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  Basic Studies on the Criterion for  Scour Resulting 

       from Flows Downstream of an Outlet 

                      Synopsis 

   As a first step to establish the mechanics of local scour, downstream of 

a culvert and an outlet, and to clarify the method for preventing local 

scour, the present paper deals with a theoretical consideration on the hy-

draulic behaviour of flows, downstream of an outlet, especially the bound-

ary  layer' developing there, and a theory on the criterion for scour result-

ing from such flows, based on the results of detail experiments. Both 

theoretical results of the boundary layer development and the criterion for 

scour from flows, downstream of an outlet, are in good agreement with 

the results of experiments. Some contributions to design a procedure for the 

apron downstream of a culvert and an outlet are presented from the stand-

point of the criterion for scour. 

                    1. Introduction 

   In the past years, the design and planning of the apron at the down-

stream end of an outlet have usually been made by rule of thumb, to some 

extent, in determining the length of the apron required for maintenance 

of the outlet, as the mechanics of local scour resulting from flows has not 

been established yet because of complicated hydraulic phenomena. 

   Up to the present day no attempt has been made to derive a general 

conclusion on the local scour from the observations made on existing hy-

draulic works. According to  Leliayskyl), however, the methods for the de-

sign and planning of the apron may be divided into two different tendencies: 

the first one is to collect information on the hydraulic works which have 

either been built to the required dimensions from the start, or were sub-

sequently strengthened until they were capable of permanently resisting the 

action of flow for local scour, and to derive a general conclusion from the 

analysis of such collected information, as the method of  Blight' proposed
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in 1912; and the second, to perform the experiments or observations on the 

scour which occurs on the river bed downstream of the apron of existing 

hydraulic works, and to attempt to find general empirical laws appli-

cable to practical purposes, as Leliaysky did, based on the suggestion by 

 Khosla" The former method, the Bligh formula, was expressed by the 
relationship among the overfall width of the hydraulic works protecting 

the bed against scour, the discharge of flow, the height of the fall from 

the crest of a weir, or from the top of a shutter or a gate, down to the tail 
water level, and the coefficient characteristic of the material of a channel, 

on the basis of the observed results for the works preventing scour con-

structed in irrigation canals in India. It may be obvious of course that 

the hydraulic consideration of the Bligh formula should be questioned. 

However, the formula has been applied to practical problems in agricultural 
engineering because there are no hydraulic considerations on the protecting 

method against scour at the present time. The latter method was based on 

the measured results of scour holes in existing hydraulic works and their 

models. According to Khosla as an example, the depth of scour being a 

basic parameter in designing and planning hydraulic works is expressed by 

the term of total discharge for any given water level, on the basis of the 

fact that the length and width of the apron required for maintenance of 

the works are closely connected with the depth of scour. 

   On the other hand, the formula for the length of an apron derived by 

the U. S. War Department from the model tests at Iowa University in 1935 

can be  cited". The formula is one of a few which aim at general applications 

as well as the Bligh formula described above. In the formula, the length 

of an apron is expressed by the relation including the discharge per unit 

width of the apron, the height of fall and the tail water depth, but no 
characteristics of bed materials. Besides, the studies concerned with the 

mechanism of local scour by Veronese° and  Ahmad" can be cited. Since, 

however, the author's present study is to limited the criterion for scour from 

flows, the considerations on the mechanism of scour will not be given in 

detail. 

   Recently,  Minami6 studied the method for determining the length of an 

apron based on the characters of free turbulent jets after considering the 

Bligh formula. Since the results obtained on the critical tractive force were 

directly applied to estimate the length of the apron required for main-
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tenance of the river bed, the study may be questioned, and a general 

formula for determining the length has not yet been obtained. 

   The hydraulic  demand for design and planning of the length of an apron 

and its type is to reduce effectively the damage due to scour, or more strict-

ly, to completely prevent the local scour. In this paper, based on the 

later demand the author investigates theoretically and experimentally basic 

relationships for determining the length of an apron under the condition that 

the sediment bed downstream of an apron is not absolutely scoured by action 

of flow. 

   In order to establish the mechanics of scour and a criterion for scour 
downstream of a culvert and an outlet, it is necessary, first of all, to analyze 

the characters of flows close to a bed, especially the boundary layer develop-

ing there. In the second chapter, therefore, the boundary layer growth in 

wall jets issuing from a submerged outlet is considered to be based on the mo-

mentum equation for a boundary layer connected with two-dimensional free 

turbulent jets. It is very difficult to analyze the boundary layer growth in 

wall jets having a free surface by solving the momentum equation. There-

fore, the boundary layer growth in a free turbulent jet with a wall is analyz-

ed, and the experiments of the resistance laws, the boundary layer growth 
and the diffusion of the wall jet are performed and compared with the theo-

retical results. 

   In the third chapter, the criterion for scour from wall jets issuing from 

a submerged outlet is considered theoretically, based on the procedure in the 

studies on the critical tractive force by the  authors",  8) by completely ap-

plying the characters of wall jets. The criterion for scour in the theory is 
defined as the criterion for movement of sands and gravels at or near the 

downstream end of an apron, and the apron to be considered is of a smooth 

bed. The theoretical results are compared with the experimental data by 

applying a new definition for movement of sands and gravels proposed by 

the author in the previous  papers) Furthermore, empirical formulas for the 

criterion and for determining the length of an apron necessary to prevent 

the river bed downstream of a submerged outlet from scour under the con-

dition already described, are proposed, and design charts available to practi-

cal applications are presented. In addition, some considerations for the 

hydraulic design on the length of an apron are briefly described from the 

standpoint of the criterion for scour, and based on some examples for practi-
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cal purposes. 

  2. Boundary Layer Growth in Wall Jets  Issuing from a 

                  Submerged Outlet 

   The flows downstream of a culvert and an outlet are generally divided 

into two cases  ; the first is the case when the flow becomes a submerged 

jet or a submerged efflux, and the second, when the flow becomes super-
critical flow. In the latter, the flow connects with the uniform flow down-

stream by hydraulic jump, and sometimes the flow runs on downstream in 

the state of super-critical flow. The boundary layer growth in this case had 

been studied by  Halbronn"), Craya and  Delleuri",  Bauern) and in Japan, 

 Iwasan', by applying the theory of a boundary layer. By using adequately, 

the results obtained by the above authorities, therefore, characters of the 

flow may be cleared. On the other hand, behaviors of the flow in the former 

case are complicated, and especially the general theoretical approach for 

solving such flows associated with jet diffusions may be very difficult. It 

may be the most important problem for disclosing the mechanism of local 

scour and the criterion for scour to analyze mathematically the flow characters 

in this case with the aid of experiments. 

   In the past years, as a study on the flow downstream of a culvert and 

an outlet, experimental investigations for determining the discharge coefficient 

of flow through the outlet were made. In 1950,  Henryl" investigated the 

same problems, and moreover, the internal mechanism of the flow, especially 

the exchange of hydraulic energy was considered. However, the boundary 

layer growth and characters of the flow were not cleared. Some experiments 

on the flow issuing from a submerged outlet were made by Tsubaki and 

 Furuyan) in 1952, and some characters of the flow, especially water surface 

profile, length of surface vortex and decrease in maximum  velocity, were 
considered by comparing with the results of Henry and  Albertsonn) 

   Recently,  Glauertt" investigated theoretically jet diffusion along a wall, 

which he named a wall jet. Subsequently  Bakken) performed an  experi-

ment of a wall jet and compared it with Glauert's theoretical results. But 

it seems that, in his paper, there is a doubtful point in applying the re-

sistance law to the basic equations. More recently, Schwarz and  Cosart19) 

investigated theoretically and experimentally the two-dimensional turbulent



 6 

wall jet after the author's investigation as is described in the  following"). 

It was shown from the theoretical considerations that the nominal thickness 

of a boundary layer must vary as  x which is the distance from an outlet 

and the maximum velocity must vary as the power of  X. The values of the 

Reynolds shear stress, the Boussinesq exchange coefficient and the shear 

stress at the wall were evaluated from the detailed experimental results 

with the aid of a hot-wire anemometer. 

   In this chapter, with a different stand point from that by Glauert, the 

boundary layer growth in wall jets issuing from a submerged outlet is treat-

ed on the basis of the momentum equation for a boundary layer connected 

with two-dimensional turbulent jets, and furthermore, some experiments on 

the wall jets were performed. The theoretical results are compared with the 

experimental data and the limit of applicability of the theoretical results 

caused by existence of a free surface is briefly described. 

   (1) Theoretical consideration of the boundary layer growth in 
      wall jets 

   With regard to the wall jet schematically shown in Fig. 1, application 

 z of the momentum relationships for  one-

                              dimensional flow to the main flow and 

 no the boundary layer of which the thick-
      '.-ux                    •,///°////,,,/,/// ness 8 is defined by the value of z 

 2D -  -  -  -  _  

_                              satisfying 8F1/8z=0 based on the as-

                             - 

                                sumption that the shearing stress 

                              is zero at  z=  8, leads the following 
 Fig. 1. Definition sketch of wall jet. 

 equations  ; for the main flow, 

                                      ft               -(00+ prz'a+P}dz = 0, (1)                    dx 

and for the boundary layer, 

   1 d i_td,1  du02 dx560P1 c81212   dz+  Cf             dz+(2)   u
0  dx-u-dz=1                        pu02 0 ax 1402 Ox 2 

in which  u is the time-average velocity component in the x-direction, u' the 

momentary departure from  a, us the value of  it- at  z=a, p the pressure, p 

the density of fluid, and Cf the local skin friction coefficient. 

   Now considering the case when  8=0 and  h--+c0 in Eq. (1), and neglect-

ing the pressure gradient resulting from velocity fluctuations, the case be-
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comes suitable for a two-dimensional free jet. Some characters of the jet 

disclosed by early pioneers are described in the following, to consider theo-

retically the criterion for scour resulting from wall jets in the second chapter. 

   Researches on free turbulent jets were performed by many authorities, 

 Tollmien21).  Kuethe22) and  GOrtler23'. and also in 1950, Albertson and  others"' 

investigated theoretically the diffusion of jets based on the detailed experi-

mentations.  Tollmien and others studied the diffusion of jets, based on the 

fundamental equation, 

 au 8a  a.ra  
            axaz =6°-"Ozz (3) 

 fifi/ax-rafe/az=  0, 

and by applying the assumption on the mixing length by Prandtl. In the 

above equation,  W is the time-average velocity component in the  z-direction, 

and  eo the eddy viscosity, which is constant by applying Prandtl's as-

sumption taking the mixing length 1=cx, in which c is a constant, and the 

fact that the center maximum velocity of a jet is proportional to  1/1/x. The 

solution of Eq. (3) by  GOrtler is written as 

 az  
           140  = sech2(1°x  f 

 (4) 

       =   

 0 26oi2crosechz(co— tanh(do—2)1                                      j" 

in which  U0 is the center maximum velocity of a jet and  ao the constant ex-

pressed by  o.o=  (21/2c2)-]"3. 
    On the other hand, according to the experimental results on the decrease 

in the center maximum velocity of a jet, the velocity  Tio is constant from 

the outlet of a jet to a certain distance, where the jet remains potential flow 

and the region is known as a zone of flow establishment. At the far dis-

tance from the outlet the velocity is inversely proportional to the square root 

of a distance as described  above, and the region is known as a zone of 

established flow. Then from the experimental results obtained by Albertson 

and  others"' the following relations can be written  : for the zone of flow 

establishment,  $�20.2, 

 =  U  (5) 

and for the zone of established flow,  $�2oc2, 

 Uo/U=1/2a/i/e,  (6)
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in which U is the velocity of a jet,  $=  x/D, D the opening of a jet, and a 

an empirical constant which is 2.28. Albertson and others investigated 

theoretically the velocity components of a jet by assuming that the velocity 

in the x-direction is expressed by the Gaussian curve, 

                   =  exp  ( -  z2  /  a2)  , (7) 

in which  a is a variable proportional to x, and by applying the relation for 

the case when  8=0 and  h-'oo in Eq. (1) and neglecting the static pressure 

and the pressure gradient resulting from velocity fluctuations. 

   It is very difficult to analyze the boundary layer growth in wall jets 

having a free surface by solving Eqs. (1) and (2) directly. Therefore, the 

boundary layer growth along the  wall put in an apparent free turbulent jet 

with a wall, is treated, and the limit of applicability of the theoretical re-

sults is decided experimentally. 

   Considering  Op/ax  =  0 in a free turbulent jet and including the second 

term on the right in Eq. (2) into  Cr, the momentum equation for the bound-

ary layer is practically reduced to 

          1 dUdz1 dii2d z -  (8) 
           uo dxJou- dxo2 

In Eq. (8), assuming that uo is approximately equal to  go, and using the 

suitable resistance law and the velocity profile, the boundary layer growth in 

wall jets can be discussed. 

1) Laminar boundary layer growth 

   In the case of the laminar boundary layer, the velocity profile is assum-

ed to be in the from of 

 uo=2(  o)  (o  )2    (9) 

Then, using the resistance law of laminar flow, and applying the relation-

ship of  uo in Eqs. (8) and (9) represented by Eqs. (5) and (6), the solu-

tion of Eq. (8) is obtained, with the boundary condition that  8=0 at  x=  0, 

as follows  : 

for  E<2a2, 

                e:( UD  )112  (10) 

 v and for  E>2a2, 

 (  UD1/2(101/2)1/2E-3/2{E 9/2 + 561/2a211/2,                                           (11)  \j                    \3a
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in which  $=  x/D,  C=8/D and  v is the kinematic viscosity. 
   Then, the shear velocity  u* along the wall is expressed as follows  : 

for  $  <2a2, 

                  u*  \2(  UD  \1/2             2n  (12) 
                 Uv /-1/30E-i 

and for  $>2a2, 

         (* 2(UD )1/2 —21/2-a(3a )1/2${$9/2+56-1/2--a9}-4/2.  (13)       UIv10-V1 

2) Turbulent boundary layer growth 

   In the case of the turbulent boundary layer, the growth is  analyzed, 

based on the power law  ; that is, the velocity profile is assumed to be 

 U/u0=  (z/8)n- (14) 

in which  0<n<1. Then, the relation between the local skin friction coef-

ficient and the Reynolds number with respect to the nominal thickness of a 

boundary layer is written as 

                  14°8 )-ani  (n+1)             Cf — 22( , (15) 
in which  2 is a dimensionless empirical constant. 

   Applying the relationship of  Uo described previously, to  uo in Eqs. (8), 

(14) and (15), and denoting n and  A in Eqs. (14) and (15) by n and  A for 

 E<2a2,  ni and  Al for  $  >2a2 respectively, the following solutions of Eq  (8) 

are  obtained  : for  $52a2, with the boundary condition that  C=0 at  E=  0, 

          UD 2n/ (3"" =  2(2n+  1) (3n+1)  (n+1)  / (3n+1)E(n+1) /13n+1)  (16) 

 v 

 and  for  $>2a2, with the boundary condition that the value of C is equal to 

that in Eq. (16) at  E=2a2, 

 2n; n1+1/21  

 ( UD  )3nz +1=  (2)3n;  +1(260)—3n; + I 
 221+1I  4n1+1  ni  +1  

 x (2ni  +1)  (3ni  +1) 1.3n, +1 $ 2n;  {E  2n;  +0.  3nz  +1  (17)  4n1+1 

in which 

 4411+1   1  2(2n+1) (3n+1) (n+1)(3n;  +I)       C—(n; +1)(3n+1)  22
1 (2ni  +1) (3n1+1)
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f   (n+1)(3n1+1)   + 2n14-112 (ni—n) 4n1+1  
     X (2e) 021-1-1)(3n+1)2niIUD   (n+  1)(1,4+1)  _  (2a2) 2ni 

 (18) 

   The shear velocity along the the wall is expressed as follows; for  $�2a2, 

     (  u*2(  UD )2m/ (3n+1) 2f A(2n+1) (3n-I-1) 1.-273/ (3n+1)E_ 
   )12m/ (376+1). (19) 

and  fore>2a2, 

     2ni 2ni 2ni      (u*y2( Up )3,21+i = (2)—/11.ra (2ni4ni+1) (3ni + 1)— 3n1+1 

                                 1 

 2n1+1  2/21+1 2ni  

 X  (2e)  3,21+1  {E  2ni  32t1+1  (20) 

   In this case, when the shear velocity  u* is calculated by Eqs. (19) and 

(20), it becomes discontinuous at  2a2 unless n and  /I are equal to ni and  21 
respectively. Since, however, the character of the flow, in fact, will change 

gradually in the vicinity of  $  =  2a2, the discontinuity of u* cannot occur. 
   It is concluded from the foregoing  theoretical considerations that, for 

sufficiently large e, nominal thickness of boundary layer and the shear veloc-

ity are proportional to  $3/' and  $-2/2 in the laminar boundary layer, and  to 
 (2n1+1)/(3211+1) —2(3rti+1)/(4m+1)            and $ in the turbulent boundary layer 

respectively. 

