Title: Nature of the Volcanic Micro-Tremors at the Volcano Aso Part 1. Observation of a New Type of Long-Period Micro-Tremors

Author(s): KAMO, Kosuke

Citation: Bulletins - Disaster Prevention Research Institute, Kyoto University (1962), 54: 1-16

Issue Date: 1962-03-20

URL: http://hdl.handle.net/2433/123719

Type: Departmental Bulletin Paper

Publisher: Kyoto University
NATURE OF THE VOLCANIC MICRO-TREMORS AT THE VOLCANO ASO
PART 1

BY

Kosuke Kamo

KYOTO UNIVERSITY, KYOTO, JAPAN
Nature of the Volcanic Micro-Tremors
at the Volcano Aso

Part 1. Observation of a New Type of Long-Period
Micro-Tremors by Long-Period Seismograph

By

Kōsuke Kamo

Aso Volcanological Laboratory, Faculty of Science, Kyoto University
(Communicated by Prof. K. Sassa)
Nature of the Volcanic Micro-Tremors at the Volcano Aso

Part 1. Observation of a New Type of Long-Period Micro-Tremors by Long-Period Seismograph

By

Kōsuke Kamo

Aso Volcanological Laboratory, Faculty of Science, Kyoto University
(Communicated by Prof. K. Sassa)

Abstract

The expectation that the volcanic activity may be indicated by studying the character of appearance of volcanic micro-tremors, has been entertained by many geophysists. The four kinds of volcanic micro-tremors found at the Volcano Aso, as classified by Sassa, are of comparatively short period. The existence of the volcanic micro-tremors of the 2nd kind, however, must be noted, and the period amounts to 3.5~7.0 sec. Volcanic micro-tremors of such a long period are not always detected anywhere. Expecting an existence of volcanic micro-tremors of longer period than the 2nd kind, observation with a horizontal seismograph of long-period was carried out since Mar., 1958. A new type of long-period volcanic micro-tremors, amounty to 40~55 sec., was found, and the appearance of this volcanic micro-tremors is likely to be related with the volcanic activity.

1. Introduction

The Volcano Aso, one of the most active volcano in Japan, is situated at the north end of the Kirishima Volcanic Belt, and Naka-dake, the center of activity, is the middle one of the five central cones rising in the volcano. On the top of Nakadake there are four craters, the 1st, 2nd, 3rd and 4th in consecutive order from the north. It is pointed out that the center of activity had been shifted from the 4th to the 1st since Sep., 1932.
The geophysical study of the Volcano Aso was started with Sassa1,2,3, who carried out the observation of the volcanic micro-tremors and studied the nature of them. According to his classification4, the volcanic micro-tremors, accompanied with or preceded by the volcanic activities of the Volcano Aso, contain the four kinds of tremor, of which each has the particular type of wave and the variations of amplitude and period and also the frequency of occurrence are closely related with the volcanic activities (see Table 1). A interesting fact is the existence of the volcanic micro-

<table>
<thead>
<tr>
<th>Kind</th>
<th>Period in sec.</th>
<th>Velocity km/sec.</th>
<th>Type of tremors</th>
<th>Mechanism generated tremors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>ca. 1.0</td>
<td>1.0</td>
<td>surface wave (Love type)</td>
<td>internal eruption of volcanic gases</td>
</tr>
<tr>
<td>2nd</td>
<td>3.5～7.0</td>
<td>0.9</td>
<td>surface wave (Rayleigh type)</td>
<td>vibration of magma reservoir</td>
</tr>
<tr>
<td>3rd</td>
<td>0.5</td>
<td>—</td>
<td>(body wave)</td>
<td>internal eruption (only in active time)</td>
</tr>
<tr>
<td>4th</td>
<td>0.2</td>
<td>—</td>
<td>(body wave)</td>
<td>surface eruption</td>
</tr>
</tbody>
</table>

tremors of the 2nd kind characterized by the long period amounting to 3.5～7.0 sec.. Tremor of such a long period has not been usually observed, excepting that of Taal Volcano5. Then the writer's attention6 is attracted to the problem whether any tremor of longer period exists or not. Then a long-period seismograph is devised and used for observation of volcanic micro-tremors at the Aso Volcanological Laboratory.

