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    On the Thermoelasticity in the Semi-infinite 

                Elastic Solid 

                       by 

                      Michiyasu SHIMA 

             Geophysical Institute, Faculty of Science, Kyoto University 

                     (Communicated by Prof. K. Sassa) 

                       Abstract 

   When the spheroidal or spherical region of material of a larger than that 

of the surroundings, which is embedded in a semi-infinite elastic body, is 

heated, there appears the thermal stress. The displacements at the free boun-

dary and the stresses round the thermal origin in such a problem of thermal 
elasticity  are obtained, introducing the displacement function  .95, and trans-

forming the equations of equilibrium so that the results of potential theory 

and theory of centres of dilatation may be applied. Thus, the state of the 

thermal origin is estimated from the observed deformation of the free surface. 

For example, the dimension of the magmatic reservoir at the Volcano Aso 

is estimated at ca. 1 km from the observed crustal movement which may 

result from its expansion and contraction. 

                            Nomenclature 

   The following nomenclature is used in the paper  : 
u, v, w :  cartesian components of displacement 

 eat  : strain (i, y, z) 

 e  : dilatation 

 E : Young's modulus 

 : rigidity 

a : Poission's ratio 

 Tf  I  : stress (i,  j=x, y, z) 

 : displacement function 

a  : coefficient of linear thermal expansion 

 as  : coefficient of linear thermal expansion inside thermal region 

 a,  :  coefficient of linear thermal expansion outside thermal region 

 T : change of temperature



 J 

 Bt  : inclination of  spheroidal thermal  origin. 

§1. 
   When the temperature in an elastic body is not uniform, or the tempera-

ture in the elastic body of the non-uniform distribution of coefficient of thermal 

expansion changes uniformly, there appears a  state of stress. Such a stress 

 is  called the thermal  stress.  In the case of the inclusion of material of the 

coefficient of thermal expansion larger than that of the surroundings in the 

earth's crust, heated by the con-  Expansion  per  unit 
 18C 

vective currents of magma throughlength from 
 20  -x10-3 

the fissures, there appear the 

thermal stresses as the results of 

the increases of temperature and 

coefficient of thermal expansion,  - 

and we observe the deformation 

at the earth's surface. Particularly, 

if the temperature of the thermal  m-

origin is a little lower than the 

transition point of the heated 

material, the increase of coeffici-

ent of  thermal. expansion is re-

markable. For example, the coef-

ficient of thermal expansion of 

quartz increases rapidly near 573°C   200 400  600°C T 
of  a--)3 transition as  shown in Fig. 1 Thermal expansion of quartz 

Fig.  11)(after Jay). 

 In this paper, we calculate the thermal stresses round the thermal origin and 

the surface displacements which result from the  increases of  temperature and 

coefficient of thermal  expansion in the spheroidal (or spherical) thermal 

 Origin of  as larger than  ag in the elastically uniform semi-infinite solid. 

§2 
   When there appears the change of temperature (x, y, z) in the infinite 

and free elastic solid which has the uniform elastic constants and the non-

uniform linear coefficient of thermal expansion a(x, y, z), the free thermal 

expansion of every volume element  is constrained  partially  by the surrounding 
material, and a state of thermal stress ensues. The difference between the 

actual strain and the free expansion  adT is related to the stress through 

 0
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Hook's law. As the changes of elastic constants which result  from that of 

temperature are very small, they can be neglected, but as that of coefficient 

of thermal  expansion is fairly large, it is considered. As a uniform change of 

temperature of a small volume element does  not create any angular distortion 

of the element, the shear stresses are unaffected by the  term adT  , that 

                                                                     0 is,  Tz,  =2pez,,   However, the normal  stresses are  deterMined by the 

following equations. 

                    r                      +dr)(1)adT                      Tzz= z                                            1-2a ‘o 

                              cyclic. 

Then, the three equations of equilibrium take the  form, 

    6e a  T 
               ax                   +2a)172U.=2(1+a)0                 uxadT (2) 

                              cyclic. 

In order to solute the equation (2), the displacement function  0 is  introduced2) 

            60 60 60 

                           _ 

                   -
ay—v' w* 

The equation (2) now can be written 

               ax r                         cI 72 —(1+6).acIT i= O. 

