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Abstract

When the spheroidal or spherical region of material of a larger than that
of the surroundings, which is embedded in a semi-infinite elastic body, is
heated, there appears the thermal stress. The displacements at the free boun-
dary and the stresses round the thermal origin in such a problem of thermal
elasticity are obtained, introducing the displacement function ¢, and trans-
forming the equations of equilibrium so that the results of potential theory
and theory of centres of dilatation may be applied. Thus, the state of the
thermal origin is estimated from the observed deformation of the free surface.
For example, the dimension of the magmatic reservoir at the Volcano Aso
is estimated at ca. 1 km from the observed crustal movement which may

result from its expansion and contraction.

Nomenclature
The following nomenclature is used in the paper :
#, v, w : cartesian components of displacement

ey : strain (2, 7=%, ¥, 2)

e : dilatation

E : Young’s modulus

)7 : rigidity

o : Poission’s ratio

Ty : stress (¢, 71=%, ¥, 2)

¢ : displacement function

a : coefficient of linear thermal expansion

a : coefficient of linear thermal expansion inside thermal region
a : coeflicient of linear thermal expansion outside thermal region

T : change of temperature
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6, : inclination of spheroidal-thermal origin.
§1.-

When the temperature in an elastic body is not uniform, orthe tempera-
ture in the elastic body of the non-uniform distribution of coefficient of thermal
expansion changes uniformly, there appears a state. of stress. Such a stress
is.called the thermal stress. .In the case of the inclusion of material of the
coefficient of thermal expansion larger than that of the surroundings in the

earth’s crust, heated by the con- Expansion per it
length From 1

vective currents of magma through
2011072

the fissures, there appear the
thermal stresses as the results of

the increases of temperature and

coefficient of thermal expansion,
and we observe the deformation
at the earth’s surface. Particularly,

if the temperature of the thermal 70

:

origin is a little lower than the
transition point of the heated
material, the increase of coeffici-
ent of thermal. expansion is re-
markable. For example, the coef-
ficient of thermal expansion of

quartz increases rapidly near 573°C 0 200 T T

of a-f transition as shown in Fig. 1 Thermal expansion of quartz
Fig. 1V (after Jay).

In this paper, we calculate the thermal siresses round the thermal origin and
the surface displacements which result from the increases of temperature and
coefficient of thermal expansion in the spheroidal (or spherical) thermal
origin of a: larger than @, in the elastically uniform semi-infinite solid.

§2

When there appears the change of temperature (%, y, 2) in the infinite
and free elastic solid which has the uniform elastic constants and the non-
uniform linear coefficient of thermal expansion a(x, », 2), the free thermal
expansion of every volume element s constrained partially-by the surrounding
maierial, and a state of thermal stress ensues. The difference between the

- - T -
actual strain and the free expansion Eo adT is related to the stress through
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Hook’s law. As the changes of elastic constants which result’ from that of
temperature are very small, they can be neglected, but as that of coefficient.
of thermal expansion is fairly large, it is considered. As a uniform change of
temperature of a small volume element does -not create any angular distortion
of the element, the shear stresses are unaffected by the term 5: adTl , that
is; Tey=2pesy, ....... However, the normal stresses’ are determined by the

following equations.

o @ _A+af”
Ter=2p 5 0+ un I?ZUSOadT] 1
cyclic.
Thep, the three equations of equilibrium take the form.
Oe 07
o —2a)V”u=2(1+a)a—xLadT @)
cyclic.

In order to solute the equation (2), the displacement function ¢ is introduced?®

The equation (2) now can be written
7 N
aix[u ) Pp—(1+0) adT]=0.
Then equation. (2) is all satisfied when

pg = %"Kad:r (3)
As the state of stress represented by this function ¢ ordinarily requires qertéin
surface tractions at the boundary of solid, by means of the principle of super-
position, a complementary stress function must be determined so as to satisfy
the boundary conditions. This is only a problem of given boundary tractions
in the ordinary theory of elasticity.

