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Basic Studies on the Criterion for Scour Resulting
from Flows Downstream of an Outlet

Synopsis

As a first step to establish the mechanics of local scour, downstream of
a culvert and an outlet, and to clarify the method for preventing local
scour, the present péper deals with a theoretical consideration on the hy-
draulic behaviour of flows, downstream of an outlet, especially the bound-
ary layer’ developing there, and a theory on the criterion for scour result-
ing from such flows, based on the results of detail experiments. Both
theoretical results of the boundary layer development and the criterion for
scour from flows, downstream of an outlet, are in good agreement with
the results of experiments. Some contributions to design a procedure for the
apron downstream of a culvert and an outlet are presented from the stand-

point of the criterion for scour.
1. Introduction

In the past years, the design and planning of the apron at the down-
stream end of an outlet have usually béen made by rule of thumb, to some
extent, in determining the length of the apron required for maintenance
of the outlet, as the mechanics of local scour resulting from flows has not
been established yet because of complicated hydraulic phenomena.

Up to the present day no attempt has been made to derive a general
conclusion on the local scour from the observations made on existing hy-
draulic works. According to Leliavsky”, however, the methods for the de-
sign and planning of the apron may be divided into two different tendencies:
the first one is to collect information on the hydraulic works which have
either been built to the required dimensions from the start, or were sub-
sequently strengthened until they were capable of permanently resisting the
action of flow for local scour, and to derive a general conclusion from the

analysis of such collected information, as the method of Bligh? proposed
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in 1912; and the second, to perform the experiments or observations on the
scour which occurs on the river bed downstream of the apron of existing
hydraulic works, and to attempt to find general empirical laws appli-
cable to practical purposes, as Leliavsky did, based on the suggestion by
Khosla® The former method, the Bligh formula, was expressed by the
relationship among the overfall width of the hydraulic works protecting
the bed against scour, the discharge of flow, the height of the fall from
the crest of a weir, or from the top of a shutter or a gate, down to the tail
water level, and the coefficient characteristic of the material of a channel,
on the basis of the observed results for the works preventing scour con-
structed in irrigation canals in India. It may be obvious of course that
the hydraulic consideration of the Bligh formula should be questioned.
However, the formula has been applied to practical problems in agricultural
engineering because there are no hydraulic considerations on the protecting
method against scour at the present time. The latter method was based on
the measured results of scour holes in existing hydraulic works and their
models. According to Khosla as an example, the depth of scour being a
basic parameter in designing and planning hydraulic works is expressed by
the term of total discharge for any given water level, on the basis of the
fact that the length and width of the apron required for maintenance of
the works are closely connected with the depth of scour.

On the other hand, the formula for the length of an apron derived by
the U. S. War Department from the model tests at Iowa University in 1935
can be cited®. The formula is one of a few which aim at general applications
as well as the Bligh formula described above. In the formula, the length
of an apron is expressed by the relation including the discharge per unmit
width of the apron, the height of fall and the tail water depth, but no
characteristics of bed materials. Besides, the studies concerned with the
mechanism of local scour by Veronese? and Ahmad® can be cited. Since,
however, the author’s present study is to limited the criterion for scour from
flows, the considerations on the mechanism of scour will not be given in
detail.

Recently, Minami® studied the method for determining the length of an
apron based on the characters of free turbulent jets after considering the
Bligh formula. Since the results obtained on the critical tractive force were

directly applied to estimate the length of the apron required for main-



tenance of the river bed, the study may be questioned, and a general
formula for determining the length has not yet been obtained.

The hydraulic demand for design and planning of the length of an apron
and its type is to reduce effectively the damage due to scour, or more strict-
ly, to completely prevent the local scour. In this paper, based on the
later demand the author investigates theoretically and experimentally basic
relationships for determining the length of an apron under the condition that
the sediment bed downstream of an apron is not absolutely scoured by action
of flow.

