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Synopsis

   This paper presents an analytical approach to the stable cross section of 

a stream channel with sand gravels based on the idea of critical tractive force. 

In this analysis, the two-dimensional flow is assumed to obtain the distribu-

tion of shear velocity on the bottom along the cross section of a channel and 

to apply the turbulence theory to this approach. The theoretical shear  dis-

tributions computed under such an assumption are verified by the experiment 

on the velocity-profile measurements by which the shear velocity can be 

indirectly obtained. 

   Some fundamental data are presented, which will contribute to design of 

the stable cross sections of stream channels. 

   In addition to these theoretical considerations, results of the theoretical 

analysis are applied to the field data of the  existing , irrigation canals in the 
United States of America and India.

1. Introduction

 A natural stream channel with erodible material transports usually the 
sediment load, and gradually the stable condition of the stream channel for 

both cross section and longitudinal profile is reached at the  equilibrium state 

between the hydraulic characters of stream flow and the sediments constituting 
the stream channel. 

   Although the hydraulic treatments of such a stable, sediment-bearing canal 
are necessary for irrigation and river projects, it is difficult to analyze this pro-
blem theoretically due to the very complicated phenomena associated with sedi-
ment-transport mechanics and three-dimensional turbulent flow. For practical 

problems to design canals and channels with erodible material, however, 
the researches on the stable channel are so fruitful as shown in the  refer-
ences''  ,2),3),4)  0'0) It is especially noted  refering to the present paper that , 
in 1953, Carter, Carlson and  Lane" and Lane and  Carlson'' , investigated the 
effect of the angle of the sloping side on critical tractive force as a funda -
mental consideration of a stable cross section. 

   On the other hand, the hydraulic treatment on the mechanics of critical 
tractive force was first made by  Shields" in 1936, and after that,  White and 

 Kurihara'' also studied theoretical side of this subject considering the effect
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of turbulence. Recently, in 1956, Iwagakin', and  Iwagaki and  Tsuchiya") 

fairly analyzed the mechanics of incipient motion of sand grains in turbulent 

stream by using the theory of turbulent flow. 

   In this paper, the stable cross section of a stream channel with non-

cohesive material is analyzed in the light of the theory on critical tractive 

force by  Iwagaki'", based on the concept that all sand grains on the bottom 

of a channel are under the critical condition for movement. For this ap-

proach, it is assumed for simplicity that the stream flow close to sand grains 

on the bed of the channel can be treated as two-dimensional flow. To verify 

 this assumption, velocity profiles are measured for the flow in the open chan-

nels having stable cross sections obtained theoretically and fixed rough beds, 

and the shear velocity distributions on the bed derived from the measured 

velocity profiles are compared with the theoretical results. Based on the 

theoretical stable cross sections, some basic relationships between hydraulic 

characters and sediment size are presented for practical purpose. Moreover, 

results of the theoretical analysis are applied to the field data of the irrigation 

canals which were taken by Simons and  Bender" and Bureau of Reclamation 

in the United States of America and taken in India.

2. Hydraulic Treatment of the Stable Cross Section

 In analyzing hydraulically the stable cross section based on the  concept 

that all sand grains on the bottom of a channel are under the critical condi-

tion for movement, there are two different treatments as the  method of  ap-

proach ; the first one is based on the idea that each sand grain bears the 
shearing force acting on the botton per exposed area of a sand grain as White 

and Kurihara treated, and the second, a sand grain on the bottom bears the 

fluid resistance acting on it and the resistance resulting from pressure  gra-

dient, which was developed by the authors. The present paper treats this 

problem by means of the procedure based on the latter idea. 
   Strictly speaking, any flow in an open channel is three dimensional and 

no such study on turbulent flow was touched up to now. However, as is seen 

in the next chapter, it is fairly sufficient with the aid of experimentation that 

the flow close to sand grains on the bottom of the channel is two-dimen-

sionally treated for each section on the  stable channel obtained by the ap-

proach of this paper. In deriving the equation expressing the stable cross
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section, therefore, the flow near to sand grains is assumed to be locally two-

dimensional flow, especially in the case of calculating the pressure gradient 

resulting from velocity fluctuation. Besides this assumption, the coordinate 

for the velocity profile will be taken in the normal direction to the bottom 

of the channel in order  to apply the concept of mixing length in the mo-

mentum transfer theory by Prandtl. 

2.1 Equation of the stable cross section of a stream channel 

 Now consider the hydraulic  condition for the beginning of motion of a 

spherical sand grain on a section of the channel bottom , as shown in Fig. 1, 

                                       based on the above idea. 

                                      The equilibrium condition  8
0 
                                      obtained by the forces acting 

                                      • 

                                       on a spherical sand grain 

 RLwhich are the submerged 
hkgravity force W, the sum 

 Rs •  RT of the fluid resistance 

 RT and the resistance resulting 

                                         from pressure gradient in 
 W 0                                          the downstream directio n,  X 

                                      the uplift  RL resulting from   Fig . 1 Definition sketch of the coordinate system 
   and the forces acting on a  spherical, sand grain pressure gradient in the 

   on the bottom of the channel  having a stable normal direction to the bot -
                      cross section. 

 tom and the resistance  Rs 
resulting from pressure gradient in the direction of the sloping side , as de-
fined in  Fig:  1, is expressed as 

 {RT2+  (Rs+  Wsin  0)2P/2  =  (  Woos  0—  RL)  tan  co,  (1) 

in which  co is the frictional angle of sand grains , and  B the inclination of the 
sloping side. 

