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Abstract

   The two dimensional problem of the diffraction of plane elastic P and 

S pulses of a rectangular type by the crack of a half plane is treated by 

D. S. Jones' method in the diffraction of a scalar wave. In this method 

the shorter pulse width is comparing with the distance of observing point 

from the edge of the crack, the easer the calculation. The results to be 

noted are as follows  ; 

   a) the phase of some diffracted pulse is reversed at the shadow 

 boundary, 

   b) while the forms of the incident and reflected pulses are a rectan-

gular type, those of the diffracted P and S pulses are smooth. 

   §1. The problems of the diffraction of a sound wave and an electro-

magnetic wave by a half plane and a slit have been investigated frequently 

by various methods since A.  Sommerfeld1) But the diffraction of an 

elastic wave of simple harmonic type by a crack has been treated approxi-

mately only a few times on account of the complexity of method of  solu-

tion",2) and the diffraction of a elastic pulse has not been solved exactly 

as far  as, the writer knows. 

   In this paper the two dimensional problem of the diffraction of plane 

elastic P and S pulses by the crack of a half plane is treated by D. S. 

Jones's method in the diffraction of a scalar  wave". That is, first, the 

formal solutions for the harmonic wave are obtained by his method , and 
using the principle of superposition, the solutions are calculated for the 

incidence of the plane P and S pulses of a  rectangular  type . In this 

method, the shorter pulse width is comparing with the distance of ob-
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serving point from the edge of the crack, the easer the calculation. 

   While the interpretation of the reflected wave from a plane surface is 

a simple problem, the seismogram is considerably complex for the case 

of the edge of the crack in the elastic medium. Therefore, the theoretical 

results of diffraction of the elastic wave are useful to interprete the 

seismogram.

Notation

 a, b,  ciz: propagation velocities of  P,  S, and Rayleigh waves, respectively 

 k, K  : wave numbers of P and S waves, respectively 

 PUY,  Pxy  : components of stress 

 u, v  : components of displacements in x, y, 0, and r-directions,  re-

 U0,  ur spectively 

 p :  density 

   §2. In this section, we derive the formal solutions for the two dim-

ensional problem of the diffraction of the plane P and S waves of the 

simple harmonic type vertically incident to the edge of the crack of the 

half plane in the uniform isotropic elastic medium. 

   The total displacement  at can be written in the form of a sum of two 

quantities 
 zel=  —  grad  cit+  rot  01, (1) 

where  ci5t is the total scalar potential corresponding to longitudinal wave 

and  cbt is the total vector potential corresponding to transverse wave, 

where the quantities  OC and  sb' satisfy the equations 

 dcbt±k2cbt = 0,  (2) 

 ,dcbt-FK201=0. 

Since we treat the two dimensional problem in the  xy-plane,  cbt has only 

the z-component and can be taken as scalar. Thus, the total stresses  p„,,, 

 p,xt can be expressed in the following 

                       „ryaxeK13),,,t620'                  141/ —`49u-Lax22icu—aa                                      xy 
 (3) 

              pxyt= _2pb2r62o*+7axe)63±-K2\b,j.       (a, 

   Let us choose the orthogonal coordinate system, the origin of which 

coincides with the edge of the crack of the half plane, as shown in Fig. 1.
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 ,A  T/1 

                                  Fig. 1. 

   Since the plane of the crack may be taken as a free surface, the 
boundary conditions on this surface for the stress will be 

 PYYt  =  0 on  y=0,  x<0, (i) 

and 

 PYV,  Nyt and  tic are continuous on  y=0,  x>0. (ii) 
The boundary condition at the edge is such that the stress on the elastic 
medium, div  tO and rot  it' at the edge may be zero. Thus, for  stresses° 

 PYV,  yt  ---7-1"2 for  r—>0 (iii) 

And finally,  q,  0 must satisfy the radiation condition. 
   Now split the total potentials  yhe and  0' into the incident part and the 

scattered part 

 95`=0°--FO,  0`=0°±0. (4) 

   The potential  cb,  0 as the superposition of plane wave can be written 
in the form 

 01,2=1  Mi,2  (A)  ei(2z  Alk2-221Y1dA, 
                                         (5) 

                          (A)  e2@x+,/K2_221),IdA, 

where 1 for  y>0, 2 for  y<0 . In order to satisfy the radiation condition 
at  y—co, we must interprete the integrals in (5) as the limits of those 

along the path L in the complex plane shown in Fig . 2, when  semicircles 
around four singular points ±k , ±K,  ±AR are made vanishingly small.
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                                    Fig. 2. 

