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                         Abstract  . 

    The stress-strain relations for granite under various high  confining 

pressures were observed experimentally. Mean Young's modulus is nu-
merically constant independent of increasing pressure. The volume in-
crease in the fracture range, observed characteristically at an atmospheric 

pressure, decays with pressure. The empirical formula of pressure-strength 
relationship is given by 

 p*_7/3°*(kp_a+1)]./2. 

   It seems that the phenomena above mentioned have the close connec-

tion with compressibility (i.e. porosity). The pressure-strength relation 

was calculated with use of Griffith's crack (pore) theory, putting the re-

asonable (or convenient) assumptions into calculation. This calculated 

relation, deduced from the empirical equation of compressibility with pres-

sure, gives the same  formula as above mentioned- empirical one. 

   1. In recent years, a large number of experimental results on the 

deformation and fracture of rocks have been reported, but most of them 

were carried out for carbonate rocks such as marble and limestone (Griggs, 

et  al., 1951, Turner, et  al., -1954, Robertson, 1955, Paterson, 1958). These 

rocks exhibit the  theological properties the same as igneous rocks at an atmo-

spheric pressure and room temperature. Under high pressure, however, 

these rocks flow plastically showing the distinct yielding zone, while the 

igneous rocks have scarcely the sign of plastic deformation up to the  con-

siderablly high pressure, at room temperature. The mechanism of  the de-

formation and fracture of igneous rocks is much complicated as is observed 

about brittle substances in general.  As the igneous rocks,  however, have
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the close connection with the  theological behavior in the deeper part of 

the crust, it must be made throughly clear how these rocks deform  and 

fracture under high pressure. 

   In the previous paper, the experimental results of the deformation and 

fracture for granite under an atmospheric pressure have been reported 

(Matsushima, 1960). Here, we report the experimental  results under high 

confining pressure, then express a brief consideration upon the mechanism 

of the fracture phenomena. 

   Of course, in order to obtain the definite knowledges on the earth's 

interior, we must take into consideration the physical and the chemical 

states of the earth's interior such as temperature, its gradient and time-

fluctuation, heat-flow and -generation, states of the internal stresses and 

their dependence on time, and the constituent substances. But we shall 

neglect all these effects and  confine ourselves into the studies of deforma-
tion and fracture of granite. 

   2. The apparatus used for this experiment is the conventional triaxial 

testing cylinder as shown in Fig. 1. The shape and the size of specimen give 

the considerable affection upon the aspect of deformation and the  strenghth. 

 Especially as to the crystalline aggregate constructed with a large size of 

grains, such as granite, these effects may be strikingly large. Then the 
capacity of pressure vessel was 

taken as large as possible to  be 

 11 able to contain the large size of 
 'IElectrode 

specimen. Therefore, the durabi- 
                                       Specimen  lily against pressure of this  vessel 

was sacrificed inevitably. This---Confining                                               —re"
Pressure 

vessel can endure up to 5,000 

atm., and axial stress can be produced by the 300 ton press. 11;1111111 
All the specimens were enclosed 

to prevent the confining liquid 
                                                   Ram 

penetrating into the specimens. 
 Synthetic adhesive rubber was  /0cm 

                                        Fig., 1. Triaxial Testing Cylinder. used as co
vering material, for 

its good  insulating character and flexibility . The strain was  Measured 

by the strain gauges of electric resistance  type, same as in the previous
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 experiments. Accuracy of the  measurement was within 50 atm . as to the 
confining pressure, 100 kg/cm2  as to the axial compressional stress and 

 10-6  as to  the strain. 

   3. The relations between the axial  compressional stress and the strain 

under various  confining  .pressures are shown in  Fig. 2. The strains were 
 measured in the axial  direction  .and along the circular arc of the cylindrical 

specimen. The long columns of  Kitashirakawa biotite granite, 30 mm . in 
diameter and  60. mm. long were used up to 1800 atm. confining pressure, 

25 mm. in diameter 50 mm. long up to 3800 atm., and 20 mm. in  diame-

ter 50 mm. long above 3800 atm.. The slender specimen has a tendency 

to bend, and the stumpy one may deform into barrel shape. In these ex-

periments, it was scarecely observed  that the specimens deform in barrel 
shape within the elastic range. Near the rupture point, however, the plas-

tic flow was observed, though it was not considerable, and a slight barrel 

shape deformation was recognized. 

 kgic 
 x70'  longltualina  strain 
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    Fig. 2. Stress-Strain Curves  front Axial Compression Tests for Kitashirakawa 

      Granite. 
      Each full line denotes the longitudinal direction and broken line the lateral 

     direction. 

   The stress-strain curves in  the longitudinal direction have the  approxi-

mately constant slope, independently of  confining pressure, as shown in Fig. 

2. That is, it can be said that the mean Young's modulus of this rock is con-

stant at any confining pressure. In the fracture range under enough high 

pressure, however, as above mentioned, the curves have the tendency to be 
concave toward the strain axis and show the indistinct yielding zone, pro-

ducing  the appreciable plastic flow. 

