\begin{cases}
\left(\frac{\partial u_1}{\partial x} \right)_o &= \frac{P_1}{4\pi(\lambda+\mu)} \frac{x^2-y^2}{r^4} \\
\left(\frac{\partial u_1}{\partial x} \right)_o &= \frac{P_1}{4\pi(\lambda+\mu)} \frac{\lambda+2\mu}{r^3} \\
\left(\frac{\partial u_1}{\partial z} \right)_o &= 0 \\
\left(\frac{\partial u_2}{\partial x} \right)_o &= \frac{P_2}{4\pi\mu} \frac{x(r^2-3x^2)}{r^5} - \frac{P_2}{4\pi(\lambda+\mu)} \frac{3xy^2}{r^6} \\
\left(\frac{\partial u_2}{\partial x} \right)_o &= \frac{P_2}{4\pi(\lambda+\mu)} \frac{x^2-y^2}{r^5} \\
\left(\frac{\partial u_2}{\partial z} \right)_o &= \frac{P_2}{4\pi(\lambda+\mu)} \frac{\lambda}{r^3} \\
\left(\frac{\partial u_3}{\partial x} \right)_o &= \frac{P_3}{4\pi\mu} \frac{\lambda y(r^2+3x^2)}{r^6} \\
\left(\frac{\partial u_3}{\partial x} \right)_o &= \frac{P_3}{4\pi(\lambda+\mu)} \frac{2xy}{r^4} \\
\left(\frac{\partial u_3}{\partial z} \right)_o &= \frac{P_3}{4\pi(\lambda+\mu)} \frac{\lambda}{r^3}
\end{cases} \\
(3.3)
\end{align}

where \(r^2 = x^2 + y^2 \).

As the strain on the point, when \(P_1, P_2 \) and \(P_3 \) act, is thus obtained, if we integrate the natural feature of the river-bed actually, the strain on the observation point can be obtained. As this integral is, in fact, pretty complicated, we adopt the graphical method. As an example, extension of \(x \) direction, in case \(P_1 \) acts, can be obtained as below. At first the strain \(\left(\frac{\partial u_1}{\partial x} \right)_o \) caused by the load of a section encircled by \(r = r_n \sim r_{n+1}, \phi = \phi_m \sim \phi_{m+1} \) is given in following equations by use of polar co-ordinate where the origin is the observation point.

\begin{align*}
\left(\frac{\partial u_1}{\partial x} \right)_o &= \int \frac{P_1}{4\pi(\lambda+\mu)} \frac{x^2-y^2}{r^4} \, dx \, dy = \frac{P_1}{4\pi(\lambda+\mu)} \int \frac{x^2-y^2}{r^4} \, dx \, dy \\
&= \frac{P_1}{4\pi(\lambda+\mu)} \int_{\phi_m}^{\phi_{m+1}} \int_{r_n}^{r_{n+1}} \frac{r^2}{r} \, r \, d\phi \, dr \\
&= \frac{P_1}{4\pi(\lambda+\mu)} \left(\log \frac{r_{n+1}}{r_n} \right) \frac{1}{2} \left(\sin 2\phi_{m+1} - \sin 2\phi_m \right)
\end{align*}

Therefore suming up the all strains caused by all load of the sections encircled
by all \(r_n \sim r_{n+1}, \phi_m \sim \phi_{m+1} \), the strain can be obtained. In this case, on all \(m \) and \(n \), if we divide these sections the value of \(\log \frac{r_{n+1}}{r_n} \frac{1}{2} (\sin 2\phi_{m+1} - 2\phi_m) \) keeps the same value that is to say to \(k=\left(\log \frac{r_{n+1}}{r_n}\right) \frac{1}{2} (\sin 2\phi_{m+1} - \sin 2\phi_m) \) become the constant value, the strain on the observation point is given by

\[
\left(\frac{\partial u_1}{\partial x} \right)_0 = \frac{K}{4\pi(\lambda+\mu)S_2} \sum P_1.
\]

\(\sum \) means to sum up all values of \(P_1 \) on every section. If we follow the dividing as in Table 2, each strain is obtained by following equations.