   Thus, the stresses are 

 Pyy=2Pb273(  22  23)Mi(A)e-  VA'  k2 ^ 
 +A-  t  /  K2  -  A2N1(2)e V22- K21-e'Axd2=-4-P„e"x -clA 

 

;  for  y>0, 

  P.5 = —2pb2E{ —2-1/k2 _22mi (2)e- 102-k2y 
       K2             22)1\11(11)e- A/22 — K2/.ejAyd2,___°'i=breiAx.d,1 

                                         (6) 
 Pyy=2pb2.r J( 2K= 2- 22)M2(2)e°2-42Y 

     -2-1/K2-22N2(A)e V22— K21- eiAxdA=C' Pyye"'dA 
 for  y<0 

  Pxy= -2pb2.C--(2-V k2- A2M2(2)102-k2y 
    +(  22 —22)N (A) 0/22 -K21- e'AxdA--=f P„,e"-cd2 

Insert (6) into the boundary conditions (i), (ii) and M1,2, N1,2 can be 

expressed in terms of two unknown functions, 

                 (22 —  22)R1(2)  —  21/K2  —  22R2  (A), 
                    2 .  M2(1)  =(—A2)1?1(2) +21/- 22K2(2),   2(7) 

 NI  (2)  =  k2  -22Ri  (2)  K22  -  2.2)R2  (A)  , 

                     \ 

            Al2 (2) =2K2 - 22)R2 (2) - k2 -22Ri (A).  , 

Next, split the transformed stresses  Pi/y(2, y),  Pxy(2, y) into the following 

two parts 

 P  y y) =  P  Y+ y)  +P„-  (A, y)   1°}(8)    Pvy+(A,Y)=T.-LPilye-uzdx : Pyy-(2,y) =Pyue-iA'clx 
For brevity, we shall sometimes write  f(2) or  f(y) instead of  AA,  y)
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when there is no risk of confusion. An expression like f(±0) will always 

refer to the value of  f(A,  y) for  y=0, where +0 means the limit as y 

tends to zero approached from positive values of y, etc.. Now we define 

the  2-plane not lower than the real axis as limits of the line L shown in 

Fig. 2 to be the upper plane and the plane not above the real axis to be 

the lower plane. When the solutions satisfy the radiation condition,  Pyv+ 

is regular in the upper plane, and  P  nr regular in the lower. We also 

split the displacements into two parts in the same way 

 U(2)  =  U+  (A)  +  U-  (A), 

   1
27r°(9) 

 U (2) = ueu'dx :U-(A) = 1.rue-"xd x,     — 27r 

   On applying the above definitions to (8), (9) we find 

          1 3y+ (0)  +Py,-(0)  —2pb2G(A)Ri  (2)  (10a) 

 P.r,+(0)+Px,,-(0)  =  —2pb2G(A)R2(2)  (10b) 

          U+(0)+U-(0)=i( AMIGO -1-1/ K2 — A21V1(2))  (11a) 

 U+(  —  +  U-(  —  0)  =  i(  —  2.114-2(2)  VIC°  —22/V2  (A))  (lib) 

 V+  (  0)  +  (0)  =  i(  —  k2  —  A21113,(2)  —  2ND  (A))  (11c) 

 V+(  —  0)  +  V-(  —  0)  =  i(i/k2  —  22M2(2)  —2N  (2)) ,  (11d) 

where 

           G(2) = (K2  —22)+ 221/ (k2 — 22) (K2 — 22). 
Next subtract (lib) from  (11a) and  (11d) from  (11c) . From the bounda-
ry conditions (i), (ii), then 