   (2) Experiments on wall jets issuing from a submerged outlet 

   To verity the theoretical results, the boundary layer growth in wall jets 

issuing from outlets with openings of 0.56 cm and 1.08 cm was investigat-

                                   ed. Velocity profiles were  measur-

                                 ed by the  Pitot-tubes with  outer-
_ di

ameters of 0.070 cm and 0.200 

                                    cm, and the experiments were  con-

                      

15 

                                ducted with the suitable  combina-
  csoco _  tions of the Reynolds number at 

  Fig. 2. Experimental apparatus.                                  th
e outlet and the tail water depth. 

1) Diffusion of wall jets 

   Fig. 3 represents some examples of the relationships between  flo/U and 

 x  /2D in wall jets, and the solid line in the figure shows Albertson and 

others' result for a free turbulent jet. In this case, the method for estima-

tion of the virtual maximum velocity of jet  ao, is explained below.
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    As described above, since the velocity profiles of a free turbulent jet 

approximate to the Gaussian curve according to Albertson and others, the 
relationship between log  g and (z/x)2 becomes straight . Therefore, the value 
of  go is found by extending the straight line obtained by the data in the main 

flow to the line of  z/x=-0, and estimating  g at  z/x=0 from the intersection 

of these lines. It is seen from Fig. 3 that there exists a limit of appli-

cability of the result for a free turbulent jet. From this reason, variations 
in the ratio of the limit  .x, to  ho with the Reynolds number at the outlet or 

the Froude number at the tail water is investigated as shown in Fig . 4, but 
the ratio  xe/ho is nearly constant for both parameters within the limit of 

 the experiments. 

 x/2DFig.5shows some examples of     
I 2 46810 2 • 6 81CTcomparisons between the measured       

 e 

   aa    --1 velocity profiles in main flow and  l—mniii ...111 
do 6—1ho/D UD/0 i1_1_1-'' I  I ' •  GOrtler's and Gaussian curves. It 

         Q 5.46 ii7ool II' I U4  Le   6.02 3910; 1   01                             I ..  •-{ is clear from the comparisons that                r'!II'                               4,0  ' the experimental results in the  1 2 4  6  8  1  0 2 4  6  8  102   I  e  •  rrs•-33 .11 1 region of E>2a2 are in good agree-  n
i 

u....^in —o6 ho/D UD/i)1atment with the theoretical curves of 
        a 130011600, 1 I.1111.1 

           

1 _. U - ,         '  1  1  '  i  I  I  ... ..  ,  '  GOrtler or Albertson and others for         ----1---
i 1-1-71.I,I1              ''111the range of  z/zo<1 except in the 2,'^I                                            ------ 

   

i 2 4 6 810 2 4 6  se 
 la o.ra 171 _ _I _ ......  5                                                      

, ho/D                   i1                                                                                           1  m 5.43- 8.00 -0-8  8  TIO/D  U0/1)  ,__,__._  iM156,.  .  
I  a  see seen l ', Isill''MIMEO1 I40998-10.04 U -4—I elo:o eseol;'.,, -.4!x, EIPI  I010.04-5. 87      31[110.il_i_l 1200!Ie r Kg.ho MEd  "  e 25.2 

 2                                

I1111    I2413 1310 2 a13 131063 IIMM111111111.  I—.4,--.t..-.......:-,ii......  NMI 
  a ^immimms...7,.1.%...w=mm....I^     i^liammi...--.2s, irmil•MOMMinu 2                                         4 6 64 24 6 0

IC   6MMI=IMINSEliff....1...1, 103 210if  III QrTaPP-40 ' , iIIIIMTIHii4ffliiiiii  U  4^ 
  m 0  15.3 seen,1!',I1  5   

   ILU: 51501-Ilheldil ...1111111111.11111111 

 2    

I 2 4 6 510 2 4  4 ele x c  4 IIIIIMEITIIMEM1111111 

  i 

  a^••••===gitz.r."...amagarl-n-c.,-imiimmlimmll 
         7.1.2=-..w..arwr, TIO 8ho/DUD/Vit ....--Ifilar^mmi;3.1.111111111.1.11111N11 

U 4_,I025.25940 II  1di.1...'-:.7.41!ME•mg     0 42.5 10300,J17.111111111111111=1111111 

            r2.1 
      —^

I111II                   Mgi0-2 2 4 6 Ile24 6  S  I 2RI 
  Fig. 3. Some examples of relationships  Fig, 4. Variation in  xc/ho with Reynolds 

    between  Ro/U and x/2D. number and Froude number.
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 Fig. 5. Some examples of velocity profiles in than the author's. From 
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                                           results, the mean value 

of the coefficient of mixing length, which is denoted by c, described already, 
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    Fig. 6. Variations in width of wall jets in region of  e<ec with distance.
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has been estimated as c=0.00858. 

2) Boundary layer growth 

   Fig. 7 represents some examples of velocity profiles in the boundary 

layer for the zone of established flow, E>2a2, and these results contain the 

experimental data for  UD/v=3380-•-11620,  ho/D=8.00--15.3 and  E=11.9--, 

35.0. The solid line in the figure is for the case when  n=1/12 in Eq. (14), 

while the plots of velocity profiles for  E<2a2 show that the value of n is 

approximately equal to 1/7, that is the Blasius law. It has been con-

firmed from the semi-log plots of velocity profilesas is shown in Fig. 8 that      
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                  Fig. 7. Velocity profiles in boundary layer. 
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2                          E
stimated by logarithmic law. Obtained from momentum equation 

 D  cm  ho/D  UD/v  D  cm  ho/D UD/J)  Dora  ho/D UfYi, 
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 Fig.  9.  Variations  in  local  skin  friction  coefficient with Reynolds number 
       of boundary layer. 

figure that, although the Blasius law is applicable for  e<2cz2, the friction 

coefficient for  E>2a2 is much greater than that by the Blasius law. It has 

been described by Schwarz and  Cosartio that the mean value of the skin 

friction coefficient within the experiments is nearly equal to 0.01109 for the 

range of the Reynolds number of a boundary layer varying from  2.2  X104 to 

 1.06X106, and at most, a slowly varying function of the Reynolds number 

of an outlet. As is seen in Fig. 9, the results agree well with the author's. 

It is evident that the  character of jet diffusion in the region of  E<2a2 is 

essentially different from that for  E>2a2. However, the essential reason 

why the data for  E>2a2 are considerably different from the Blasius law, can-

not be explained because the effect of turbulence expressed by the second 

term on the right in  Eq. (2) is not too little as to solve the question. And 

also no explanation can be given for that, in high Reynolds numbers, the 

values of  Cr obtained by the momentum equation, are in disagreement with 

those estimated by the logarithmic law. It is, therefore, necessary for the 

interpretation of the essential reason, to measure directly the frictional stress
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along the bed. However, for the time being, the resistance law presented 
by the data plotted is used for practical computation, and the boundary layer 
growth in wall jets is interpreted. Thus, the relation between Cf and  ito6/1) 
based on Eq. (15) is determined as the straight line shown in Fig. 9 by 
applying  n=1/12. 

   Fig. 10 is an example of variations in the static pressure with the dis-         
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         Fig. 10.  Changes of static pressure and water depth with distance. 

 16  1  ! ,  1  4111111111111101=111111111111%^M 
        . corresponding ,EIP1M111111...1314"."0.11.11 

    1.2. 

 D                     

,to ho/=10.0   C-IM .^^^^.M111011P—^^ Tflo7='1387oves           1I1 •111111111,5M111.111111forUD/V=8380  08 

     11111111.11WME11  ho/D  UD41             plimp
^-.,----...".mu ___ _M corresponding 6 10.0 neo  .       04 

         ft•EV--1"'-----I00ho/D =15.3 o 15.3  3880is 

                       

.1-- ___ __,, 

              

1 1  1  ! 

    

, !,, ,  
     0 

      20  4C 60 e  80  100 

   

16 1 '11111111 
            I 1 11111•11111. • PI 7          c coriusponding .  10.0  .  1;1019   IIMPAIM3     12 - to ho/D . .00 ! '1 1 1 . I _maim=  t  C . , 

                  vtilimami hal)U1:141   08•—–-^.---im01 

                   W'4..,'..11.111110 0.01600  1 
                                         . .,..0  ,moo -            *Irail•O15.0 11700       04

,,Agt---=&ItM.Theoreticalcurve for 0 42.5 10500ii  CD/).)11500 

   0 41•11111•••••I  1  ^  ^1111111^^ 
  0 20 40 60  e 80  100 

               Fig. 11. Some examples of boundary layer growth.



 16 

 tance from an outlet in a boundary layer. In the figure,  he and  pe are respec-

tively the water depth and the static pressure at the outlet. It is found 

from the results that the static pressure is nearly constant, that is 6p/Ox:=,-0, 

within a certain range close to the outlet, and the pressure gradient in-

creases suddenly with the distance at or near  x=  xo. The fact may indicate 

that the assumption that 6P/axr----,0 in the boundary layer, in the theoretical 

consideration on the boundary layer growth, is approximately right. 

   Fig. 11 presents some examples of the experimental results and compu-

tations on the boundary layer growth. Since all experiments conducted by 

the author are for the turbulent boundary layer, as the resistance law, the 

Blasius law for  E�-2a2 and the relation presented by the straight line in 

Fig. 9 for E>2a2 have been applied in the computation of the boundary 

layer growth. The values of  Eo=  xo/D corresponding to  ho/D, obtained from 

Fig. 4, are shown in the figure. As is seen in the figure, the experimental 

data differ from the theoretical curves at these points. It may be con-

cluded from the fact that  xo corresponds to the limit of applicability of the 

theoretical computation for the boundary layer growth. 
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        Fig. 12. Some examples of shear velocity distributions along bed. 

   Furthermore, Fig. 12 represents some examples of the shear velocity 

distributions along the bed for  E<E5 obtained by experiments and theoretical 

computations. The theoretical curves are in good agreement with the experi-

mental results except for the data close to E=2a2 , where the resistance law 
changes gradually from the Blasius law to the other relation . It is con-

cluded from the results that the shear velocity decreases rapidly with the
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distance from the outlet, especially in the region of established flow,  E>2a2. 
It is presumed by refering to Fig. 3 that the shear velocity will decrease 
extremely in the region of  E>Ec where the theoretical results on wall jets 

cannot be applied. 

      3. Criterion for Scour Resulting from Wall Jets 

            Issuing from a Submerged Outlet 

   In this chapter, the criteria for  scour resulting from wall jets issuing 

from a submerged outlet are considered theoretically by completely applying 

the results on wall jets obtained in the previous chapter. The definition of 

the criterion for scour in the theoretical consideration is the same as in the 

previous  paperg); that is, sands and gravels at or near the downstream end 
of the apron downstream of an outlet are under the critical condition for 

the movement, and the apron to be considered is of a smooth bed. 

   In the theoretical approach to the criterion for scour, the theoretical de-

velopment for the two regions described already, a zone of flow establishment 

and a zone of established flow, are obtained by applying the obtained re-

sults  of wall jets and  Spengos'iA) and  Henry's'") experimental results for 

characteristics of turbulence in the flows, and by the same procedure as in 

the theoretical consideration for the critical tractive  force7)") The theoreti-

cal considerations show that the criterion for scour resulting from wall jets 

can be expressed by the relation between  ue*2/(a/p-1)gd tan  co and  ttc*d/2) 

using the critical shear velocity  tc,* in the same manner as for critical 

tractive forces, and furthermore, one parameter expressed by  Ice*/uo is added. 

This fact may be concerned with the development of a boundary layer, but 

it will be cleared from the comparisons between the theoretical curves and 

the experimental results for the criterion for scour that the parameter  ue*/uo 

is not so important in the hydraulic mechanism as the other two parameters 

described already. 

   The experimental data have been obtained by applying the definition 

for the criterion for movement of sands and gravels proposed by the author 

in the preceeding  paper°, and compared with the theoretical curves for the 

criterion. Although some of the experimental data are quite scattered, the 

comparisons are fairly good. 

   In the third region in which the study of wall jets is not directly appli-
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ed owing to the existence of a free water surface, the consideration for the cri-

terion is made by means of dimensional analysis based on the characteristics 

of a wall jet, related to the criterion for scour in the first and second re-

gions. It concluded from the consideration that for the criterion for scour 
in this region the ratio of the velocity of an outlet at the criterion for scour 

to the virtual velocity as a wall jet under the same condition can be present-

ed closely by the parameter, the ratio of the tail water depth to the length 

of an apron. 

   In addition, empirical formulas for the criterion for scour in the three 

regions described above are proposed on the basis of both results of the 

theoretical considerations and the experimentations, and empirical formulas 
for determining the length of an apron under the criterion for scour are 

developed for practical uses. And moreover, some considerations on the 

design of the apron, especially in determining its length are described, and 

some practical examples are presented. 

   (1) Theoretical considerations on the criterion for scour resulting 
      from wall jets 

1) Equilibrium condition of a sand gravel 
   As is shown in Fig. 13, now consider the condition for criterion for 

movement of a sand gravel at or near the downstream end of an apron con-

structed downstream of an outlet by the same procedure as the hydrodynami-

                                    cal consideration for the  criti-

                                    cal tractive force by Iwagaki7' 

                                    By expressing the force relation 
   DLi Smooth bed 

    /shown in Fig. 14 as in Fig. 
                                   15, the equation for the equili-

                                    brium condition of a spherical 
 Fig. 13. Definition sketch of apron and flow 

   downstream of submerged  outlet.sand gravel can be written as 

 R, 
 u  1":  R, 

  410 4114. oe R. a 
                        V41 —T  6  x 

   Fig. 14. Forces acting on a spherical sand Fig. 15. Schematic diagram of 

 gravel. force relation.
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 RT={(0.  p)g(n/6)d3—RL}tan  co, (21) 

in which RT is the sum of the fluid resistance and the resistance resulting 

from the pressure gradient in the direction of flow acting on a spherical 

sand gravel,  Rz, the uplift resulting from the pressure gradient in the verti-

cal direction,  a and p the density of a spherical sand gravel and fluid res-

pectively, d the diameter of a spherical sand gravel, g the acceleration of 

gravity, and  co the static friction angle of a spherical sand gravel. 
   Now let  a  be the boundary layer thickness, and dividing the fluid re-

sistance, denoted by  RT, acting on a spherical sand gravel, into two forces  ; 

the first is the resistance, denoted by  Rrm,, acting on the gravel in the main 

flow and the second the resistance, denoted by  RTb, acting on the gravel in 

the boundary layer, yields the following equation. 

 RT=RTrd+RTb  (22) 

   Let  19s(7r/4)d2 and  (1  —th)  (n-/  4)d2 be the cross sectional area of a spheri-

cal sand gravel exposed in a main flow in the direction of flow (shaded part 

in Fig. 15) and the area in a boundary layer, in which  B, is the function 

of  8/d only, the terms on the right in Eq. (22) are expressed respectively 

as 

                    u7rd2aP)d        Rig7rd2            T—2D11S4ax
ds 4,(23) 

         R,lb=  P CD2u2(1- go4d2 -`ax) d(1 4'd2,  (24) 
                             2 in which  ul and u2 are the representative velocities in the main flow and 

in the boundary layer respectively,  CD,. and  CM the  drag coefficients corres-

ponding to u1 and u2 respectively, and the second terms on the right in 
Eqs. (23) and (24) express the resistances resulting from the pressure 

gradient  OP/ax in the x-direction. 
    In the same manner as described above, the uplift RL resulting from 

the pressure gradient in the z-direction is divided into  RE,. and  RLb as 

follows  : 

 RL=R.Lnz+R.Lb  (25) 

and each term may be expressed as 

            R='•)2Cwiwi2A—4azdd2—(6P)dAi4 d2,  (26)
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        R=wr-d2— (8)dA—7rd2               LbC—DW22A224                       az 824' (27) 

in which, for  8�d/2: 

                  8                    A2=4(-8)20.8)  (28)                                              d,' 

and for  8>d/2: 

        Ai=4(±)(1— 8)2(29)          d8                          d 

and wi and  2V2 are the representative velocities in the z-direction, in the 

main flow and in the boundary layer respectively, and  CD201 and  CD,02 the 

drag coefficients corresponding to  wl and  w2 respectively. 

