
DISASTER PREVENTION RESEARCH INSTITUTE 

BULLETIN  No. 31  MARCH' 1960

ON THE POSSIBILITY OF THE METALLIC 

TRANSITION OF MGO CRYSTAL AT THE 

  BOUNDARY OF THE EARTH'S CORE

BY

TATSUHIKO WADA

KYOTO UNIVERSITY, KYOTO, JAPAN



DISASTER PREVENTION RESEARCH INSTITUTE 

          KYOTO UNIVERSITY 

             BULLETIONS

Bulletin No. 31 March, 1960

On the Possibility of the Metallic Transition of  Mg0 

  Crystal at the Boundary of the Earth's Core

By

Tatsuhiko WADA



2

On the Possibility of the Metallic Transition of  Mg0 

  Crystal at the Boundary of the Earth's Core

Tatsuhiko  WAD  A

Abuyama Seismogical Observatory, Faculty of Science, Kyoto University 

              (Communicated by Prof. K. Sassa)

   Ramsey's hypothesis on the origin of the Earth's core is applied to the 

model that the  D-layer and the core are composed of the molecular and the 

metallic phase of  MgO, respectively. The approximation of tight-binding 

method is employed to investigate the electronic band structure of  Mg0 crystal. 

It is resulted that the pressure-induced transition of  Mg0 to metallic phase 

occurs at a pressure of about  1.2  X106 bars.

1. Introduction

   The suggestion that the large increase of density at the boundary of the 

Earth's core is due to a pressure-induced transition from a molecular to a 

metallic phase, was first proposed by Ramsey (1948).  He abondons the iron-

core hypothesis and assumes that the mantle and the core have the same 

chemical composition, for example, such as olivine. Olivine, however, may 

not seem to compose the  D-layer, since the  0  (  =K/d, where K and d denote 

incompressibility and density, respectively) of olivine is not compatible with 

that of the  D-layer deduced from seismic data. 

   Recently  MarHniumfi (1953) and Shimazu (1959) suggested the process 

 Mg2SiO4  2Mg0+Si02 within the C-layer, which demands the  D-layer com-

posed mainly of  Mg0. In fact, it will be shown in the present paper that 
the elastic properties of  Mg0 agree faily well with those of the D-layer de-

duced from seismic data. 

   Originally, Ramsey put forward his hypothesis to account for the density 

of the terrestrial planets. On his hypothesis the pressure at the boundary of 

the core should be characteristic of the chemical composition    Mg0 in 

our model. Although it is important to determine whether the dimensions 

and masses of the terrestrial planets can or not show that this hypothesis is 

tenable, the possibility of the metallic transition of the constituent material at
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the boundary of the Earth's core  gives a determinable evidence to his  hypo-

thesis. 

   The critical pressure at which a metallic  transition occurs depends upon 

the variation of the forbidden band (the energy gap between the conduction 

and the valence band) with  pressure. It is desired that the electronic band 

structure of  Mg0 crystal under a high  pressme of about 10°  bats is in-

vestigated. Since at pressnt we can hardly expect to  early out it experi-

mentally, although the recent development of shock-wave technique shoud be 

noted (Alder and Christian (1956)), the theoretical investgation is the only 

way to do so.

2. The electronic band structure of  Mg0 crystal

 Mg0 crystal consists of two kinds of ions,  Mg2+ and  02-, which have 

closed shell structures. We suppose that the uppermost valence bands of 

 Mg0 crystal have 6N states, and they are completely filled with 6N electrons, 

since the crystal is an insulator. Then we may assume that the wave func-
tions of these bands are approximately given by LCAO (linear combination 

of atomic orbitals) Bloch functions formed from suitable atomic orbitals which 

have the character of  2p-orbitals of  02- ion. 
   The foundamental problem in the determination of the electronic band 

structure of a crystal in the ordinary Hartree-Fock approximation is to find 

the eigenvalues of the equation. 

 Fop(x, k)  =  Ep(k)cb,(x  , k)  (1) 

 0„(x, k) are the one-electron wave functions (x stands for both space and 

spin coordinates), k is a vector in the reciprocal lattice (body-centered cubic 
in the case of  Mg0) and the index  p denotes the Brillouin zone number in 

k-space.  Fop is the effective one-electron Hamiltonian operator in Fock's 

approximation. To obtain an approximate solution of Eq. (1), we suppose 

that the  chp(x, k) may be expressed as LCAO. For the valence band of  Mg0 

crystal containing N molecules, the atomic orbitals selected are the 12 free 

ion spin-orbitals consisting of 6N  2P  spin-orbitals on the  02-  ions and 6N  2P 

spin-orbitals on the  Me- ions. These orbitals will  be denoted by  c  „(x  , a), 

where the vector a specifies the position of the ions, and  the index  p goes 

over all spin-obitals associated with the ion at a. The radial parts of the 

orbitals used in present calculation are given by
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 Pn=  0.07800 r  exp(  —  0.714  I') 