In order to establish the mechanics of scour and a criterion for scour
downstream of a culvert and an outlet, it is necessary, first of all, to analyze
the characters of flows close to a bed, especially the boundary layer develop-
ing there. In the second chapter, therefore, the boundary layer growth in
wall jets issuing from a submerged outlet is considered to be based on the mo-
mentum equation for a boundary layer connected with two-dimensional free
turbulent jets. It is very difficult to analyze the boundary layer growth in
wall jets having a free surface by solving the momentum equation. There-
fore, the boundary layer growth in a free turbulent jet with a wall is analyz-
ed, and the experiments of the resistance laws, the boundary layer growth
and the diffusion of the wall jet are performed and compared with the theo-
retical results.

In the third chapter, the criterion for scour from wall jets issuing from
a submerged outlet is considered theoretically, based on the procedure in the
studies on the critical tractive force by the authors™'®. by completely ap-
plying the characters of wall jets. The criterion for scour in the theory is
defined as the criterion for movement of sands and gravels at or near the
downstream end of an apron, and the apron to be considered is of a smooth
bed. The theoretical results are compared with the experimental data by
applying a new definition for movement of sands and gravels proposed by
the author in the previous paper® Furthermore, empirical formulas for the
criterion and for determining the length of an apron necessary to prevent
the river bed downstream of a submerged outlet from scour under the con-
dition already described, are proposed, and design charts available to practi-
cal applications are presented. In addition, some considerations for the
hydraulic design on the length of an apron are briefly described from the

standpoint of the criterion for scour, and based on some examples for practi-



cal purposes.

2. Boundary Layer Growth in Wall Jets Issuing from a
Submerged Outlet

The flows downstream of a culvert and an outlet are generally divided
into two cases; the first is the case when the flow becomes a submerged
jet or a submerged efflux, and the second, when the flow becomes super-
critical flow. In the latter, the flow connects with the uniform flow down-
stream by hydraulic jump, and sometimes the flow runs on downstream in
the state of super-critical flow. The boundary layer growth in this case had
been studied by Halbronn!®, Craya and Delleur'”, Bauer!? and in Japan,
Iwasa'®, by applying the theory of a boundary layer. By using adequately,
the results obtained hy the above authorities, therefore, characters of the
flow may be cleared. On the other hand, behaviors of the flow in the former
case are complicated, and especially the general theoretical approach for
solving such flows associated with jet diffusions may be very difficult. It
may be the most important problem for disclosing the mechanism of local
scour and the criterion for scour to analyze mathematically the flow characters
in this case with the aid of experiments.

In the past years, as a study on the flow downstream of a culvert and
an outlet, experimental investigations for determining the discharge coefficient
of flow through the outlet were made. In 1950, Henry'® investigated the
same problems, and moreover, the internal mechanism of the flow, especially
the exchange of hydraulic energy was considered. However, the boundary
layer growth and characters of the flow were not cleared. Some experiments
on the flow issuing from a submerged outlet were made by Tsubaki and
Furuya' in 1952, and some characters of the flow, especially water surface
profile, length of surface vortex and decrease in maximum vélocity, were
considered by comparing with the results of Henry and Albertsonl®

Recently, Glauert' investigated theoretically jet diffusion along a wall,
which he named a wall jet. Subsequently Bakke!® performed an experi-
ment of a wall jet and compared it with Glauert’s theoretical results. But
it seems that, in his paper, there is a doubtful point in applying the re-
sistance law to the basic equations. More recently, Schwarz and Cosart!®

investigated theoretically and experimentally the two-dimensional turbulent



wall jet after the author’s investigation as is described in the following2®.
It was shown from the theoretical considerations that the nominal thickness
of a boundary layer must vary as x which is the distance from an outlet
and the maximum velocity must vary as the power of x. The values of the
Reynolds shear stress, the Boussinesq exchange coeflicient and the shear
stress at the wall were evaluated from the detailed experimental results
with the aid of a hot-wire anemometer.