 D  U+  (0) —  U*(  —  0) =  iK21/  K2  —22R2(2), 
           E+==--V +(0)— V + ( — 0) = —iK21/k2 — 221?].(2) • J(12) 
Eliminate  R1, R2 between (10) and (12) . Then 

 Pyy+(0)-1-Pyy-(0)—iPb2(1C2—k2)1/1C2-22E+(A)F(A)  
                .1C2(13a) 

 13.y+  (0)  +  (0)  =   Pb2  (K2  k2)1  k2  22D  +  (2)  F  (A)  
 K2(13b) 

where 

       F  2G(2)                (K2 — k2)-1/ (k2 22) (K2 _ 22)= F+ (A) F- (A). (14) 

First, we specify the incident P wave in the form
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                         t(cx +h2 - A-2y) 
          (bo=e  00=0, 

 —k<tc<k . (15) 

and seek for the function  R1(2). In the equation  (13a)  Puul-(0) is known 

from the boundary condition (i). In fact 

   Pyy+(0)=—L27r-f(-Pyy9e-"``clx= '9'52rPb2A1 (16)        -7r-- ni(K  -A)' 

where 

 K2   - 2  -  K2). 
The equation  (13a) now becomes 

 P-wy(0)  Al  
           2021/K- 2F-(A)+27ri(x  —  2)1/K-  AF-(2) 

 _i(K2-k2)1/K+2E+(2)F-F(2)  
 2K2•(17) 

   Next consider the decomposition of the function  F(2) in the form of 

a product  F+(2) .F-(2) by means of splitting of log F(A) into the form 

of a sum, where  F+(2) and  F-(2) are regular in the upper and lower 

half planes, respectively. The singular points of log F(A) are ±k, ±K 

and  ±2R, zeros of  F(2), and 

 F(A)-J+  c 72st. for                                           (18) 

 f(2) can be written in the form by Cauchy's theorem 

 f(2)= log  F(2)- llog F(z), 1 log  F(z)                                                                                               ""z  27riz-2""2. 27riJr- z  - '(19) 

                                               1'-

              -AR  -K  -k 
 F+ 

                                    Fig. 3. 

where contour  F+,1"- is shown in Fig. 3, A is contained in the domain en-

closed by  r+ and  1"-. Taking the singular points ±k,  +K,  +2R  into 

the consideration, we can write (19) in the following way
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 ( z2)*      f 4" -(2) = 27ri 1 r+,-1og(1 +z7,.17  (le dz  
                              (  K2  _ z2)2 

        a1R±  tan-12  dz            =1°-K±A±(z2v(z2,2425CK2 _z2)1zA(20) 

   Split  g(A) in two parts in the same way as (19) 

  Al 
 g(2)  g+  (A)  +  g-(2)--=  27ri(K  -  2)-  I  K  -  2F-  (A) 

     A,    (2)  (21) 
                27rii/K-K(77-2)F-(K) ' 

 Al   j 1  1  1 
 g-(2)27ri(ic- 2)1KAF- (2)-  K  -  KF-

where  g+(2) is regular in the upper,  g-  (A) is regular in the lower. In-

sert (21) in (17) and rearange 

 P-yy(0) +
g- (A) = i(K2 - k2)1/K+2F+ (2)E+ (A)                                           g+(2)=1(2).  2

pb21/ K-(A) 2K2 
                                         (22) 

   In this form a function  1(2) is regular in the upper plane and also 
regular in the lower, i.e., in the whole of plane, since these two half 

planes overlap. And we proceed to examine the behaviour of the func-
tions  1(2) as  A tends to infinity. 

   From the edge condition 

 ICA)  -121-' as A->0o . (23) 

 I(A) tends to zero as  d tends to infinity in any direction. Hence, from 

the Liouville's theorem  I(A) must be identically zero, i.e. 

         iK2i/k2- 221/ K- 2g+ (A)•F-(2)  E+  (2)  -(24) 
 G(2) 

           R1(2) =  (25)  27riK - KF- (K)G(2)(2 - K)• 

From (13b) the unknown function  R2(2) also can be found by the same 

procedure. 