Then  equation (2) is all satisfied when 

 v20=   1+a  adT (3)  1—a  o 

As the state of stress represented by this function  cb ordinarily requires certain 

surface tractions at the boundary of solid, by means of the principle of  super-

position, a complementary stress function must be determined so as to satisfy 
the boundary  conditions_ This is only a  problem of given boundary tractions 

in the ordinary theory of elasticity. 

   By means of equation (3),  equation. (1) can be written in the form 

           Tz=2p[a29'1+61adTi (4)                         6x21—0 

   Equation (3) is of the same form as Poisson equation  P2 V=  —47rp in 

the potential theory and a particular integral is given  by the Newtonian 

potential of a distribution of material of the density — (1+a) 0adT/4n-(1— a),
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 namely,3) 

                 615=,,TadT!                   11-CI 0 j
c/Ed7;d:(5)                          47r(1—a)r' 

 r'2=(x—$)2+( .Y-7;)2+(z—:)2. 

This potential  0 represents the complete solution for the infinite solid when 
 T=0 outside the heated origin. 

                          aT 

                                                                        ' 

   As the general  equation (2) implies----the validity of any solution at                              ax 

a surface of temperature distribution  requires examinations. However its 

validity is shown by potential  theory.2) 

   In order to relate the above solution to the ordinary elastic theory, the 

nucleus of thermoelastic strain is defined as follows. The formula (5) and 

the definition of  .75 shows that if a change of temperature of volume element 

 dr in the infinite body is, that of the remainder being zero, the displacement 

is  the gradient of 

 (1+a)clz  
                        47r( 1 — a)r'J oadT 

This is simply the  singularity known in the ordinary theory of elasticity as 

the centre of  dilatatioe, and (6) may be called its strength. 

                  S  

  o 

              42r 47r( 1—a)aaT (6) 

Namely, the  effect of heating is the same as that  Of a distribution of centres 

of dilatation of this  strength.  S/47r in an unheated body. 

§3 
   Then we can obtain the stress distribution of a heated and bounded elastic 

body, if the formula for the same  disti:itution  C)/47r of centres of 

dilatation within the boundary is known. 

   In order to solute the problem of the distribution of centres of dilatation 

corresponding to that of the rise of temperature in the spheroidal (or spheri-

cal) region  of.,  as embedded in  semi-infinite, elastic body, firstly, we require 

the solution (displacement) (7) for the centre of dilatation of the strength 

 S/47r5) 

          (  u=  v(1)+,,,,(_1 )) 
             47r(RI)R2  ) 

 8           p
2= (3— 40.)p+ 2pz--— 4(1— a)krz (7)                           8z
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 R12  =  (x  -  E)2+(y--7;)2+(z-:)2,  R22=  (x  -  E)2  +(y-7))2+(z+02, 

 , where the  x-y coordinate axes are laid on the free surface and z-axis is 
directed downward. If  S(E,  7;,  :) distributes in the region V1 in  z>0, 

   u=viuodr = -4n(17. v,R1clz + vi-kdr) 
 =-47-r-Hv,Rsidt+1723V,Tkidr)= V 01-FP 202(8) 

   °i=-kc r 02=1CS                    4nv,                 Vi  

, or writing down their conponents 

                        aqs62sb2  u  _  a
x  +  (3 -4a)ax2—+2z—                                  x6z 

                        ac52602        v+ (3 4a)a
y+2zF6i(9) 
                           ao820,,                 w=  +(-3+4a)-=+2z---a zz            az 

 , where V2 is the image of V1 in the plane  z=0 and  02 is simply the reflec-
tion transformation of  01 in the plane  z=0. 

   Then, when the potentials  01 and  02 for a distribution of  S(E,  72,  .1.,") are 
known, we can obtain the displacements (u, v, w) by means of differentiation 
of  01 and  02. When the spheroid and spheres are adopted as  V1, 

   spheroid 

          x2cos201 -Fx(z - d)sin20i + (z- d)2sin201,y2 
      a2b2 

 x2sin281-x(z-d)sin201+(z-d)2cos281   =I  C2 

   two spheres 

 +b1)2  +  y2  +(x  -  d1)2=  a',  (x  +b2)2  +y2+(z-d2)2=--  a2  , (10) 

from the known results for their  potential3),  0 outside the thermal origin are 

   prolate spheroid  a>b  =  c 

         Sac2 r Va2+qt+Va2 - c2(2v
a2 c2 +y2 +- 2X,\    °z=4(a2 -0)log i/c2+  qia2 - c21 

  (3)2 Zi)-1/ a2 q                                           (11) 
     Va2+qi  c2+qi
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 1  g
i=2rt2 — a2 — c2 +.1/( rc2 a2 — C2)2 — 4(a2 — c2)gt-1 

oblate spheroid a = b>c 

       Sa2c  [tan-11/a2e2 (2 i/a2—c, _ y2+— 22.2\    4(a2—c)v6.2a2— c2) 