In this chapter, with a different stand point from that by Glauert, the
boundary layer growth in wall jets issuing from a submerged outlet is treat-
ed on the basis of the momentum equation for a boundary layer connected
with two-dimensional turbulent jets, and furthermore, some experiments on
the wall jets were performed. The theoretical results are compared with the
experimental data and the limit of applicability of the theoretical results

caused by existence of a free surface is briefly described.

(1) Theoretical consideration of the boundary layer growth in
wall jets

With regard to the wall jet schematically shown in Fig. 1, application

z of the momentum relationships for one-
= dimensional flow to the main flow and

doe o r:o  the boundary layer of which the thick-
iy ness & is defined by the value of 2

~——— satisfying 0%/0z=0 based on the as-

1
' sumption that the shearing stress
]

is zero at z=0, leads the following

Fig. 1. Definiti jet. . .
ig efinition sketch of wall jet equations ; for the main flow,

;;S:{pﬁz'i'pﬁ’z-l-ﬁ}dZ:O, .............................. @

and for the boundary layer,

1 d Sﬁﬁdz— 1_d Saﬁ“dz= 1 Saa_pdz_,_ul_nzsag_‘: dz+&. ...... )

U, dx o u2 dx Yo 0U? Yo Ox 2

in which # is the time-average velocity component in the x-direction, #' the
momentary departure from %, #, the value of # at 2=4, p the pressure, ¢
the density of fluid, and Cr the local skin friction coefficient.

Now considering the case when =0 and %2—o in Eq. (1), and neglect-

ing the pressure gradient resulting from velocity fluctuations, the case be-



comes suitable for a two-dimensional free jet. Some characters of the jet
disclosed by early pioneers are described in the following, to consider theo-
retically the criterion for scour resulting from wall jets in the second chapter.

Researches on free turbulent jets were performed by many authorities,
Tollmien®”. Kuethe?® and Gortler®®. and also in 1950, Albertson and others!®
investigated theoretically the diffusion of jets based on the detailed experi-
mentations. Tollmien and others studied the diffusion of jets, based on the

fundamental equation,

67/0%+0w/02=0, |
and by applying the assumption on the mixing length by Prandtl. In the
above equation, w is the time-average velocity component in the z-direction,
and e the eddy viscosity, which is constant by applying Prandtl’s as-
sumption taking the mixing length /=cx, in which ¢ is a constant, and the
fact that the center maximum velocity of a jet is proportional to 1/v/x. The

solution of Eq. (3) by Gortler is written as

_i: sechz(ao i) R

Uo x

_ ) 1. ............ (4)
w F4 -4 -4
70— %{200 7 sechz(ao 7) —tanh(o'u T)) N

in which 7, is the center maximum velocity of a jet and g, the constant ex-
pressed by go= (2v/2c)-173,

On the other hand, according to the experimental results on the decrease
in the center maximum velocity of a jet, the velocity % is constant from
the outlet of a jet to a certain distance, where the jet remains potential flow
and the region is known as a zone of flow establishment. At the far dis-
tance from the outlet the velocity is inversely proportional to the square root
of a distance as described above, and the region is known as a zone of
established flow. Then from the experimental results obtained by Albertson
and others'® the following relations can be written ; for the zone of flow

establishment, £<2¢?,

and for the zone of established flow, £>2a2,
o/ U=1/20/1/E, oveeeerimmmiemmiin 6)
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in which U is the velocity of a jet, £=x/D, D the opening of a jet, and a
an empirical constant which is 2.28. Albertson and others investigated
theoretically the velocity components of a jet by assuming that the velocity

in the x-direction is expressed by the Gaussian curve,

B/ tlo = eXP(—28/0%) y-wremeereresneiinsntesei )

in which ¢ is a variable proportional to x, and by applying the relation for
the case when §=0 and A—c in Eq. (1) and neglecting the static pressure
and the pressure gradient resulting from velocity fluctuations.

It is very difficult to analyze the boundary layer growth in wall jets
having a free surface by solving Eqgs. (1) and (2) directly. Therefore, the
boundary layer growth along the wall put in an apparent free turbulent jet
with a wall, is treated, and the limit of applicability of the theoretical re-
sults is decided experimentally.