 R2(2)  - 21r2ik -1/KFk--(K2F)G-((AA))(2-(26) 
where 

 A2=Ky  k2  —  K2
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    Finally, the scattered part for the harmonic P plane wave is 

      A=°1 r1K— 2  F-(2) 
      27riF-(K) 

        ( K2ex 
2B                    22)±.11/(k+K)(k-A)K+2)(K-K) 

 A 

 X                     G(2) 

             +A/k2-221y1). d2          X ei(2x 
 .l—x' 

                                          (27)            1rlk—dlF-(2) 

                                       ° 

 2iri K  —  (lc) 

  T(K2   2.—tc2)/1-1/(k+2)(K—2)  +( 2 K2  22)K1/(k+  K) (K—  /C) 

 X 

 G(2) 

       x ei(2x v K2-121y')  d2   2—  K  ' 

   Specifying the incident S wave in the form 

                  i(Kx+ A/K2— K2y) 
       cbo-= e  Cb0=0,  —K<pc<K, (28) 

we find also in the similar way 

 =  1r°IK-2 F-(2)  2
irij--V  k—K  F-(K) 

        ( 1,C,-22)K1/(k K)(K-F K)+2                      ( K2     Xic2)21/(k — 2)(K+2) 
                     G(2) 

 xeiOx  vk2--A21y1)   dA   2 —  K  ' 

   1 r  F- (A)(29) 
         27rik—K F- (K) 

 ±  K21/  (k+  2)(k  —  K)(K-1-  K)(K—  2)  +( K2 —K2)(I2 —22) 

         2 

 X  G(2) 

       x ei(2x vK2-221y1)   d2                              •  2 —  IC 

The upper signs refer to  y>0, the lower to  y<0 in (27), (29). 

   §3. In this section we produce the solution of a pulse diffraction 
with the aid of the known solution of harmonic wave by the principle of 

superposition. 

   Assume that the incident P plane pulse has the form
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                                  0 : It —r cos (8 — a)/a  ur° = cos (0 —a)13(taos (0 — a)) = 

  

1  cos  (0  —  a)  :  1  I  —  r  cos  (0  —  a)/  al<s 
                                       (30) 

The integral representation of the function is 

            1C
-sin(ska)—ikav--rcos(0 —a))dk        ttr°—

-         •cos (0 —a)'k'e(31)         7r 

The scattered pulse for the incidence of the pulse of form (30) can be 

obtained by superposition of the solution (27) for the incidence of har-

monic wave. Namely, the P part of the scattered pulse is for 0>0 

            _1_r r°P(2,,c){cos 0Vkg —22 sin 0}           urk(2 — K) 

                                 cos8+  Vk2  —22  sin 6)) 
 X  sin ska e—ikadk. (12                           (t--ka                                          (32) 

                K) =1/ K-2F-(2)H(2,  K) 1                                           (33)                        K — KF-(K)G(2)  27ri 

     H—(2,r)=(T—r2)( IC,222)± al/ (k+ tO(K— K)(k 2)(K-f- 2) (34) 

For 0<0,  —0 takes the places of 0. 

   Exchange the order of integration, change the variable 2 to r defined 

by  2=k cos  r  =  k  cos(0+  is) and deform the contour  C  to the line  0=  const ., 
 —  co<s<co as in Fig . 4. 

   Integrate with respect to k, to find 

          0)H(a).r cos(a — 8)) i  Cs2 P(r ,a.) sin (0-4-is)  cosh  sds  =  —  cos (a             G(a) D(ta 7  J.9, cos (0-Fis) — cos a 
 _  i P(r, a) sin  (0+is)  cosh  s  ds (35) 

 7r  cos  (0  +is)  —  cos  a 

                                  s2= cosh-1a(t+e)               s1= cosh-1 a(1— e)  

                                                                                               _ 

       rr '  (36) 

                k cos a= K cos fl, 

where the first term vanishes for  101  <a and the third term is the com -

plex conjugate of the second. 
   When the ratio  2e/r of the pulse width  2s to the distance  r from the 

edge of the crack is small and P(a ,  r) varies slowly, we write approxi-
mately for  Kr/a-I-e
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 k.   -le  - 
 19  a  71  •  is 