   Let the diameter of a  sand grain be d , the density of water  p, the density 
of  sand grains  a and the acceleration of gravity g . If the sand grain is  as-
sumed to be sphere with a  dianieter of d, the submerged gravity force W in 
Eq.  (1) is equal to  (7r  /6)(13(a  —  p)g. According to the theoretical results on 

critical tractive  force by  Iwagakim  , in  Eq. (1),  RL  is fairly smaller than  RT, 
and it is unnecessary to consider  Rs except when the incli nation of  the slop-
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ing side becomes extremely large because  RS  isl-also  sufficiently smaller than 
 RT. Therefore, neglecting these forces in Eq .  (1) yields 

       IRD'+17.21(12(a— p)gsin0}2)1/2=—n.d3(0-p)g cos0tan CO .     66(2) 

   The next problem is how to evaluate the fluid resistance  R2, in Eq . (2). 
The evaluation of this quantity is made by the same method as that used in 

the previous  paperm. In the following, the outline of treatment of the fluid 

resistance will be described. 

    Considering the laminar sublayer with a thickness of  OL, as shown  • 
Fig. 2, and denoting the fluid resistance  z, 

in the part of fully turbulent flow by 

 RTC, and that in the laminar sublayer by 

 RT1, the total fluid resistance  RT can be \R 
            U2 ci 

written as  & 

 RT  =  RTC+  RTZ.  (3) X 

    Hence, in Fig. 2, introducing  J9 Fig. 2 Schematic drawing of the 

defined by the ratio of the part of fullyfluid resistance  

turbulent flow (area expressed by the shadow) to the projected area of the 

spherical sand grain,  RTC and  RTC are expressed as 

            Rrt=8P8u2C7rd2181( ird3)9  (4) 
 axas' 

                 R•1= -8u22CDon-d2(1—th),  (5) 
                                                                     " in which  ui and  u2 are the velocities in the x-direction at  z'=d and  z'  = 

 CDC and  CDs are the drag  coefficients corresponding to  u1 and u2, and the 

second term  in Eq. (4) represents the resistance resulting from pressure 

gradient  8P/ax. In evaluating the value of  OP/ax, the effect of viscosity is 
neglected and  —Wax is written by p  Du/Dt based on the Euler's equation 

of motion. Moreover, introducing the relationships  u=g+u' and  w=  w', in 

which a bar denotes the time-average velocity component and a prime denotes 

the momentary departure therefrom, and taking an average statistically as 

Taylor did, the pressure gradient finally becomes 

  p1  Op=i4(  au'1/1,1,\/(   ±vw,,,\(0u')2(6)   exOx )ex 1 adz'az" 

in which w  is the velocity component in the z'-direction. 

   Since the dimensionless thickness of  laminar sublayer  unilv changes
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with increase in  u*d/v expressing hydraulic roughness of channel bottom 

according to  Rottau), the value of the total fluid  'resistance  Rr is evaluated 

dividing into three cases in accordance with difference between the size of a 

sand grain and the thickness of laminar sublayer, in which  u* is the shear 

velocity on the bottom and  v represents the coefficient of kinematic viscosity. 

(1) The case when  u*d/v<u*blv=6.83 

   In this case,  the sand grains submerge in the laminar sublayer, and, 

therefore,  Rfrt and  43,, vanish. Using  uu*(u*z'/v) as the velocity profile in 

the laminar sublayer, the total fluid resistance can be expressed as 

                                                      2 

                 R•P= 8U*2 CDlird2u*d  ( 7) 

          _ in which the value of the drag coefficient of a sphere in uniform flow cor-

responding to the following Reynolds number is used for  Cm. 

 Re=  ulvd  _(u*d)y  (8) 
(2) The case when  u*d/v>51.1 

   The laminar sublayer completely vanishes in this region, so that  RT/=0 
and  IJ  s  =1. Denoting the mixing length by 1, the equation of velocity profile 
is obtained by integrating 

 dir  u* 
          dz'  —  1   (9) 

with the expression for the mixing length suggested by Rotta 

 1=10+  0.4z'  (10) 

and determining the integral constant with the aid of the experimentation of 
turbulent flow. Since  u*10/v<u*d/v according to Rotta, integration of  Eq. 
(9) gives the following approximate equation for  z>4. 

               ii=u*(8.5+5.751opr)  (11)                                            ,10d 

   In evaluating the value of pressure gradient expressed by  Eq. (6), the 
minimum scales of eddies,  2.1 and  Agi., and the intensities of turbulence 

     and  i/uP2 are assumed as 

                    chi  
                                  1/W'2 = 1"         Vu '2 = 21dz'de—  

(12) 
 =V  2  2.,  =  V  2  41.=  V  2  ()o  +5  z') . 