By means of equation (3), ejuation (1) can be written in the form

o [P _1te (T hpl
T"‘Zﬂ[axz 1—a50“dT)‘. @
Equation (3) is of the same form as Poisson equation p?V'=—-4no in
the potential theory and a particular integral is given by’ the Newtonian

potential of a distribution of material of the density —(1 +a)g:adT/4-1r(l —ag),



namely,?”

{7
- 4\ adT:
¢='—4n}f_"d)§ﬁg°,, “dedydr (5

rt=(x—£Y+(y—9)i+(z-L)

This potential ¢ represents the ‘éomplete solution for the infinite solid when
T=0 outside the heated origin. v

As the general equation (2) implies »aaf—, the validity of any solution at
a surface of temperature distribution rejuires examinations. However its
validity is shown by potential theory.?

In order to relate the above solution to the ordinary elastic theory, the
nucleus of thermoelastic strain is defined as follows. The formula (5) and
the definition of ¢ shows that if': a change of temperature of volume element
dz in the infinite body is, that of the remainder being zero, the displacement

is the gradient of

(1+a)dr S"

4 T—oyr )0 %7

This is simply the singylarity known in the ordinary theory of elasticity as
the centre of dilatation", and (6) may be called its strength.

" odT " )

0

S 1+o S

Namely, the effect of heating is the same as that of a distribution of centres
of dilatation of this strength S/47 in an unheated body. ‘
§3

Then we can obtain the stress distribution of a heated and bounded elastic
body, if the formula for the same distribution SC&, %, £)/4n of centres of
dilatation within the boundary is known.

In order to solute the problem of the distribution of centres of dilatation
corresponding to that of the risz of temperature in the spheroidal Cor spheri-
cal) region of a: embedded in semi-infinite. elastic body, firstly, we require

the solution (displacement) (7) for the centre of dilatation of the strength

S/4x®
w727 z.)

pa=(3—da)p + 2Vz~a%—4(1—a)k722 D



R2=(x-&2+(y—7>+(2-0), R2=(x-&6)+(y—33+(2+{),
, where the x —y coordinate axes are laid on the free surface and z-axis is
directed downward. If SC€, 3, £) distributes in the region V) in 220,

SVI“"dT %[VSVII%(&-{_VZEV Iidf]

(4 S adetrsl —-—dr] Péi+ s (8
, or writing down their conponents
=004 312422701
0= 43— 40020 0 @
3¢1 002 | o, P2

7 T(—3+da)p +225

, where V: is the image of Vi in the plane 2=0 and ¢ is simply the reflec-
tion transformation of ¢, in the plane z2=0.

Then, when the potentials ¢; and ¢: for a distribution of S(¢, », {) are
known, we can obtain the displacements (%, v, w) by means of differentiation

of ¢1 and ¢2. When the spheroid and spheres are adopted as Vi,

spheroid
x%cos?f +x(2—d)sin26:+ (2 — d)zsm‘ﬂl
at b2
4 x%sin®th —x(2— d)sgzn201 +(2—dYcos*h _ 1
two spheres
(x+b6: P +y*+(2—-di P =a%  (x+&P+y*+(z2-d:)f=2a’, (10>

from the known results for their potential®, ¢ outside the thermal origin are

prolate spheroid a>b=c

_ Sac? VvV @+ gty a® = c* s ¥ +Z‘_2X’>
b= “4Ca2—02>[l° Ve (2‘/“"—C‘+W

22X (4Zovdta
+7/a2+4z— cttaq ] an




qi= g ri-@ oty (PATE R M- DX,

oblate spheroid a=b>c

Vei+a Vid—ct
PO XoY g 2% )
@+q Vet

2 z oo .
b= _4(§chz)[tan‘”/a 4 (21/a2—c2 _ ¥+ X 22z>

Xi=x%c08%0:+ x2,51n20;+ 2:2sin?6;, Zy=x%sinf; — x2:51020,+ 2 2c0s%0;
r2=x2+y2+ 27, z,=2—d, 2;=z+d, b= — 0.