 Fig.  4.  Fig.  5. 

 ury  =  -  cos (a-0) H(a) a                        D(t-—rcos (a-0))            G(a) 

                                 0  
            1/2kvIC- k cos 0 H(0' a).F- (0) sin                                   2  
              7r(2re- k cos a)  G(B)F1-(a) 

    x1Y2  1- 1}c/s)).(37)                -s2sin{(04-a-kis)/2} sin {(0 - a+ is)/2)- 

Integrate with respect to s, to find 

           H(a) zerv= - cos(a- 0)G(a)D(t- a cos(a-  0)) 
                                                       s2 

  1/21-1/K- k cos  0F- (8)1" 'a) sin  2(sinh                              2 sink S2  

   71-(2R - k cos a)  Fi-(a)G(0)tanu+a)-tan1(02a)}, 

                                 2 

                          sin sin—2-- 

                                          (38) 

       F1- (2) =- / K-k -F- (2)sn,i              -.h=s2,\Ia(t+e)-r  2 2r  ' 

where the first term expresses the reflected pulse and the second term ex-

presses the diffracted pulse. 

   Next, we find the S partof scattered pulse in the similar way for  0>0 

        ttos= _ 1y .r Q(2, ic)-(2cos  0  +1/  K2  -  22 sin 0}                                  k(2 - tc)
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 sin  elfb —iKb(t—                             (1"60A/K2—" sin °))dK(12(39)  X—  Ke 

               ,1k—A F-(2)  1(2, IC) (40)               Q(2 ' K)=  27ri  Y K —ICF-(K)  G(A) 

 1(2,  K)=   —K2)21/(k+2)(K  2)+(K92  -  22)K-1/  (k+  K)  (K  —  K). (41) 
Exchange  the order of integration and transform the contour in A plane 

to the path in  8 plane defined by  2=K  cos  8=K  cos  (0  -Fis) as shown in 

Fig. 5. 

   When the ratio  2s/r is small, we find for  t(r/b-Fe 

 ties  ci/  K/  k cos  (13-0)  a  D(1—  b  cos  (R—  0)) 
            CV2Kk— K cos  0E-(0)I(0, () sin                                 8 

 (2R—  K  cos  (3)F1-(13)G(0) 

                                                        1 

         SP:S2 
              sinh 2sinh— 

           X-{tan-1(  0+  ,)  —tan-1(  02 _ 
 sin  2  sin   2 

                             lb(t+s) —r  c—sin a2 2  ,2/sin sinh2r(42) 
                                                                                                                                                                                  ' In this case the part  —  k0 of the contour does not contribute to the in-

tegral and for 0>  —18, the first term vanishes. 

   In the similar way as the above, we can obtain the displacements due 

to the incidence of a plane S pulse of rectangular form. 

   Assume that the incident pulse has the form 

 zee"—  cos  (R  —  0)1)(t—  ;  cos  ((3+0)) (43) 
The scattered pulse for the incidence of the pulse of form (43) can be 

obtained by superposition. The P part is for 0>0 

          urn__ P(2, /0{2 cos61-1-1/k2 —22 sin  0}  K(2 —  K) 

            X  sin  Ekae— ikait —(2 cos  0+ A/k2-22 sin 04dke/A,                                          (44) 

 P(2, 1   JK—   F-(2)  H(2,  K)                    2ni V k— K  F-(K)  G(2) '(45) 

 H(2,  K)  —  22)/C1/(k — K)(K+ IC)(K2  — K2).1-1/(k— A) (K±A).  (46) 

                          2
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We have the same transformation as the case of P part for the incidence of 

P pulse and integrate with respect to  k  to find for  1<r/a4-e 

              Kcos (OGRaa).11(a) D(t--ra cos  (a-0)) 
             c 1-1/2k/ K- k cos F-(0)H(0, a) sin 20  cs2 

 ni/K  An-  k  cos  a  G(0)  J  -S2 

  X1 1              {sin { (0 +a+is)/2}-sin {(0--ad-is)/2}1ds(47) 
where for  0>  -  a the first term vanishes. When the ratio  2s/7 is small, 

the approximate solution can be obtained 

               urP                 k              - c'KGcos (0-(a)a)H(a)D(t- cos  (a-0)) 

               c 2k K - k cos 0  F-  (0)' a) sin —e 

                                                a  

               ni/K  2E-  k  cos  a  F1-(a) G(0) 