Using these relations and Eq. (10), Eq. (6) is finally  written as
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1  at, .12(8.5+5.75 log z'/d)_,4     u—-*a_,21/  2  
 p  OxAo+5z' 20+5z''/0+0.4:1'20+5,z'f' "") 

 Since  u, is assumed to be equal to the sum of  ar at z'=d in Eq. (11) 

and  Vu'2 in Eq. (12),  u1=(u+-Vit'2)1=10.5u*. Substituting this relation 

and  OP/Ox at  z'=d obtained from Eq. (13) into Eq. (4), the total fluid 

resistance becomes 
           47.6 2        R

T= P-u*27rd210.52Cm+ 
                     5+          8u*Ao/u*d'U.4..÷u*lo lu*d), •••04) 

 / in which  010/v is obtained from the relation suggested by  Rotta'2' as a func-

tion of  u*d/v, and  u*Ro/v is assumed to be the same relation as  u*10/v. The 

Reynolds number necessary to evaluate the value of Cm in Eq. (14) is 

                   Re-(17c1 )8.5u*d. (15) 
(3) The case when  6.83.-u*d/v51.1 

   In this case, since a part of the sand grain is exposed to fully turbulent 

flow outside the laminar sublayer, both  RTC and  RTZ must be considered. 

Using the following expression for the velocity profile, 

 cli7   412u*2+0  v  
            dz'212  212' (16) 

or 

17=u*10.4$( 2-1/e2+4)+2.5 loge2($+/$2+ 4)+u81},•(16)' 
in which $=u*1/1.)=0.4(u*zY2)-u*011v),and calculating the value of  OP/Ox 

at  z'  =d in the same manner as in the case (2) by using Eqs. (16) and (16)', 

the total fluid resistance is  written as 

 RT=fu*27rd2[Cnige {2.5 loge 2 ($1+142+41)  (2 V $12 +14- -1) 
                2,\4,2+--47-1      u*OL}

2           +2/3,ited).1--2-loge2($1+,\/E12+-4-1)                (1-u -6/— 
 4$1(2/$2 +4-1)+0.2u*oL+(1/4E1+1-1)(0.825                                        EI 

     /2 1u*OL\21 (17)            4-.6R12+1)f ±CD2(1gs)( 
in which  $1=0.4  (u*d/v-u*OL/v), and  Cm and  CD2 are the  functions of the 

Reynolds  numbers defined by
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   1?,31=,17L1_ u*d-t2.5 loge ( 2E -1/ 4E12, + I ) — 0:81614EO 1 1 - 1) +  
  (18) 

and 

                               2du*d u*S.,,          Re2 ——  (19) 

 v respectively.  u*Oz/v is a function of u*d/v as was disclosed by Rotta, and, 

therefore,  Igs which is  related. with  d  —(u*  .L/  v)/(u*d/  v)  is also a func-

tion of  u*d/v. 

   Finally, for all three  cases, the fluid resistance is generally expressed as 

 — 8Pu*an-d2F(u*d),  (20) 
in which F is the distinct function of  u*d  /  v only for each case as seen in 
Eqs. (7), (14) and (17). 

   Substituting Eq. (20) into Eq. (2), and  applying the relation  cosy 
= 1/{1

7cy+(dz/ dy)2}, the equilibriumconditionis writtenas 
dz3•     )2 ---[tan' co —4covp_u*2i)g.ciF}2-)/(1±3                                 4 (a/ p —.1)gdF}2) (21) 

Thus, the dimensionless forms defined by 

 z=hk:,  y  =hid?  (22) 

are introduced, and the shear velocity on the channel bottom is assumed to 

hold the relation expressed by 

 u*2  7,02(  1  —  ),  . (23) 

in which hk is the  maximum depth of the stable channel, and  u,* denotes 

the shear velocity corresponding to  hk and the channel slope S. These  ex-

pressions for z, y and  u* in Eq. (21) yield 

  _L/tangco— K2(1— C )2   (24)                       j—V  1+K2(1  —C)2  ' 

                       uc*2 u*  in which K=  3                   4 (a/ p —1)gdF(  v  l" 
   In Eq. (24),  di,  /  d7; must be zero at C=0, i.e. on the bed at the maximum 

depth, which means that this condition corresponds approximately to the 

critical tractive force in the case of two-dimensional flow. On the other hand, 
when  C=1, the right side of Eq. (24) becomes tan  co, which shows that the 
inclination of the sloping side of the channel equals the frictional angle of 

sand grains at the edge of water surface . 

   Eq. (24) has been derived theoretically considering  the equilibrium con-
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 dition for only a sand grain resting on the rough bottom of the channel. 
 However, actually a lot of sand grains are exposed to the flow and shelter each 

 other to some extent, so that the magnitude of the real fluid resistance will be 

 less than that computed above under the assumption that only a sand grain rests 

 on the rough bottom. In order to represent this effect of sheltering ,  Iwagaki"' 
 multiplied the theoretical fluid resistance by 0.4 named as the sheltering  coef-

 ficient. In the present approach, following the same treatment , Eq. (24) is 
 modified as follows. 

                  3  ue*2 u*(1) 
                   4(a/p-1)gdeF( v  )' (25) 

 in which  e can be estimated by the condition  d:/4=0 at  C=0 . Because 
 1,02/(a/p-1)gd is the function of  ttc*d/v and tan  co"),  it is seen by consider-

 ing Eq. (23) that the right side of Eq. (24) is the function of  ue*d/v , tan  co 
 and C. Eventually, F in Eq. (25) is summarized as follows . 