Considering 84/0x=0 in a free turbulent jet and including the second
term on the right in Eq. (2) into Cy, the momentum equation for the bound-

ary layer is practically reduced to

1 d (°_ 1 d
aﬁsu“dz‘u—ozﬁs

btz ST o,
0uzdz— 5 ®

In Eq. (8), assuming that #, is approximately equal to #, and using the
suitable resistance law and the velocity profile, the boundary layer growth in
wall jets can be discussed.

1) Laminar boundary layer growth

In the case of the laminar boundary layer, the velocity profile is assum-

ulo= 2(%) - <%)2 ................................. ©

Then, using the resistance law of laminar flow, and applying the relation-
ship of #, in Eqs. (8) and (9) represented by Eqs. (5) and (6), the solu-
tion of Eq. (8 is obtained, with the boundary condition that 6=0 at x=0,

ed to be in the from of

as follows :
for £§<2ea2,

and for §>2a2,

C( UD )1/z= (1_01/_2)1/26_3,2{59/2_,_561/7,19}1/2, .................. an

v 3a




in which §=x/D, £{=6/D and u is the kinematic viscosity.

Then, the shear velocity #* along the wall is expressed as follows :
for £€<2u2,

(uT;)z< ({JD >1’2 1%305 SUB i a2
and for £>2a2,
(%)%@)1/2—2\/2 <1b1/§> "eevnt 56y Tasy 1. oo a3

2) Turbulent boundary layer growth
In the case of the turbulent boundary layer, the growth is analyzed,

based on the power law ; that is, the velocity profile is assumed to be

%/ o= (z/a)n, ....................................... 14

in which 0<#<1. Then, the relation between the local skin friction coef-
ficient and the Reynolds number with respect to the nominal thickness of a

boundary layer is written as
—2n/ r+1)
21( “06) | e (15)

in which 1 is a dimensionless empirical constant.

Applying the relationship of # described previously, to #, in Eqs. (8),
(14) and (15), and denoting # and A in Eqs. (14) and (15) by % and 2 for
£<2a%, # and A for £>24% respectively, the following solutions of Eq. (8)
are obtained ;: for £ <2a?, with the boundary condition that {=0 at £=0,

n/ 3n+1) Yy +1)/ Br+l)  +1)/ @n+l)
C( UD )2 ! ={1(21%4—1) Bnt+1) JL £ , e a6)

Y n

and for £>2¢%, with the boundary condition that the value of { is equal to
that in Eq. (16) at £§=2q2,

2n4 m+1 . m
5( Up >3m+1— (@)3mT1(2a8)  3mt1
v

m+1 1 dm+1 mtl

{11 (2%4_,;12{—(?”14—1) ],3n1+15_ 2m (& 2m +C} 3m+1 , (17D

in which

DGm+1
dmy 11 [ 2D @t }MT"”B

T2h0Cm D) G+ 1D #n
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(n+1)Bn+1)  2m+1) . 2(m —n) dni+1
X (2(12){ (u+1)(Bn+1) * o }(@> (r+Du+1) — (247) 2m
v

The shear velocity along the the wall is expressed as follows; for £<242,

* 2n/ Bn+1) —2n/8n+1)
(%)Z( ({)D) 3n+1 =/I{ )\(2n+1’)z(3n+1) } g-an/ Gn+D) ... a9
and for £€>202,
2m 2m - 2m
u*\2( UD _ - (A2 +1) By +1D) —
(7> (T) I+l = () Bm+1 pea } Bm+1

2m+1 2m+1 __2m

X (20%) 3+l {¢ 2m 4C} 3m+l ... 20)

In this case, when the shear velocity #* is calculated by Eqs. (19) and
(20), it becomes discontinuous at &=2a? unless # and A are equal to #; and 2;
respectively. Since, however, the character of the flow, in fact, will change
gradually in the vicinity of §=2u4?, the discontinuity of #* cannot occur.