two spheres

1 1
=—a38 L 4 1
9 “ S[ 3R: + 3R, ] 135
Rif=(x+bP+y*+(2—d\)?, Rip?=(x-bP+y*+(2-d.),
Re*=(x+b0Y+y*+(2+d,?, Ru?=(x-b0P+y*+(2+d:)"
Inserting (11), (12), (13) into (8), we obtain
u=—7r(A+(3-40)A:+22A)]
v=—7(B1+(3—-40)B:+2zB] 4
w=— TEC1+( - 3+4U>C2 +2ZC:|
prolate spheroid
__Sact _
r= 4((12—(:2)
A,= 2%(sin’fi— 2c050)—3z,5in20, | V'@*+aity/ @ ¢
V& g VE+tar
o Axe0s i+ 2251020, _ (2%sin*i— 2isin200v/ @+ g,
vVa+aq. i +q
A 3sin20: V' @Xqty/@— | 26in20, | sin26y/@ 4
Va@-c& b /e Vate e
_ qa(d—c®) zzsin202(az—cz)_2xéos202_2xsinzﬂz} 15
V@t q:(E+g)\(E+a:)(E+q2) a+gz  +qa ), 5

Bi=2y[—-L ‘/“”qﬂ'*l/“z—cz_l/g??rq’}
TNV E-F%% it g



2yg2(a®—C*)

T V@ Fglt g,

— 3x5in26:+22(cos* s — 2sin?8r) | V@ +aqit v —c*
C;= lo og LI 4.

Vv'a*—c? Ve +gs
" 2x5in20;+4z5in%0;  (— xsin26, +2Lcos‘ﬁ:)1/ @?+q;
Vat+q, c2tq

2c0s%0:—4sinf; , V'@ +qet /@ —c* | 4dsin®fe  2c0s%6:1 @*+q:

C= T log + z
Vat-c? 1/cz+qo V@E+q +aq

(d“ —-Cc" )qu . { xSUlZﬁz(az - C“) 2225111232 222005200}

T Vata(c+a) @+ @) E+a) g Ptas

oblate spheroid
_ Sé*c
LAy
2x(cos* s — 2s1n261)+32151n2(h - Va-c
Va:—c* Vet g
_ 4x5in'0:— 22in26" | (2%cos?Gi+2,5in2000y/¢* + s
Ve +q; 2+ g,
3sin2s /@ —c? 2sin20, _ sin26: /"t
Va-c? VEta vVidta W @t
qz.(a%—c?) {21cos2(iz 12251026, + 2%sin®6, — ZzsinZ@_}
(@*+¢:)V ¢ +as @+q: "+
(1 V- /b?ﬁ}
i { Vai—o" Jare " @ta
__2yga®—ct) -
(&+g:)vV¢*+qz » (16)

A= -

A= —

B,

C 3xsin20;+22, sin®6; — 2cos20¢ - 11/ at—c*
=- =
Vat=c? Vet g,
4 2461020 — 42icos’fr +( xsin20:+ 22550200y + qu
Ve +q . dtaq
4cos?6z— 2s1n than‘”/ @—c2_ 4cos’f; |, 2sin*6z1 P+ ¢z
Via—c VEta VEte @+qs
g2(@ — C,,) [ #5in20:+225i0°; | — Xsin26, +225c05%6,
aE+qe cE+qs

C=

4

I (dz+gz)1/CZ+Qz

two spheres

_Sa®
r= 3,




A= { x+b x—b) A=3{(JC+b)(zB+di)+(x—b)(.!zs-l-dg){

“URE TR » Rz ,
_ 1 1 } _a[ 2tdi | z4ds |
Bi= y{ R;3 + R:3 B= Sy{ R..® + Ry® R

__{z=di | z—dy) C.— _ [ &td | z+ds
Cl__)l Ru? R j CT | Re® TR }

(Lo L _3ztdi ) 3(z+dy))