    For the case when  (uc*d/v)-1/1—:�6.83, 

                                   ttc*d\2               F=CD1()(1-c).  (26) 
    For the case when 6.83:�(tte*d/v—C<51.1, 

                1„4:8_6 2  F=Cmigs{2.5 log, (2E1+1/4$12+1)— 
                             4E2(-2/4612+ 1 — 1 )+—  

 2th  (214.2+  4  —1)  1  loge  2(El+)/E22+ 1— 1/ 41—1) 

                v 

                               44E1\ Y     + a _u*OLju*d\i, 2 
            / v 

     +0.2u*6L+(7/4$12+1 —1)                 (0.825+ 1-1/ 2 + )1  El2 25 4612+1 

    +CD2(1—Qs)(u*8LVv  (27) 

    For the case when  (tOd/v)-1/1-051.1, 

            47.6 2                                           (28)              F =10.52CD1-1-u*Aoiu*d+010pod.                 5+   0.4+  /    v/ v/ 

   The equation given by Eq. (24) with the aid of Eqs. (25), (26), (27) 
and (28), therefore, represents the  fundamental equation of the stable cross 
section based on the concept that, as already mentioned, all sand grains on 
the channel bottom are under the critical condition for incipient motion.
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2.2 Numerical results and its consideration 

   Profiles of the stable cross section can be obtained by integrating Eq.  (24) 

numerically under the condition  :=0 at  7;=-- 0. For the sake of calculation, 

Eq. (24) is written as 

               7;=±V-/ 1±1C2(1—':)2cl,/: (29) 
                      oN tang  co  —  K2(1  —  C  )2' 

Since tan  co has approximately constant value 1.0,  uc*2/(a/p-1)gd is the 

known function of  ue*d/v  only"). Therefore, under the given values of  ua*d/v 

if the size of sand gravel on the bottom is uniform along the cross section of 

the channel, the above integration is easily performed by numerical computa-

tion. Fig. 3 represents some examples of the profiles of the stable cross sec-

tion computed for various values of  ue*d/v and tan  9=1. Variation of the 
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           Fig. 3 Someexamples of the profiles of the stable cross  section.  

6   

 5  -  —   '  .  _  _  .  1 
 B. 

 hk _ - — - -- 
 4 

 ------.., 1  

3   2   
 / 2 4 6 8  /0 2 4 6  8  /02  Z 4 6  8/'03 2 4 6  8  /04  U:d 

 2. 
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 Width of water  surface with values of  tk*d/2) is shown in the dimensionless 

form  Bo/hk in Fig. 4. The results show that the profiles of the stable cross 

section obtained by the above dimensionless forms are nearly constant with 

increase in  th*d/v, except that the width of water surface becomes maximum 

0.6  

           as 

  0.4   

               0.3 

 0.2   
              2 4  6  6 io 2 4 6  6  102 2 4  6  8  /03 

 Fig: 5 Variation of the sheltering  coefficient  8 and  ue*d/v. 

at  ue*d/v----70. Fig. 5 shows the sheltering coefficient as a function of  ue*d/v 

used in the computation, and it indicates that the value of the coefficient is a 

little larger than 0.4 concluded by Iwagaki because the uplift resulting from 

velocity fluctuation is,  as already described, ignored for the fluid resistance. 

 Moreover, the distribution of the shear velocity as a function of  r, can be cal-

culated from the numerical results obtained  preViously and Eq. (23). 

                     3. Experiment 

   In order to verify Eq. (23) assumed in deriving the equation of the stable 

cross section, the experiments were conducted. The experimental data of the 

shear velocity on the fixed bed of the channel having the stable cross section 

expressed by Eq. (29), were compared with the theoretical results based on 

Eq. (23). In this case, the shear velocities were obtained indirectly by 

measuring the velocity prcfiles. 

3.1 Experimental apparatus and procedure 

 ( 1) Experimental channel 
   In  the rectangular channel with a length of 10.5 m, a width of 20 cm and 

a depth of  8  cm, the stable cross section obtained by Eq. (29) was made of 

mortar  'corresponding to  ih*d/v, and the channel bed of mortar  was coated
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with carefully sieved sand grains. In the channel, an apparatus for measuring 

the velocity profile in the normal direction to the channel bottom was set at 

7.0 m from the upstream end of the channel and that of controlling the back-

water effect to the  uniform flow at the down stream end. The slope of the 

channel was accurately adjustable. 

(2)  Properties of used sands 
   The size of sand grains is necessary to be small by the reason mentioned 

Table 1 Grain diameters, specificin (3). Table 1 summarizes the grain 
 gravities and frictional angles of diameters, the specific gravities and the 

    used sands and  ue*dIv. frictional angles of used sands. 

 d  em  alp tan  a)  ue*dlp (3) Measurement of the shear velocity 

 0.1435 2.564 0.959  35.0 The velocity profile for flows in pipes 

 0.0223 2.530 0.945 2.41and two-dimensional open channels, when 
                           z' is  sufficient large, is given by 

 /7  =  Aru*-F  5.75  logos z'/d,  (30) 

in which  A, is generally a function of  u*d/v and especially constant for the 

rough boundary as shown in Eq. (11).  Under, the assumption that Eq. (30) 

is applicable to the flow close to sand grains on the  channel, bottom even in 

this case, the velocity profiles in the normal direction to the channel bottom 

were measured, and the velocity  27 was plotted against logos  z'/d. This rela-

tion becomes straight, and therefore, dividing the slope of the straight line 

by 5.75 the shear velocity  u* is found. 

   Measurements of velocity profiles were made with the Pitot tube of an 

outer diameter 1.8 mm for many sections on both sides of the stream  channel. 