                                                    S2 
                  sinh s22sinh-- 

          X itan-1( 0+- tan-1(2a)P(48) 
            sin  sin      2  2 

                      et= sin -R/sin—a 
               22 ' 

   Transform in  th14 same way as the case of S part for the incidence 

of P pulse, then the S part is for 0>0 

        zee- 1f° Q(2, r)-(2cos0-H/K2 - 22 sin 0} sin  eKb   K(2-  K) 

 X e-iKbtt- it,-(2 cos 0+  1/IC2-22 sin  °)}dKdA, (49) 

 Q(2, K) 1  _Ik - F-(2)1(2, K)                                            (50)                      27riV k  -  K F-(K)G(2) 

   1(2, K) = +KAI/ (k -K)(k+2)(K- A) +(22  -  K2)(  K22  -A2). (51) 
When the ratio  22/7 is small, for  t<r/b-Fe 

 zees=  -  cos  (( -  0)  GI((r3R))D(t-  cos  (0  -  13)) 

            1/2Kk - K cos 0F-(0)1(0,R)sin 
 in  AR  -K  cos  /9  F1-C(3)G(0)
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            SofSol 
                sinh,sinh2-1 

           X {tan-1(0+s—tan-1( _R)i-,(52) 
                     sin  sin      2  2 

  where for  101</3 the first term vanishes. 

      §4. In our numerical example we assumed 

 K=V3k 

 a=45°, 135° for the incidence of P pulse 

 R=60°,  120° for the incidence of S pulse 

      u, P S 
         — 8>0PP 

                                                     0.4   8<0a .=US'0.4 
                    a =  45° 

                                                                                                                0.2       0.2• 
 -•--0 
 160 .140 120 Too 80 60 yo--- 061.480 /60 ,*i"4— 

                                                     -02                                                                                                                 -02 

                                                                                                                                    -0.4                                                                      -0.4 

                             =135°0.4  a  =135" 
                                                                                                                 0.2                                                          0.2 

 08 --180 161----77r."1"''—.77— 80 6040 20  a  0-180  /60  14080 60 4020 
                                                     -02                                                                                                         -02 

 -0.4                                                                                                                           -04 

        a) diffracted P pulse b) diffracted S pulse 
        Fig. 6. The azimuthal distribution of the amplitude of displacement Ur,  140 

          of the diffracted pulse for the incidence of .P pulse. 

     We calculated the azimuthal distribution of the amplitude of displace-
  ment of the diffracted pulse which is the second term in the equation 

  (38), (42), (48), (52) at  Vas/r  =0.025 and  t=r/a+E for the incident pulse 
  of unit amplitude. Ur,  ite thus calculated are shown in Fig. 6, 7. For 

  example, the amplitude of P part of the diffracted pulse for the incident 

  angle  a=45° of the P pulse increases with approach of 0 to 0=45° for 

 8>0 or to  0=-45° for  8<0 and the phase is reversed at the boundary 

  of 0=45° or  0=-45°. But the composite amplitude of this pulse with
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 Uo 
 SP  :   I'  SS 

 0.4  at, 

 0.2  0.2 

 6-180 160  NO  120  100  8D 60 40  20•—  8-180  160  140 120  100 80  60  0  20 

 02 

 0.4  -0.4 

 u,  /9-120°  0=720.  l0.4 
 2  0.2 

 8.-780-ME6/2  140  720  100 80 60 40 20  0  0-180  :0 60 40 20 

      -02 -02 

 -0.4 

         a) diffracted P pulse b) diffracted S pulse 
        Fig. 7. The azimuthal distribution of the amplitude of displacement  ur, 

          of the diffracted pulse for the incidence of S pulse. 

   the reflected P pulse for 0<0 or the incident pulse for 0>0 is continuous 

   at the boundary. While with respect to the S part the amplitude varies 

   continuously and becomes zero at 0=65°54' for 0>0, the phase is revers-

   ed at the boundary of 0= —65°54' for 0<0 and the composite amplitude 

   of this pulse with the reflected S pulse is continuous at this angle. 