   In Fg. 3, the relations  between the stress and  preudo-Poisson's ratio 

under  various confining pressures are shown. Where percentage stress is
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used as abscissa, the percentage stress is defined as a hundred times of the 

ratio of stress to the rupture strength. The stress and Poisson's ratio  rela 

dons under various pressures can be clearly shown by the use of percentage 

stress. With the increase of the confining  pressur,' the unusual lowness of 

 pseudo-Poisson's ratio at the first stage of loading is gradually lost and 
the volume increasing effect in the fracture range; observed characteristically 

at the ordinally pressure (Bridgman, 1949), decays rapidly. 
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    Fig. 3. Pseudo-Poisson's Ratio (ratio of lateral strain to longitudinal strain) vs. 
      Percentage Stress under Various Confining Pressures. 

   Rupture strength (approximately equal to yield strength) increases strik-

ingly with the increase of pressure. The increment of strength, however, 

was not so considerable  at fairly high pressure. The observed values of 

strength at various pressures are shown in  Fig. 4(a). Blanc circles express 

the values for the specimens in the ratio of length to diameter,  2: 1, and 

full circle, 2.5: 1. 

    The empirical formula which expresses the pressure-strength relation is, 

 P*  =  Po*  (kPR+1)1-12 

where P* is the strength, k is the constant and PR is the confining  pres-

sure. 

   The important numerical results are listed in the following Table.
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  (a) (b) 
 Fig. 4. Strength vs. Confining Pressure. 

         (a) Observed values and empirical curve (full line) of strength for  Kita-
      shiralcawa granite, and assumed strength (broken line) as the pores  are perfect-

      ly closed. 

         (b) Extended figure of (a), and strength of quartz. 

    Table. Mean Young's Modulus, Rupture Strength, and Indistinct Yielding Point. 

       Confining Mean Young's Modulus Yielding Point 
     Pressure  Rupture Strength(indistinct) 

            atm.                 Ex 10-"StressRangekg/cm'  k
g  cm      dyne/cm2  kg/cm2  

    1 5.4 0- 1250 1380  — 

    550 6.9 3960 4860 4200 

    1020 6.25 5940 6660 6000 

    1500 6.7 - 7800 9100 8300 

 1800  7.5  -  8530  9160  — 

    2600  6.5  -  8580  10400  8600 

   3250 6.25 -11600 12110  — 

    3800 6.2 -12500 13520 12500 

    4400 6.0 -10100 12150 10900
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   On the other hand, the strength of quartz measured by Bridgman 

(1952) is shown by mark X in Fig. 4(b). The strength of this substance 

is relatively little affected by the pressure and only slightly increases as 

pressure does. The pressure-strength relation of granite at  considerablly 
high pressure seems to become the same as that of quartz by the reason after 

Griffith's theory (1924). Therefore, the assumed  P*  —PE curve can be ob-

tained by extrapolating the above relation toward the lower pressure.  This 

curve is shown by the broken line in Fig. 4(a). 

   We regard the difference between the assumed curve and the observed 

value as "the strength lowering" P*', considering that the strength is 

lowered by a certain cause characteristic of granite. 

   Now, we compare the change of "the strength lowering" and the 

volume increase in the fracture stage with the decrease of compressibility 

(Adams, 1951). As shown in Fig. 5, there  is a close connection among 
these phenomena. As the compressibility decrement with the increase of 

pressure may be caused by the closing of pores, it is reasonably consider-
ed that the strength may be strongly affected by the existence of pores . 
In Fig. 5, the volume increment S in the fracture range show the area of the 

part where the pseudo-Poisson's ratio goes over 0.5 in Fig. 3 as the index. 

         S  P*  K 

            &-; 

 tJxx, 
          70 10  41 

 compressibility 
                                   Ap-4:.                              04,04. 

 5  5  2 
 0  •  ° strength lowering 

                                              

. 0 

                                  volume increase 

 0  7 .  •                             2 3  x102  kg/cmz 

   Fig. 5. Comparison of "Strength  Lowering'  ', Volume Change in the Fracture 
     Range and Compressibility, for Granite under Various Pressures . 

   4. We will introduce one representation with respect  to the relation -
ship between the strength and the  prosily of granite under various confin -
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 ing pressures,  it will be considered  that these  two have a close  connect'on 

 with each other. 

    We assume that the pressure  is able to affect to the  porosity alone , 
but not to  its strength.  Then the rupture can be directly produced  only by 

the  differential stress acting on the porous specimen . Of course,  the  pres-

stir° exerts the indirect  effect upon  the  s,:rength,  changing the shape of 

the pores. 

    Compressibility  ic is given as follows, 

                K—  1   dVi1dV2                           —Cl+C .Por, V1->"  (1)  V  dP H  V  dPH 

                                where V, V1,  V2, the total volume 

                               of specimen and the volume of  sub-

                                stantial and empty part respectively, 

 xie  ri  denotes the  compressibility of ma-
   8  aerial and  flor the  effective value  with 

                                  respect  to the pores. 