 +(y2+X1)-1/  c2+9t  —  2Zt  
 a2  +  gi i/c2+ g J 

      1 

 9t= 2_  a2 c2 v(ri2_ a2±c2 )2 +a2c2 )Zi (12) 

 Xt =  x2cos20/±x2,sin20i+zi2sin20/,  Zi=  x2sin2Ot—  xzisin201+zt2cos2Ot 

 rt2=x2+y2+zt2,  zi=z—  d,  z2=  z+d,  01=  —  02. 

two spheres 

        11       Or= — a3St      3Rti+3R/2(13) 

 Rii2=  (x  +  b)2+y2  +(z—  di)2,  Ri22  =(x  —  by  +y2+  (z  —  d2)2. 

 R212  =  (x  +b)2  +  y2  +(z+d1)2, Rd  =  (X  b)2+312+(Z±d2)2. 

Inserting (11), (12), (13) into (8), we obtain 

 u=  —  rC21-1+(3—  4a)A2+2zA) 
 v  =  —  +(3  —  40)132  +2zB) (14) 

 =  —rCC1+(  —  3  +46)C2+  2zC) 

prolate spheroid 

      Sac2   r=  4(a2  —  c2) 

 At=2x(sin2Os — 2cos201)— 3z,sin20,i/a2 + g+T/a2  —  c2 
            7/a2— C2 T  c2  +g  f 

 4xcos20t+2zasin2Of  (2xsin281—  zisin20i)-Va2+q, 
 a2  +  g  c2+gl 

A=lo       3sin202g1/a2++ q2+i/a2—c2 2sin202sin202-1/a2  +qs 
      a2 — c2 1/C2  q2 Va2+ qa  c2+q2 

 92,(a2  —  c2)  z2sin202(a2 — c2)2 xeos2022x sin202) 
      i/a2+q,(c2+q2)1(a2+q0(c2+q,) a24-q2(15) 

          1 a2+g•+ ^a2 — c2Va2+0 . .13t= 2y{ va2 _logv:, ,                   qic2+g,J
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 2yq2,(a2-  c2)   B - 
Va2+92(c2+  q2)2  ' 

 Ct  =       - 3 xsin26/+ 2zi(eos2 0f- 2sin280  loVa2 + qt+Va2-c2'              -1/a21 c2g 1/  c2  +  q  t 

 +2 xsin2fit + 4ztsin2Ot( - xsin20i +2zicos20f)Va2 + q 1  V
a2  +  q  t  c2+ql 

       2cos202- 4sin202
gVa2 + 42+Va2 - c2 4sin282 2cos202Va2  +  42  C=lo+,--          Va2 - c21/ c2 + q2 1./a2 .4_ q2  C2  +  q2 

 (a2  -  c2)q2z1  xsin202(a2  -  c2) 2z2sin2022z2cos202} 
      Va2 + q2(c2 + q2 )1( a2 + qa)(c2 + q2 )  a2  +  q2  c2  +  q2 

  oblate spheroid 

 S  a2  c  
 r=  4(  a2  -  c2  ) 

 At =         2x(cos20/-2sin200+3zisin201tan-1Va2 -  c2 

 „   

              i/a2---c21/c2  ±  qi 

 _ 

        4xsin20i- 2. zisi n203+(2 xeos20i + zisin28i)V c2 + qt 
 V  c2  +  qt  a2  +  di 

   A= _3sin202 tan_iVa2-C2+2sin202 +  sir202  1/c2+  q2 
 1/a2 -  c2  -V& + q2  1/C2 +  q2  a2 + q2 

      +  q2z(a2 - c2)  12xeos202+z2sin202+ 2xsin2O2 - z2sin202} 
       (a2+q2)-1/c2+q21 a2  +  q2  c2  +  q2 