   In order to evaluate the fluid resistances by the above equations, the 

theoretical analysis of both laminar and turbulent boundary layers and of 

the characteristics of turbulence in the boundary layers is necessary. 

However, the critical Reynolds number of a boundary layer in the transition 
from laminar to turbulent, the velocity profiles and the resistance laws close 

to the condition of the critical Reynolds number have not been made clear 

yet. Therefore, by assuming the fully developed laminar and turbulent 
boundary layers based on the power law, and estimating adequately the 

turbulence intencities in both, the main flow and boundary layer, the theo-

retical considerations on the criterion for scour are discussed in the  follow-

ing : 

2) Theoretical consideration for the zone of flow establishment 

   As described already, the jet in the zone of flow establishment,  $�2a2, 

is closely the potential flow having a constant velocity, and the nominal 

width of the jet decreases gradually straight to the point  E=2a2. The 

velocity profiles in this region are not sufficiently clarified. 

   In the  theoretical, consideration on the criterion for scour, therefore, the 
velocity profile is assumed to be uniform, and the scales of turbulence in-

tencities in the flow are estimated, adequately based on some experimental 

results. 

   Under the above assumptions the second term on the right in Eq. (23) 

and all of Eq. (24) are abolished, but the effect of velocity fluctuations should 

be considered in estimating the fluid resistance resulting from time-average 

velocities. 

   (i) The case when the laminar boundary layer is  assumed  : It is as-
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sumed that the velocity fluctuations do not exist in a laminar boundary layer . 
As velocity profiles in the boundary layer , Eq. (9) can be applied, and Eqs. 
(10) and (12) are used respectively for the boundary layer growth and for 

the distributions of shear velocities along a bed . 
   a) The case when  8�d: In this case, the sand gravels are completely in 

the boundary layer, and then  RTIn=  0,  aP/ax=  0 and  /32=0. Using the value 
of Eq. (9) at z=d as the representative velocity, the fluid resistance RT can 

be written as 

 RT= 8P7D2d2u*2C(U*U )2(d8\8)2i2(d)1-2 (30) 
. in which, from Eqs. (10) and (12) d/8,becomes 

                     d  _ 1( u*')(  u*d  
          8 2\U ). (31) 

   The drag coefficient of a sphere CD2 in Eq. (30) can be expressed by 
the function of the Reynolds number as shown  in Fig. 16. And the Reynolds 
number  u2d/v can be written as 

              R=  1 u*d\212 1 (  u*  \i u*d'\)  (32)                  '22 \  vI 2ksUk,  v Jr• 
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     Fig. 16. Relation between drag coefficient of sphere and Reynolds number 
       in comparison with other bodies'. 

   The velocity component  w in the vertical, z-direction can easily be ob-

tained by integrating the equation of continuity 

                       au  a-th           0
, (33)                      axaz
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under the boundary condition that w=0 0 at  z=  O. Calculating the value of 

 w at z=d, denoted by  w2, from these results, taking into consideration that 

 OP/az=  0 in the boundary layer and  Op/ax=0 in this region, and insert-

ing these results into Eq. (25) yields the following relation for the uplift 

    RL=f•ncl2u*2CLw2(1:)2( uu*)6( vu*d)1113 Ulf)(I v")1-2 ' .-.  (34) 8, 

in which  Cpw2 is the function of the Reynoldsnumber expressed by 

 8 
           Rew2—15( u*U)W\uv*d  1 l  3 \U)\3_11_1( U* \( u*d so                               v  Ji. (35) 

   Inserting the above relationships into the equation of equilibrium 

condition expressed by Eq. (21) and rewriting the equation, the following 

relation can be obtained. 

 uc*2  4  
                 (a/p— 1)gd tan co— 301 - (36) 

in which 

     01— CD2(  u,*d\2f21( 14c* )(uc*d)!.2 
         vII2Uv) 

       + (815)2CD:021 uc*'\6(0/1 3 1 U,1\uc*d\411—1 (tic* \(ile*d \t2            \U/\o /1tan co,  (37) 

and it is evident that the limit of applicability of Eqs. (36) and (37) is 

 d/8<1. 

   b) The case when  8�d  : In this case, a part of the sand gravel is exposed 

beyond the boundary layer. The representative velocities ui and  u2 are equal 

                                   to the velocity U in the main  4 11111111 11111 hdD  
  4Zo/D11,4,9`>c 

  2NMI 

 I 

                    80al(Dflow. In order to evaluate the                                     fl
uid resistance acting on a  CIO'EMUIliiiiifspherical sand gravel, express-    E,llitlIrplifi,'..Comill ing the representative velocity 
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   2IIN1I 1  N values of velocity fluctuations 
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 Fig. 17. Variations in turbulence intensity average velocity based on the 
   in wall jet issuing from submerged outlet 

   with distance (after Henry, replotted byexperimental results obtained 
  the author). by  Henry") shown in Fig. 17,
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the fluid resistance  .1?2, can be written as 

                                 ,„,U 2  RT=  877d202CD11 (1+ M)-'15s                             *(1 —les)u* )2}  (38) 
in which Cm is the function of the Reynolds number expressed by 

             Rel—u*)(1 2j*d).    (39) 

   The value of  wi does not exist when calculated from the main flow , 
but the value exists, even though it is very small , when calculated from the 
boundary layer. Taking the calculated results in the latter, the uplift RI , 
can be expressed as 

           Rz—±Lrcd202C( )1(5A            8Vw2U ,2)(40) 
in which  Cpw2 is the function of the Reynolds number expressed by 

                     utf*)(u*vd )'       Rew2— (41) 

   Inserting these results into Eq. (21), the relationship corresponding to 

Eq. (36) can be obtained as follows. 

 tien 4  
               (a/p-1)gd tan co—  302 (42) 

in which 

   02=)2{(1+m)113+ (1th)I± ( 25)2CD2D2A2(ite* )2tan co.••• (43) 
  itc* 

   (ii) The case when the turbulent boundary layer is assumed  : In the 
turbulent boundary layer in this region the Blasius 7th power law of veloc-

ity profile is established. The following theoretical consideration is developed 

for the general case. 

   Since it is necessary to consider the characters of turbulence in the 

turbulent boundary layer, the calculation for evaluating the characters of 

turbulence is made on the basis of the results of the hydrodynamical study 

on critical tractive forces by  Iwagaki7) and of the turbulence characters ob-

tained by experimentations. 

   a) The case when  8>d: As described above, in this case the sand 

gravels are completely in the boundary layer, and  th=  0. Now consider 
 aP/Ox of the second term on the right in Eq. (23). The pressure gradi-

ent  OP/ax is generally the sum of that resulting from time-average  ve-
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locities and that resulting from fluctuating velocities. Since the velocity in 

the main flow U is constant in this case, the pressure gradient in the former 

vanishes, and also, that in the latter does not exist in the case of the laminar 

boundary layer. It is, however, necessary to consider the pressure gradient 

resulting from fluctuating velocities in the turbulent boundary layer. 

   In evaluating the  pressure gradient  OP/ax resulting from fluctuating 

velocities, expressing —  6p/6x in Eq. (23) by pDu/Dt, based on the Eulerian 

equations of motion, and taking the statistical mean of the expression by 

the same procedure as  Taylor") did by putting  u=a+uf and  w=i-o-Fw' in 

which  u is the time-average velocity component in the x-direction, u' the 

momentary departure therefrom, that is the fluctuating velocity,  w the time-

average velocity component in the z-direction and w' the fluctuating velocity, 

the following relationship can be obtained: 

        16P+1/( au'  \if_i_u1(  au'  )2  -
pax ax,axax 

  ,17au' )21+w1( u' )2   

                

I 8z+Y\ 8z11 azI  (44) 

Introducing the scales of minimum eddies  2.,  Az. and  2., the pressure 

gradient becomes 

    1  =au +1/T1/,121+1/2i1/u'2   p axaxdu              1122 

               ±/2 af2                    1 6       +-Vw  ti           azr2.24270 ( az )                           1,122}.+i71/2 af2 ( ati12  )2                                                13xx24W2 \  az 1 

 (45) 

   In order to calculate further the above equation , it must be clarified 
how the quantities  a,  TO,  U'2,  Az, and  2. distribute vertically in 

the boundary layer. 

   Using the value expressed by Eq. (14) as time-average velocities in the 

x-direction  u, and calculating the time-average velocity component in the 

z-direction  w from Eq. (33) by the same procedure as described already , 
the relation becomes 

           ii)=U(z618  (46)                        \ 1 d x 

Under the assumption that the values of the time-average velocity com-

ponents  rt and  tr) are used for representative velocities in calculating the
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fluid resistances, the representative velocity u2 takes the value of Eq . (4) 
at z=d, and inserting the result expressed by  Eq . (16)into Eq. (46) 

           U(n+1)(2n+ Go(n+1) /2(  u  )1)_u*3u*dn    —n()                  V (47) 

   Now consider the fluctuating velocities expressed by square means in 

the boundary layer. Fig. 18 is the experimental results of distributions 
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 Fig. 18.  Distributions of square means of fluctuating velocities in boundary layers 
   with zero pressure gradient (after Spengos, replotted by the author). 

of turbulence intensity, expressed by the ratios of turbulence intencities in 

each direction, in the boundary layers on a smooth flat plate in uniform 

flow obtained by  Spengos" and replotted by the author. Although the ex-

perimental data are quite scattered it is found that the following relations 
assumed by  Iwagaki73 in the theoretical consideration on the critical tractive 

force can be applied in the boundary layer. 

 Viit2:=--,'2u*, ^612,=--,'u*  (48) 

   The distributions of the scales of minimum eddies in boundary layers 

have not been clarified. Assuming that, therefore, the theory for isotropic 

turbulence can be applied to the relations among  2..,  Axz and  Azz, and that 

these scales are proportional to the mixing length 1, the relations are writ-

ten as 

 222=  V  2  al,  Azz—  A.—  al, (49) 

in which a is a constant which is not clear, but it will be about  a=12 5 by 

estimating on the basis of Iwagaki's study on the critical tractive force.
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                                Furthermore, it is assumed that the    
I  

. experimental results, shown in Fig. 19,    Lk1                              obtained by  §pengos24) in the boundary 

                             layer developingon a smooth flatplate 

                             can be applied in evaluating the dis-   c:J.5   
                             tributions of the mixing length in the    111.1111^ 

  boundary layer developing in wall 

                                 jets. 

 o Evaluating the pressure gradient 
    2 4                            at z= d, denoted by  (ap/ax)d, by using 

                            u.S,a7 

  Fig. 19. Distribution of mixingthe above relationships, and calculating 
    length in boundary layer (after the fluid resistance by applying the 

   Spengos). relation  U2=  ft+  Fe2 as Iwagaki did , 

the fluid resistance  R2, can be written as 

 R  T  =  8 Tr d202CIA{ (2)- (n+1)/2(  u*d)n+2/-2 
                                            ald\      +7rd2u*2 [ 12 (2 +V-2) + (A)'1'1) /2(  u*d  )n(2+n 

                                      d 

 4ald11 

       - 2 (n + 1) (2n+1)- (n+1)2/2n(to01+1)/n(n+1) 
                                 v 1 

      +21/2 (n+  1)  (2n+1) (2)-+0 /2(  d)Iu* \2( u*d                             aldU 1 1  v  1  J  (50) 

in which  la is the value of 1 at  z  =d and  CD2 the function of the Reynolds 

number expressed by 

                     \  R,2= (2)-'+')u*d/2( (51) 
 v)n+1 

   Now next consider the pressure gradient  ap/az in the second term on 

the right in Eq. (27) by the same  procedure as described above. Taking the 

statistical mean of  OP/8z, it becomes 

           1ap  4_,/(aW1   )24,—\/(8W1 )2 
 p  8z=1/u1 ax'vax  /- 

               1/1o'216 ax17°az(aw' )2}±iv-V(ax                             az/)      -1-2  (52) 

   Transforming the above equation as done in Eq. (45), Eq. (52) can be 

written as
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           op = Va'a  +-1/ , +1/2u        p  8zxA zz f  Azs 

                +1/7P2-16 +-V 2  ,171'21-+-V2/701/;°12   (53) 
            tazAzz Azz 

Calculating the value of  (6P/8z)d  as done in evaluating  RT by applying the 

theoretical results for the isotropic turbulence to  Azz in the above equation, 

and evaluating the fluid resistance by introducing the relation of  w2= 

 irth'2, the uplift  RL finally becomes 

    RL=Frclatt*2CL.2{(11+1)(2u+1)  (2)- (n+"2(uu* )2 (u*d+1j2 
      +nd2u*2[cl, [(1  +2-1/  2  )+  (2)  - (n+1)/2  1/ 2  u*d )n--  4aba 

      ±(n-1-1) (2n+ 1)/u* )2H  +  (n  +  1)  (2n+1) (2)-(n÷1) /2 

               U 

      x(uU* )2 (u*d )n{1 (11+1)n(2n4-1) tn+1)/2.   
                                        ,u*(3n-FD/nt ud                                                                         * 

                        U)v) 
 4(2n+1)  (2)-  (n+i)  fzn(  u* (2n+1)/n(  u*d )}]  (54) 

                                v' 

in which the drag coefficient  Cpwa is the function of the Reynolds number 

expressed by 

               (n+1) (2n+1) (A) _w+i)/2( u* v)2(  u*d )n÷1     Rew2 =(55)             U 

   Inserting the expressions for  RT and RL into Eq. (21), the following 

relationship can finally be obtained. 

 itc*2   4  
                 (a/p— 1) gd tan co  —  303  ' (56) 

in which 

 q53  =  CD2-{(2)-  oi+i)  /2(uc*d  )n  +2}'2  +2  [  ac14,  i2  (2  +V  2)  +  (2)-  (n+3)/2 
      X ( uc*ci )n(2 +n adla )1- — 2 (n + 1) (2n+ 1) (2)-- (n+1)2/2n( uuc*  (2n÷1)  In 

     xtte*dy"-1+2,v-y(n+1)(2n+1)(A)_pi+i) /2(ai,,)(uug* )2 (ttc:d                      1.) 

          (n + 1)(2n+ 1)      + Cpw2 (A)- ("1) /2(uue* )2( ilev*d )n±irtan co 
     +2r.ala +2,v)+ (4_ (7,+i)/2( 2,0d r    L\vIly
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 +  (n  +  1)  (2n+  1)  ( ue* )2}..1(n+ 1) (2n+ 1) (2)- ("÷" 
            UJ 

      X(-k)2( tie*dr— (n+ 1)(2n+i)_oz+ (it_*\ (2n+i)/niuc*d                                   (2)1 /2n  U v Uv 

 —  4(2n+1) (2)_+1)/2n( up*(2n+1)/n( 
v  ue*d                 U)1.1tanco,  (57)        1I 

and the condition of applicability  is  (2)-(n÷1)12n(u0*/U)1m(ue*d/v)�.1. 

   b) The case when  8�d  : In  this case, a part of the sand gravel is exposed 

beyond the boundary layer. By the same procedure as in the laminar bound-

ary layer the representative velocity is chosen and the effects of fluctuating 

velocities are evaluated. Applying the value at  z=  8 corresponding to the 

second term on the right in Eq. (50) for the resistance resulting from the 

pressure gradient in the boundary layer, the fluid resistance RT can finally 
be written as 

    RT=-19----nd2u*2Czn-{(1-1-m)218s( Uu*)2+ (1 gs)( ttU* )2}' 

8 

     +—P4nd2u*2(1—i3s)[ al8i2(2+-V2 )+( u*)(2+nds) 
          (n+1)(2n+1)(u* )1                          2(n+1)(2n-1-1)( u*)],  (58)      1UU 

in which  CD1 is the function ofthe Reynolds number expressed by Eq. (39) 

and  is the value of mixing length at  z=  8. 