 +8.51793  r  exp(  —  3.412  r)+].6649  r  exp(—  1.38  r) (2) 

for the  2P orbitals of 02- (Watson  (1956)) and 

 Pm,  =  7.360 r  exp(  —2.7226  r) 

           +22.795 r  exp(4.808  r)+21.348 r  exp(  —7.9907  r) (3) 

for the  2P orbitals of  Me'  (LOwdin (1953)), respectrively. For brevity, in 

what follows we condence our indices  (p, a) and (p, k) into the single sym-

bols a  and k, and  write 

                                        (4) 

where  sb and  so are row matrices. C' is taken as a square (6N x6N) matrix 

so that Eq. (2) defines a set of 6N crystal spin-orbitals. The row matrix  co 

is ordered such that the first 3N elements are the spin-orbitals on the  0"--

ions, and the last 3N elements are those on the Mg ions. Let the indices 

 v and 2 denotes the  orbitals on the  02— ions, and 1, m and n denotes the 

or bitals on the  Mg  2- ions. The indices a,  19,  r and d  w'll be used to denote 

any orbitals on the  02- and the  Mg2± ions. 

   The set of orbitals  so are not all orthogonal at any finite lattice paramter. 

An  orthonorml set 0 are introduced by  LOwdin transformation (for example, 

 LOwdin (1956), Callaway (1958)). Thus 

 0=  soL (5) 

where 

 L=  (1+S)-1/2 

                Sao= 
.0„*(x)0,9(x)dx — 6,13F(6) 

Eq. (4)  is expressed by the set 0 as 

 0=0C 
 CtC  =  CCt  =1. (7) 

Using Eq. (7) in Eq. (1) our fundamental  approximaf  on  is expressed as 

 Cl-FC=  E (8) 

where E is a diagonal matrix, and the matrix F has element  F at defined by 

 F,6=Hdo+  E  Ckyl-Gdo"Cak, (9) 
 kys 

where
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        Ha =cba* (x) HO (x) , 

        G,8"  =.C(0,* (xi)y* (x2)G0 (x1)456(x2) • (10) 
 —0,,*(x1)0y+(x2)GOo (xi)(1)r3(x2)Ddx,dx2 

where H is the Hamiltonian operator for an electron moving in the field of 

the ion-cores, and  G=  (1/2)  ri  r2  . 

   Let B be a  unitary matrix which  transform F, the matrix representation 

of all  F05, to a new matrix  E', where 

 E'.=B1-FB, (11) 

and B is chosen such that the submatrices  (p,  rn) and  E'(m, p) are null 

matrices. Then a set  x of orthonormal atomic  spin-orb.tals is introduced 

according to 

 2=0B. (12) 

 0 is expressed in terms of the set  x as 

 0=  xV, (13) 

where V is a unitary matrix, which reduces E' to diagonal form with the 

eigenvalues  E1(k) of Eq. (1) on the diagonal. Thus 

 E  =  rrE'V (14) 

To find the eigenvalues we first construct the Bloch functions 

 v„(r, k)  =  N1/2E  ( r,  it)  exp  (27i  p  •  k) (15) 

Then 

 t~n(x,  k)  =1V-1/2E  va  (x  ,  k)U,„(k) (16) 

where 
 =  exp(—  27rik  -  p)  V  ap(p, k) (17) 

Using Eq. (17) in Eq,  (14), we arrive the secular equation 

                  det  ep,(k)  —  „asE  (k)I  =  0 (18) 

for the eigenvalues  Ep(k). In Eq. (18) 

 Epu(k)  =  .Cvp*  (x,  k)Fopvq(x,  k)  dx  , (19) 
 =Eng'  (ft,  p)  E  Cpq(p,  p+  A)  exp  (2n-  i  2  -1c) 

where  A is a vectors which maps out the  02- ion lattice from an arbitrary 

chosen  02- ion at
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   The e' is obtained from Eq.  (1]) by treating all non-diagonal elements 

of  F as first order small quantities and applying  perturbation  thorny (Grimley 

(1958)). The results can  he written in terms of the matrix elements defined 

in Eq. (10) and the matrix R with elementsRdefined by 

            R”=EBd,,Bot(20) 

For numerical calculation, it is more convenient to express Eq. (21) in terms 

of matrix elements formed with the given non-orthoganal  spin-orbitals. A 

new matrix corresponding to  R is defined by  

.17;,(3-EB„Bot  Bo—ELayByR 

We can separate from  k a new matrix P representing the contribution from 

the 0-Mg interaction, i.e.  P„=T„—P„, where  T=  (1+  S1)-1, and  Si is 

the submatrix of S consisting of all elements of the form  S. In terms of 

these quantities we obtain 

 +  EP„712PMV  (HP  tt  Thltnt)  H  PES  12  AS  —  A (22) 

where  Hae and  GdOrd stand matrix elements  like  H„0 and  G„gr°  in Eq. (10) 

but with the set  co replacing the set 0. 