It is concluded from the foregoing theoretical considerations that, for
sufficiently large £, nominal thickness of boundary layer and the shear veloc-
ity are proportional to £%/¢ and £-5/% in the laminar boundary layer, and to
E(2m+1)/(3m+1) and 5—2(3m+1)/(4m+1) in the turbulent boundary layer

respectively.
(2) Experiments on wall jets issuing from a submerged outlet

To verity the theoretical results, the boundary layer growth in wall jets

issuing from outlets with openings of 0.56cm and 1.0Bcm was investigat-

— T ed. Velocity profiles were measur-

1 ' 2 S . .
J v \ 3 ed by the Pitot-tubes with outer-
I . ,go diameters of 0.070 cm and 0.200
’ \mj P —— ) ; cm, and the experiments were con-
e s i \'] ; ducted with the suitable combina-

e tions of the Reynolds number at
Fig. 2. Experimental apparatus. the outlet and the tail water depth.
1) Diffusion of wall jets

Fig. 3 represents some examples of the relationships between #%,/U and
%/2D in wall jets, and the solid line in the figure shows Albertson and
others’ result for a free turbulent jet. In this case, the method for estima-

tion of the virtual maximum velocity of jet %, is explained below.
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As described above, since the velocity profiles of a free turbulent jet

approximate to the Gaussian curve according to Albertson and others, the
relationship between log % and (2/x)% becomes straight. Therefore, the value

of % is found by extending the straight line obtained by the data in the main

flow to the line of z/x=0, and estimating # at 2/x=0 from the intersection

of these lines.

cability of the result for a free turbulent jet.

It is seen from Fig. 3 that there exists a limit of appli-

From this reason, variations

in the ratio of the limit x. to %, with the Reynolds number at the outlet or

the Froude number at the tail water is investigated as shown in Fig. 4, but

the ratio x¢/h¢ is nearly constant for both parameters within thé limit of

the experiments.
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Some examples of relationships

Fig. 5 shows some examples of

comparisons between the measured

velocity profiles in main flow and

Gortler’s and Gaussian curves.

It

is clear from the comparisons that

the experimental results in

the

region of £>2a% are in good agree-

ment with the theoretical curves of

Gortler or Albertson and others for

the range of 2z/z,<1 except in the
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Fig. 4. Variation in x¢/h with Reynolds

number and Froude number.
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Some examples of velocity profiles in

main flow (2z0: the value’of z corresponding

to 7=(1/2)%).

vicinity of a wall, where 2,
is the value of z corres-
ponding to #=7%./2, and
contrarily are in disagree-
ment with the curves in the
region of £<2q2.

Fig. 6 shows the varia-
tions in the width of a jet
with a distance in the range
Of E<Ec,
equal to x./D; and the

in which & is
same relation for a free
turbulent jet is also present-
ed in the figure for com-
Besides, for the
of
Tsubaki and Furuya, and

parison.
nominal width jets,
Henry defined the nominal
width the

value of 2z, except z=0,

as minimum

satisfying #=0, so their

results are plotted higher

than the author’s. From
the above experimental
results, the mean value

of the coefficient of mixing length, which is denoted by c, described already,
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Fig. 6. Variations in width of wall jets in region of £<&, with distance.
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has been estimated as ¢=0.00858.

2) Boundary layer growth

Fig. 7 represents some examples of velocity profiles in the boundary
layer for the zone of established flow, £>242, and these results contain the
experimental data for UD/y=3380~11620, %,/D=8.00~15.3 and £=11.9~
35.0. The solid line in the figure is for the case when #=1/12 in Eq. (14,
while the plots of velocity profiles for £<2q* show that the value of # is
approximately equal to 1/7, that is the Blasius law. It has been con-

firmed from the semi-log plots of velocity profiles as is shown in Fig. 8 that

T
9
i
[} & 2 ‘
a uby hyD & Ubp hoD &
Ty S 3880 1532 1.9 @ 8820 10,0 926
o 7 o " " 232 ® " " 19.4 —‘
© 3890 998 168 g 1180 “ 16.7 I
s [ " " 285 g a " 30.6 |
® 11650 Is.0 1.9 © 11680 8.00 12.0 |
® " “ 232 @ " o 167 l
5 5 o) 385.0 )
Te} 2 4 2 6 [} |
)

Fig. 7. Velocity profiles in boundary layer.
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”

Fig. 8. Comparison between
logarithmic law and experi-
mental results of velocity
profiles in boundary layer.

the logarithmic law is applicable in the
vicinity of the bed.