   In the same manner, the uplift in the vertical direction RL can finally 

be calculated as 

 Pd2    R                   (n+1)(2n+1)(u*\±/t2+p   RL=021hCpw2'{TCCl2n*2 A2  L—Uf4 

 X  r d .11+1/y(2+ U\+  (n+1)(2n+1)( u*21.        \ u*1U  ) 
       2(n-I-1)(n+3)(2n+1)2( U* )3u*                    U+( n+1)(2n+1)(01, (59) 

in which CD,4,2 is the function oftheReynolds number expressed by 

              Rew2—(n+1)(2n+1)(u*U11\( u
v*d\                                            (60) 

                                         Inserting these results into the equation of equilibrium condition, the 

relation corresponding to Eq. (42) can be obtained as 

 itc*2  4  (61) 
 (a/  p-1)gd  tanco— 304
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in which 

   04= Cm( U)2{(1+m)218s+(14901+2(1_,9>r d-12(2±,/ 2) 
  u5.cdo 

     +.(  U/2alsv (2n+1)( uc*               +n\—+22(n+ 1) 
                                1U)I 

                          '1      —2 (n+ 1) (2n+1)(u* )j+112[CD.2-{ (n + 1)n(2n+1)(  uue* 12 
     + 2( a1 \(2+ U )±(n+i)(2n+1)(u,*     \d1\uc*\U 1 

 2  (n+1) (n+3) (2n+1)2(
Uue*  

                                              u 

                        )3+ (n+ 1) (2n+1)( )]tamp.•..(62)                                             Ue* 

   As described above, it is found that the criteria for scour in the region 

of the zone of flow establishment,  E�2a2, can be expressed by the following 

relationships for both cases of the laminar and the turbulent boundary 

layers. 

 7,02 4                             
,  (1=1, 2, 3, 4)  (63)             (a/ p -1)gd tan go 3cbt 

in which 

 g5i=  01{uc*d/v,  uc*  /U.}  .  (64) 

   Considering the relation  Cf=2(ue*  /U)2 in calculating Eqs. (63) and 

(64), the values of  JO  /  U do not change much with the Reynolds number 
in practical cases. Therefore, Eq. (63) can be expressed by the relation 

between  uc*2/(a/p-1)gdtanco and  ue*d/v with the parameter of  uc*/U. 

Fig. 20 shows the relation between the friction coefficient Cf and the 

Reynolds number  UL/v based on the results shown in Fig. 9. When the 

criterion for scour is considered for the range of the Reynolds numbers of 

 UL4=103-106, it seems to be adequate to calculate Eqs. (63) and (64) 

for the ranges of  uc*  /U, from 0.1 to 0.06 for the laminar boundary layer 

    2N
11E1 
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          Fig. 20. Relation between  Cf and  UL/v in region of  e<2a2.
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      Fig. 21. Dimensionless expression of criterion for scour in zone of flow 
       establishment obtained by the theory. 

and from 0.06 to 0.04 for the turbulent boundary layer. 

   Fig. 21 presents the theoretical curves for the criterion for scour in this 

range calculated by using the assumption that  m=  0.1 based on the  experi-

mental results shown in Fig. 17. The notations of 1 and t show the theore-

tical curves in the laminar  and the turbulent boundary layers respectively. 

The theoretical curve for the critical tractive force obtained by  Iwagaki7) 

is shown in the figure for comparison. 

   In addition, the value of  tte*2/  (a/  p-1)gd tan  co in Eq. (63) tends to 

approach 0.056 independently of the values of  zt,*  /U when the value of  zta*d/v 

becomes lesser than unity, and is equal to 0.056 in the range where the 

Stokes law can be applied to estimete the drag coefficient of a  spherical 
sand gravel. 

3) Theoretical consideration for the zone of established flow 

   In this region, the maximum velocity of a wall jet given by Eq. (6), 

and the boundary layer growth is expressed by Eq. (13) in the case of 

laminar boundary layers and by Eq. (17) in the case of turbulent boundary 

layers respectively. 

   It is difficult to consider the  criterion for scour in this region by ap- 

plying directly the results of the boundary layer growth obtained in the 
second chapter. The theoretical consideration for the criterion is made on 

the basis of the relationships neglecting the second terms in the brackets 

in Eqs. (11), (13), (17) and (19). This treatment is based upon the reasons 

why, as is seen in Fig. 13, the results of Eqs. (17) and (19) do not  suf-
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ficiently agree with the experimental data close to  =2a2 in the turbulent 

boundary layer and the effects of neglecting the second terms in the brackets 

in Eqs. (11), (13), (17) and (19), for the both laminar and turbulent bound-

ary layers do not influence the ranges of slightly larger values of E than 

 2a2 The theoretical results on the two-dimensional turbulent jet expressed 

by Eq. (4) are applied to the velocity profiles in a main flow, and moreover, 

Henry's experimental results already described are useful in evaluating the 

fluctuating velocities. 

   (i) The case when the laminar boundary layer is assumed : As just 

described in the preceding paragraph, it is assumed that the velocity fluctua-

tions do not exist in the laminar boundary layer. The criterion for scour 

will be considered by dividing it into two cases  ; one case is when the sand 

gravel is in the boundary layer and the other case is when a part of the 
sand ravel is exposed beyond the boundary layer. 

   a) The case when  8>-d: By using Eq. (19) for the velocity profile 

in the boundary layer and applying Eqs. (11) and (13) in which the second 

terms in the brackets on the right are neglected, the fluid resistance  RT 

can be written as follows by replacing U in Eqs. (30), (31) and (32) by 

 uo. 

             p uo 2('j2(d111z              T 8 ict.'\ u* 1\)1\ 8 if,  (65) 

in which 

 d/8= (1/2)  (u*/u0)(u*d/v) (66) 

and the Reynolds number for  CD2 can be written as 

                                            , 

 R62- 1 u*d \2-12 —  1  (  u*'\  u*dt    2  1 2) 2  \ uo) 1, 2) 11. (67) 

   Taking into consideration that the velocity uo in Eq. (9) changes with 

the distance by the relation of Eq. (6), the velocity component  w2 in the 

z-direction at z=d can be obtained from Eq. (33) as follows. 

           W2 5(u*)4(
u*d  ')2121 ( u* \( u*d\i.                                              (68) 

 uo 12uo2 \ /\ I) )1 

    From the result, the uplift RL can be written as 

                       u*' 6u*d4f*u*d2           d—2u*2C(-5)2(-21(u)())- ,••(69)    RL—812 ,uo2)2uo 

in which  C  Dw2 is the function of the Reynolds number expressed by
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           R ew2— 5( u*u*d3.121( u* \( u*dt.    (70)                12 \ uov(2 \uo Avf 

   Inserting above relationships into the equation of equilibrium condi-

tion, the following relation is finally reduced to 

 uo*2   4  
                 (a/ p— 1)g tanco— 305  ' (71) 

in which 

       1 =4(uc v*d )2i221(uouo )1*  \( uo*d 11,2     1\v)1 

     + )2C(uc* )6 (If' PI21 (  uc* )(  uc*d tan co  (72)*d      12nw2140 2 uo uo 

and it is obvious that the limit of applicability of this relation is  d/851. 

   b) The cases when  8�d. Since a part of the sand gravel exposed beyond 

the boundary layer, the fluid resistance  RT is considered by dividing it into 

the two parts which are the fluid resistance in the boundary layer and that 

in the main flow. By the same treatment as in the consideration for the 

region of  E.�2a2 described already, the fluid resistance expressed by Eq. 

(14) can be written as 

            Rro87rdzu*aCD2(1 —th)u (73) 

in which  CD2 is the function of the Reynolds number expressed by 

 Rea  -=  (uo/u*)  (u*d/ v).  (74) 

And by using the value at  z=8 corresponding to Eq. (68) the uplift ex-

pressed by Eq. (27) can finally be written as 

             RLo--t7rdzu*2C—35)2A( u*)2   (75)                 82)W2(182 U0 
in which  CD,02 is the function of the Reynolds number expressed by 

 /4.2=  (35/18)  (u*  /  uo)  (u*d  /  v),  (76) 

and  Ay is represented by Eqs. (28) and (29) which is the function of  d/8 

expressed by Eq. (66). 

   Now next calculate the fluid resistance in the main flow. The relations 

of Eq. (14) using  c=  0.00858 which is the coefficient of mixing length in 

the wall jet as described already, can be applied to compute the velocity 

components of  u and w. Although the values of fluctuating velocities of 

 04'2 and  1/W7'2 in the wall jet and the distributions have not been clarified yet,
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the same relation that  Vit-'2=mii as described already may also be applied 

to this region by considering that  i/W2/Tt=  const. for the region of  <ec 

from the result shown in Fig. 17, and the same relation that  1/w'2= mw 

for the fluctuating velocity in the z-direction, as mentioned above, may  he 

assumed. 

   Under the above treatments the first term on the right in Eq. (23) can 

be expressed by 

            RTmi=7rd2u*2CDi(1 +m)ajes( u°*)2 
         8usechaCi,  (77) 

in which Cm is the function of the Reynolds number expressed by 

 Rey  =  (uo/  u*)(u*d/  v)  sech2  (78) 

As is shown in Fig. 22, taking the value at 

 z=  8 for the representative velocity, the value 

of  Ci in Eq. (78) can be expressed as Eq. 

(79) by using Eq. (13) neglecting the second u, 

term in the bracket on the right side.  6  X 

 Ci (=  608/X)  =  (10/3)60  (u*/u0)  2  (79)  Fi
g. 22. Representative veloc-

   Since, as is seen in Fig. 5, the velocity ities in zone of established 

of flow decreases rapidly with the distanceflow. 

from the bed, the fluid resistance may be evaluated too low if the value 

of velocity  144 at  z=  d in the figure is taken for the representative velocity. 

On the other hand, as the velocity profiles in both cases of the critical 

tractive force and the criterion for scour at the downstream end of a smooth 

bed depend upon the logarithmic law, the fluid resistances have been  evaluat-

ed higher than the true fluid resistances, and the theoretical results agree 

with the experimental data. Based on the above fact, therefore, the describ-

ed treatment for the representative velocities has been assumed. 

   As described already, the first term on the right in Eq. (26) can be 

expressed by Eq. (80) with the aid of Eq. (4). 

 Rimi=PDwl7rd2u*2C1±m )2 Al(tell:)2          8(2e:i sech2tanh C1)2, • • • (80)                                    20.0 

in which  Cpu,1 is the function of the Reynolds number expressed by 

 Re.1=  (1/26o)  (uo/  u*)  (u*  d  /  v)  (2:1  sech2  Cl — tanh C1)  (81) 

and  Al is represented by Eqs. (28) and (29) which is the function of  d/ 

expressed by Eq. (66).
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   Next, consider the second term on the right in Eqs. (23) and (26). 

Although both of the pressure gradients of  ap/ax and  6p/Oz are the sum 

of the pressure gradient resulting from time-average velocities and that 

resulting from fluctuating velocities as described already, the former of the 

two resistance may be considered to be negligible in the wall jet as appli-

ed in the analysis of boundary layer growth. In the region of  2a25E<E,, 

therfore, only the pressure gradient resulting from the velocity fluctuations 

will be calculated in the same manner as described in the region of  E�2a2. 

   Putting Eq. (4) and the fluctuating velocities expressed by the treat-

ment described already into Eq.  (35)  , expressing the scales of minimum 

eddies by the relations of Eq.  (49)  , and considering that the mixing length 

in the wall jet is equal to  1=cx, the second term on the right in Eq. (23) 

can be reduced to 

       r   R  Tm2 =7rd2U*2                          (sech4"2(1 ±m)           flS(uU°)2vitanh      4*L ac sech2  :1 

        X  (2:1  sech2  C  i —  tanh  +  mvi(2Ci tanh  Ci — 

                                   2 

     ±m(l+m) tanh  Cif  1y/z] 
 co sech2  Ci 112 (ac)2+ apatanhCi (82) 

in which 

 721(=  d/  x)=  (5/3)(u*/ao)  3  (u*d/v),  (83) 

and  CI is expressed by Eq. (79). 

   By using Eq. (53) similarly, the second term on the right in Eq. (26) 

can finally be written as 

 R  Lm2= nd2u*2A(m )(u° )2(sech2:1)[2:1721 (sech2 
 412a0/u* 

        X  (2:1 tanh  Ci-1)  +tanh  :1+  21/  2  )721  (2:1  sech2:1— tanh  CO 
               tanh Ci        +(2Cisech2:1 ){ 2                           721(1— 4:1 tanhsecha 

 (1  +m)   Vi  (2:1  secha  —  tanh  :1)11 (84)  2acco 

   Inserting these relationships into Eq. (21) and transforming the result, 

the criterion for scour in this region can be reduced to 

 uo*2  4  
                  (a/ p— 1)gd tan co—  306  ' (85) 

in which
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       uo y 
   06=r„I,2           21e*tL1-M)J9sCDI  sech4  Co  +  (1  —  ,es)CD2). 

     +248s(title!,)2(sech4:1)[m(1 +m) tanhr/                                           '(2: 1  sech2  Co               ac sech2 

       tanh  Co) +mvo(2:1  tanh Co1)±m(l+m)721(2c,_ tanh  
              2 Co sech2) 

   XI       -2 (ac)2 +a02 tanh2:41/2] +2( uttco*  )2[( 12+aom   )2  iloC.Dwo 

 X  (2:1  sech2 tanh  :02+\ 18) 2CD W2A21 tanCO 

      m  

     +A1u
o*         (  u° )2  ao (sech2•F:1) [2Co7;1(sech2  Co)  (2C1 tanh  C1-1) +tanh Co 

 +2  V  2( m )7;1(2:1sech2 Cotanh :1) +(2C1tanhCl)1 )      ac' sech2 Co 

      X -(—2111(1-4,1:1 tanh:1)sech2Cl 
      ^(1+m2acao)  

             721(2:1  sech2C1— tanh :1)Htan  co.  (86) 

   (ii) The case when the turbulent boundary layer is assumed : In this 

region, the Blasius law for the resistance law in the turbulent boundary 

 layer can not be applied, and the relationship shown in Fig. 9 should be 

used. But the theoretical consideration for the criterion is made for the 

general case as presented already. For the boundary layer growth and the 
distribution of shear velocity along the bed, Eqs. (11) and (19) neglecting 

the second term in brackets on the right are applied respectively. 

   a) The case when 8>d 1 : Using Eq. (14) replacing n by  n1 as velocity 

profiles, considering  b's  =  0 as formally  done, and applying the relation ex-

pressed by Eq. (48) to evaluate the fluctuating velocities in the boundary 
layer as described already, the first term on the right in Eq. (23) can 

finally be reduced to 

                             dro +2).2.  Rrbi =—P8—7rd202CD2{(uu*cio (87) 
in which 

             co = (21)—  (no +1))2721(0/uol/no (u*d/o                                              (88) 

and  CDZ is the function of the Reynolds number expressed by 

 R.2.=  (21)—(121+1)/2n1(0/u0)(1—m)/ni  (zgd  /  2.  (89)
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   The uplift, which is expressed by the second term on the right in Eq. (23) 

resulting from the pressure gradient can be calculated by the same procedure 

as in the theoretical consideration for the zone of flow establishment. Ap-

plying Eq. (14) replacing n by  nl, and calculating the representative velocity 
w2 corresponding to Eq. (47) from Eq. (43) the result can finally be reduc-

ed to 

 w2  =( d )ni  (2n1+1) (3n1+1) – (ni +1)/2221(0)(27,71+1)/m( u*d   ) 
 uo8 I(n1+1) (4(n1+1)'U0  V  ) 

    +2 (ni+ 1) (2n1+1)(  u*  )21.      4n1+1uo (90) 

   Moreover, inserting Eqs. (14) and (90) into Eq. (45) under the as-
sumption that the relations expressed by Eqs. (48) and (49) can be applied 
to the turbulance intensities of and  1/02 and the scales of minimum 
eddies of  A.,  2. and respectively the second term on the right in Eq. 
(23) can be expressed as follows. 