Table 2. List of integration sections

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(k_1)</th>
<th>(k_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>(\sin \phi_{m+1} - \sin \phi_m)</td>
<td></td>
</tr>
<tr>
<td>(S_2)</td>
<td>(\log \frac{r_{n+1}}{r_n})</td>
<td></td>
</tr>
<tr>
<td>(C_2)</td>
<td>(\frac{1}{2} (\sin 2\phi_{m+1} - \sin 2\phi_m))</td>
<td></td>
</tr>
<tr>
<td>(S_3)</td>
<td>(\frac{1}{3} (\sin 3\phi_{m+1} - \sin 3\phi_m))</td>
<td></td>
</tr>
<tr>
<td>(S_4)</td>
<td>(-\frac{1}{3} (\cos 3\phi_{m+1} - \cos 3\phi_m))</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\left(\frac{\partial u_1}{\partial x} \right)_0 &= \frac{K}{4\pi(\lambda+\mu)S_2} \sum P_1 \\
\left(\frac{\partial w_1}{\partial x} \right)_0 &= \frac{K}{4\pi\mu} \frac{\lambda+2\mu}{\lambda+\mu} \sum P_1 \\
\left(\frac{\partial w_1}{\partial z} \right)_0 &= 0 \\
\left(\frac{\partial u_2}{\partial x} \right)_0 &= \frac{K}{16\pi\mu} \frac{5\lambda+8\mu}{\lambda+\mu} \sum P_2 + \frac{K}{16\pi\mu} \frac{3\lambda}{\lambda+\mu} \sum P_2 \\
\left(\frac{\partial w_2}{\partial x} \right)_0 &= \frac{K}{4\pi(\lambda+\mu)S_2} \\
\left(\frac{\partial w_2}{\partial z} \right)_0 &= -\frac{K}{4\pi\mu} \frac{\lambda}{\lambda+\mu} \sum P_2
\end{align*}
\]

(3.4)
\[
\begin{align*}
\left(\frac{\partial u_1}{\partial x} \right)_0 &= -\frac{K}{16\pi\mu(\lambda+\mu)} \sum P_3 + \frac{K}{16\pi\mu(\lambda+\mu)} \sum P_3,
\left(\frac{\partial u_2}{\partial x} \right)_0 &= -\frac{K}{4\pi(\lambda+\mu)C_i} \sum P_3,
\left(\frac{\partial u_3}{\partial z} \right)_0 &= -\frac{K}{16\pi\mu(\lambda+\mu)} \sum P_3
\end{align*}
\]

where \(K = k_1 \times k_2 \).

Therefore the extension and the tilt of \(x \) direction and the extension of \(z \) direction, in case \(P_1, P_2 \) and \(P_3 \) act, are obtained as follows

\[
\left\{ \begin{array}{l}
\left(\frac{\partial u}{\partial x} \right)_0 = \left(\frac{\partial u_1}{\partial x} \right)_0 + \left(\frac{\partial u_2}{\partial x} \right)_0 + \left(\frac{\partial u_3}{\partial x} \right)_0 \\
\left(\frac{\partial w}{\partial x} \right)_0 = \left(\frac{\partial w_1}{\partial x} \right)_0 + \left(\frac{\partial w_2}{\partial x} \right)_0 + \left(\frac{\partial w_3}{\partial x} \right)_0 \\
\left(\frac{\partial w}{\partial z} \right)_0 = \left(\frac{\partial w_1}{\partial z} \right)_0 + \left(\frac{\partial w_2}{\partial z} \right)_0 + \left(\frac{\partial w_3}{\partial z} \right)_0
\end{array} \right. \quad (3.5)
\]

To obtain the strain applying this formula, making up the divided sections as shown in Table 2 on the tracing paper and putting this on the diagram of distribution of \(P_1 \) (distribution of the depth of water and accumulated sand) as shown in Fig. 7, also putting the origin on the observation point, we count the number of sections which are included in each distribution and integrate.