            1Va2 - ca i/c-2+qt}    Bt = 2y {--1/a2,-- c2tan-1-1/,c2 + q 1+„                                a-+ q 1 

         2yq2z(a2 -c2)  B=(16) 
        (a2+q2)-1/c2+q2 , 

 CI= -3xsin20t+2.z1(sin2Ot -2eos20i)tan-lVa2- c2  V
a2  -  c2  1/c2  ±  qt 

       +  2xsin20i-  4zicos2Or  (xsin20t-1-2zisin'Of)Vc2+  q  I            V 
c2 + q t-I-   a2  +  q  t 

   C-        4cos202- 2sh3.2 02tan-1-1/  a2  -  c24cos2022sin202Vc2+ 42 
                                                    1/a2 ,            -1/a2 -  c2 iic2+q2-1/c2+ q;+  a2  +  q2 

        q2z(a2 - ca )   1  xsin202+2zasin282+ - xsin202+2z2e0s2021 

    + 

      (a2 + q 2)1/C2 + q21  a2  +  q2 C2  +  q2). 

  two spheres 

 Sa3  
     r=  3 ,
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 Ai_ x+b  x—  b  ) A=3f(x+b)(z+di)_,(x— b)(z+d2)1  R
i13  Ri231R215 8125  I  , 

  Bz ,1z+cli    = —y{-203-1"  z+d2         R.23/2-B=34n R22-  , 
 z—d1  z—d2  z+di  z+d2—+  Cl 

8113 R123  1 C2 R213  R223  

f  1 1 3(z-i-di)2 3(z +d2)21                                          07)     C
1.R2151-R225R215 8225f 

 , where  qh,  qty,  qjZ are the derivates of  qi with respect to x, y, z. 

   Inserting the strains which are derived by differentiation of (14), (15), 

(16), (17) into (1), the stresses are as follows 

     Tsx=T         2pr(Di+ (3 — 4a)D2+2zD — 40F2-1±2acjoadT‘ 
    T„= 2fir(E1+ (3 — 4a)E2+2zE-40F2+IS'ad.T) 

   Tv= 2pr(Fi — F2 ± 2zF+rdT                            1—2a„0a 
 T„=  prCGi  +(3  —  40)G2+  2zG) 
 Tv=  prCHi  +112+2z11) 

 TZx=,ur  +/2+2zI). (18) 

   prolate spheroid 

    Di=         4cos28t — 2sin20/log1/ a' + qt+ i/a2 - c24cos20i2sin201 Va2 qt         -1/a2 — c2 1/c2+  qtVa2 q I+  c2+qi 

          qir(a2 — c2)  ((a2— c2)zisin201 2 xsin201  2  xcos20i 

     + 

         a2+ q i(c2 q 01( a2 + q i)(c2 q i)  c2  qi  a2+  qi 

     D =   42.sin202(a2 —  c2)  242,(a2— c2)  sin202 cos2021  (a2+q2)3/2(c2+  q2)2+ q2(c2-1-q,)1c2q2 a2+q2j 

 + 

          (h.( a2 — c2)  f  Z2Sin282(a2—  c2)2xsin2022xcos202} 
       Va2+ q2(c2 + q2)1(a2+ q2)(c2+ 42)  c2+42 a2 + q2 

 q2zq2z(a2  —  c2)   z2sin202(a2—  c2)(2a2+3c2/2  +  7  q2/2  )  +
(a2  +  ̂ 72)3/  2(C2I  q2)21  (a2+  q2)(c2+  q2) 

 2  xsin282(2a2  +  c2/2  +5q2/2  )  +  2  xcos202(a2+3c2/2  +  5q2/2 
 c2+42  a2  +  q2  ) 

 Er= V
e:2t2 — c2logi/a2+qi+ Va2 — c2 + 21/a2+  + 2 yq iy(a2 — c2)   Vi2+qt  c2+qt  a2+  qi(c2  +  qi)2 