 (n1+1)/2(   u*d  )ni      RT02=—          nd2u*2[(al—d){2 (2 +1/2)+ (21) 

                                ) 

 X +ntad  )1.4(2n1+1)2)– (ni +1)/2( u*  '3(  u*d)ni           1d  )1 4n1+11'(uo) v  / 
 X  {  2(3n1+1) (Ai) –(3n1+1)/2n1( uuo)l* )1/ni( u*d   +ni(n1+1)1 

       +21/1(  2n1+1 \( d+1)/2( U* )2( u*d               4n1+ 1 /"1,  uo  V 
 f 3n1--i- 1, U0–(721+1)/2m( u*1/1/1( u*d )+2(ni+ 1)H.                                            (91)     "ni +1111)) V/ 

   In the same manner as described above, calculating the relation cor-

responding to the first term on the right in Eq. (27) and also calculating 

the second term, the uplift corresponding to Eq. (54) can finally be writ-

ten as 

    RP–d2u*2CD.2( U°)2(d)2ni(2ni+1) (3ni+1) (A.– (n1 +1)/2n1 
                   U*8/(n1+1(4441+1)" 

 x (  u*  )(2n1+1)/n1(u*d )+2 (ni +1) (2n1+1) u*21_2  \ uo/4n1+1 uoI 
         ,d2o22( uo  )( d rn j2(ni  +1) (21/1+1)12(  u* d         4L2\ u* /1 8 I  L  4n1+1  \  uo  \  8  I 

      X{1+3n1+1(2)– (ni +1)/2n1( u*d  '1(u* )1/n1 
         (ni+1) a1\I\Uo
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     + (3ni +1)(2;11+1  )2(21)()                            (3m+1)/mu*d  \)2 (  3 (3n, +1)  
 4n1+1. v  ni+1 

                      )1/m+4n
3i(ni++11)(A1) 

                                               –(ni +1)/2m 
      +2 (ni + 1) Ai(  u*d  )-1( u*  

                    \  vI\21.0 

 x  u*d   )-1(  u*   )(2ni +1)/nq+1  (  d  \+(2n1+1) (3n1+1)  /  uo  /-V2\ 4n1  +  1 

      x (Ai) –(771+1)/2n1(  u*(2222 + 1)/n2( u*d )1+(21/-2 +1)           uo\v(ald 
 (92) 

in which  CL2 is the function of the Reynolds number expressed by 

    Re.2 = (21) — (ni +1)/2( u*d\ni+11(2;11+1) (3n1+ 1)— (n2+1)/2n2                    \I(
ni +1) (4n1 + 1)LA1) 

       xu:)(2771+1)/ni(u*d+2 (ni+4411)+(2n11+ 1)u* )21,                                            (93)                                       v 

and  /d shows the value of 1 obtaining from Fig. 19 by using the value of 

 d/8 expressed by  Eq  .  (88)  . 

   Inserting the fluid resistances of RT and  R  z, obtained above into the 

equation of equilibrium condition, the criterion for scour in the range of 

 d/8<1 can be reduced to 

 2024                                              (94) 
                    (cr/p –1)gd tan 0— 307 

in which 

   07= CD21)(4-)n 1 +212+2D: ad1,, /){2 (2 + (21)— (n1+ 1)/2 
     xue*d)ni(2+n, adi4(42z++11)(21) --(222 +1)/2( 20l3 

 uo  / 

     xue:d )niCl2                  (3n1+ 1) (A– (3                           O,22+0/2222( 1/m uc*d                         \  \ u0 v  ) 

     +ni (ni +1))- +21/ 2( 2ni +1  ) (  d–(n1+1)/2(  uo*  )2( u,*d  yit 
                4n1 + 1\" 1  uo  I  1  v 

 x 3n1  +  1–(2/2 +1)/2n1(  uc* '11/1 ue*d  )+2(ni + 1)}1+Cmoo     ni +1"1 uo v 

 x ( uo  )2( d)2nij(2ni +1) (3ni +1),,_) –(ni+1)/2)21( (2n1+1)/nl         ue* /u\/ ( (n1+1) (4221+1)\uo 

      x( itc*d )+2 (ni +1) (2ni +1)tte*                4n1+1  uo)Ttan co +2[2 (:°*)(cic)n1        \ v ) 

              +1) (2n1+1)1.2( uc*dji3n1+1 ,,–(721+1)/2ni       X [nii2 (n14n1+1\uo\ 8(n1 +1)z`Ali 
     x (ud\u o07/)(uc* )1/n21                         1+1)24(nni++1  la (21) —(3n' + 1)/ni
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 X uc*d\2f3(3ni +1)u0*d( 2,0 )1/n1  \  v  1t ni  +1 +2(ni+ 1)21  \  v  uo 

      ±4n1 (n1+1)(AD-021+1)/2n'uc*d \—1( 20 \ (2n1-1)/ml.      3ni +1 \  v\  uo 

      + 1 (d(2n1+1) (3n1+1)(A0— (ni + 1)/2m(  ue*(2771+1)/n1    V 2 \ 4n1  +1 \  u0  / 

     (uc*d)]+ (2/2 +1)  (  d  )1-tan co. (95)  ald 

   b) The case when  8�d  : Since the sand grevels are exposed beyond 

the boundary layer in this case, both fluid resistances of  Rpm and  RTb 

exist. Consider at first RTb. Calculating the relation corresponding to Eq. 

(91), the fluid resistance  RTb can be obtained by the same procedure as in 
 Eq. (58) as follows. 

 RTb= 8(1nd2u*2CD2(1{(uu°* )+2}2+4                                  2
+nd2u*2(1 —(3s) 

      XId -{2 (2 ±iff) ++nl. a „16 )(u°u* )1   ala  

        2(2n1+1) +1) (2n12 +5n1 + 1)(u*  
           4n1+1\uo 

 +21/2— (2n1+1) (27212+ 10ni +3)d \(u*  \-1    (96)                (n1+1) (4‘ni.+ 1)Juo)J' 

in which  C  D2 is the function of the same Reynolds number as  Eq.  (74)  . 
   Since  Eq. (4) can be applied to the velocity profile in the main flow, 

 /?2,,, becomes finally equal to the sum of Eqs. (77) and (82), and the 
following relations can be used for  CI and  7;1 in the equations. 

                      (2n1  +1) (3n1 + 1) (u* )2                                             (97)              (— cox)— 2ao  4n1+1  \  uo/ 9 

and 

      d„,(2ni+1) (3ni +1)(A
i)— (3m,+ 1)/2mu*(2n1+1)/7/1u*d  '?ir="1 4n1+1uo ) • 

 (98) 

    By the same treatment as described above,  .R.Lb can be written as 

    R.Lb= P7rd2u*2CDw2A21(2n1 + 1) (2n12 + 10n1± 3)u* + 
      8(rti +1) (441+1)  uo 

          ,d202A[2(uo[4n1 (2ni +1)2(112+5n' +2)(u*2  42u* (4n1  +1)2\U0) 

        (3n1 +1) (2n1 +1)2(21) —2( u*)4.t3 (3121+1)  
        (4n1+1)2• U0 ±1
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       +2(721+1)(2) (ni -1)/2n1( u* )2/ni 
                           1 U0 

       +4ni (ni+1)cp-(ni+1)/ni(u*(2ni +1) (3n/ + 1)u*  '12 
 (3n1  +  1)"uo ) 4n1  +1 \ uo) 

     +-)2 (cdils)1+ (1 +21/2)(adia)1,  (99) 
in which  CDw2 is the function of the Reynolds number expressed by 

 (2n1+1)  (2n12+10n1  +3) u*   )(  u*d (100)                Rew2=  (n
1+1)  (4ni  +1)                                             uo./                                                 VI 

   For the uplift  RLm, in the main flow, the relations expressed by Eqs. 

(80) and (84) replacing  :1 and  7;1 in these equations by Eqs. (97) and (98) 

 respectively can be applied. 

   Inserting the results obtained above into the equation of equilibrium 

condition, the criterion for scour in the range of  d>8 can finally  he writ-

ten as 

 ue*2  4  
 (a/  p  -  1)gd  tan 308  ' (101) 

in which 

    958= (1 +m)2j8e(uu:* )2CD1 sech4:1+ (1 (3e)CD21( u:*/+2}z                                       +21.2 

             d  

     +2(1-Rs)aia )12(2+i/1) + (2+ni (1185)(  j}. 
 2  (2n1  +1)  (2n12  +  5n1  +  1)   (  uo*(2n1+ 1) (2n12++ 3)  

 4n1+1  uo  1+21/2(n1+1)  (4n1+  1) 

    X ( acila)(u:)]+2(3s(:°* )(sech4 :1) [m (1:cm)  7;1 
           tanh                   sech2:1- tanh :1) +mn (2.:1tanh- sech2!.:1 'i 2 

         (1 +m)  r i  (2,1tanh1                                   +602 tanh2 :11.1/2] 
 ao\secha2(ac)2 

     +2( ue* )2o2aA1[(1±m )2CDtvl (2:1  sech2:1-  tanh  :1)2               uo 

      + 2ao (sech2:1) [2:17;i  (sech2:1)  (2C1 tanh  Y1-1) +tanh 

                                        stenhh2 Cc'             (--V171(2.`,71, secha- tanh+ (2:1-e  
      f1       Xl -v;1(1 -  4:1 tanh  sech2:1
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 (1±)   sech2  CI  —  tanh  :1)  Iltan 
 2acao 

 (2n1  +  1)  (2n12+  lOni  +3) (24*   )+      +A2[Cow21  (ni  +  1)  (4n1  +  1) \  uo  / 
      +4(  u0 r4n1 (2ni + 1)2(n12 -1-5ni +2) (  u0*   12            L(4n1 + 1)2\ U0 

        (3n1 +1) (2ni +1)2 (,_•)_2(tte* 4i3(3ni  +  1)  
          (4n1+1)Aii  up  ( n1+1 

                  (ni—1)/2221(  u,*2/ni  +2  (n1+  1) (A1)                     \  uo 

      +4n1 (ni +1) (Ai)(ni +7.)/ni ( uo*(2;11+1) (3n1+1)  ( uc*  \2  (3n
1+1)\  uo  4n1  +  1  u0  / 

    + 1( daal)1+ (1 +2-1/ )d a)1 tan co.  (102)   -V2al 

   As described above, it can be seen that the criterion for scour in the 

region of  Eo>  E>2a2, the zone of established flow, is expressed by the 

following relationship for both cases of the laminar and the turbulent 

boundary layers. 

 ue*2  4  
            (a/ p— 1)gd tangp3cbi (i—  5, 6, 7,  8)  , (103) 

in which 

 t=  afii{uo*d/v,  uc*/u0}. (104) 

   In calculating these equations, it is necessary to consider the relation 

between the friction coefficient  Cr and the Reynolds number  uoL/v as des-

cribed already. Fig. 23 presents the relation between Cf and  uoL/v, and 

the solid lines in the figure  are, the relations expressed by Eqs. (13) and 

(20) neglecting the second terms in brackets on the right. 

   Now consider the range of the Reynolds number  uoL/v from 6 X  102 to 

 4 
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          Fig. 23. Relation between Cf and  uoL/1., in region of  E>2a2.
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 107. and it will be adequate to calculate Eqs . (103) and (104) for the ranges 
of  ue*/zio from 0.1 to 0.06 for the laminar boundary layer and from 0 .09 to 
0.06 for the turbulent boundary layer respectively . By applying the values 
of ni and  A1 used in the analysis of the boundary layer , that of  ao corre-
sponding to the value of c as described already and  m=0 .1 to Eqs. (103) 
and (104), the theoretical curves for the criterion for scour can be calculat-

ed as shown in Fig. 24. In the figure , Iwagaki's theoretical curve for 
the critical tracive  force" is shown for comparison . Besides, in the case 
of the laminar boundary layer the value of  u,*2/(01p-1)gd  tan  co tends to 

approach 0.056 independently of the values of  uc*/tto when the value of 

 u,*d/v becomes lesser than unity and the value is equal to 0.056 in the 
range where the Stokes law can be applied to the drag coefficient . 

      ^IIINIMENIMINIMMENO^^^••^•••••^^^••••^•••••^^•^^••=ww•              NIMMINEMOMIal^II^IMIWNIMOI^111=M=MEI1111^1^11MIIIMIMMINI 
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   Fig. 24. Dimensionless expression of criterion for scour in zone of established 
     flow obtained by the theory. 

   From the above descriptions and the 'theoretical results shown in Figs. 

(21) and (24), it is clear that the criterion for scour from wall jets is 

presented by the three parameters,  102/(a/  p-1)gd tan  co,  uc*d/v and  ue*/U 
or  ue*/uo, and especially by comparing the results with the critical tracitve 

force and the criterion for scour from flows downstream end of a smooth 

 bed9), it is found that a parameter  7,0/U or  uc*/uo should be added. 
Although this fact is based on the boundary layer growth, the tendencies 

of change of  the  theoretical curves are very complicated as is seen in Figs. 

(21) and (24), and the effect of the parameter  tec*/U or  tsc*Juo may not 
be large, especially in the region of established flow. It is also concluded
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from the comparison between the above theoretical curves and those for the 

critical tractive force that the criterion for scour from wall jets is presented 

by the lesser critical shear velocity than that for the critical tractive force 

in the region of sufficiently large  uc*d/v. 

   4) Theoretical consideration for the third region where the study of 

      wall jets cannot be applied 

   Since the theoretical results of the wall jet described in the second 

chapter can not be directly applied to estimate the characteristics of flows in 

this region owing to the existence of a free water surface, the characters of 

flows should be dependent only on the result that the maximum velocity of 

the flow will more rapidly derease with a distance than that in free turbu-

lent jets. To consider mathematically the criterion for scour in the region 

would be impossible. Hence, the relation between the criterion for scour in 

the region and that in the two regions described already is considered by 

the procedure of dimensional analysis based on the results shown in Fig. 3. 

   As described already, the most important parameter in the criterion for 

scour is the shear velocity along the bed. Instead of the shear velocity, 

maximum velocity of flows will approximately be applied. It is clear 

from the results shown in Fig. 3 that the characters of the maximum ve-

locity expressed by  "fio/U in dimensionless form, in the region of  fie« are 

closely connected with the ratio of the tail water depth to the length of an 

apron expressed by  ho/L, and furthermore, the flow should approach the 

uniform flow at a long distance from an outlet. 

   In the region of  E<E, the tail water depth has been essentially ignored 

in the boundary layer growth and the criterion for scour as described 

already. Then, if the length of an apron and the water temperature are 

given, the velocity of water jets under the criterion for scour can surely 
be decided. Considering the fact and the characters of the flow described 

above, the criterion for scour in the region of  E>e, will  approximately be 
expressed by the following relation in connection with the theoretical results 
for the criterion in the former two regions. 

 U/U„,=  f(ho/L),  (105) 

in which U is the velocity of an outlet already defined under the criterion 
for scour in the case when the length of an apron L, the characters of sand 

gravels, the opening of the outlet and the water temperature are given,  U.,
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the virtual velocity of a wall jet corresponding to U under the same con-
ditions, and  f(ho/L) which is the function of  ho/L and which should be 

decided only experimentally . 
   Furthermore, the more precise consideration for the criterion may require 

a clarification of the characteristics of flows in the region , although it may 
be very difficult to disclose theoretically the criterion due to very com-

plicated phenomena associated with the development of local and gross tur-
bulence. From the above assumption, if the relation expressed by Eq. (105) 
is considered and can be verified by the experimental results , the criterion 
for scour in the region may be estimated on the basis of the theoretical 

results for the two regions already described. 

   (2) Experiments on the criterion for scour resulting from wall 

      jets 

   In order to consider the actual phenomena of the criterion for scour 

based on the theoretical considerations already described, the experiments 

for the three regions were performed. 

1) Experimental apparatus and procedures 

   (i) Experimental water  tank  : With the experimental water tank des-
cribed in the second chapter, the experiments on the criterion for scour 

were carried out by constructing the model apron on the upstream side and 

spreading sand gravels on the bed downstream of the apron. The length 

of  the apron was determined for the three regions already described in con-

nection with the opening of an outlet, and the aprons were made of a smooth 

brass plate. Control of discharge was done by installing the sluice valves 

in pipes connected with the experimental water tank. Velocities of the 

outlet were measured by the Pitot-tube with an outer diameter of 0.200 cm. 