Fig. 9 shows the variations in the local
skin friction coefficient with the Reynolds
number with respect to the nominal bound-
ary layer thickness. Most of the data plott-
ed in the figure were based on Eq. (8
from the measured velocity profiles and
some data were estimated by applying the
logarithmic law of velocity profile. For the
latter, velocity profiles near the wall within
about 1/10 of the nominal thickness should
be measured?®, and therefore the Pitot-
tube with an outer diameter of 0.070 cm
was used. These results contain the data
for UD/yp=2.4Xx103~1.27X10* and hy/D
=5.43~53.7. It may be seen from the
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2
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Fig. 9. Variations in local skin friction coefficient with Reynolds number
of boundary layer.

figure that, although the Blasius law is applicable for £<2a2, the friction
coefficient for £>>2a% is much greater than that by the Blasius law. It has
been described by Schwarz and Cosart!® that the mean value of the skin
friction coeflicient within the experiments is nearly equal to 0.01109 for the
range of the Reynolds number of a boundary layer varying from 2.2X10¢ to
1.06X10°, and at most, a slowly varying function of the Reynolds number
of an outlet. As is seen in Fig. 9, the results agree well with the author’s.
It is evident that the charanter of jet diffusion in the region of §<2a? is
essentially different from that for £>2a2. However, the essential reason
why the data for §>>242 are considerably different from the Blasius law, can-
not be explained because the effect of turbulence expressed by the second
term on the right in Eq. (2) is not too little as to solve the question. And
also no explanation can be given for that, in high Reynolds numbers, the
values of Cr obtained by the momentum equation, are in disagreement with
those estimated by the logarithmic law. It is, therefore, necessary for the

interpretation of the essential reason, to measure directly the frictional stress
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along the bed: However, for the time being, the resistance law presented
by the data plotted is used for practical computation, and the boundary layer
growth in wall jets is interpreted. Thus, the relation between C; and #8/v
based on Eq. (15) is determined as the straight line shown in Fig. 9 by
applying n=1/12.

Fig. 10 is an example of variations in the static pressure with the dis-
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tance from an outlet in a boundary layer. In the figure, % and p. are respec-
tively the water depth and the static pressure at the outlet. It is found
from the results that the static pressure is nearly constant, that is 8p/8x=0,
within a certain range close to the outlet, and the pressure gradient in-
creases suddenly with the distance at or near x=x.. The fact may indicate
that the assumption that 8p/6x=0 in the boundary layer, in the theoretical
consideration on the -boundary layer growth, is approximately right.

Fig. 11 presents some examples of the experimental results and compu-
tations on the boundary layer growth. Since all experiments conducted by
the author are for the turbulent boundary layer, as the resistance law, the
Blasius law for £=<2¢? and the relation presented by the straight line in
Fig. 9 for £>24® have been applied in the computation of the boundary
layer growth. The values of §.=x./D corresponding to %o/D, obtained from
Fig. 4, are shown in the figure. As is seen in the figure, the experimental
data differ from the theoretical curves at these points. It may be con-
cluded from the fact that x. corresponds to the limit of applicability of the

theoretical computation for the boundary layer growth.
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Fig. 12. Some examples of shear velocity distributions along bed.

Furthermore, Fig. 12 represents some examples of the shear velocity
distributions along the bed for £<é&, obtained by experiments and theoretical
computations. The theoretical curves are in good agreement with the experi-
mental results except for the data close to £=2¢2, where the resistance law -
changes gradually from the Blasius law to the other relation. It is con-

cluded from the results that the shear velocity decreases rapidly with the
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distance from the outlet, especially in the region of established flow, £>242.
It is presumed by refering to Fig. 3 that the shear velocity will decrease

extremely in the region of £>§; where the theoretical results on wall jets
cannot be applied.