Fig. 7. The diagram of distribution of the depth of water and accumulated sand when the Sabo-dam was filled up with the water on 27 Sept. 1956. (Unit : m)
it. Thus we can obtain the extension and the tilt of \(x \) direction and the extension of \(z \) direction. But the extension and the tilt of \(y \) direction also can be seen to have an axis of the section diagram, used above and to rotate properly. In this case \(K \) is also a constant value which was defined by dividing sections as mentioned above, but if we define the dividing sections that \(K \) is the constant value beforehand, it is convenient to calculate the value. So we divided the sections that \(k_1 \) and \(k_2 \) become 0.05 that is to say \(K=0.0025 \). In obtaining the horizontal forces of \(P_2 \) and \(P_g \), we decided to divide them into 14 small sections \((a)\sim(n)\) which seemed that the value of \(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y} \) keep the same value, and to take the load within 100 m from the observation point. In this way, we obtained the strain dividing it into 2 ways that is to say strains caused by the water and the sand. Secondly, on making such a distribution diagram, as we have been surveying the river-bed twice a year in Apr. & Oct. periodically putting the rainy season in between in order to obtain the relation between accumulated sand and the strain, we made it on the basis of the survey conducted in the middle of Aug. 1956, the measurement of water level when the water filled, on 27 Sept. and the resurvey on river-bed in the middle of Oct., and that value of \(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y} \) obtained by the survey in Aug. on the sand and in Oct. on the water and we made the distribution of accumulated said from the difference between those above 2 surveys. The distribution of water depth was made from the data of Oct. survey and the measurement of water level when the dam was filled with water. It is natural that these diagrams are different from the fact, especially the diagram of heaped sand distribution when the dam was filled with water seems to show some difference, but in fact as it is very difficult to measure the quantity of the sand when the dam is filled with water we used such method for the sake of convenience. The error accompanied utilizing this convenient method seems small when this is compared with the accuracy which we are going to obtain from now on. On the other hand, as the density of water we adopted the measurement value 1.01 of the density of river water when the dam was filled with the water and as the density of sand we adopted 1.875, assuming that the density of sand is 75% of mean density 2.5 of pebble at river-bed nearby dam. On a basis of such assumptions and these values, we obtained the values of \(\sum P_i, \sum P_1, \ldots \) exact, which are needed on the calculation and these values are shown in Table 3. In this table, we divided them into two parts, as the value caused by the water and the value caused by the sand and the marks 2 and 3 stood for the
Table 3. The values of $\sum P_1, \sum P_2, \ldots$ etc.

<table>
<thead>
<tr>
<th>$\times 10^2$</th>
<th>By the load of water</th>
<th>By the load of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{P_1}</td>
<td>-135.907</td>
<td>$+270.393$</td>
</tr>
<tr>
<td>E_{P_2}</td>
<td>-4.565</td>
<td>-8.700</td>
</tr>
<tr>
<td>E_{P_3}</td>
<td>-110.837</td>
<td>$+110.837$</td>
</tr>
<tr>
<td>E_{P_4}</td>
<td>-4.948</td>
<td>$+5.341$</td>
</tr>
<tr>
<td>E_{P_5}</td>
<td>$+7.360$</td>
<td>$+7.886$</td>
</tr>
<tr>
<td>E_{P_6}</td>
<td>-8.700</td>
<td>-4.565</td>
</tr>
<tr>
<td>E_{P_7}</td>
<td>$+10.427$</td>
<td>-6.672</td>
</tr>
<tr>
<td>E_{P_8}</td>
<td>-7.886</td>
<td>-7.360</td>
</tr>
</tbody>
</table>

Case x axis is taken to the direction of extensometer “2” and the case x axis is taken to the direction of “3.” Therefore if the value of λ and μ of the rock are given, each strain can be obtained by use of these values. Under an assumption that $\lambda=\mu$ (this is natural assumption) denoting the extension of extensometer “1” (vertical) direction, “2” (E2°N. horizontal direction parallel to the river) direction, “3” (N2°W. horizontal direction perpendicular to the river) direction and tilt of “2” and “3” directions as $1, 2, 3, \hat{EW}$ and \hat{NS} and putting the suffixes of w on the strain caused by the water and s on the strain caused by the sand, strains are shown in following equations.

$$\begin{align*}
E_{w_1} &= \frac{1.31}{\lambda} \times 10^2 \\
E_{s_1} &= \frac{1.12}{\lambda} \times 10^2 \\
E_{w_2} &= -\frac{13.90}{\lambda} \times 10^2 \\
E_{s_2} &= -\frac{8.85}{\lambda} \times 10^2 \\
E_{w_3} &= \frac{8.39}{\lambda} \times 10^2 \\
E_{s_3} &= \frac{5.50}{\lambda} \times 10^2 \\
\hat{EW}_w &= \frac{8.16}{\lambda} \times 10^6 \\
\hat{EW}_s &= \frac{-5.44}{\lambda} \times 10^6 \\
\hat{NS}_w &= \frac{16.32}{\lambda} \times 10^6 \\
\hat{NS}_s &= \frac{8.88}{\lambda} \times 10^6 \\
\end{align*}$$

(3.6)
As described above, it is concluded as follows by the load of the water and the sand when the dam was filled up with the water.

(i) It extended $\frac{2.43}{\lambda} \times 10^2$ to the direction of component “1” (vertical).