                                  Put N the number  of  the pores 

  2:6                                   co  ,tain.ed in  this specimen, and v1, 

 V?,  v  N the volumes of the  respec-  P 

                                  tivepores, then                   Rockport granite
.             Quincy granite  1  d (2Y,                            n).  (2)  9*e t V dip 

      1arenclosed    2The empirical formula of  Kr,  is 
 unenclosed 

                               given as follows 

                        1  1  

     0 500  1000  atm.cn"=(mPN+n)2—  n2(kPly+  1)"  ' 
          Pressure  112  

  Fig. 6. Compressibility of Enclosed  k—  n  ,  (3) 
   and Unenclosed Specimens of Granite 

   under Various Pressures (Zisman, from the experiment on the measure-
   1933). 

 meats of the compressibility by Zisman 

(1933), considering the difference  between the compressibility of the cover-

ed specimen and the uncovered one. 

   Now, we assume  that the contraction of the respective  pores  with pres-

sure has the similar tendency, then the  effective  compressibility of i-th 

pore in this specimen is given by
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                        11 1
(mil3H+ ni)2= n 12 (kPH +1)2 

 (61) 
         mePT 1                 k

i=—=1,G,E  2=•                 n i  i=i ntnJ 

 This formula (4)  correspoids  o the i-th term of formula (2), then 

          1  dvt _  1 1  (5) 
                       V dPn—  ni2  (k1311+1)'' 

 Integrating  and put the  conTtion  Pa—>oo,  vi-03 into account, 

          V 1      =  • (6)  vi                          mint(kPi1+1) • 

   On the  other hand, we assume the shape of  port as ellipsoid rotated 

around the minor axis, then the volume is 

                                  4nct2bi       vt— (7)  3 

where  ct and  bi are the major and minor radius respectively. 

   Equating formula (6) and (7), and assumeing that  ci does not vary with 

pressure, then the relation of the length of  bi with pressure is given by 

              3 V 1        b
i— -• (8)                         4arct2mini (kPH-F1) 

 Next, we try to obtain the critical  stress  pt,  according to  Griffith's 

theory (1921), at which the elliptic pore or crack begin to elongate by the 

applied compressional  stress P along major axis, as is shown in Fig. 7. 
We take elliptic co-ordinates a,  j3 and 

put  a=  a3i at the boundary of the  i-rh 
crack. The major and minor radius 

 is  given by ct and  bi=aoict,  putting 

  the half length of focal line, as 2 c 

aot  is very small. Fig. 7. Elliptic Pore Exposed under 
    Then the increase of strain en- Axial  Compressional Stress .P along 

ergy Wi by such crack is given bythe Major Axis. 

                                 7rP2ci2           W
i=a0i-4a),  (9) 

where E,  a are  the Young's modulus and Poisson's ratio of this material 

 respectively. On  the other hand, the surface energy of this crack is 

 Ut=4ciT,  (10)
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where T is the surface energy per unit area. From the  cond;tion  that the 
crack may extend 

 d                    YV t-  Ut)  =  07  (11)                        dci 

the  strength of this crack can be expressed as 

 p,.—a/  ET  )'13  (12)                           7r(1 — a) 

where a is the numerical  constant  (0,i.o, 1949). 
   Substituting (8) into (12), the relation of confining pressure and the 

strength of the crack oriented to the direction of compressional stress is 

given by 

            P'*=—                  2acs,  ET  mInty/2(kpff+1)112 
                1/3 (1  —  a)  V 

 =  Pio*(kPR+  1)'/' ,  (13) 

where  p,o* is the strength of this crack at  PR=  O. 

   The value of k obtained from the above stated empirical equation is 

 k=2.49  10-2x  (kg/cm2)-'. 

Though the value of k for Kitashirakawa granite from the compressibility 

measurements has not been given, the values of  h from Zisman's data are 

 k=0.22  10'=x  (kg/cm2) 

for  Quincy granite, and 

 k=  0.30  10-2x  (kg/cm2)  -1 

for Rockport  granite. 

   5. The mechanism of deformation and fracture of granite becomes 
much simpler at high confining pressure, as seen in the case of quartz 

and so on, than at lower pressure, by the action of hydrostatic compression 

which decreases the porosity of porous media, while such rocks show a 

very complicated behavior under low pressure. This tendency may be kept 

at high temperature and high pressure. Therefore, in the deeper part of 

the crust where rocks are confined with enough high pressure, the feature 

of mechanical behavior of rocks seems to have lost their complicacy such 
as seen at the earth's surface, and may behave as a simple aggregate of 

constituent minerals. 

   So far as it is concerned at room temperature, these  sorts  of rocks are
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not so much plas'~j.c even under h~.gh pre3suI'e. O~1. the con-'~rary, '.:he elastic 

range is eX'~ended strikingly w~'~h 'l:he increase of pressure as the results of 

the ra~.se of streng· .. h. flowever, j.f 'ihe pressure increases highly enough, the 

incremen'~ of s'~reng~h doec; not become so remarkable, then the eleva'don of 

temperature may become more s·~rongly effec"~ive on the plasid.c:l"~y ~han the 

increase of pressure, in the earth's in'~erior. 
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