   We can express all non-vanishing elements  Eng'  (p,  p-  2) as  fallows  : 

            Cxx(p, 11)=E'7 nI(P I  =  Zz  (P1  1-1)  =  AO 

 Cxx(p,  p+  2)=E'  yy(tt,  p+  2)  =A1  2=  (r,  r,  0) 

 EC(p,,ctd-A)  =  Ai'  2=  (r,  r,  0)                                           (23) 

            p+2) = Al"  2= (r, r, 0) 
 Eixx(p,  tt+  2)  =A2  2=  (2r, 0, 0) 

Here r is the cation-anion distance. The numerical calculation are carried out 

for three values of  r  =2.10, 2.00, 1.80 A. These are  tabulated in Table 1. 

          Table  The values of  E'pg in three  cases of  y (see Eq. (23)). 

 1,7  7=2.10A  loA 7=1.80A 

 An 0.205605 0.179944 0.100703 
 A, 0.001162 0.009200 0.010147 
 Al'  —0.009746  —0.013314  —0.025088 

 Al"  0.017948                            0.028438 0.041487 
   A2 0 .001628 0.005233 0.006604
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   Using Eq. (23) in Eq. (18) we now have 

      6...,(k)= Ao + 4A1 (cos  2nrRz cos  2nri?,+  cos  2rrrkz cos  2n-  rk2) 

 +  4Aicos  2nrk,  cos  2nrk2+2.4.2  cos  47  rk.  , (24) 

 6.,  Y  (k) =  —  4A  I  "sin  27rrkz sin  2irrk  i 

and the other elements follow from (24) by interchanging x, y and z . The 
secular equation (18) is easily solved for several prominent directions in k-

space, i. e., (k, 0, 0), (k, k, 0) and (k, k, k). The final results are showed 

in Fig. 1. 
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       Fig. 1. Band  structure of  Mg0 in three cases of  r along three directions 
         in k-space. ( ,  2.10A,    ;  2.00A,  •  •  ; 1.80A) 

   To obtain the transition point, one may proceed in the following  : start 

with  Mg0 crystal in the ionic state and determine when the energy gap disap-

pears. The maximum and the minimum energy values of the valnece 
band are plotted against  r in Fig. 2., which shows the broadening of the 

band with r. Since the evaluation of the conduction band of  Mg0 crystal 

can hardly be made by the approximation of tight-binding, we assume that 

the  conduction band braodens within the forbidden band as much as the valence 

band. At the ordinary lattice parameter  r  =  2.10 A, it is found by using 

optical method that the energy gap is about 9 e. v.. With the assumption 

above cited, thus it is found that the energy gap  disappears at  r  =  1.87 A
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            Fig. 2. The electronic hand structure of  Mg0 as a function of 
              Conduction  hand and valence hand are crossing  at  =1.87A. 

          3. An equation of state of  MgO crystal 

   To obtaine the pressure of  Mg0 crystal corresponding to the transition 

point, we must express the lattice energy of  Mg0 crystal as a function of r. 
According to Born and Mayer's expression, the lattice energy  Er is shown by 

 Er=  —  (amz2e2/r) 

 +b CMCl2e(ri+r2-1)1"±M'/2)(Cue2r1/(25)                                        P+C2e2r2110e—a'rin 

per molecule, where  roe is Madelung's constant (1.7476 for the  NaCI type  _n 
 Mg0), M and M' are the numbers of unlike and like neighbours of each 

ion, respectively (6 and 12 for the  NaCI type), a' is the ratio of the distance 

between like neighbours to that between unlike neighbours  (1/  2  for the NaC1 

type), b is arbitrary constant chosen to have the value  10-12 erg,  71 and r2 

are what shall be termed the radii of the ion 1 and 2,  CI, is a factor calcula-

ted by  Panting and is expresed as  Cli=C1+(zi/nt)+(zi/n,)) where  zi is 

the valence of i-ion, and  ni the numbers of valences electrons in the outer 

shell of i-ion. 