     E =2(q2z+yq2zy)(a2 — c2)yq2,q2,(a2— c2)(4a2 + c2 + 5q 2) 
 1/a2+  q2(a2+  q2)2  (az  +  q2)3  /2(0  42)3
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   F =4sin20i— 2eos26/ Va2 + Q1 + a2ca4sin20/ +2eos20/1/a2+ qt            _log 
                   i/      i/a2—c2c2+ qa2 + q c2+qt 

          iz(a2 — c2 )j xsin28 1(a2 — c2)  2zisin20/ 2zteos20/      + 
i/a2+ q t(c2 + i)((2 + q t)(c2 + qt)  a2  +  q  t  c2  +  q  1 

                           o4q2z(a2— ) sin2 c0021± q(a2—c2)  F
V 

     = 

          a2+q2(c2c2+q2)"a2+42C2 +42C i/a2az+ q2(c2+ q2) 

 xsin202(a2  —  c2) 2z2sin202 2z2eos20l
r        1(a2+ 92)(0+ 92)  a2  +  q2  c2  +  q  2 

 q.  ,2(a2  —  c2)xsin202(a2— c2)(2a2+3c2/2 +7.92/2)     + 
      (a2+ q2)3/.(c2+ q02 (a2+  42)(0+40 

      2z2sin202(a2+3c2/2+592/2)+ 2z2co s202(2a2 + c2/2 + 592/2)  
     a2 +g2 c2+92  f 

   Gt = 4y  q  i(a2  —  c2)  -1/  a2+9,(c2  +  702 

   G  4(a2  —  c2)y2zzq2,(a2 + 4c2 + 5g2)1       V
a2+92(c2+ q2)f 2(a2  +  q2)(c2  +  q  2)2 

 H 4  yq  t(a2  —  c2)   -V  +  q  t(c2  +  q  t)2 

   H 4.5,(6/2— c2) .70,z+  92,2(a2+4c2+592)        1/a2+ 92(c2 + q2)1 2(a2  +  q2)(c2  +  .72)219 
       6sin201 7/a2+Va2 — c2  2sin20/(a2+2c2+391)     I

t__log 
      i/a2 — c2i/c2+ 9122 + q t(c2 + q t) 

 2qt,(a2  —  c2  )  z isin20 t(a2 — c2 ) 2xsin2Bt 2 xcos20/} 
      Va2 + q i(c2 + q1(a2+91)(c2+ qt) c2-Fq a2 

       442zSin20a(a2 — C2)2 292zz(a2— c2)  z2sin202(a2—  C2)   I —       (
a2+ q2)2/2(c2+92)2 Va2+ qic2+ q2)l(a2+ q2)(c2+ 92) 

 2  xeos202  2  xsin202  l292z2(a2—  c2   )  
       a2+.72  c2+42+(a2+42)312(c2+q2)2 

 Xz2sin202(a2 — c2)(2a2+3c2/2+792/2)+2xsin202(2a2 + c2/2 + 592/2)  (a2+q 2)(c2+q2) ca±qt 

 2  xcos2  2(a2  +3c2  /  2  +  5q  2/  2)) 
 a2+q2  f  . 

 oblate spheroid 

   Di—        2cos2Ot— 4sin2Oftan-i/a2 —c2+4sin20/2cos201-1/c2+ qi     , -A          -1/a2 — ca6.4+ q,c2 + q t  a2+qi 

 q  tz(a2  —  c2)  12 xeos20t+ z tsin20  +2 xsin20i — zisin2th 
      (a2 + q 1)-1/ c2+ 911a2 + qt c2+qi
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D=   q2,(a2  -  c2)   52cos202+sin282+2sin202  sin2Oat  (
a2  +  q2)-1/c2+q2  (  a2+  q2  ca  +q,  I 

      q2z,(a2-c2)  j2 xcos202 + z2sin282+-2 xsin202 - z9sin2021  - 
(a2+q2)1/c2+  q21 a2+0          42+q2 

 q2,q2(a2-  c2)   i  (2  xcos202+z2sin202)(a2/2  +  2c2+  5q2/2  ) 
 42+92)2(c2+42)3/21  a2+q2 

   (3a2/2 +c2+5q2/2)(2xsin202-  z2sin202)L + 
c2+q2 1, 

Et= 2 tan-1V,a2-C221/c2+ qt2yqi,(a2 - c2)                                         (20) 
    i/a2- c2-1/c2 + qt a2 +q1 (a'+ 91)21/c2 +al 

      2( q2,+yq2, „)(a2 - c2) 2yq.„qoz(a2 - c2)(a2/2+2c2+5q2/2) E= +-- 
 (az  +  q2)21/c2+  q2 (a2+q2)3(c2+  92)2'2  , 