3.2 Experimental results and comparison with the theoretical 

    results 

(1) Experimental results 

   Experiments were conducted for two cases  ue*d/v=35.0 and 2.41 deter-
mined by the grain diameters and water temperature as shown in Table 1. 

In each case, by dropping the sand grains in the stream flow, it was examined 
that the flow at the center of the channel was under the condition of critical 

tractive force, and also for other locations of the channel bottom the same 

examinations were performed. The results of the examinations for every loca-

tion of the bottom were satisfactory.  Some typical examples of the measured
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             Fig. 6 Some typical examples of the velocity distributions. 

velocity distributions are shown in Fig. 6. 

   In  plotting the velocity against  logise/d. the origin of the coordinate  z' 

should be questioned. Especially, when the grain size is large, the velocity 

profile is much different by the location of the origin. In this case, the sands 
with sufficiently small grain diameters were used, and the location of the 

origin was taken d/4 below the top of a sand grain. It is evident from the 

results shown in Fig. 6 that Eq. (30) can be applied to this case except when 

 0 is large. Thus,  u* and A,. are obtained by the procedure previously de-

scribed. When  u*(1,72, is very small, however, the shear velocity is determin-

ed by the relation  u=u*(u*z7v) for laminar sublayer. 

(2) Comparison with the theoretical results 

   The distributions of the  .measured shear velocity on the channel  bottom, 

which are expressed by the dimensionless forms  u*d/v and  u*2/(a/p-1)gd,
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 o 

 o  /2                             increases locally by the capillary effect. 
         ?'                             Fig. 8  shows the variations of  A, with 

  Fig. 8 Variations of  Ar with  rj.  ri. Most of the data for  litc*dhi= 2:41
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and 35.0 belong to the regions of the hydraulically smooth boundary and 

transitional boundary respectively. 

      4. Some Fundamental Data to Design Problems 

   In the United States of America, the design of canals and channels with 

 erodible material has usually been approached from the standpoint  of the 

regime method, but recently studies using the tractive force criteria have been 

made. In Europe, the tractive force criteria has sometimes been used. In 

this chapter, therefore, some fundamental data required in designing the stable 

channel with the cross section obtained in Chapter 2, are described in order 

to contribute to design practice. 

4.1 Depth at the center of the channel 

   In designing the stable channel, in advance, the size of sand gravel or the 

slope of the channel bed must be determined. If the size of sand gravel is 

given, the critical tractive force corresponding to it, is computed by  Iwagaki's 
formula as  follows1°). 

 R*_671  ;  20'2  =  0.05  (a/  p  —1)gd, 

 162.  7  <R*  671  ;  =  -(0.01505g(alp  —1))26/22v-3/11d31/22, 

 54.2  �R*�_  162.  7  ;  =  0.034  (a/  p-1)gd,  •••(31) 

 2.14<R*�54.2  ;  =  1235g(a/P  —  1)126/32V7/16d11/32, 

 R*  <2.14  ;  =0.14  (a/  p-1)gd, 

in which  R*  =  (a  /  p—  1)hI2g1/2d3/2/v. 

   As already described, in the present approach, the water depth at the 

center of a channel  Ilk was assumed to be closely equal to the depth corre-

sponding to the critical tractive force in two-dimensional flow. The relation 

between the depth at the center of the channel and the channel slope with a 

parameter of the grain diameter, based on Eq. (31) with  olp  =2.65,  v  =  0.01 
cm2/sec (20.3°C) and  g=980  cm/sect. is shown in Fig. 9. 

4.2 Some characteristics of the stable cross section 

   The width of the stable channel, which is one of the characteristics, has 

been shown in Fig. 4. In the following, the area and the hydraulic radius of 

the cross section are described.



 

]  6 

    —........-,-......-the...........•................•1,Considering 
         L.1^11•11101111111MMIIII^111811•1=111W11111•11111•11^1111111111MININ 1 

        WIIIINIMIII=MIIIIIIIIMMIIIM^1111111M11011111^11111111==111111=111      lararliralliTIONNIVIMMalailan  Do.gshape of the 
    I. NMEMiiiMMEMEIMEMEN^NM 

   .\\NENIIIIIIMIIIIIIIIIIMIIIIIIIIIIstable cross section as 

   to 
  311:310mimmini shown in Fig. 10, the 

 cross-sectional area can 
 k's741CCON'ilITAIII1==.11:11111.       • ••^^^10..m...x.............Imommmommou be  expressed as      ilq

^ •11111110•2411101\ IMMIIIMNI1111^111•1•11•1111111  I' cmNMECIal• N•II^IIIIIIIIIMMI^^IIIII 

 LW\  MINIM  NIIIIIIIM•IIIIIII AAo B 

 

•  0  2 RIME C. 1,..1\Q- IllIllIl--+—                                                 hk2-hk2 hk  ' 
    .---....-A.,_10,--_,..4.61:6.•ii,—.....=2= (32)      —1••-rzenz .,==r4..tm;:. , I=.7••••••..      = x1Vmeimaastwomma,.^ww.MS6x •>, =mom 

       N=MIIIIMIIM^IN^IMMIMMI111101^1151:1012& =MINIM      ^^11=10111^^0011. NIIMIIIMIENIeb,^1111111111•111111 in which A is the cross- 
    IMIRIEMINIL NalMonlim.xommun 

   1111111111111\INIM. MIIIIII sectional area, B the 

 MIIIIIINNN111111111111   toh.•• 11.._,,\,-. width of the bed and  Ao 
       .......===i0"' ':=.1........110^1^1.....i.:6;0       11^MIONINWIMM.•^•1110M01^ZUN^M^1^MOMM,”the cross-sectional area 

        

1^1111=MEINNII. RIMMNOISIMOINNVM1111121111101^1101.1M     Z416    -- .'V.IZISHISVMOSNIC     INwhen  B=0. InEq. 
    MEMIIM.IIMMIIIIMII• NNIIIRIIIII! 