C=- 1R Res R5 - Re®

a7

, where ¢i., @iy, gi are the derivates of ¢: with respect to x, y, z.
Inserting the strains which are derived by differentiation of (14), (15),
(16), (17) into (1), the stresses are as follows

Toe=2p1{ D1+(3~ 40)Ds+22D - 4F - 1to radT\
]. — 20 ] ,
1 T

Ty =21 Bt (3-40)Est 22E—doFo— | Z 2 aq.T]

_ _ _ 14 (T M
T, = 2m[F1 Fit22F -1 2aL wdT |
sz = ﬂTEGl +(3 - 40‘]Gz+ 2ZG]
Tyz= ﬂTEHl +H2+2ZH]
sz=ﬂT[I1+Iz+22I]. as)

prolate spheroid

_4cos’0s—2sin*0y, 1/ @+ qity/ @ —c% deos’s | 2sin?0:1 @+ g
Va?—c? Vet +q, Vat+q; cit+q.
g (a?—c%). {(dz —c)zisin2f;  2xsin?;  2%c0s?f: }
V@+qlci+q) (@ +a)(E+g)  E+q dtgi
_ gusin26x(a*—c?)  2g(a®—c?) { sin®6; 005202}
(@+q:2%(P+a: 7 V@ +q(cP+g:) P +q: ' a2+g;
s a? —€2) { 285in26.(a% —c*)  2xsinf; 2_choszﬁg},

D,

log

Vai+gc?+ )\ (@ +a0(*+qz)  *+q: P+ q:
Geeq(a’— )  (_ 2asin20a(a” — c*)(2a7+3¢%/24795/2)
(@ +g2**(c*+q:2 1| (@ +g2)(c*+qz2)
+2xsin202(2a2+c2/2+5qg/2)+2xcos202(a2+3cz/2+5q2/2)}
c*+q: F+q: o,
Ee——2 Va+q+va-—c 21/az+q¢+ 2yg1,(a®—c*)
Va-c 't yatg e TV d el a

= 22ty ey @ — ) | ¥G2yq2 0% — * X(4aP+ ¢ +5q2)
V' @+ g(B+q:)* (@®+¢2)*%(c*+¢g2)?
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_ 4sin®@,— 200520110 VE+q+vV@—c®  4sin?fs | 2c0s*0:1 a*+qs

F.=

V&t —c? Vet +q; Vi +q. ct+qi

n®f:  2z.cosf)

V& +qdct+q.)

F:

+((12+q'3)3/2(02+112)2

g.(a?—c?) { xsin20{a® —c¢?) 2zmi

(@®+q)(c*+q) a*+qr  E+q

4q2.a*—c*) ! sin?@- 008202} G2, La*— %)

V@ (P +g) F G P

v { x5in20:(a%—c?)  22z:5in%f.  2z,c08%0
(@+¢:)(cE+q) a¥+q: cEtg

V' @+ q:(c?+q3)

|

g:7(a? —c*) { _ xsin20:(a@® — 2 )(2a*+3¢%/2+79:/2)

2235i0°0:(@®+3¢%/2+5¢:/2) + 22:c08%6:(

(@ +¢2)(¢*+q32)

2a2+c*/2+5¢2/2) )

+

H,=

I,=

+ vV aE+qlct+qr)

I=

aE+q. ©t4qe ;

4yq;;:(02 — cz)

V@ +alct+q.)*,

r

2 __ 2 ¢ 2 2

Yo
4(a?-c¥)y { G2:q2.(aP+4c
V @+ q:(c*+¢2)

__4yqu(a—c?)
V@ +q:(c2+q)?

+5¢12)}

Tt o g (P o P

V'@ +q(c2+ g)
6sin26: | V'@ +qty/a—¢*_ 2sin2fy

4y(a*—c?) g22(@®+4¢%+5¢2)
- A CETD CE T DA

(a*+2¢*4+3q:)

Va-c® /g, V@ +a:(c*+q0)