F12sin2Ot- 4cos2Ottan-1Va2 - c2+-smt                              4cos28t2•28VC2 + al 

-  

      1/a2 - c2 1/c2+qt y/c2+qta2+qt 

   _ _ 

      qi,(a2-c2) jxsin20; +2zisin2th 2z1cos28t  -  xsin2Ori. 
   (a2+ qt) i/c2+471 a2+qt + c2-1-qt 

 F- -'         4q.4a2 -c2) i sin202+cos20,) 92z,(a2—c2)       (a2+42)1/c2+q21a2+q2 c2+qa  (a2+q2)1/c2+q2 

  Xi xsin282+ 2z2si n202+- xsin202+2z2cos202L+  q2z2(a2  -  C2  )  
         a2-Fq2, c2  +  q2I(a2 + q2)2(c2 + q2)3 i2 

 X 1 xsin202+  2z2sin202)(a2/2  +  2c2+  5q2/2)  a2+q2 

  +( - xsin202-F 2z2cos202)(3a2/2+ C2 + 5172/2)  c2+  42  I  , 

 G,  _  4yqiz(a2  -  c2)  (
a2+  q,)2  Vc2+  qi  , 

 4y(a2-  c2)  (,qA2z(a2/2 + 2c2 + 5q2/2 )1  G = 
    (a2+q2)-Vc2+q21- q2rz-1-  (a2+q2)2(c2+  q2) f , 

 -4yqiz(a2  -   c2)  H
t=   

 (a2+qt)21/c2+  qt  , 

H- 4y(a2-  c2) {2zz,q 2z2(a2/2+ 2c2 + 5q2/2))                                         q-r- 
   (d2+ q2)- Vca + q2 (a2+q2)2(C2+q2)j, 

It-     6sixt28ttan-1i/a2- c2-4sin20t(a2 + c2/2  + 3qt/2)    -— - — 

    i/a2 - c2  1/C2  +  qi  (a2+qi)1/c2+q, 
 2qt,(a2-  c2)   j2xcos2Ot  +zisin2Ot±2 xsinzOt - ztsin2OtL 

 (a2+qt)1/c2+q,  ( a2d-qec2-1-qi I 

 .1=-'     4q.sin202(a2- c2)2 2q2.(a2  -  c2) .12 xcos202+z2sin202  ( a2+ 92)2(c2+42)3/2  (az+  02)-1/c2+  92  (  a2+  q2
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        2 xsin21i2 — z2sin2821,  2q2,2(a2  —  c2)       + 
 c2  +  q2f-r-(a2 + q2)(c2+ q2)8/2 

       i(2xeos202+z2sin202)(a2/2+2c2+$q2/2) 

 X 

 a2  +  q2 

      +(2xsin202 — z2sin282)(3a2/2+c2+5q5,4)L  c2+q2 

two spheres 

    D11_,_ 1  3(x +b)23(x— b)2      ""'1=R
ii3-FR¢23R116-  Ri25 

 D=          3(Z+ di)3(Z+ d2)++15( X+b)2(Z + d1) 15( x— b)2(z+d2)        R
216ii.2.1-r,R225R251R227 

      1 1  3y2  3y2     E
1=--------         R n3+Ri23 8I15 Ri25 

    E=3(Z+d1 )3(Z +d2)+1 5Y2(Z±d1)+153/2(Z+ d2 )  R
215  R225 R217 R237 

        11  3(z — d1)23(z— d2)2   F
1= 8 113+Ri23 R115 R125 

       11  3(z+di)23(z+d2)2      F
2=R 213+ R223  R216  R226 

         9(z-1--d1)9(z+d2)
D1 5(z+d/ )3+ 15(z  +d2)3          R215As225 R217/1 .  F=  +D7                                                     22 

 Gi=         6y(x+b)6y(x—b)          R
115Ri25 

    G= 30y( x+b)(z+ di) 30y( x—b)(z+d2)          R
217+ R227 

         6y(z—d1) 6y(z—d2) H ___6y(z+d,)_6y(z+d2)     H1=       R
IOR125'—R216  8226 

        6yz 6yz  30y(z+d1 )2 30y(z+d2)2 

                