   WIIIIMMIMMININMENIIIIII (32),  Ao/hk2 is a  lme-

 / IIIIIIIMINIIIIINI:3111 tion of  uo*d/v as shown 
 16  to  

S Id  tO' in Fig. 11. 
 Fig. 9 Relation between the depth of water at the                                            On the other hand, 

   center of the channel and the channel slope with a the hydraulic radius R 
         parameter of the grain  diameter. can be expressed as 

 R  a  
   hk= 1b+B/2hk'•••(33)                        $ 

in which a and b are parameters  '  , 

which are the functions of  uc*d/v,4' 

as shown in Fig. 12.  ,  4  .7 

   If the mean velocity U isV •  -  -  -  -,..  .-  '  '  B
A* .-.  8,6 

given by 

 i 

 U=CRmS", (34)                                    Fi
g.  10 General shape of the stable cross 

the discharge Q is computed bysection. 

                 AoB                1-mSn(L2+)(1a )rn                 Q=Chk2                  n.k-b+B/2hk)' (35) 

which is derived by using  Eqs. (32), (33) and (34). The  discharge coeffi-

cient C and the exponents m and n in Eqs. (34) and (35) will be generally func-

tions of the grain diameter d as suggested by Liu and  Hwang'"  .
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             Fig. 12 Variations of the parameters a and b with  ue*d/v. 

   5. Applications of the Theory to the Existing Irrigation 

                        Canals 

   It this chapter, the applications of the theoretical results previously ob-

tained to design problems of irrigation canals are considered by using the 

existing canal data in Simons'  paper') and Lane and others'  paper')  . 

 5.1 Distribution of shear  velocity
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    Simons and Bender observed the velocity profiles of twenty four canals 

and calculated the shear velocity by applying the logarithmic law of velocity 

/0                                              distribution. In the pre- 
         e fi../10,9an  if  e  Gor/and  I sent paper , recomputed 

         f-t.  tiovan  Iff  0  Garland                                            d
ata of shear velocity  0Ft . /*vano Cozad 

  8   9Ft pic„yan P  ®  Dawson   by the authors based on 

  —the velocity distributions 

 tENV near to the bottom of 
 t  6   
st 0 Pe  0 s  00                                             the canals are used . 

              ,a Fig. 13 represents the 
 GoPO "C3-                                             comparison of the shear 

 A velocities computed from 
 *  e the observed velocity 

  2                                           distributio ns for some of 

                                          the canals and the es-

                                            timated shear velocities 0   
 o 2 4 —19hS6s/0                                      by Eq. (23). Although 

 Fig. 13 Comparison of computed shear velocities fromthe data plotted are much 
   observed velocity distributions and estimated shear scattering , it may be 

                velocities by Eq. (23). 
                                          seen that the relation of 

Eq. (23) is applicable to the present approach. 

5.2 Cross sections of the canals 

    In treating existing canals, the existence of sediment load including wash 

load must be considered. However, at the present time , the hydraulic analysis 
of the cross section of such a canal is generally difficult . Although the canals 
of which the data were taken by Simons and Bender transport suspended load . 
more or less, the theoretical results are applied to their data below . 

   The cross sections of twenty four canals are shown in Figs . 14, 15 
and 16, in which, as an abscissa, the ratio of the distance from the edge 
of water surface to the depth of water at the center of the canal is taken 

instead of  r in Fig. 3. In order to compare these observed data with the 
theoretical shapes of the cross sections in Fig . 3, the values of  Itc*d/v must 
be determined. Since the canals transport suspended load , the shear velocity 
has been computed by using the observed depth of water and the observed
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slope of water surface, and the size of sand grains has been obtained from Eq. 

(31) by using the observ- /   

                                             1 ed depthand slope, too..i'l;_  Lot A29' 0 skt.  1+00                         Ill1  . 3+00 

          

,v-  0  4+18 
Therefore, the parameter <"  :..,•Theceencolcun•for"Y•-60,70.3)   e  5+00  tIr. ,.. 
 14*dch)is used instead of'':,.1. 