2. Long-period seismograph with horizontal pendulum

It is generally accepted that horizontal pendulum is more suited for design of long-period seismograph than vertical one. Then the writer tried to make a seismograph of horizontal component. The apparatus will be noted by LP-1, of which constants and main features are the following : the pendulum is sus-

![Fig. 1. Pendulum parts of horizontal component of long-period seismometer.](image-url)
pended with piano-wire of 3 mm. in diameter, according to Zöllner's type
and is attached with arms, of which the length amounts to 81 cm, and
each end is attached with heavy mass of 4.5 kg, for increasing the moment

<table>
<thead>
<tr>
<th>Table 2. Constants of long-period seismograph LP-1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of pendulum</td>
</tr>
<tr>
<td>Moment of inertia</td>
</tr>
<tr>
<td>Equivalent length of pendulum</td>
</tr>
<tr>
<td>Length between center of gravity and rotational axis</td>
</tr>
<tr>
<td>Period of pendulum</td>
</tr>
<tr>
<td>Period of galvanometer</td>
</tr>
<tr>
<td>Internal resistance of galvanometer</td>
</tr>
<tr>
<td>Critical damping resistance of galvanometer</td>
</tr>
<tr>
<td>Sensitivity of galvanometer</td>
</tr>
<tr>
<td>Magnification of maximum value</td>
</tr>
<tr>
<td>Recording-drum speed</td>
</tr>
</tbody>
</table>

Fig. 2. Magnification curves of long-period seismographs.
LP-1; $T_0=180$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$
LP-2; $T_0=6$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$
GP; Ewing-Press long-period moving-conductor electro-magnetic seismograph,
$T_0=15$ sec., $h_0=1$, $T_g=70$ sec., $h_g=1$.
VRS; Benioff electromagnetic linear strain seismograph, $T_g=70$ sec., $h_g=1$.
of inertia and period, and maintaining its stability, as seen in Fig. 1. The period is depended on the tilt of the apparatus, and is not over 240 sec. for the apparatus to be used with stability. Thus the observation had been carried out in the condition of period of 180 sec. A sensitive galvanometer, having 100 sec. in period, is directly connected with the LP-1 seismograph. The constants of this system are shown in Table 2 and the magnification curve is in Fig. 2. A seismograph of Galitzin B-type, as noted by LP-2, designed by Sassa was used for comparison with the LP-1 and the magnification curve of the former shown in Fig. 2, too.

The pendulum part of the system was set on the base of vertical tunnel near the Laboratory, of which the depth is about 16 m. The base is lava coated with concrete. The entrance of tunnel was covered with soil and attached with three doors for the inside of tunnel to be triply isolated from outside. It is away from as much of unfavorable effects of temperature or wind as possible. The pendulum part was set to record E-W component, since the volcanic micro-tremors of the 2nd kind are predominant in the

![Fig. 3. Equipment of underground pendulum room.](image)
3. Observation

3.1. The Alaskan Earthquake of Apr., 7, 1958

By LP-1 seismograph the Alaskan Earthquake74 of Apr., 7, 1958 was recorded. The epicentral distance is 52°, and the azimuth is N28°01'E. The great circle between the observing station and the epicenter is shown in Fig. 4. Unfortunately another shock occurred in the Pacific Ocean near Japan and disturbed the record. As shown in Fig. 5, some of long-period surface waves were recorded. Among them, the comparative clear phases are regarded as G\textsubscript{1}, G\textsubscript{2} and R\textsubscript{2}-phases. Their arrival time, period, travel time and velocities are listed in Table 3. The group velocity of R\textsubscript{2}-wave is plotted in comparison with the dispersion curve and those obtained by Ewing and Press89, as shown in Fig. 6.

3.2. The ground noise

The ground noise of short period is not so predominant to disturb the purpose, at most 0.1 \(\mu \) in amplitude, since the observing station is remote in about 2 km. from the nearest railway and highway. Thus the ground noise recorded on the seismogram is usually of long period. Examining the meteorological condition, this ground noise is likely to be accompanied with
Fig. 5. Long-period seismogram (E-W) of Alaskan earthquake on April 7, 1964, showing long-period waves.
Table 3. Arrival time, period, travel time, and velocity for long-period waves of the Alaskan earthquake of April 7, 1958.