.a 
    H=n

2C,n,22-+R21+R227,    -11 . , 

    II=6(x+b)(z—d1)6(x—b)(z—d2)         R
115  R125 

 1= 6(x+b)(z+d1)6(x—b)(z+d2) 

 2 

 ,R215  R225 

 I=         6(x+b)6(x—b)+30(x+b)(z+di)2+30(x—b)(z+d2)2                      n,                        21
-21-,         R225R217R227  9 

 §4 
   When 

     spheroid  :  a=  1,  c  =  2,  d=3,  01=-7r/4,  a=1/4 
     two  spheres.:  a=  1,  b=  1,  d1= 2, d2  =  4,  a=  1/4
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as shown in Fig. 2, the results of  -2  -1  o  1 2 .z 

calculations of u, v,  w at  tb.e free 

surface for the three kinds of  (the  j 

above thermal origin are shown in iilliik 1:, Fig. 3-6. 4, 40)   From the comparision of the case  *S
r, of prolate spheroid with that of                                  .,1 oblate spheroid, both their states of trir 401 

displacements are resemble and the A1
111 

ratio of their quantities is nearly 5 

equal to  that of their occupying                                                         Fi
g. 2. 

 —  Prolate 
      u2.rn2t2  

   S  f2r   Oblate 

                  ‘ 1 I 
 ,...

.                       \ \ 1 1 /..'ii....'.--....                                           N. 

..,
, 
                                                                                                                                                             ..,-,..      c........''•-..."'''..'4\ \  1 /,„..                                                              ../-'I'.---'''... 

                         \ i 7.* ........                                                                                                       ....„..-•.....-..-- _...-.•-•••• 

                                      ...- ,......., --, .. —. . —.-- . 

                                          /I \...---,---.......--"---,                                                                                                                                               '-' 

                       ... 

                                             I I  \ N.,.. -"'"•*„..., '..."---,.. 
        ^••• : 

       

. .. i  1 \  \ 44'.......'' '.

.. 

                    Fig. 3. Horizontal displacement for spheroid. 

region 1  : 2. The ratio of  the mean  ur 
 S 

slope of the left side to that of the  —Prolate 
                                                                      ..-7--07'•   Oblate 

right is about  3: 4. It may be dif- 

                                                                                                                     , ficult that we estimate the inclination., 

                                                of the thermal origin from the dif-

ference between the slopes of both 

sides, as it is small even at Oi= — . 
7r/4. This tendency appears also in  -4.1   -2  0  2  4 x 

 the- case of two spheres, which                                      Fig . 4 Vertical dislaacement for  shot-old on 
occupy nearly the same place  as the  y=0.
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 /10.-1-3"   $  -7
)r 

         --. •-...  \ \  \  i  f / / 
      ..- ---... ---... ̀ `..  \  ‘  / /  .---"" ----- 

                                                 N \  i ..----- ,---- ---- 

     ...- — —  a. 4, ^^• • 

 .....  .......  ......'.  .......  ,,,,, / \  ...,.......  ......^,, ...""..' 

            a..... ....., .....,  /  /  i  \  \ 
    .-- ../ / /  1  I  \ \ N., 

                  Fig. 5 Horizontal displacement for  two spheres 

            .. that of spheroids. 
 s                                      Using the expressions for 

                                  the above stresses (18), (19), 
 -02  (20) , (21), we calculate the 

 maximum value of shear stress 

                 -0.1  T.  ?A  =  1/(  Tzz  -  7.z)2+  4  Tzz2/2 

                                  in the plane y = 0 along the  inter-

  -4i  -2 a  z  :i  x section between the plane  y  =0 

 Fig. 6 Vertical displacement for two spheres. and the surface of the thermal 

 rm origin of the described form. 
s/a  ;  —Po/ate                                     These results are showninFig . 

                                                                                      . 

 Oblate 

                                                                                                                  . 

 7-8. 
 zo  '                                      Th

eir values are maximum 
 '- ---------' about the minimums of the 

0.5radius of  curvature as we expect. 
                                  But the difference between the 

                                    value near the surface and that 

02  0 2 0 -2.r.distant from there is small.  For, 
                        0  1 0  -1  0t toward the free surface , while 

           Fig. 7  Tin for sheroid                                   • the principal tension increases
,
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the principal compression decreases. 