   (ii) Properties of sand gravels  used  : The properties of the sand 

gravels used in the experiments are shown in Table 1. In order to take 
uniform sand gravels, the mean values of the sieve sizes,  0.030.06 cm, 0.06 

 --0 .12  cm,  0.12  —0.25  cm,  0.25  --0.50  cm,  0.50---0.70  cm,  1.52.0  cm and 2.0 

2.5 cm were used respectively. The values of the frictional angle of sand 

gravels, denoted by the shape factor defined by c/i/ab, in which a, b 
and c are the maximum, intermediate and minimum mutually perpendicular 

axes of a sand gravel, and the numbers of sand gravels exposed per unit 

area shown  in Table 1 were measured by the same method as used by the
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           Table 1. Properties of used sand gravels and steel spheres. 
                         N  G

rain diameter Specific gravityNumber of sands andShape  factor  tancogravels exposed per 
c/Va   d cm u/Punit area  cm2  

   0.0450 2.479 0.790 191  0.624(0.276~0.876) 

   0.0900 2.507 0.984 64.9  0.634(0.198,4.889) 

   0.185 2.512 1.045  23.7  0.651(0.354~0.904) 

   0.375 2.527 1.036 8.96  0.671(0.328,-0.924) 

   0.600 2.528 1.082 3.78  0.678(0.600~0.917) 

   1.75 2.661 1.041 0.811  0.562(0.316~0.869) 

   2.25 .2.660 1.019 0.572  0.571(0.346~0.835) 
  0.332 7.675 1.021 9.70 1    (sphere) 

 author° 

   Besides, as an example for comparing the differences of shapes and 

specific gravities of sand gravels, the experiments for the zone of establish-

ed flow were performed by using a steel sphere, shown in Table 1. 

   (iii) Experimental procedures : The relation between the velocity of 
an outlet and the  rate, of sediment transportation, expressed by the numbers 

of sediments, at or near the downstream end of the apron were measured 

by setting the sand gravels on the bed downstream of  the apron and con-

trolling the discharge of flow. But the criterion for scour in the third 

region where the study on wall jets may not be applied, was decided on the 

intuition of an observer because the accurate measurement of the rate of 

sediment transportation was very difficult owing to the development of com-

plicated turbulence. 
2) Experimental results and considerations 

   In the following, the experimental results obtained above are compared 

with the theoretical results for the three regions respectively. 

   (i) Considerations for the zone of flow establishment : From the ex-

perimental data in this region, some examples of the relations between the 
ratio, denoted by  Po  %/s, of the rate of sediment transportation, which is 

expressed by the numbers of sediments, to the numbers of sand gravels ex-

posed per unit area, which was proposed by the author in the preceding 

 paper°, and the velocity of jets can be obtained as is shown in Fig. 25.
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   Fig. 25. Variations in rate of sediment  transportation, expressed by  N  %/s, 

     with velocity of outlets. 

   Applying the value  po=0.5  %/s, which was determined by the author 

in the previous paper, to the criterion for movement of sand gravels, the 

velocity of the outlet corresponding to the value can be obtained from the 

results shown in Fig. 25. Obtaining the value of Cf corresponding to the 

          Table 2. Experimental results for the criterion for scour in 
            region of flow  establishment. 

 alma  LID  (Jcin/s  ue*/U  ue*cra/s  uc*d/v  uc*2/(a/P--1)0tan  co 

 0.0450 5.66 27.4 0.0599 1.64 6.97 0.0524 

 0.0900  & 31.1 0.0588 1.83 15.5 0.0279 

 0.185  I/ 38.0 0.0573 2.18 38.0 0.0166 

 0.375  // 50.0 0.0556 2.78 97.8 0.0133 

 0.600  ,, 70.0 0.0538 3.77 212 0.0146 

 1.75 8.16 135.0 0.0476 6.43 901 0.0139 

 2.25 // 146.0 0.0472 6.89 1242 0.0127 

 0.0450 9.96 29.8 0.0556 1.65 7.04 0.0532 

 0.0900  I/ 36.7 0.0543 1.99 16.9 0.0296 

 0.185  & 41.3 0.0534 2.21 38.5 0.0171 

 0.375  & 53.2 0.0519 2.76 97.4 0.0132 

 0.600  // 69.4 0.0507 3.52 198 0.0128 
 __I
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Reynolds number  UL/v, which is calculated from the value of U, the length 

of an apron L and the kinematic viscosity  v, from the results shown in 

Fig. 20, and estimating the critical shear velocity  ue* from the results, the 

values of  ue*2/(a/p-1)gd tan  CD and  ue*d/v can be calculated. In this case, 

the relation shown in Fig. 20 by the chain line was applied to estimate the 

value of  Cr in the case when the value of  UL/v became about  2  X  104. The 

relationship between  Cr and  UL/v close to the above value has not been 

clarified yet. Since, however, this corresponds to the case when the size of 

sand grain is equal to about 0.045 cm, these many differences will not 

remain in practical problems. The experimental results obtained above are        

1 1 
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       Fig. 26. Comparison of experimental results and theoretical curves for 
         criterion for scour in region of flow establishment. 

shown in Table 2. Fig. 26 presents the comparison of the theoretical curves 

for the criterion and the experimental results shown in Table 2. The  theo-

retical curves in the figure were decided as follows. By introducing the 

sheltering coefficient proposed by  Iwagaki7) into Eq. (63), it can be writ-

ten as 

 teC*2  =  4   (
a/p-1)gd  tan  co 3e0t ' (i-1, 2, 3, 4) (106) 

in which  e is equal to 0.4 on the basis that the hydraulic mechanism for 

the sheltering coefficient may approximately agree with that in the case of 

the critical tractive  force and the criterion for scour at the downstream 

end of a smooth  beds' Since the theoretical curves are not expressed by 

one curve with the parameter  uc*/U because the transition of the boundary
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layer from laminar to turbulent is not clear, the complete comparison of 

the theoretical curves and the experimental results cannot be made. In 

spite of these many assumptions, the theoretical curves agree well with the 

experimental results, and it seems that the effects of the parameter  tte*/U 

on the criterion do not come within the range of the experiments. 

   (ii) Considerations for the zone of established flow : The experiment- 

  ioz _ 
                e-^...........^..m^.....•.•                          ...------- 

                              IS. ii ......,....m.•.,;;•.;:-                          6 
M111•1221...21•111.010,40.01211.1.___Semntum.M.                         

, wilumwmcni:...inkkmommnam 

               4 

 rilaill11111111111111.1111111  cl.o.oeoo  cm  I            
2  11111M1 111111  4.55.°  1 

        10  1  0 noitvo.29                                            co  0.57 

 Id_     • _         U:1::::=Erann=9:17°::.-=.                               ommen^w.....e..,---.0..eatmel              c171/6 6M•r,IIKWIM,rialt;:a..1,,OMMill 
                  4 MIIIIMliiaa:41111•MIIMIIIIIII^11•1111111                          IMM/11111111 ,1                                                                    _•0.185CRI I 

            211111 1111111 e.-.55-8  1                                                           o 110,1„.0.29 
 01  0.57  10   

              le                         =:::::= .•---.:2::::=-w-T;;;;srawa                         aMMMENNE^^•7 ,111.11•1•Meri•-..i...ZI.A...^^••^ 
                          6 11011•1111•1162^1-15.1•W_71,74,1...0111112.^=10n1W•11^11                                 MEN•222^:'—ni•ilIMILI11.2111^MMMOIMMENII 

                  4IMMiiiiinailialiMildll d  .0.375  cm  ii^  111111111111=NLIIIIIII  
eL.40.1  1•1111 

                                                      0 ho/L°0.601 1   
2   

 10 Ico  e0.00                                                                                  1.00 

 le 2 4  6  6101 2 4 6  8  161 2 4  6  8  1 2 
 Po  %/s 

    Fig. 27.  Variations'  in rate of sediment transportation, expressed by  pa %/s, 
     with velocity of outlets in case of sand grains.  

  al results arranged as des-4   d .1.75 CM 
                                                           29.0 

cribed above are shown in24Lho/..•0.5 2   

Figs. 27, 28 and 29. Fig. 27  Pt  • . . 
             u shows some examples of the1                               102 2 4 6  8  161 2  4 6 8 

                    GM4 
experimental results  ob-s   d  =2.2scm    4

L.  29.0 

 tained by using the 2  ho/L-e0.5  4                                                                                              .41111^  C  
• 

sand grains, Fig. 28, by  2 •  •  10 

using the gravels and Fig.  Id' 2 4 6  8  161 2  4 6  8  P
c, %/s 29

, by using the steel                                    Fig . 28. Variations in rate of sediment trans-
spheres. As is shown in                                      portation, expressed by  Po  %/s, with velocity 

Fig. 25, the variations in of outlets in case of gravels.



48 
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 UINg:122t .::1111of ho/L<0.288 obtained from 
 OM 2 -T-111111111,111111111111111     20,,aliandtillmFig. 4 are expressed by a                                          curve when the water tem-     10S.oria......nmar.......mmidi 

    8
162 2  4  6  810' 2  4  6 8  1                                        perature is constant, in spite  P

o %/s 
   Fig. 29. Variations in rate of sediment of the expression with the 

    transportation, expressed  by.  Po  %/s, parameter of  ho/L. This fact 
    with velocity of outlets in case of steel will be the natural outcome 

     spheres.                                       t o be expected from the 

characteristics of wall jets described in the second chapter. The limit of 
applicability will be explained in the considerations of the next region. 

   Calculating the velocity uo by Eq. (6) by applying the definition for 

the criterion for movement of sand gravels, expressed by  po=  0.5  %/s, to 

these experimental results as described already, and estimating the critical 

shear velocity by using Fig. 23 instead of Fig. 20, the final results can be 

obtained as shown in Table 3. Fig. 30 represents the comparison between the 

 Table 3. Experimental results for criterion for scour in region of established flow. 

  d cm L/D U cm/s  uc*/uo  uo* cm/s  uc*d/I,  itl`z/(cr/  p-1)gd tan w  

I 
 0.0450 23.4 32.6 0.0788 1.713 8.16 0.0569 

 0.0900  & 44.7 0.0823 2.45 22.9 0.0457 

 0.185  i. 53.4 0.0850 3.03 58.7 0.0318 

 0.375  u 64.0 0.0839 3.42 138.0 0.0227 

 0.600  & 92.2 0.0821 5.05 312 0.0275 

 1.75 29.0 168 0.0774 7.76 1086 0.0203 

 2.25  // 213  1 0.0761 9.70 1747 0.0252 

 0.0450 40.0 39.0 0.0859 1.704 7.72 0.0562 

 0.0900  ii 53.5 0.0836 2.30 21.7 0.0403 

 0.185  // 66.5 0.0823 2.78 54.0 0.0270  i
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 0.375  // 80.5 0.0813 3.33 130.5 0.0191 

 0.600  // 106.6 0.0801 4.39 271 0.0208 

 0.0900 40.1 49.9 0.0832 2.12 22 .8 0.0342 

 0.185  /. 67.4 0.0814 2.80 60.7 0 .0274 

 0.375  /. 86.7 0.0806 3.56 158.9 0.0218 

 0.0450 55.8 50.8 0.0822 1.807 9.58 0.0633 

 0.0900  u 61.2 0.0816 2.16 22 .9 0.0357 

 0.185  // 76.0 0.0803 2.64 53.4 0.0243 

 0.375  & 103.6 0.0785 3.52 156.2 0.0213 

 0.600  ii 130.0 0.0770 4.34 305 0.0194 

  0.322 23.4                115.2 0.0809 6.22 199.1 0.0179 (steel sphere) 

         55.1 180.0 0.0765  ; 6.01 193.4 0.0167    
I  1 

2   
   0.139  I  pe-  0.5  %/s La  /U.  i 

         ar 
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       Fig. 30.  Comparison of  experimental results and theoretical curves for 
        criterion for scour in region of established flow. 

theoretical curves for the criterion and the  experimental results shown in 

Table 3.  The theoretical curves for the criterion  in the figure are expressed 

in the form of 

 7,02  4  

 - 

            (a/p-1)gd tan co3s0i' (i = 5' 6, 7, 8) (107) 

in which s is equal to 0.4 as described already. As described in the case 

of Fig. 26, the theoretical curves are not expressed by one curve with 

the parameter  ttc*/uo,  so the complete comparison with the experimental 

results can not be made. It is clear, however, that the comparison is 

 well and especially the  experimental results obtained by using the steel
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spheres agree well also with the theoretical curves. It will be deduced 

from the fact that the effects of the shape factor of a sand gravel on  the 

criterion for scour expressed by the relationship between  u*2/(Gr/p-1)gd 

 tan  co and  zte*d/v are not very great, as concluded in the preceding paper 
by the  author°. if the shape factor is of the  range from 0.56 to 1. And 

it is found that the deviations in the theoretical curves especially the  de-

viations in  140'2/  (a/p-1)gdtan  co at a given value of  uc*d/v with the  para-

meter  uc*/uo, are in the same order as those in the experimental results, and 

the fact that the effect of the parameter  20/uo on the criterion for scour 

is not clear and not very great, may be verified by the experimental results. 

The conclusion based on this fact should be decided on the basis of the 

model experiments with a large scale or the field observations for an actual 

outlet because the range of values of  uc*/u0 in the experiments are not 

sufficient. 

   Taking the comparison of the  results shown in Fig. 26 and those shown 

in Fig. 30, it is clear that the variations in the theoretical  curves with 

the parameter  tte*/U in the former case- are greater than those with  the 

parameter  tec*/uo in the latter case, but both theoretical curves show closely 
the same tendency close to  tee'l'el/v=  103. For the range of  ice*d/v  =103, 

however, it seems that the former changes are complicated with the para-

meter  tic*/U, the value of  ttc*2/(a/p-1)gd tan  co is nearly constant for the 

change of  uc*d/v, and on the contrary, the value in the latter decreases 

with the parameter  tic*d/v. In order to clarify the comparison of the 

theoretical curves and the experimental results in this range, it is neces-

sary to perform the model test having a large scale or the field observations 

because the size of gravels in the range becomes larger than 5 cm approxi-

mately. In particular, although the theoretical curve of  th*/u0=0.06 tends 

to separate from that of  uc*/u0=0.08 at or near the value of  which.  th*d/v 
 =6X  10g. the detail  consider.ations for the theoretical curves can not  be 

made, since the Reynolds number in calculating the curve of  uc*/u0=0.08 

has become the critical Reynolds number of a sphere close to the value 

of  uc*d/v above mentioned. Therefore, the considerations should be applied 

only in the experiments. 

   (iii) Considerations for the third region where the study of wall jets 
is not  applied  : Based on the consideration on the criterion for scour des-

cribed already, the relation of Eq. (106) can be verified by the experimental
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results for this region. As  ..=••^ 
390  551  135 

described already, the deci-               2MIM^= am°                                                                                          D0.6400.1340 265 
                                                                                         d 

                                                   .oas  0  0  0 sion for the criterion for  if •z 
 0.375  0 0  0 scour in this region was madeti;  0.600  p e 

on intuition of an observer  111101111, 
by an assumption, so the ex-

perimental data may scatter. 

But the discrepancy in the  o  11111.11  ^1111 
hydraulic phenomenon of the  o 02 04  h0/L 06  08 
criterion for scour may not Fig. 31. Relation between  U/Uw and ho/L. 

exist. Fig. 31 is the result considered for the relation expressed by Eq. 

(105), based on the above experimental results. It is clear from the results, 
that, for larger values of  h0/L than a certain one the velocity of an outlet 

agrees with the virtual velocity of a wall jet, which was defined already, 

in spite of the changes of  61, D and d. Therefore, the region corresponds 

to that already described. 

   On the other hand, the value of  U/UW increases rapidly with the de-

crease of the value of  h0/L in the case where the value of  h0/L is lesser 

than the critical one. The region is to be considered in this section. It 

will be seen from the results shown in Fig. 31 that the relation between 

the ratio, which is expressed by  U/UW, of the velocity of an outlet to the 

virtual velocity of a wall jet and that, which is expressed by  h0/L, of the 

tail water depth to the length of an apron can be presented by only one curve 

in spite of the changes of the opening of an outlet, the ratio of the length 

to the opening and the size of sand gravels in a vast range. And it may be 

concluded from the fact that the relation of Eq. (105) obtained by means of a 

dimensional analysis with the aid of the theoretical considerations for the 

criterion for scour in the two regions described already, is practically correct. 