2q.(a?—c*) {zlsinzm(az —c?) 2xsin?f: 21005201}

4g3.5in20:(a* — ) 2¢2,La*—c%)

(@+q)(+q) E+q  a+a

(@+q )V (E+ a2V @+ q(c2+q2)
2xc0s?f2 2xsin2()g} 2q:.2(a% —c?)

a*+q. c*+q;

{ it_zsinZHg(az — CZ)
(@*+¢2)(ct+q2)

(@ +g: 7 (P + g )

20500 20*+¢2/2+545/2)

% {_ 2:51n20:(a* — ¢*)(2a* +3¢%/2+74:/2)

(@4a:X(¢%*+q2)
2xcos?f.(a® +302/2+5¢Iz/2)}_

+ a+q.

oblate spheroid

D=

2c0820: —4sin?f:, 1/ a* —c2_, 4sin?f

E+tgqn

_2c080:v/*+qi

(@+9)V ¢+ q: 2+q

V@& —ct Y oY T vera a@+qq
qu(a*—c%) {2xcos201+ztsin20t 2xsin%0; — 2:5in26:

c?+q }
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g2(a%—c*) j2cos20o+s1nZHo 25in*0z — sin26;|
(@+g)v/c+g:l @+ cttgs
__gm(a—c?) j2.- c0s%0z+ 225126 +2 xsin®fz — Z2sin202}
(@+g2)1/c*+gs! @+qs 4z
“g2:q3a@*—c?)  ((2xcos*fa+225in26:)(@%/2+2¢2 4 5¢:/2)
HCETN  CEYS I a*+q:

(3a2/2 42+ 5¢2/2)(2xs5in%0s — 225in262)
c2+q2 IL ,

+

V' a®—c? 21/CZ+Q[ 2yq.La*—c?)
= ,°_ tan~! — i
Tyvae—a™ Yot  @+d (d+q oy E+a 20)
_ 2(42z+y(12z 1/)(02 —Cg)+ 2ngngz(az —c? )(02/2+2()2+5qr_>/72)
(@+g: 2V c2+g2 (ORI CGES I ,

_2sin?fi—4cos*fs, V@ —c® | 4cos*f  2sin®,1/F+q:
F;= = tan — b — &
Vat—c* Viei+q, Vier+q a+q,

__ qu(@—c?) {xSin20i+2ztSin20l 2zic08%0: — xsin20;}
(@+g)v/c*+a a*+q -+

__ 4g:,(a% — 52 27 sin®02 cosz«‘)gk _ gedf—c)
(a3+qo)1/cz+q.{aﬂ+qz +q) (@P+¢2)1V c*+qq

2sin202+ 22251n%0- 2y = xsin26. +2ch03202} + gs.2(a? —c*)
a*+q: t+qe (@4 g2 )% (% ¢z 72

Xq
{ *sin262+222sin%02)(@%/2+2¢2 +5¢5/2)
(-

X F#+q:

x5in2f2+22:c05%02)(3a%/2+4¢*+5¢; /2)1
24 g ,

-+

4y9i.(a®—c*)
(@+q 2V er+q,,
__ 4y(af—c*)
(@+g)V e+ gl
—4yq.(at—c?)
(d‘+4z>21/02+4z s
_ . 4y(a-c*) { q +qzz~(a~/2+2c2+_§g./2)}
O E A

=

2 2 ,
l_ Gozet q2292.(a* /2+2C +54-/2)}

(@®+ g2 )¢+ q2)

(@*+g2)*(c*+q2)
6smzmt WV @—c 4sin20,(a*+c?/2+39,/2)

an-1 Y& —C _csinabila
Ve - Vta  (@+adVd+a
2g.(a®~c*)  12xcos’f;+2sin26; | 2xsin*@; — 2,5in26,|

(@ gDV e+ a @+qq T cttgy J

[ S0 =Y 20ul e ) (27005t sin2e
(@ + g (P +a:P"% (a2 +42)y/ P+ a2 @+ qe

I,=
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2x5in2f> — ZzsinZﬂv} n 2¢:7(a?~c%)
c*+g; CEIDICET YL

{(21c05202+ 258in20:)(a@2/2+2¢2+5¢./2)
a?+ [’H]

+(2xsinzﬂg — 225in262)(3a%/2+ ¢+ 5¢2/2) }
4 qy .