 0  7+00 

                                                                                 i.-  o -i•.,;:-. ,1, 1 z 
zte*d/v. The correlation o /  2 Q'  3H  1  1  4 

 between  de and the size of0...i  I cA/pPg, /0 I   o  Sta./+00 0  Star 5+00                                       .t,4: ,.....,Theoretical carve  for644./00 e 2+00 0  7+00 
     an the canal material is dis- c°1141:1^^(MU  0  4.00                '

. 

cussed in the following  _ Iii1711,.;,,a,•11111111=•1111 
                      1111•10ZIP-M,11.1„1111, „Pill--,  section. The theoretical°0^/ 2'3 4 

curves in Figs. 14, 15  / .                      ^5, Lalonve I  iD  Sta  4+00 
and 16 are for the values,ENIMONEEMMEN e  6.00 
of ue*d/v shown in Fig.iiiiiLI                                -EarMawhcalcurveto.Q.4&=60VWM0EM/7+00                    FITTEMMAI 
3 close to the values of oIIMMiiNifirlAMiliilli  0I 2-i,3"--4 

 u*de/v in the brackets. 
                                                                              ffv                                      FtLoroe.1 0Sta. 2+00 Figs. 14, 15 and 16 re-r         .1111   . _5•00 

                              4.Ihearahrda,.foriii,,100018.10.5+70 
present the comparisons                   2 6410 with the cross sections of0NIIIIIiikar&,„ _IPPIP1111M11..., 
the canals with non-cohe- 0 1 2 i'  ..'  4 

 

I  •  
sive materials, moderately   R.  novo,'  I  0 star 4+00  1  1  1  1   e 6+00 
cohesive materials and co-  S  0  4,   ,Themelyca/  curve  for  (46=  60(  793) 0  3+00 
hesive materials respec-',i.^_ 

               0 IIIIIIMMEIZOINERIPMWOMMIR 7 tively.o/ 2 7' 3 4 
   As is seen in these  / Ft. Laramie IF 

 ilEi^^0 star  2+00 figures,the agreement of NuTheombailctMm  e  5+00  wilimpiu  far 4.:i& .doo (749) 0 7+00 
the theoretical shapes with  ^id .Rbii^iti^^^M^ 
the canal data is fairly  a  111•Mliiii:LEMIIMIIIMPIRIMI , 1.0 •  O 1 27.4 

 good  except a few canals, /    R.Lakarnie  li   0  Sta.  4+00 
in spite of the theory*,101.,e  s+oo                                 c..landive.07C.h., curl.forCgic..60119,39  ° 6." based on the concept that  ErinigNIPMEMINEMEMMEMMEM 
all sand grains on the  hot-  0  EMEMirbakqeMPREPPINIPPO 

         o /  2   r,  1  4 tom of a canal are under 
the  condition  of incipientFig. 16 Cross sections of the canals with cohesive                                                        materials. 
motion. It is found that 
some of the canals with cohesive and moderately cohesive materials have 
almost vertical cross sections at the edge of water surface due to the cohesive
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effect and the existence of vegetables. Moreover, one of the  • reasons why 

the plotted data are much scattering is an asymmetry of the cross section at 

the right and the left sides of the canals due to probably local secondary cur-

rents, non-uniformity of bottom material and others. Conclusively speaking, 

the essential difference of the stable cross sections between  the• canals with 

non-cohesive, moderately cohesive and cohesive materials cannot be found 

from Figs. 14, 15 and 16. 

5.3 Size of canal material 

   In applying the theoretical results of stable cross sections to the existing 

canal data, the computed sizes of sand grains  de for the observed depths of 

water and slopes have been used in the previous section. Therefore, the cor-

relation between  d0 and the size of material constituting the canal is required 

in design. It will be found by using the regime method. 

 10  MMNIIM^1^••^•••^^•^^^•••=Marl                IIIMIIMMEMMI^•^•^^=111•MIMOMMENI^MM=n•^^•    8 ..11111111^1111111•111111^11MIIIMIIIM111•1 
   0 StrnonS& Sender (Side)••^••••^^^••MM•42111  6  

              Swnons Sender  (Bed)111111^111111111111•MIPPAINISMI 
  A on Bender(Bed, based1111111F11111111ZMAMA                on one /ayeSample)II 

 U.S.S.R.  (Bonk)1111EINIME26111EILII 
 .);'2  0  U. S 8R.  (Bed)211111011111115111 

              e U.  S.  B.  R. (Bed) Based                   ERIF   eIONEI01                   Sind                         3Nothrimpuriso    0P.n'06  
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     Fig. 17 Relation between computed diameter of sand grains  d, and observed 
                  median diameter of side and bed materials  d5o. 

   Fig. 17 shows the relation between  dc and the observed median diameter 

of material d50 based on the canal data of Simons & Bender, Punjab, Sind 

and  U.S.B.R. The full line in the figure shows the relation for design, and 
the chain line indicates the relation  de=  du,. It is supposed from the sampling 

method that the side and bed materials sampled by Simons and Bender will 

be the materials of the canal banks, nor the materials forming  the surface
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layer of the canal bed, so that their data will correspond to those of the canal 

bank of  U.S.B.R. It is noted that  U.S.B.R. data of the canal bed are not in 

agreement with the full line and plotted below the chain line. This reason 

may be explained as follows. 

   The Rio Grande Canal and the Farmers Union and Prairie Canals, of 

which U.S.B.R. data were taken, were constructed in 1879 and 1887  respec-

tively'. Therefore, the change of the past bed material exposed by excava-

tion into the present bed material for a long time must be taken into account. 

Lane and others mentioned that most of the canals and laterals are very stable, 

the original dimensions are not available,    4  
and that it is not known to what extent  _  o Based on  Lane's  paper 

                             Bon their shape hasbeen modified by the20ased-
SimoneP2Per 

flowing water or by cleaning operations  -ti° 
 10  

since they were constructed. It is pre-  8 

 6  sumed from this fact that the presentCS)4'4 3 a°/11411-7/i: 
bed material is not moved by the flowing water any more, because the fine sand 27  
grains were transported downstream for a 
long time, and the stable cross section of2 4 6 8 /0 2 4  Estimated  cljo cm 
the canal has been formed. In order to                                           Fi

g. 18 Relation between observed medi-
verify this presumption, Fig. 18 is pre- an diameter of bed material and estimat-

sented, which shows the relation between ed median diameter of bank material 
                                                larger than for  U.S.B.R. data. 

the median size of bed material and the 

median size of bank material larger than the size computed from Eq. (31). 