   Now, expressing the relation between  U/UW and  h0/L by the straight 

line shown in Fig. 31, within the range of the experiments, the relation can 

be written as 

 U/U.-=  2.90  —  6.59(ho/L).  (108) 

   In the above equation, calculating the value of  h0/L at  U/U.=  1, the 

value is equal to 0.288, that is  h0/L=0.288. It is very interesting to note 

that the value agrees with the limit of applicability  or the theoretical con-
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sideration on wall jets described in the second chapter. As is seen clearly 
from Eq. (108), the influence of the tail water depth on the criterion for 
scour appears in the case where the value of  ho/L is lesser than 0.288. And 
Eq. (108) describes the fact that the more tail water depth decrease, the 
more velocity of an outlet is needed to move the sand gravels at or near 

 4 1111111MEMINIMEMEMIINIthe downstream end of an apron. 

  2 L.353cm III                                     D.0640 

    fBesides, the flow in the 
                        d • ooso third region should approach 

  „ 

               IH  s
the uniform flow at a long dis-      8 rirr.^^^maxlmr=rrwan let 

  6 tance from the outlet, so in 

    6 mommi--mmoon• Es order to consider the above in- 

      4 

            ANS—:3056340cm •11ference, the relation between the  d•0375 

 U2 co,e''A°11111111MINIM:I velocity of outlets and the tail  orris

2                           wonjet'1 water depth is shown in Fig. 32.   10IFRE091 22    8==itilmil 
  6 It is seen from the figure that          2 4 6  8

10 2 4 6  8j the experimental data soon  h
o  cm 

   Fig. 32. Relation between velocity ofapproach the relation correspond- 
    outlets and tail water depth under ing to the uniform flow, but the 

 criterion for scour. nature of the approach cannot 

he made clear within the range of the experiments. 

   (3) Empirical formulas of the criterion for scour and  considera-

       tions for determining the length of an apron required for 

        maintenance of an outlet 

   In this article, an empirical formula for the criterion for scour from 

flows downstream of an outlet and that for determining the length of an 

apron under the criterion for scour are proposed, based on both the results 

of the theoretical considerations and the experiments described above. The 

design charts available to derive the length of an apron are developed. 

The Bligh formula and the formula proposed at Iowa University are dis-

cussed in comparison with the author's formula. Moreover, some practical 

examples for determining the length of an apron are described and some 

considerations are briefly made on the design of aprons. 

1) Empirical formulas 

   In order to discuss the . criterion for scour from flows downstream of 

an outlet, the results shown in Figs. 26 and 30 are inadequate for  practi-
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 cal purposes, so it is necessary to rewrite an empirical formula in simple 

form. For the purpose, an empirical formula for the criterion is proposed 

as follows. 

   (i) Empirical formula for the region of  L/D<2a2  (=  10.4) : In this 
case, the apron is in the zone of flow establishment. Now, expressing the 
relation between  ue*2/(a/p-1)gd tan  co and  uc*d/v, shown in Fig. 26, by 
the broken line, by neglecting the influence of  ue*/U, the lines can be ex-

pressed by the following empirical formula. 

 R*?:1330  :  tt,*2=  0.0140{(a/p-1)g tan  co) d, 

 286<R*  <1330  ; =  0.0391{  (a/p-1)g tan  }13/14,„1/7d11/14, 

 3.68<R*<286  ;  =  0.216{(a/p-1)g tan  co}7/92)4/9d1/3, 

 R*  <2.68  ;  =  0.139{  (a/p—  1)g  tan  co}d, 

 (109) 

in which 

 R*={(a/p-1)g tan  col1i2d3/2/v. (110) 

   Further, simplifying the above relationships by using the values,  a/p= 

2.65, tan  co  =  1,  v  =  0.01 cm2/s (at 20.3°C) and g= 980  cm2/s, the results can 

be reduced to 

       •1.1111111fin
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              Fig. 33. Graphical representation of empirical formula 

                for zone of flow establishment.
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 d?0.478  cm  ;  uc*2=  22.6d  (CM/S)2, 

 0.172<d<0.478 ;=-...19.3d11/147  (111) 

 0.00763<d0.172 ; 8.73d1/37 

 d�0.00763 ;  =225d, 

in which d is in cm and  7,02 in (cm/s)2. 

   Fig. 33 is the graphical representation of Eq. (111), and the Iwagaki 

 formula for the critical tractive force is shown in the figure for com-

parison. 

   (ii) Empirical formula for the region of  2a3�L/D<$a  : In this case, 
the apron is in the zone of established flow. Expressing the relation be-

tween  ue*2/(a/p  —  1)  gd  tan  cc and  tte*d/v, shown in Fig. 30, by the broken 

lines, the empirical formula can be written as 

 9050  �R*  76400  ;  ice*2=  0.464{  (a  /  p  — 1)g tan  05/6v1/3d1/2, 

 670<R*<  9050 ;  =  0.0223{(a/p— 1)g tan  co}d, 

 79.6<R*<670  ;  =  0.0947{(a/p—  1)g  tan  yo}8/3v2/3d2/3,  •  •  (112) 

 2.68<R*<79.6 ; =  0.207{  (a/p  — 1)  g tan  co}4/50/3d2/3, 

 R*<2.68 ;  =  0.139{(a/p  —1)g  tan  co}d, 

   In Fig. 30, the experimental data  • only exist near  th*d/v  =  2  X  103, so 

the comparison of the theoretical curves and the  experimental, results -for 

the range of larger values of  uc*d/v can not be made. In proposing the 

empirical formula,  therefore, the considerations for the range should be 

questioned. Based on the above consideration and the fact that the theoreti-
cal curves for the criterion in the ranges of  2  x  103<uc*d/v  <8 X  103 agree 

well with the experimental results in spite of the variations in the parame-

ter  zee*  /  uo, the empirical formula has been proposed. From this, although 

the limit of applicability of the empirical formula has been presented by 

 th*d/v  =  8  X  103, which corresponds to  R*=  76400, the detail conclusion for 

the limit should depend upon the field observations in the future. 

   Making a formula which corresponds to Eq. (111) by using the practical 

values described already, the result can be reduced to 

 1.72  d�.  7.12  cm  ;  th*  =  47.3d1/2  (cm/s)2, 

 0.3035d  <1.72  ;  =  3.61d, 

 0.0730  <  d  <  0.303  ;  =24.2d213,  (113) 

 0.00763  <  d  <  0.0730  ;  =12.1d2/3, 

 d<0.00763 ;  =225d.
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        Fig. 34. Graphical representation of empirical formula for zone of 
          established flow. 

   Fig. 34 shows the graphical representation of the above equation. In 

the figure, the theoretical curve for the critical tractive force by Iwagaki 

is shown for comparison as done in Fig. 33. It is clear from both results 

shown in Figs. 33 and 34 that the criterion for scour from flows down-

stream of an  'apron is presented by a lesser critical shear velocity than 

that in the critical tractive force in the range of sufficient large-size sand 

gravels. This fact is similer to that resulting from flows at the downstream 
end of a smooth bed described in the preceding  paper9) 

   (iii) Empirical formula for the region of  L/D>Ec  : The criterion for 

scour has been expressed by Eq. (108) in connection with the results for 

the other two regions described already. To express the criterion  by the 

shear velocity may be generally difficult because the relationship for the 

resistance law of flow in the region has not yet been clarified. However, 

the expression of Eq. (108) may rather conveniently be applied to practical 

problems, so the author will propose the relation expressed by Eq. (108) 
without any modification for the empirical formula for the criterion in the 

 region. 

2) Considerations  on the design of the length of an apron 

   (i) Empirical formula for determining the length of an apron : In-

serting the resistance law of flow in those regions into the relationships
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for the criterion for scour described above and transforming these relation-

ships, the relations expressing the length of an apron under the criterion 

for scour can be obtained as  follows  : 

   a) Formula for  L/D<10.4  : Inserting the resistance law in laminar 

boundary layers and the Blasius law shown in Fig. 20 into the empirical 

formula expressed by Eq. (109), the dimensionless length of an apron can 

finally be written as 

 R*>  1330  ; 

    DL =37.5(  UD  \ U2 )5              v 1 .1(a/ p —1)gd tan So( ' 
 286<R*  <  1330  ; 

                               U2  165/14       = 0.220( d)66/9(-211 j 
                   v / i(a/ p — 1)gd tan yof  ' 

 2.68<R*<286  ; 
                   20/9(up\11/9 U2 )35/9     = 0.000434(d(turbulent),                       v )(a/ p — 1)gd tancol. 

          ( d 212(UDU2 1.14/9       = 0.02881D )\t(a/ p-1)gd tanco)(laminar), 

    R*<2.68 ; 

     = 0.06911 Up  \U2 2 
 v  !  1(a/  p  —1)gd  tan  yof 

 (114) 
   In the above equation, both expressions of the laminar and the tur-

bulent boundary layers for the same range of the value of R* are necessary 
to calculate for practical purposes because the critical Reynold number  in 
transition from laminar to turbulent and the characters of the transition 
have not yet been clarified. According to Fig. 20, the case where the tran-
sition is questionable, is close to uc*d/v.,----25 in practical problems, so the 
empirical formulas for the region have been presented by the relationships 
obtained by using the two resistance laws for the above boundary layers. 
Then, the application of the relationships to practical use should be at-
tempted as is explained below. If the value of R*, which expressed by Eq. 

(110), calculated from the characters of sand gravels and the water tem-
perature, is in the region of  2.68<R*<286, the length of an apron correspond-
ing to the given characters of an outlet is obtained by using the two for-
mulas for the region expressed by Eq. (114). And, representing the values 
of the Reynolds number  UL/v obtained by the above results and the local
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skin friction coefficient which is expressed by  Ci=2(u e*  /U)2 and calculat-
ed by using Eqs. (5) and (109) under the given codition , into Fig. 20, it 
may be concluded from the  com-

                                                                •=111^^•=11•011MM INIESE^IIIMIEN^1=MMINIM• 

parison of the results with the 

relations shown in Fig.20 bythe1111MIN11111EMMBIN^ 
 4 two solid and the broken  lines.1ill  

which relationship of the2 

                                      laminar or the turbulent bound-                                       10' 

ary1^11.    layer would be adaptable to..ma'0  • • 
                                       6 =•MIMIIIIII^I^•11111M1 ci  I 

the case.  4        1111     Moreover, it is clear from cm 

Eq. (114) that the length of an2   

apron under the criterion for  =
==an1=1.,=•=: scour is independent of the open- 6 —reasu...1—r'ion 

                                4.iiii inof an outlet in the case of•111111111111•111111111111 large sand gravels and  propor-  2  MElI  
tional to  U9d-n' in which  n'  is 

 ^11•1^ in the  range from 5/3 to 5. Fig. 18 0^^^••••^^^•^Lill .....raran...r.mm 
 6 35 presents the relationship  L  10.4 11111111111•111111111111 

among the length of an apron4o1••11^1M11111                       II 1 
under the criterion for scour, the 2   

size of sand gravels and the ve- 
                             id' 2  4 6812  4  6810                                                              locity of an outlet , obtained byd cm 

using the same values as used Fig . 35. Design chart for determining 

in Eq. (111) into Eq.  (114). length of an apron under criterion for 

From the design chart shown inscour in case of  L/D<10.4. 

Fig. 35, the desirable length of an apron under the criterion for scour can 

easily be obtained under the given conditions of the size of sand gravels 

and the velocity of an outlet. However, the range of applicability of the 

design chart is  L/D�10.4. 

   b) Formula for  10.4<L/D<Ec  : Putting the relations for the re-

sistance law shown in Fig. 23 into Eq. (112) by the same procedure as 

described above, the relationship expressing the length of an apron under 

the criterion for scour in the region of  10.4�L/D  Gee, corresponding to 

Eq. (114) can finally be reduced to
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 9050  <R*  <  76400  ; 

      L = 0.614( d 5/16( UD\3/16 r U2  26/32 
     DD (o-/ p — 1)gd tan pi-

 670 <R* < 9050 ; 

                         U2 tisno         = 10.60(UD -1/85                     t (
<7/ p-1)gd tan col 

 79.6  <R*<  670  ; 

             d 5/2"  UD  \1112  U2  1.5/6       =2.73( 
                    v(a/ p-1)gd tanco (turbulent), 

               )8/45(UD2/21 U2 32/45    = 21.9 (t(laminar),                   \ v(a/ p-1)gd tancoi. 

 2.68<R*<79.6  ; 

        = 1.317(d3/8( UD1/41 U2 y3/4                                              (turbulent),             \D) v((cr/ p-1)gd tanq) 

                )8/25(up\-2/25 U2   16/25    =11.74(D(laminar),  v)1 (a/p — 1) gd tan col 
 R*<2.68  ; 

                     U2   4/5        =16.11 UD -2/51              v)1(a/ p — 1)gd tanpf 
 (115) 

• 

   Both expressions of the laminar and the turbulent boundary layers 
for the same range of the value of R* in the above  equations, depend upon 
the same reason described above, and the procedure for the application of 
the relationships is also the same as in the former region by using only the 
value of the Reynolds number  uoL/v, Eq. (6) and Fig. 23 instead of the 
value of UL/v, Eq. (5) and Fig. 20 respectively. And it is clear from 
Eq. (115) that the length of an apron is proportional to  (U2D)7/2d-n', 
in which n' is in the range from 5/8 to 15/16, in the case of considerable 
large-size sand gravels. Fig. 36 shows the design chart for determining 
the length of an apron in the region of  10.4�L/D<Ee, which is  expressed, 
by the relations among the length of an apron L, the size of sand gravels 
d and the quantity  U2D proportional to the momentum of flow at the outlet, 
based on the relationships expressed by Eq. (115). The necessary length 
of an apron for preventing the bed from scour can easily be estimated if the 
opening of an outlet, the velocity and the size of sand gravels are given. It 
should be mentioned, however, that the range of applicability of the rela-
tionships is the range where L/D  10.4 and the ratio of the tail water depth
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to the length of an apron expressed by  ho/L is greater than 0.288. 

   c) Formula for  L/D>Ec: As described already, the empirical formula 

for the criterion for scour in the region has been obtained in connection 

with the results in the former two regions, and expressed by Eq. (108). 

The use of the equation in practical problems is briefly explained below. 

Signification of Eq. (108) has already been presented. In order to estimate 

the length of an apron in the region, therefore, is necessary to solve simul-

tanously both equations of Eq. (115), in which U in the equation is 

replaced by  U., having the given condition for the opening, the velocity 

of an outlet, the characters of sand gravels, the tail water depth and the 

water temperature, and Eq. (108) by the length of an apron. For the pur-

pose, the next procedure can generally be available. Represent the relation 
between  (U2D)„ and L by using Eq. (115) or Fig. 36 under the given 

condition into the figure, calculate the following relation which is obtained 

from Eq. (108) 

 (IM)),=  U2D/(2.90—  6.59ho/L)2, (116) 

by using the given values of the tail water depth and  U2D  . Show the 

relation in the same figure, or the required length of an apron will be 

estimated from the intersection of these curves. And the value of  U. in 

the figure is the velocity of a virtual wall jet defined already. 

   (iii) Considerations of former formulas for determining the length of 
an apron : As described in the introduction, the Bligh formula which is the 

only one for estimating practically the length of an apron at the present 

time, can be written  asho 

 L'=3Wh/3A/q/7, (117) 

in which  L' is the overfall width of the hydraulic works protecting the 
bed against scour in m. This should be measured in a downstream direc-

tion from the fall, in which the erosion energy is generated, to the end 

of the rip-rap, pitching, or such like protecting works ; it being understood 

that the width must suffice to dissipate entirely the energy of the fall, so 

that no dangerous scour holes may form in the unprotected bed of a 

stream channel downstream of the protection, h and the height of the fall 

from the crest of a weir, or from the top of a shutter or a gate, down to the 

tail water level in m, q the discharge per unit length of a weir or a 

barrage in m2/s, and  c an empirical coefficient characteristic of materials
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of a stream channel which was named by Bligh as the percolation factor , 
in so far as its capacity, or otherwise, of being eroded by action of flow 

is concerned. 