(ii) It compressed $\frac{22.75}{\lambda} \times 10^2$ to the direction of component “2” (E2°N, horizontal, parallel to the river).

(iii) It extended $\frac{13.89}{\lambda} \times 10^2$ to the direction of component “3” (N2°W, horizontal, perpendicular to the river).

(iv) It tilted $\frac{13.60}{\lambda} \times 10^3$ to the direction of W2°S and $\frac{25.20}{\lambda} \times 10^3$ to the direction of N2°W, that is it tilted $\frac{28.95}{\lambda} \times 10^3$ to the direction of N32.5°W.

4. Study and examination on the observed values and the values obtained by theoretical method.

We tried to obtain each strain by use of Boussinesq’s solution under various assumptions, and we could compare and examine the observed values with the values obtained by theoretical method, if the values of λ and μ on the rock are given. Both values of λ and μ can be obtained, if the velocity of elastic wave is known by seismic prospecting and by some other suitable method, but we tried to obtain the value of λ under an assumption that $\lambda = \mu$ and taking the advantage that the component “2” is not affected by the rainfall. In the Fig. 5 and Photo. 1 we can fined out that the strain increased suddenly at about 9 a.m. on 27 Sept. and it compressed as much as 22.8×10^{-8} for the period of a short time and resumed as far as 9.2×10^{-8} gradually until 12 Oct. then after that the strain increased again. This is meant that the strain increased by the load of water and sand in accordance with an increase of water then it resumed to decrease of water but the strain caused by the load of sand remained then afterwards another variation has come into being as the following

\[22.8 \times 10^{-8} = \bar{\varepsilon}_w + \bar{\varepsilon}_r \]

\[9.2 \times 10^{-8} = \bar{\varepsilon}_r \]

That is to say

\[\frac{13.90}{\lambda} \times 10^2 = 13.7 \times 10^{-8} \] \hspace{1cm} (4.1)

\[\frac{8.85}{\lambda} \times 10^2 = 9.2 \times 10^{-8} \] \hspace{1cm} (4.2)

λ is obtained as $\lambda = 1.022 \times 10^{10}$ from the equation (4.1) and as $\lambda = 0.973 \times 10^{10}$
Table 4. The values of strain and tilting of which observed and obtained by theoretical method.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Calculated value</th>
<th>Observed value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variation of which caused by the load of water</td>
<td>Variation of which caused by the load of sand</td>
</tr>
<tr>
<td>Extensometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (Vertical)</td>
<td>Extension $1,31 \times 10^{-8}$</td>
<td>Extension $1,12 \times 10^{-8}$</td>
</tr>
<tr>
<td></td>
<td>Contraction $13,90 \times 10^{-8}$</td>
<td>Contraction $8,85 \times 10^{-8}$</td>
</tr>
<tr>
<td>2 (N88°E, Horizontal, parallel with river)</td>
<td>Extension $8,39 \times 10^{-8}$</td>
<td>Extension $5,50 \times 10^{-8}$</td>
</tr>
<tr>
<td>3 (N2°W, Horizontal, perpendicular to river)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiltmeter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (N2°W)</td>
<td>0.1632''</td>
<td>0.0888''</td>
</tr>
<tr>
<td>B (N88°E)</td>
<td>0.0816''</td>
<td>0.0544''</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

from the equation (4.2). The mean of these 2 values is $\lambda=0.998 \times 10^{10}=1.0 \times 10^{10}$. Each strain and tilting obtained from (3.6) applying this mean value in it and each strain and tilting observed practically are shown in Table 4. In comparision of these values, it is natural that the value observed by using extensometer "2" agrees with the value calculated theoretically as we define the value of λ to do so, but the values observed by using extensometer "1" and the tiltmeter seem to agree with the values calculated theoretically. On the contrary both values show the great difference on the direction of component "3". This is because extensometer "3" is set at the right angle to the river and also to the direction of a steep slope of the mountain. It is presumed, therefore, that the observed value show the difference with the value obtained by using Boussinesq's equation, and the rock is considered as isotropic body but it is unisotropic body in fact and values of λ, μ are not supposed to be constant value in every place on the rock. As we can find out by the dotted line of 3 in Fig. 5, this component "3" has a tendency to compress indicating a compression curve with convex upwards when it rains. On the other hand it had been compressing along the compression curve as described above at first but it has been changed discontinuously to extend about 9 A. M. on 27 Sept., as you see in Fig. 5 and photo. 1. This means that a certain kinds of extensible
variation is superposed on the specific variation of strain to the direction of "3" affected by the rainfall. We can deduce that is extended by the load of water and sand in accordance with an increase of river water. This variation of strain is beyond comparision with the value obtained by theoretical method, but both of them show the extension and they seem to agree on this point of extending phenomena. Secondly on the value of λ, it is presumed to be too small judging from the structure of the rock in the vicinity, however the difference of this kind is agreeable to be admitted, as it is located at 30 m depth from the ground surface and also the rock is affected by weather.