   As the thermal origin is compressed by the surrounding material, the 

shear stress is very small within it, and then any fracture will not occur first 

in it.  T. 
    It is evident from the  ex-  3S14 

pressions that the displacement 
and the stress are respectively 

in proportion to SD and Sp, 

where D is the dimension of the  2  - 
thermal origin. We will estimate 

their values of rocks. Examples 

of coefficient of thermal  expan-  1_2  -1  0 -1  2(2) 1  0 1  2x 
sion of rocks are  skown in the  4  S  4 3 4(2)  1 2 3  2Z 

following  table.l) Fig. 8 for two spheres. 

               Table 1 Thermal Expansion of Rocks 

    Rock a (ordinary temperature) 

   Granite  8X10-6  derl 

  Basalt 5.4 

   Periclase 10 

  Andesites 7 

While the values of coefficient of thermal expansion at high temperature 

 (700°---1000°C) are ordinarily  2-4 times as much as the above, they decrease 

with pressure. But the effect of pressure is small and then those at about 

 700°C and 1000 atmosphere may be 2-3 times as  much.') Taking the rise of 

temperature  10°C and  at.  3.10-8 which is the mean value in its interval, 

assuming that the variation

(of  at is linear and that D is 1 km, SD is                              5          SD =(1-1-6)DTadT = 
3                                Dat.T=lir • 3 10-5' 10  =  50      1—o3 

For example, the displacements  w of prolate spheroid and oblate spheroid 

are ca. 11 cm and 20.5 cm. 

   Taking the rigidity of rock  3.10" dyne/cm2 in the granite layer  estimated 

from the seismic wave velocities, we obtain 

 Sit=5.10-'3.1011=1.5 108 

For example, the maximum of  zm for prolate spheroid is  2.3  -108  dyne/cm2.
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   Besides, in case that the temperature changes similarly also in the  stir-

rounding medium, we replace  aim  T with  (aim—  ae.)T. 

   In the above discussion,  the' elastic  constants outside and inside the 

thermal origin have been assumed to be the same. 

But, in fact, they differ if coefficients of thermal expansion are  not  equal. 

Nevertheless, if the configurations of the thermal origin are the same, the 

states of deformation may be similar, in spite of the differences between the 

absolute quantities. Thus, we may estimate the depth of the thermal origin 

and etc. from the figure of deformation at the surface. 

§5. 

   From the results of succesive levelings at Volcano Aso, the crustal move- 

                                      ment is remarkable in them- 
 u, 

                                  gion of radius of order of 2km  15 • Oct. 1939-Fe6. 1911 (Depress/on) 
                                      near the  craters.  s' This fact 

              • 

                                    suggests that there is the ther- 

10 mal origin (magmatic  reser-

                 • 

                                      voir) under the earth's surface, 

                                    corresponding to  this  pheno-

                                  mena. That the depth of the  •  .•
• upper surface of the thermal 

                                    origin is  ca. 0.86 km has been    12 3 4 km 
                                      estimated from the records of 

 ur 

                                       eruption earthquakes." Now -15Feb.1941-b*102 (Elevation) 
                                    assuming the thermal origin 

 . the spherical form for  simpli-
-10 • • city, we estimate the dimension.   • 

The displacement  W at the 

                                        surface is  -5 

 a3S•d        • •1                                       3(r2+d2)3" (23) 

 °o  1 2 3 4km  Y 
, where d is the depth of centre 

  Fag. 9 Calculated curve of vertical  dasplace- of the  -thermal- origin. The 
    ment with cbserved results. (depth is 1.6km) 

 point=r where  w'  is  1/e of 
the maximum value at r=0, is 

 asSdla8S1 
                       3(r2-1-d2)3/2/3d2  e
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 Then, 

 d  =  (24) 
                                         1,',2/3 _1 

Evidently, r is not related to the radius a. Taking  e=4 which corresponds 

to the margin of the remarkable crustal movement, we obtain d=ca. 1.6 km 

and then estimate The radius of thermal  origin at  0.7^-0.8  km. The vertical 

displacements which are calculated by inserting  d  =  1.6km into (23) are shown 

in Fig. 9 with the observed results. Although the above inference is ambi-

guous in some respects, it may be said that the diameter is the order of  1km. 
   The writer wishes to express his hearty thanks Prof. K. Sassa for his 

instructions. 
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