It is seen from the figure that both observed (former) and estimated (latter) 

sizes are approximately  same  ; therefore, the above presumption will be right. 

   It is summarized that there are two different standpoints in designing the 

stable cross section of a  canal  ; one is for the canal of which the side stability 

is good enough in spite of the existence of sediment transport near the center 

of the canal, and the other is for the canal in which there exists no sediment 

transport at the final stage. When a canal is designed based on the former 

standpoint, the value of  de required first can be estimated from the full line 

in Fig. 17 for a given canal material, so that the stable cross section for given 

discharge and slope can be determined by applying the fundamental data to 

design problems described in Chapter 4. On the other hand, when the latter 

standpoint is adopted, the value of  de corresponding to  hk obtained from the



 24 

fundamental data in Chapter 4 for given discharge, slope and width of bed is 

decided, in which the width of bed to give should be estimated considering 

how many percent of the canal material has sand and gravel larger than 4 
because if the width of bed is estimated too small,  d, becomes large, and, 

therefore, the final stage of no sediment transport can not be reached. 

                       6. Conclusion 

   Although the problems of the stable channel have so fruitfully been dis-

cussed by many authorities to contribute to designing canals and channels, 

especially in the United States of America, the hydraulic treatment of the 
stable cross section of canals has scarcely been conducted due to the very com-

plicated phenomena. The development of the  study, therefore, has greatly 
been desired in irrigation and river projects. 

   In the present paper, a theoretical approach to the problem of the stable 

cross section based on the criteria of tractive force has been presented with the 

experiment to verify the assumption introduced in the theory. The theoretical 
shapes of the stable cross section have been obtained in the dimensionless 

form. The comparisons made between the theoretical shapes of the stable 

cross section and those of twenty four canals of which the data were taken by 

Simons and Bender in the United States of America are in good agreement. 

The relation between the median diameters of side and bed materials of many 

canals in the United States of America and the diameters of sand grains com-

puted from the formula of critical tractive force for depths of water and slopes 
observed in the canals has been found empirically. 
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                     Notation 

 A  =  cross-sectional  area  ; 

 Ao  =cross-sectional area when  B=0  ; 

 Ar=con.stant  in logarithmic law of  velocity  distribution  ; 

 a,  b=parameters in Eq.  (33); 

 B=  width of bed; 

 Bo  =width of water surface when B=0; 

      C= discharge  coefficient  ; 

 CD2= drag  coefficients  ; 

 d= diameter of spherical sand  grain  ;
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 de=  diameter of sand grain being under critical condition for 

 movement  ; 

 F=  function of  u*d/p in Eq.  (25)  ; 

 g= acceleration of  gravity  ; 
 hk= depth at center of  channel  ; 

        K= parameter expressed by Eq.  (25)  ; 

        1,  lo=  mixing  lengths  ; 

         n= empirical exponents in Eq.  (34)  ; 

 p=  pressure  ; 

 Q=  discharge  ; 
 R= hydraulic  radius  ; 

        R* = dimensionless parameter in Eq.  (31)  ; 

  Re,  Ref,  Reg  = Reynolds numbers  ; 

 RL=uplift resulting from pressure gradient in normal direction  to. 

 bottom  ; 

 Rs  = resistance resulting from pressure gradient in direction of  slop-

           ing  side  ; 

 RT  =  sum of fluid resistance and resistance resulting from pressure 

            gradient in downstream  direction  ; 
 RTI— fluid resistance in laminar  sublayer  ; 

 RTt  = fluid resistance in part of fully turbulent  flow  ; 

         S=channel  slope  ; 

 u= velocity component in  x-direction  ; 
 =  time-average velocity  component  ; 

 u*= shear velocity on  bottom  ; 

 ue*  =  critical shear velocity on  bottom  ; 

 ui  = velocity component at  z' =  d  ; 

 U2  = velocity component at  z'=  aL; 

 momentary departures from time-average velocity components; 

 W  =submerged gravity force of sand  grain  ; 
         w = velocity component in  z'-direction  ; 

      x, y,  z=  coordinate  axises  ; 

        z'  =  coordinate in normal direction to  bottom  ; 

 /ge  =ratio of part of fully turbulent flow to projected area of sand 

 grain  ; 
 (4— thickness of laminar  sublayer  ;
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 e = sheltering  coefficient  ; 
           = dimensionless depth of water for stable cross section  =z/lik; 

           = dimensionless distance from center of channel  =y/hk; 

 72' = dimensionless distance from edge of water  surface  ; 

 8=inclination of sloping side of  channel  ; 

 2.i.,  Ao  =  minimum scales of  eddies  ; 

 v=kinematic  viscosity  ; 

 E=u*I/v=0.4  (u*e/v  —  u*OL/v); 

 6'1=0.4  (u*d/v—u*8L/v); 

 p=density of  water  ; 

 0—density of sand  grain  ; and 

 co = frictional angle of sand grains.
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