5. Conclusion

We have been studying the results obtained by both ways, observation and theoretical method as described. We wish to study periodically the relation between the quantity of water and sand and strain, but to our regret we have not minute data concerning the measurement on river water level and quantity of accumulated sand. Therefore we only studied and described the report for this time in case the water filled the dam. We think that we must research more and more on this subject, but anyway we could obtain the satisfactory result.

At the conclusion of this report the writer sincerely wishes to express his cordial thanks to Prof. Kenzo Sassa for his kind guidance and instruction all the time throughout this study.

References

3) Nishimura, E. : On the earth-tide Part III. "Tikyubutsuri" Vol. 5. 1941. p.89

4) Nishimura, E. : On the Earth-tide Part IV. "Tikyubutsuri" Vol. 5. 1941 p.113

Publications of the Disaster Prevention Research Institute

The Disaster Prevention Research Institute publishes reports of the research results in the form of bulletins. Publications not out of print may be obtained free of charge upon request to the Director, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.

Bulletins:

No. 1 On the Propagation of Flood Waves by Shoitiro Hayami, 1951.
No. 2 On the Effect of Sand Storm in Controlling the Mouth of the Kiku River by Tojiro Ishihara and Yuichi Iwagaki, 1952.
No. 3 Observation of Tidal Strain of the Earth (Part I) by Kenzo Sassa, Izuo Ozawa and Soji Yoshikawa. And Observation of Tidal Strain of the Earth by the Extensometer (Part II) by Izuo Ozawa, 1952.
No. 4 Earthquake Damages and Elastic Properties of the Ground by Ryo Tanabashi and Hatsuo Ishizaki, 1953.
No. 5 Some Studies on Beach Erosions by Shoitiro Hayami, Tojiro Ishihara and Yuichi Iwagaki, 1953.
No. 6 Study on Some Phenomena Foretelling the Occurrence of Destructive Earthquakes by Eiichi Nishimura, 1953.
No. 8 Studies on the Failure and the Settlement of Foundations by Sakurô Murayama, 1954.
No. 9 Experimental Studies on Meteorological Tsunamis Traveling up the Rivers and Canals in Osaka City by Shoitiro Hayami, Katsumasa Yano, Shohei Adachi and Hideaki Kunishi, 1955.
No. 10 Fundamental Studies on the Runoff Analysis by Characteristics by Yuichi Iwagaki, 1955.
No. 11 Fundamental Considerations on the Earthquake Resistant Properties of the Earth Dam by Motohiro Hatanoaka, 1955.
No. 12 The Effect of the Moisture Content on the Strength of an Alluvial Clay by Sakurô Murayama, Koichi Akai and Toru Shibata, 1955.
No. 16 Consideration on the Mechanism of Structural Cracking of Reinforced Concrete Buildings due to Concrete Shrinkage by Yoshitsura Yokoo and S. Tamoda, 1957.
No. 19 On the Application of the Unit Hydrograph Method to Runoff Analysis for Rivers in Japan by Tojio Ishihara and Akihara Kanamaru, 1958.
No. 20 Analysis of statically Indeterminate Structures in the Ultimate State by Ryo Tanabashi, 1958.
No. 21 The Propagation of Waves near Explosion and Fracture of Rock (I) by Soji Yoshikawa, 1958.
No. 22 On the Second Volcanic Micro-Tremor at the Volcano Aso by Michiyasu Shima, 1958.
No. 23 On the Observation of the Crustal Deformation and Meteorological Effect on it at Ide Observatory and On the Crustal Deformation due to Full Water and Accumulating Sand in the Sabo-dam by Michio Takada, 1958.

Bulletin No. 23 Published July, 1958

昭和 33 年 7 月 10 日 印刷
昭和 33 年 7 月 20 日 発行
発行者 京都大学防災研究所
印刷者 山代多三郎
印刷所 京都上京区寺之内通木川西入

「京都上京区寺之内通木川西入」