   Acoording to Huggins and Mayer's method (1933), the unknown para-

meters  r,, r2 and p in Eq. (23) are dertermined by using some experimental 

values of  MgO. The final resultsis expreseed as
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 Er=  -76.76605/(r/ro)  +1385,24705 exp  (-4.8837(r/ro)) 

                      +3660.44466  exp  (-6.9066(r/r0)) (26) 

By differentiating  Eq. (26) once and twice we obtaine pressure  p , and in-
compressibility  KT as the functions of  (r/ro). And the relation between 

       (r/r) 1p(.10 dynes/cm)Kr(.10 dynescmd(gr/cm) 
   1.00 0.000 1.64 3.60 

   0.99 0.052 1.81 3.71 
   0.98 0.109 1.98 3.82    0

.97 0.174 2.19 3.94    0

.96 0.245 2.42 4.08    0

.95 0.324 2.66 4.20 
   0.94 0.413 2.92 4.33    0

.93 0.511 3.21 4.48    0

.92 0.623 3.52 4.62    0

.91  0,741  3,85 4.78    0

.90 0.887 4.24 4.94    0

.89 1.033 4.61 5.10  0

.88 1.194 5.08 5.28 
   0,87 1,376 5.63 5.47 

    Table 2. Variation of density d, incompressidility Kr and pressuse p of  MgO 
      versus change  (r/ro). 
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density d and  (r/ro)  is obtained by using the atomic weights of Mg and 0. 

These values are given in Table 2. To examine the model that the D-layer 

is composed of  MgO, these calculated values and Bullen's values  (1953) are 

shown in Fig. 3, where we find that the maximum discrepancy  between, both 

values  0 (=  KT/  d) is about  20%;. We must note that the accuracy of Eq. 

(26) decreases as the pressure increases  (Walla (1959)) and the calculated 
values show the isothermal and, on  the other hand, Bullen's values the 

adiabatic. At any rate, we may conclude that Eq. (26) will  be enough good 

approximation to estimate the transition point, since the process in evaluating 

the electronic band structure is not so accurate that the discrepancy above 

cited playes a heavy roll. 

        4. Pressure-induced transition of  MgO crystal 

                    to metallic phase 

   From sec. 2 and sec. 3 we find that the pressure corresponding to the 

transition point (r=1.87 A) is about  1.2  x  106 bars, which is the pressure of 

the depth of about  2600  km in the interior of the Earth, as shown in Bullen's 

table. The result obtained, in the other  word, shows that the energy gap 

between the conduction band and the valence band of  Mg0 crystal disappears 

at  r=1.87 A. In this situation the valence electrons in ordinary ionic state 

are made free, and the electronic band structure becomes metallic. We 

must note that this transition point is not such as suggested by Ramsey.  In 

the former no density-jump occurs, while in the latter density increases 

discontinuously. To estimate the latter type of transition, we must obtain 

the lattice energy curve of the metallic phase. Of course we may expect that 

the minimum point of the energy curve  of the metallic phase could be near 

the transition point given in the present calculation. It is, however, not 

necessary that both transition occur at asame pressure. This case that the 

transition with density-jump at a high pressure than the transition without 

density-jump, is very interesting. In this case the electronic conductivity 

increases abruptly at an certain depth in the deeper part of the D-layer and 

the density increases discontinuously at the boundary of the Earth's core. 

The suggestion that the electric conductivity will increase abruptly in the 

case of the transttion to metallic phase, is made by Mott (1956).  Mott's 

opinion is as follows  : if an electron is removed from valence band to
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conduction band, a mobile positive hole is formed. The minimum energy 

necessary to form a free electron and positive hole will decraase as the 

 lattice parameter comes closer, but cannot tend to zero. since an electron  and 

a positive hole attract each other with a force of which the potential energy 

for large r is of Coluomb's type. Thus small number of free carriers of 

positive sign is impossible in the ground state, since the free  earriers of 

positive  and negative sign are bounded to form pairs. On the other hand, 
when there is a large number of free carriers any pair of charged particles 

may be expected to attract each other  with a force derivative from a screened 

potential, which does not necessary lead to a bound state. Thus the  transi-
tion to a state showing metallic conductivity will  he sharp. 

                       5. Conclusion 

   It is found that the valence band of  MgO crystal broadens rapidly as 

lattice parameter decreases, and the energy gap will disappear at  r=  1.87 A 

corresponding to pressure of about 1.2  x106 bars which is deduced from an 

equation of state of  MgO. We may expect that the pressure-induced transtion 

of  MgO crystal to metallic phase could occur at the boundary of the Earth's 

core. A new model that the electric conductivity increases abruptly in the 

deeper part of the D-layer and the transition from molecular (or ionic) phase 

to metallic one occurs at the boundary of the Earth's core with a large density-

jump, is also suggested. 
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