+

two spheres
1 4 1 3(x+bP 3(x-b)

PR RS T R T Ra
po _3z+dD 3(z+dy) 15(x+b)2(z+d1) 4 15(x=bY(z+dy)
ST TRy R Roo? ,

pol 1 3y 3y
! _Rll Rl" R{l Rlza
3<Z+d1) 3(Z+do> 15y2(2+d1> 15y2(2+d2>

E=- va Roz RZI R22
_1 1 3(z—dy» 3(z—dg?
Fl _R113 +R128 R115 Rlzs
Fo= L o 1 3(z+d)? 3(z+dy»
2 RZI Roo quﬁ R.,,,G
oz td) Nz+dy) 15(z+di) | 15(2+dsy
=TT RS Ry Rur’ R
G.=— 6y(x+b) 6y(x—b)
e Ry® Ryt
G= 30y<x+b>(z+d1) 4 30y(x— b(z+d2)
Zl Rzo ,
H _ _6y(z—d\) 6y(z-ds) o __69(z+d)) 6y(z+d3)
1 R115 Rloﬁ 2= Rle— ——RZZE—
H=_0y2_ 63z, 30y(z+d,) 30y(z+dy)
R: Ry R, R .
I, = _6(x+b)(2—d1)_6(x_b)_(z_d2>
e -Rll5 Rlzs
o= — 6(x+b>(z+d1)_ 6(x—b)(z2+dy)
- 4R215 Rogs
j 6(x+b) 6(x—b) 30(x+b)(z+d1>z 300 x—b) z+dy)?
R”l RZZ er .
§4
When

spheroid ra=1, ¢=2, d=3, (i=-n/4, o=1/4
two spheres. : @=1, b=1, d;=2, d;=4, o=1/4



as shown in Fig. 2, the results of
calculations of «, v, w at the free
surface for the three kinds of rthe
above thermal origin are shown in
Fig. 3~6.

From the comparision of the case
of prolate spheroid with that of
oblate spheroid, both their states of
displacements are resemble and the
ratio of their quantities is nearly
equal to ‘that of their occupying

(@2

e, e

.
e, e Tl ~~
b
e e -

,"‘/
o S
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Fig. 2.

Prolate
------ Oblate

/." - 4

4 4 - -
R g
/ i . S~-.... . ————. . T

|
Iy N >

v

Fig. 3.. Horizontal displacement for spheroid.

region 1.: 2. The ratio of the mean
slope of the left side to that of the
right is about 3:4. It may be dif-
ficult that we estimate the inclination
of the thermal origin from the dif-
ference between the slopes of both
sides, as it is small even at &= —
n/4. This tendency appears also in
the” case of two spheres, which
occupy nearly the same place as the

—Prolate
T -~ Oblate

=3 = 0 z iz
Fig. 4 Vertical dislaacerment for sheroid on
y=0.



14

l 7 s -
I -
/ //,-

~ T~ T
LN T
LN T

Fig. 5 Horizontal displacement for two spheres

[ET
$ 2
-~ ~ N \ \ ]
-~ - Ve / / l
= 2 2 Z iz

Fig. 6 Vertical displacement for two spheres.

Prolate
Oblate

o5l
% 7 2 g Iz
0 7 o -1 oz

Fig. 7 7m for sheroid

that of spheroids.

Using the expressions for
the above stresses (18), (19),
(20), (21), we calculate the

maximum value of shear stress
tm=V(Tos— Toaf+4T2/2

in the plane y =0 along the inter-
section between the plane y=0
and the surface of the thermal
origin of the described form.
These results are shown in Fig.
7~8.