   This formula was found on the basis of the idea that the distance of 

the toe of a talus from the overfall would vary with the square root of the 

height of an obstruction above tail water, designated by h, with the square 

root of the unit flood discharge over the crest of a weir, denoted by q, and 
directly with  -e, the percolation factor of the river sand. The formula, 

though more or less empirical, would give some results remarkably in 

consonance with actual values, and would, it is believed, form a valuable 

guide in practical  design2) 
   Since the critical considerations on the Bligh formula have been made 

by  Minami6) in detail, the author will not discuss the formula. Historically 

speaking, there is no doubt that the formula is questionable. It shoul be 

mentioned, however, that the formula is a very valuable empirical one, as 

it was proposed on the basis of the many results of field observations. 

   As described already, the Iowa  formula') based on the results of labora-

tory experiments could possibly be cited for comparison with the Bligh for-

mula. For the apron without piers, the formula is given by 

 L"=q110/(ho+h92, (118) 

in which L" is the length of an apron without baffle-piers,  110 the tail 

water depth and  11' the effective head of a fall. Furthermore, the formulas 

for determining the length of an apron or width of rip-raps, pitching, 

or similar loose protections, were proposed, but these will be neglected 

in describing and considering because they have no relationship with the 

present study. Other examples of a general formula derived from model 
tests, such as formulas proposed by  Veronese", Kohsla and  Ahmad° as des-

cribed already, may be cited, but these will not be presented here because 

the treatments based on the mechanism of local scour by the above authori-

ties are not directly concerned with the present paper. 

   Although the relation between the former empirical formulas described 

above and the author's empirical formulas expressed by Eqs. (114), (115) 

and (116) should be considered, the quantitative comparison for both 

formulas cannot be described because the reductions of these formulas are 

different from each other. Then the qualitative comparisons presented as
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follows: 

   Now, consider the relation between Eq. (115) and the Bligh formula. 

Since Eq. (117) explicitly excludes without the tail water  depih, it will be 

supposed that the Bligh formula corresponds to the author's in the region 

of  ho/L>0.288. As described already, the relation expressed by Eq. (115) 

is closely related to  Loc(gU)1/8  d-n' in which q=  UD  , discharge of flow 

per unit width,  n'  =5/8-15/16. Then, expressing the velocity U by the 
head of water  h' by introducing the discharge coefficient, the relation can 

be written as 

 Loc(g/h07/8d-ni  (119) 

   Supposing that the length L' expressed by Eq. (117) is nearly the same 

as the length L expressed by the above equation, it is clear from the 

comparison of both relations of Eqs. (117) and (119) that the power in the 

discharge  q in Eq. (119) is twice as large as that in the Bligh formula, 

and contrarily, the power in the head of water is nearly the same. 

Moreover, Bligh proposed the coefficient for the influence of grain sizes of 

sand gravels  on the required length of an apron and the relation between 

the length and the grain size  was found. The qualitative tendency that 

the length of an apron decreases with the grain size is the same as in the 

author's formulas. Then, the fact that the influence of the grain size on the 

required length of an apron was introduced in the formula in any form 

should be rated high. 

   Subsequently, the relation between the  author's formula and the Iowa 

formula is considered. Supposing that the length L expressed by Eq. (118) 

is the same as that in Eq. (119), the power in the discharge of flow in Eq. 

(118) is nearly equal to that in Eq. (119). For the special characteristics 
of Eq. (118), it is pointed out that the effect of the tail water depth on 

the required length is clearly considered and, on the contrary, that of the 

characters of sand gravels is neglected. Since it is not clear why the ef-

fects of the characters of sand gravels were not considered, the effect of 

the tail water depth is considered only below. In order to consider the 

effect, the case of  h'>ho should be discussed. In the case of  h'/h0�1, the 

length of an apron L" decreases with the tail water depth for the given 
discharge, and contrarily, in the case of  h'/ho>1 the length increases with 

the  tail water depth.
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   On the other hand, the author's formulas are independent of the tail 

water depth for the region of  ho/L  <0.288, so the comparison of the formulas 

with that of Iowa University can not be made, therefore, only the case of 

 ho/L>  0.288 is considered. As described in (ii), the length of an apron 

becomes short generally with decrease of the tail water depth, as the value 

of U shown in Eq. (115) in the case is equal to  U.0 expressed by Eq. (116). 

It seems, therefore, that the tendency described above corresponds to the 

case of  h7ho>1 in the formula of Iowa University. 

   (iii) Considerations for determining the length of an apron : Two 

practical examples for the design of the length of an apron downstream of 
an outlet under the criterion for scour are described on the basis of the 

empirical formulas and the design charts described already. Furthermore, 

some considerations on the design of the apron are briefly discussed. 

   a) Example (1)  : Calculate the relation between the length of an 

apron and the tail water depth under the condition that  U=  5 m/s and  D= 

0.5 m for the characters of an outlet and the grain size of sand gravels at 

or near the downstream end of the apron is equal to  d=6.0 cm. 

   Now it is necessary, first of all, to examine whether the apron can or 

cannot be designed in the region of  L/D  <10.4 under the given condition. 

Estimating the necessary length L from Fig. 35 by using  U=  5 m/s and  d= 

6.0 cm,  L=  80  m is obtained, and  L/D=  160>  10.4. Then the apron cannot 

be designed in the region. Therefore, the design  in.  the region of  L/D 

 >10.4 should be considered as is described below. 

   Since the tail water depth, where the hydraulic jump may occur just at 

the outlet  • under the given condition of the opening of the outlet and the 

velocity, is  ho  =  1.35 m from the theoretical relationship expressed by 

 ho/D=  (112)  (  -1/  1  +  8F,732  —  1)  ,  FrD2=  Ua/gD. 

In the  above. equations, al is the coefficient of velocity profiles and is equal 

to unity in the above calculation. The outlet to be considered is in the 

case of  1/0>  1.35 m. Calculating the relation between  (IAD). and L cor-

responding to the case of  d=  6.0  cm from Fig. 36 as described in c) of 

2), (i), the final result becomes as is shown in Fig. 37 by the thick solid 

line.  The-  relation between  (U2D)„, and L in the case of d= 6.0 cm is also 

shown in the figure by the fine solid line. Denoting the intersections of 

the thick and fine lines by B, C, D, E and F corresponding to  ho  =1.35,
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2, 3, 4 and 6 m respectively, the point of D, for example, designates the 

location for determining the necessary length of the apron, and from this 

the necessary length can be obtained as  L  = 14.9 m. That is to say, the 

fact is presented that the apron having a length of 14.9 m is sufficient to 

protect against scour if the tail water depth is less than 3 m, but on the 
contrary if the tail water depth becomes greater than 3 m, the apron is dan-

gerous for scour. The intersection of the straight line of  (U2D).=U2D 
shown in the figure by the broken line and the thick solid line, denoted 

by G, shows the case where  ho/L  =  0.23B, and this means that the theoreti-

cal necessary length of an apron for protection against scour does not change 

for the greater depth than  ho=  9.16 m. The range is of  10.4�L/D  <E,, which 

is the zone of established flow, and the location of G in the figure should 

change necessarily with the value of  U2D. The point of A, which shows 

the location of  L/D  =  10.4, is unimportant in the present case, as the range 

where  ho  <1.35 m occurs the super-critical flow, and the apron fitting to 

prevent the bed from scour cannot be constructed in the region of  L/D< 
10.4 already described. 

   Moreover, the points of b,  c, d, e, and f satisfy  ho/L  =  0.288 for the 

values of  (U2D).=  IAD corresponding to the points respectively, and 

describe the same significance as the point of G. For the determination of 

the necessary length of an apron in the case where the super-critical flow 

appears in downstream of an outlet, the method described here cannot be 

applied, though the results obtained in the preceding paper by the  author° 

will practically be available to estimate the length of an apron. 

   b) Example (2) : Now consider the outlet, as shown in Fig. 13, under 

the conditions that the water depth, denoted by H, upstream of the outlet 

is constant, the control section for water profiles is in the downstream end 

far from the outlet, and the flow downstream of the outlet is assumed to be 

approximately uniform flow. For the above outlet,  H=  5.0 m, the discharge 

coefficient of the outlet  C,  =  0.4, the characters of the connecting channel 

downstream of the outlet, that is, the channel slope io  =  1/3600 and the 

Manning coefficient  n=0.02  s/m1/3, and the size of sand gravels downstream 

of the apron  d=4.0 cm, are given. Consider the change of the necessary 

length for the criterion for scour in the case when the opening of the 

outlet is operating very slowly. 

   Under the above assumptions, the discharge from the outlet q can be
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written as 

 q(—UD)=C0/2g(H—ho)D 

and the Manning formula can be expressed as 

                    q(=UD)=—                             n hos/a join 
for the relation among the discharge, the tail water depth, the slope of the 

bed and the Manning coefficient. Then, if the values of  C,, n and  io are 

given, the values of U and  110 can be calculated as the functions of D only. 
   Calculating the necessary length of an apron from the values of U,  ho 

and d computed above, by the same method as used in Fig. 37, the results 

shown in Fig. 38 can be obtained. On the other hand, whether the flow 

downstream of an outlet is super-critical or not could be considered in the 

same way as in the example (1). It is found from the consideration that 

the super-critical flow does not appear for all of the values of D in practice. 

The value of L should be calculated from Fig. 35 for the range of  L/D 

lesser  than. 10.4, so the relation between the necessary length of an apron 

and the opening of the outlet is presented in the figure by the thick solid 

line beginning discontinuously from the point B as limited to the point A.                
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     Fig. 38. Numerical example for design of length of apron (2) ; variations 
      in velocity of outlet, tail water depth and necessary length of an apron 

      with opening of outlet. 

Since  ho/L  <0.288 except for the case where the value of D is very small, 

it is clear that the range of D lesser than  D=  1.71  m given by the point A 

is  L/D>ec, and on the contrary, the range of  D>1.71 m is  L/D  <10.4. It is 

disclosed from the results that the theoretical length of an apron in the 

case when the opening of the outlet is operating very gradually, increases 

rapidly in the range of the small value of D, and becomes maximum at 

the point A in which  L/D=  10.4, and furthermore, decreases rapidly with 

the increase of the opening. Hence the value of L shown in the figure by 

 Ldest, which is equal to 17.5 m, should be recommended for the necessary 

length of the apron in the design. 

   In the practical examples described above, the necessary length of an 

apron for the criterion for scour is estimated under the given conditions for 

the sand gravels downstream of the apron. On the contrary, however, it 

can easily be considered to the necessary size of the sand gravels down-

stream of an apron for preventing the bed from scour at or near the down-

stream end of the apron. 

   Based on the above practical examples and the empirical formulas for 

determining the necessary length of an apron, some considerations on 

the design of the apron are briefly discussed and the author's view for the 

design is also described below. 

   In the case where the length of an apron is in  the  '  region of  L/D510.4,
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the length is proportional to  U9d-r" in which n' is from 5/3 to 5, so that 
the velocity of the outlet should  be small for the economical design of the 

apron. And use of the large-size sand gravels will be effective for the pur -

pose. As is seen from the above examples, however, the apron has not 
been constructed in the region of flow establishment in general , and the 
case will be used only for an outlet or a culvert having low head of fall. 

For the apron which will be  constructed in the range of  10 .4<L/D<E,, the 
length is proportional to  (USD)7/S  d-n' in which n' is from 5/8 to 15/16 , 
so that the decrease of U is more effective than the decrease of D to 

shorten the necessary length. The velocity should be given as small as 

possible for design discharge. In addition, it is clear that the use of 
large-size sand gravels is very effective to shorten the length of an apron, 

since the length in the range is nearly inversely proportional to the size. 

By the decrease in the tail water depth within the range of  ho/L>0.288, 

as is seen from Fig. 37, the necessary length of an apron can be shortened, 

but the estimation of the tail water depth should generally be used with 

circumspection as the depth will vary with the hydraulic condition at the 

end of a stream channel. It will be concluded from the above fact that 

the control of the tail water depth may be one of the effective methods to 

prevent the bed from scour downstream of the apron being already con-
structed. For practical purposes, an adequate estimation of the necessary 

tail water depth should be taken by the same graphical expression as Fig. 

37. Taking the above conclusions into considerations, it will be infered 

that it is generally desirable to design the apron in the region of  ho/L 

 >0.288 for the case where the tail water depth is always constant. 

   For the apron as described in the second example, the maximum value 

of the necessary length of an apron exists theoretically in operating the 

outlet. The estimation will firmly be made by the procedure described al-

ready. Although the discharge coefficient of an outlet has been assumed to 

be constant in the example for simplifying the numerical computation, the 

change of the coefficient with the tail water depth should be taken into the 

consideration for a more exact estimation of the necessary length of an 

 apron") 

   In the considerations described above, the apron has been assumed to 

be of a smooth bed, but the existing apron is never smooth. It can be 

supposed from the results obtained in the second chapter and the theoreti-
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cal and experimental considerations on the criterion for scour, that the 

estimation in the above examples may generally be  safely used. On the 

other hand, in order to make the length of an apron as short as possible 

by decreasing tractive force of flow, the apron with suitable rough beds 

will be used in practical problems. Since, however, the function of drainage 

of a culvert or an outlet will decrease, the considerations on the problems 

should depend upon future studies. 

                      4. Conclusion 

   In the introduction of this paper, some problems in design of the 

length of an apron to prevent local scour were briefly discussed, based on 

the results obtained by many authorities. In the second chapter, the bound-

ary layer growth in wall jets issuing from a submerged outlet  in connec-

tion with the criterion for scour from wall jets was analyzed and con-

sidered on the basis of the momentum equation of a boundary layer, and 

compared with the experimental results. From  the theoretical and ex-

perimental considerations, the followings may be summerized and  concluded  : 
1) The main flows are relatively in good agreement with the results of 

two-dimensional turbulent jets, and the limit of applicability has been dis-

closed. 2) The velocity profiles in the boundary layer and the resistance 

law are closely connected with the diffusion of jets, and the local skin 

friction coefficient in the zone of established flow is much greater than the 

Blasius law. 3) The results of computation for the boundary layer growth 

using the resistance law based on the experimental results, are in fairly 

good agreement with the experimental results, and the limit of applicability 
has been presented. 4) The theoretical curves of the shear velocity along 

the bed are also in good agreement with experimental data , and the shear 
velocity decreases rapidly with the distance from an outlet. 

   In the third chapter, the criterion for scour from wall jets issuing from 

a submerged outlet was considered theoretically by fully applying the results 

of the boundary layer growth in wall jets obtained in the second chapter. 

From the theoretical considerations , it was disclosed that the criterion for 
scour from wall jets in both regions of flow establishment and established 

flow are presented by the three parameters ,  ue*2/(01p-1)gd tan  co,  ice*d/2) 
and  uc*/U or  ue*/uo. It was clarified by comparing the above theoretical
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results with the critical tractive force and the criterion for scour from flows 

downstream end of a smooth bed in uniform flow that a parameter  ue*/U 

or  ue*/uo should be added, the effects of which on the criterion are very 

complicated and may be not large, especially in the region of established 
flow. And it was concluded from the comparison between the theoretical 

curves and that for the critical tractive force that the criterion for scour 

from wall jets is presented by the lesser critical shear velocity than that 

for the critical tractive force in the region of sufficiently large  ue*d/v. 

   The theoretical results on the criterion for scour for both regions 

of flow establishment and established flow was compared with the experi-

mental results, and it was disclosed that the theoretical curves for the cri-

terion were in fairly good agreement with the experimental results, although 

the theoretical considerations included many assumptions in the development. 

   The criterion for scour in the region where the results on wall jets 

cannot be applied owing to the existence of a free water surface was 

considered by means of the dimensional analysis based on the theoretical 

results for the former two regions. It was made clear that the most im-

portant parameter in the criterion for scour was the ratio of the tail water 
depth to the length of an apron and the relation was disclosed and decid-

ed by the experimental results. 

   Moreover, the empirical formulas for the criterion for scour from wall 

jets and for determining the necessary length of an apron for complete 

protection against scour were proposed and discussed on the basis of the 
theoretical and experimental considerations. Design charts available to 

practical problems in design of an apron were developed. 
   The author believes that the foregoing results can serve as the funda-

mental data for design of the apron of a culvert and an outlet, to pre-

vent scour. Furthermore, the results obtained in this paper will be ap-

plicable to analyze hydraulically the mechanism of scour downstream of an 
apron, so the application will be presented in a later paper. 
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