      For the incidence  of S plane pulse with incident angle  13=60°, the 

   amplitude of the diffracted P pulse is continuous and decreases to zero at 

   0=30° for 0>0, while the amplitude increases to maximum at the angle 

   0= —30°, at which the reflected pulse is inclined to the  x-axis, and the 

   phase is reversed at the boundary for 0<0. 

      The diffracted S pulse increases to maximum with approach of 0 to 

   0= —60° or  0=60° and the phase is reversed at these boundaries. The 

   composite amplitude of the diffracted pulse with the incident for  65.0 or 

   the reflected pulse for 0<0 is continuous at these boundaries as in the 

  incidence of the P pulse. The amplitudes of the above all diffracted 

   pulses decrease with the increase of the angular distance measured from 
   the shadow boundaries as known from Fig. 6, 7. Still, such a decrease 

  of the amplitude may be slow with the increase of the pulse width 2e. In
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 order to show such a feature, we plot  -Vas/r versus an angle  0 in Fig. 8, 9. 

 The angle at which the amplitude of diffracted pulse decreases to 1/10 of 

 that of incidence is measured from the shadow boundary. For the inci-

 dence of P pulse,  0 of  PP, the diffracted P pulse, in Fig. 8 is measured 

 from  0=45° towards the crack plane and  (I) of PS, the diffracted S pulse 

 is measured from  0= —60° to 0°. For the incidence of S pulse  0 of SP, 

 the diffracted P pulse, is measured from 0= —30° to 0° and  0 of SS, the 

 diffracted S pulse, is measured from  0=60° to 180°. Generally these ex-

 tents  0 are approximately proportional to  Vae/i. 

    Next, inquire the dependency of the displacement at each point on 

 time. The time variations of the calculated displacements on a circle of 

 r=100ae are shown in Fig. 10, 11, when the plane pulse is incident on 

 the crack at the incident angle a=45° or  19=60°. 

 8=45° 0=50°  0.4 

 6=70° 
 02  02  0.2 

 0 12  0  1  2  0  1  2 -(7i_.÷81 

 

0  1 2 0  1 2  0  1  2 

           -02  0=-45°  0=-110°  8=-20° 

                          a) diffracted P pulse



                                                      17 

                             t9                   tie                                          =85° 

      0,101- 
   t-(r/b-E)        0  1 21 2 --- 

 B=-65`54' 
                             e=-60° 19=-45° 

 04- 04 

 02-  0: A i..  0.1 

 0  1  2  1  2  0  1  2 

                          b) diffracted S pulse 
           Fig. 10. The displacement  ur,  140 for the incidence of  .P pulse.            

0   1  2   0  1 2  0  1  2  '14-Q 

             -0.2  -02 

            -0.2  -0.4  8=-25° 
 th.  -3°* 

                           a) diffracted .P pulse 

 as  0=60'  04. 0-65° 

 0.2  ' 02 0.2  8'80' 

 0 0 1 2 0 1  2  —  L-Ste2.0 

         Ol  ato=4°. 
 o  1 2  0  12 

                          b) diffracted S pulse 
          Fig. 11. The displacement  ur,  210 for the incidence of S pulse. 

   It is remarkable that the displacements of diffracted P pulses as well 

as S pulses vary smoothly with time, while the forms of the incident and 

reflected pulses are the rectangular type. And the sharpness of the forms 

of diffracted pulses decreases with the increase of the angular distance 

measured from the shadow boundary. We see also from the time varia-

tion that the phases of diffracted pulses are reversed at the boundaries, 

as found in the azimuthal distribution of the amplitude. At the shadow 

 boundary, the incident or reflected pulse appears simultaneously with the 

diffracted one and with the deviation from this direction the diffracted P 

pulse appears after the reflected or incident P pulse, followed by the 
diffracted S pulse.
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