3. Criterion for Scour Resulting from Wall Jets
Issuing from a Submerged Outlet

In this chapter, the criteria for scour resulting from wall jets issuing
from a submerged outlet are considered theoretically by completely applying
the results on wall jets obtained in the previous chapter. The definition of
the criterion for scour in the theoretical consideration is the same as in the
previous paper®; that is, sands and gravels at or near the downstream end
of the apron downstream of an outlet are under the critical condition for
the movement, and the apron to be considered is of a smooth bed.

In the theoretical approach to the criterion for scour, the theoretical de-
velopment for the two regions described already, a zone of flow establishment
and a zone of established flow, are obtained by applying the obtained re-
sults of wall jets and Spengos’2 and -Henry’s'¥ experimental results for
characteristics of turbulence in the flows, and by the same procedure as in
the theoretical consideration for the critical tractive force?’®  The theoreti-
cal considerations show that the criterion for scour resulting from wall jets
can be expressed by the relation between ue*2/(s/p—1)gd tan ¢ and u*d/v
using the critical shear velocity #c* in the same manner as for critical
tractive forces, and furthermore, one parameter expressed by uo* /1, is added.
This fact may be concerned with the development of a boundary layer, but
it will be cleared from the comparisons between the theoretical curves and
the experimental results for the criterion for scour that the parameter uc*/uy
is not so important in the hydraulic mechanism as the other two parameters
described already.

The experimental data have been obtained by applying the definition
for the criterion for movement of sands and gravels proposed by the author
in the preceeding paper®, and compared with the theoretical curves for the
criterion. Although some of the experimental data are quite scattered, the
comparisons are fairly good.

In the third region in which the study of wall jets is not directly appli-
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ed owing to the existence of a free water surface, the consideration for the cri-
terion is made by means of dimensional analysis based on the characteristics
of a wall jet, related to the criterion for scour in the first and second re-
gions. It concluded from the consideration that for the criterion for scour
in this region the ratio of the velocity of an outlet at the criterion for scour
to the virtual velocity as a wall jet under the same condition can be present-
ed closely by the parameter, the ratio of the tail water depth to the length
of an apron.

In addition, empirical formulas for the criterion for scour in the three
regions described above are proposed on the basis of both results of the
theoretical considerations and the experimentations, and empirical formulas
for determining the length of an apron under the criterion for scour are
developed for practical uses. And moreover, some considerations on the
design of the apron, especially in determining its length are described, and

some practical examples are presented.

(1) Theoretical considerations on the criterion for scour resulting

from wall jets

1) Equilibrium condition of a sand gravel

As is shown in Fig. 13, now consider the condition for criterion for
movement of a sand gravel at or near the downstream end of an apron con-
structed downstream of an outlet by the same procedure as the hydrodynami-

cal consideration for the criti-

] e cal tractive force by Iwagaki?
By expressing the force relation

D\," AL sootnea shown in Fig. 14 as in Fig.
15, the equation for the equili-

T brium condition of a spherical
Fig. 13. Definition sketch of apron and flow

downstream of submerged outlet. sand gravel can be written as

Fig. 14. Forces acting on a spherical sand Fig. 15. Schematic diagram of
gravel. force relation.



Rpy={(6—0)g(n/6)d3—Rz}tan ¢, erreerrreeveessarccnns @D

in which Ry is the sum of the fluid resistance and the resistance resulting
from the pressure gradient in the direction of flow acting on a spherical
sand gravel, Rz the uplift resulting from the pressure gradient in the verti-
cal direction, ¢ and p the density of a spherical sand gravel and fluid res-
pectively, d the diameter of a spherical sand gravel, g the acceleration of
gravity, and ¢ the static friction angle of a spherical sand gravel.