<table>
<thead>
<tr>
<th>Arrival time</th>
<th>Period in sec.</th>
<th>Travel time in sec.</th>
<th>Velocity km/sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:51:23.4</td>
<td>76.0</td>
<td>1255.9</td>
<td>4.78</td>
</tr>
<tr>
<td>02:57:09.8</td>
<td>102.6</td>
<td>8793.3</td>
<td>3.87</td>
</tr>
<tr>
<td>03:02:34.4</td>
<td>182.2</td>
<td>9117.9</td>
<td>3.73</td>
</tr>
</tbody>
</table>

Theoretical Mantle Rayleigh-wave (Continental Rayleigh-wave)

\[c/32 = 4.68 \text{km./sec.} \]

\[\beta_1 = 3.51 \text{km./sec.} \]

\[\beta_2 = 4.68 \text{km./sec.} \]

\[\rho_S = 1.25 \rho_0 \]

-X- Observed by Komo,

- Mantle Rayleigh-wave Ewing and Press

Fig. 6. Observed and theoretical dispersion of continental Rayleigh waves (after Ewing and Press).

Wind at the observing station. To find correlation between wind speed and amplitude or period of ground noise, an example of the correlations are shown in Fig. 7. The amplitude and period vary almost linearly with the variation of wind speed. When the wind speed is over 5 m./sec., the amplitude amounts to about 10 \(\mu \) and the period amounts to 40 sec., or more, sometimes 90 sec. in windy day. Thus when it is windy, the observation is difficult, or almost impossible. (a) and (b) of Fig. 8 are examples of the records obtained on windy and calm conditions, respectively. The dependences of amplitude and period on wind speed are shown in Fig. 9 and 10.
3.3. Long-period volcanic micro-tremors

As mentioned above, the LP-1 seismograph may be thought available for our purpose. In fact, when the eruption of the 1st crater of the Volcano Aso on July, 24, 1958, took place, the long-period micro-tremors, amounty to 40~55 sec., were recorded. Examining the records we can point out the followings: the amplitude is frequently over 10 μ. This tremor is usually composed of about four pairs of crest and trough and occurs discontinuously. As an eruption approaches, the number of crest and trough increases and the appearance is almost continuous with regular sinusoidal form of wave. Their disappearance on record begins at about an hour preceding an eruption. This conspicuous tendency is clearly found in Fig. 11 and 12. Moreover, the period is about 40 sec. in the initial stage of the appearance, but increases to 55 sec. before an eruption. To
Fig. 8. (a) A record registered by LP-1 seismograph on April, 17-18, 1958, windy days. Attenuator used = 1/2, time between two consecutive marks = 1 minute, 1/3.8 x the original record. LP-1; $T_s = 180$ sec., $h_0 = 1$, $T_p = 100$ sec., $h_p = 1$.

(b) A record registered by LP-1 seismograph on April, 19-20, 1958, calm days. Attenuator used = 1/2, time between consecutive marks = 1 minute, 1/3.8 x the original record.
Fig. 9. Wind speed and amplitude of tremors caused by wind.

Fig. 10. Wind speed and period of tremors caused by wind.

Fig. 11. Comparison of the tracings of LP-1 and LP-2 seismogram before the great eruption on June 24, 1958.
(a) Tracing of LP-1 seismogram
(b) Tracing of LP-2 seismogram
Note: Long-period tremors are recorded in both tracings, and the 2nd volcanic micro-tremors are only in the tracing of LP-2 seismogram.

Fig. 12. (a) A record registered by LP-1 and LP-2 seismograph on June 23~24, 1958.
Attenuator used = 1/2, drum speed = 0.97 cm/min., 1/5.5× the original record.
LP-1: $T_0=180$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$
LP-2: $T_0=6$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$.
Fig. 12. (b) A record registered by LP-1 and LP-2 seismograph on June, 24, 1958, continued from Fig. 12 (a).
Attenuator used = 1/2, drum speed = 0.97 cm/sec, 1/5.5 × original record.
LP-1: $T_0=180$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$
LP-2: $T_0=6$ sec., $h_0=1$, $T_g=100$ sec., $h_g=1$.