Their values are maximum
about the minimums of the
radius of curvature as we expect.
But the difference between the
value near the surface and that
distant from there issmall. For,

‘toward the free surface, while

the principal tension increases,
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the principal compression decreases.
As the thermal origin is compressed by the surrounding material, the
shear stress is very-small within it, and then any fracture will not occur first
in it.
m 1 T—M
It is evident from the ex-- 3%

pressions that the displacement - \j\/ . :

. 3r
and the stress are respectively :
in proportion to SD- and Sy,

where D is the dimension of the

2.
thermal origin. We will estimate
their values of - rocks. Examples
of coefficient of thermal expan- ; y L ) L ) L L
¢ mal exXpan I az 1 0 1 ¢z
sion of rocks are stown in the 4 5 4 5 42 7 2 3 22

fOllOWing table. ? Fig. 8 7, for two spheres.

Table 1 Thermal Expansion of Rocks

Rock a (ordinary temperature)
Granite 8x10-%  deg!
Basalt 5.4
" Periclase 10
Andesites 7

While the values of coefficient of thermal expansion at high temperature
(700°~1000°C) are ordinarily 2~4 times as much asthe above, they decrease
with pressure. But the effect of pressure is small and then those at about
700°C: and 1000 atmospheré may be 2~3 times as much.” Taking the rise of
temperature 10°C and aim 3-107% which is the mean value in its interval,

-assuming that the variation of a; is linear and that D is 1km, SD is

sp=AEOP (T4 3 Dy Tm 2100-3-10-10=50
-6 )b 3 3

For example, the displacements w of prolate spheroid and oblate spheroid
are ca. 11cm and 20.5cm.
Taking the rigidity of rock 3-10'' dyne/cm? in the granite layer estimatel

from the seismic wave velocities, we obtain
Sp=5-10-43-101 =1.5-10*

o

For example, the maximum of 7. for prolate spheroid is 2.3-10°® dyne/cm?



16

Besides, in case that the temperature changes’ similarly also in the sir-
rounding medium, we replace aim 7" with Caim—em) 7.

In the above discussion, the elastic constants outside and inside the
thermal origin have been assumed to be the same.

But, in fact, they differ if coefficients of thermal expansion are not equal
Nevertheless, if the configurations of the thermal origin are the same, the
states of deformation may be similar, in spite of the differences between the
absolute quantities. Thus, we may estimate the depth of the thermal origin
and etc. from the figure of deformation at the surface. '

§5.

From the results of succesive levelings at Volcano Aso, the crustal move-

Oct. 1939-Feb. 1941 (Depression)

4 km 7

% 7 ? 3

Fag. 9 Calculated curve of vertical dasplace-
ment with cbserved results. (depth is 1.6km)

the maximum value at =0, is

4'km 7

aSd

3

ment is remarkable in the re-

. gion of radius of order of 2km

pear the craters.® This fact
suggests that there is the ther-
mal origin (magmatic teser-
voir) under the earth’s surface,
corresponding to this pheno-
mena. That the depth of the
upper surface of the thermal
origin is ca. 0.86km has been
estimated from the records of
eruption earthquakes.” Now
assuming the thermal origin
the spherical form for simpli-
city, we estimate the dimension.
The displacement w. at the
surface is

, whered is the depth of centre
of the -thermal origin. The

point=7 where w' is 1/e of

@S_ 1
3d2 ¢
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"Then,

d= e

=
1 €278 =1

(245

Evidently, 7 is not related to the radius @. Taking ¢=4 which corresponds
to the margin of the remarkable crustal movemeht, we obtain d=ca. 1.6 km
and then estimate the radius of thermal origin at 0.7~0.8km. The vertical
displacements which are calculated by inserting d=1.6km into (23) are shown
in Fig. 9 with the observed results.  Although the above inference is ambi-
guous in some respects, it may be said that the diameter is the order of lkm.

The writer wishes to express his hearty thanks Prof. K. Sassa for his

instructions.
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