Fig. 13. (a) Tracing of LP-1 seismogram on June, 24, 1958, at the initial stage of appearance.
(b) Correlogram deduced by Tomoda’s method.
show this fact clearly, auto-correlation is applied by Tomoda's method. It is resulted that the period varies from 42.4 sec. in the initial stage to 49.6 sec. before an eruption, as shown in Fig. 13 and 14.

The relation of the variation of the long-period volcanic micro-tremors with volcanic activity, as described above, may be compared with those of the other kind of tremors pointed out by Sassa. Then the variations of mean amplitude and period of tremors of each kind are plotted in Fig. 15 during Apr., May and July of 1958, where the volcanic micro-tremors of the 1st and 2nd kinds are taken from the records of Wiechert-seismographs at the Volcanological Laboratory. The

Fig. 14. (a) Tracing of the LP-1 seismogram before the eruption on June 24, 1958. (b) Correlogram.

Fig. 15. Mean amplitude and period through April, May and June, 1958 (arrow indicates the great eruption).
long-period tremors appeared first on July, 22, corresponding to the increase of the volcanic micro-tremors of the 2nd kind, and after the eruption, though the observation was interrupted due to an accidental stoppage of electric current caused by the eruption, the tremors are not found at least on the 25th and the disappearance continued through July. On the other hand, the more minute variations from July, 23 to the eruption are shown in Fig. 16, with those of the volcanic micro-tremors of the 3rd kind observed at Hondo observing room near the crater by a high sensitive seismograph (this value was deduced only from the data in night, since in daytime the rope-way disturbed the observation). And also those of the 2nd kind and the mean wind speed per hour are together plotted there.

The long-period tremors begin to appear when the amplitude of the volcanic micro-tremors of the 2nd kind are large, and the amplitude of the former appears to decrease before an eruption in the similar tendency as that of the volcanic micro-tremors of the 1st and 2nd kind. The long-period micro-tremors can be discriminated from the ground noise by considering the wave forms of both, that is, the ground noise does not occur in regular sinusoidal form.

Fig. 16. Mean amplitude and period, per hour, of volcanic micro-tremors before the great eruption on June, 24, 1958 (arrow indicates the great eruption).
Though the observation was carried out in single component alone, the expectation that the wave type may be same as that of the volcanic micro-tremors of the 2nd kind is not always unreasonable. At any rate, it may be noted that there is a close relation between the occurrence of long-period tremors and that of tremors of the 2nd kind.

4. Conclusion

The existence of a new type of volcanic micro-tremors, having the period of 40~55 sec. and accompanied with volcanic activity, was detected by carrying out the observation at the Volcano Aso with long-period seismograph. This tremor appears to be related closely with volcanic activity in the similar tendency as the volcanic micro-tremors of the 2nd kind, as pointed by Sassa.

The type of the wave and the propagation velocity, however, are not yet determined, since the observation was carried out only in E–W component. These problems will be resolved near future by carrying out observation with several seismographs.

5. Acknowledgment

Much of this work was suggested by Professor Kenzo Sassa of Kyoto University, to whom the writer owes for his interest and encouragement. The writer wishes to express his thanks to Dr. Kennosuke Okano of the Abuyama Seismological Observatory of Kyoto University for his many advices, and is greatly indebted to Mr. Toshiji Eto for the observation.

Reference

4) K. Sassa, loc. cit. 1).
Publications of the Disaster Prevention Research Institute

The Disaster Prevention Research Institute publishes reports of the research results in the form of bulletins. Publications not out of print may be obtained free of charge upon request to the Director, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.

Bulletins:

No. 1 On the Propagation of Flood Waves by Shoitiro Hayami, 1951.
No. 2 On the Effect of Sand Storm in Controlling the Mouth of the Kiku River by Tojiro Ishihara and Yuichi Iwagaki, 1952.
No. 3 Observation of Tidal Strain of the Earth (Part I) by Kenzo Sassa, Izuo Ozawa and Soji Yoshikawa. And Observation of Tidal Strain of the Earth by the Extensometer (Part II) by Izuo Ozawa, 1952.
No. 4 Earthquake Damages and Elastic Properties of the Ground by Ryo Tanabashi and Hatsu Ishizaki, 1953.
No. 5 Some Studies on Beach Erosions by Shoitiro Hayami, Tojiro Ishihara and Yuichi Iwagaki, 1953.
No. 6 Study on Some Phenomena Foretelling the Occurrence of Destructive Earthquakes by Eiichi Nishimura, 1953.
No. 8 Studies on the Failure and the Settlement of Foundations by Sakurö Murayama, 1953.
No. 9 Experimental Studies on Meteorological Tsunamis Traveling up the Rivers and Canals in Osaka City by Shoitiro Hayami, Katsumasa Yano, Shohei Adachi and Hideaki Kunishi, 1955.
No.10 Fundamental Studies on the Runoff Analysis by Characteristics by Yuichi Iwagaki, 1955.
No.11 Fundamental Considerations on the Earthquake Resistant Properties of the Earth Dam by Motohiro Hatanaka, 1955.
No.16 Consideration on the Mechanism of Structural Cracking of Reinforced Concrete Buildings Due to Concrete Shrinkage by Yoshitsura Yokoo and S. Tsumoda, 1957.
No.19 On the Application of the Unit Hydrograph Method to Runoff Analysis for Rivers in Japan by Tojiro Ishihara and Akiharu Kazamatsuri, 1958.
No.20 Analysis of Statically Indeterminate Structures in the Ultimate State by Ryo Tanabashi, 1958.
No.21 The Propagation of Waves near Explosion and Fracture of Rock (I) by Soji Yoshikawa, 1958.
No.22 On the Second Volcanic Micro-Tremor at the Volcano Aso by Michiyasu Shima, 1958.
No.23 On the Observation of the Crystalline Deformation and Meteorological Effect on It at Ide Observatory and On the Crystalline Deformation Due to Full Water and Accumulating Sand in the Sabo-Dam by Michio Takada, 1958.
No.26 On the Rheological Characters of Clay (Part 1) by Sakurö Murayama and Tōru
Shibata, 1958.

No.27 On the Observing Instruments and Tele-metrical Devices of Extensometers and Tiltmeters at Ide Observatory and On the Crustal Strain Accompanied by a Great Earthquake by Michio Takada, 1959.

No.29 An Analysis of the Stable Cross Section of a Stream Channel by Yuichi Iwagaki and Yoshito Tsuchiya, 1959.

No.30 Variations of Wind Pressure against Structures in the Event of Typhoons by Hatsuo Ishizaki, 1959.

No.31 On the Possibility of the Metallic Transition of MgO Crystal at the Boundary of the Earth’s Core by Tatsuhiko Wada, 1960.

No.34 Volcanic Micro-tremors at the Volcano Aso by Michiyasu Shima, 1960.

No.37 On the physical properties within the B-layer deduced from olivine-model and on the possibility of polymorphic transition from olivine to spinel at the 20° Discon- tinuity by Tatsuhiko Wada, 1960.

No.39 Crustal Stucture in Wakayama District as Deduced from Local and Near Earthquake Observations by Takeshi Mikumo, 1960.

No.41 Analysis With an Application to Aseismic Design of Bridge Piers by Hisao Goto and Kiyoshi Kaneta, 1960.

No.42 Tilting Motion of the Ground as Related to the Volcanic Activity of Mt. Aso and Micro-Process of the Tilting Motion of Ground and Structure by Yoshiro Ino, 1961.

No.44 Observational Study on Microseisms (Part 1) by Kennosuke Okano, 1961.

No.47 Observational Study on Microseisms (Part 2) by Kennosuke Okano, 1961.

No.48 On the Crustal Movement Accompanying with the Recent Activity on the Volcano Sakurajima (part 1) by Keizo Yoshikawa, 1961.

No.50 On the Crustal Movement Accompanying with the Recent Activity of the Volcano Sakurajima (Part 2) by Keizo Yoshikawa, 1961.

No.51 Study on Geomagnetic Variation of Telluric Origin Part 1 by Junichiro Miyakoshi, 1962.

No.52 Considerations on the Vibrational Behaviors of Earth Dams by Hatsuo Ishizaki and Naotaka Hatakeyama, 1962.

No.53 Some Problems on Time Change of Gravity, (Parts 1 and 2) by Ichiro Nakagawa, 1962.