Now let & be the boundary layer thickness, and dividing the fluid re-
sistance, denoted by Ry, acting on a spherical sand gravel, into two forces ;
the first is the resistance, denoted by Rpnm, acting on the gravel in the main
flow and the second the resistance, denoted by Ry, acting on the gravel in

the boundary layer, yields the following equation.
Ryp=Rpm+Rpp +roweeeeeeseemsoneeemneenniiens )
Let Bs(m/4)d? and (1 — 8s) (z/4)d? be the cross sectional area of a spheri-

cal sand gravel exposed in a main flow in the direction of flow (shaded part
in Fig. 15) and the area in a boundary layer, in which 8 is the function
of 8/d only, the terms on the right in Eq. (22) are expressed respectively

as
=0 0g. T ga_ (0D A2 eeieneneenienns
Rem=5- Cotfr - 42~ (g ) g 23)
Rev=5 ComustQ~ g -do— (L) d1— ) G-d2, oo @4

in which %, and u, are the representative velocities in the main flow and
in the boundary layer respectively, Cp: and Cpz the drag coefficients corres-
ponding to #; and %z respectively, and the second terms on the right in
Eqs. (23) and (24) express the resistances resulting from the pressure
gradient 8p/0x in the x-direction.

In the same manner as described above, the uplift Rz resulting from
the pressure gradient in the z-direction is divided into Rzm and Rzs as

follows :
Ru=RimA Ry cooeeeeeeemmemmnemmnnmnnnss -(25)

and each term may be expressed as

Z de— (6_P>ddA1_77_ de, oo 26)

RLm=%Clewlel 5z
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Rav=—8-Cpumwt o s~ ( 27?),,‘1 I oD
in which, for 6<d/2:
A1=(1—%), Az:%%)z(l_%'), ...... U ©8)
and for 6>d/2:
A1=4(%)(1—%‘)2, Az:%_ ........................ @9

and w: and w: are the representative velocities in the z-direction, in the
main flow and in the boundary layer respectively, and Cpw1 and Cpuws the
drag coefficients corresponding to w; and w; respectively.

In order to evaluate the fluid resistances by the above equations, the
theoretical analysis of both laminar and turbulent boundary layers and of
the characteristics of turbulence in the boundary layers is necessary.
However, the critical Reynolds number of a boundary layer in the transition
from laminar to turbulent, the velocity profiles and the resistance laws close
to the condition of the critical Reynolds number have not been made clear
yet. Therefore, by assuming the fully developed laminar and turbulent
boundary layers based on the power law, and estimating adequately the
turbulence intencities in both, the main flow and boundary layer, the theo-
retical considerations on the criterion for scour are discussed in the follow-
ing :

2) Theoretical consideration for the zone of flow establishment

As described already, the jet in the zone of flow establishment, ESZaZ,
is closely the potential flow having a constant velocity, and the nominal
width of the jet decreases gradually straight to the point £=2g%. The
velocity profiles in this region are not sufficiently clarified.

In the theoretical consideration on the criterion for scour, therefore, the
velocity profile is assumed to be uniform, and the scales of turbulence in-
tencities in the flow are estimated, adequately based on some experimental
results.

Under the above assumptions the second term on the right in Eq. (23)
and all of Eq. (24) are abolished, but the effect of velocity fluctuations should
be considered in estimating the fluid resistance resulting from time-average

velocities.

(i) The case when the laminar boundary layer is assumed: It is as-
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sumed that the velocity fluctuations do not exist in a laminar boundary layer.
As velocity profiles in the boundary layer, Eq. (9) can be applied, and Egs.
(10) and (12) are used respectively for the boundary layer growth and for
the distributions of shear velocities along a bed.

a) The case when >d: In this case, the sand gravels are completely in
the boundary layer, and then Rpm=0, 8p/8x=0 and 8;=0. Using the value

of Eq. (9) at z=d as the representative velocity, the fluid resistance Ry can
be written as

0 U\z(d 2 d \\|2
RT=?ﬁdzu*2CDz<ﬁ} <_6,) {2_(?» L e (30)
in which, from Eqgs. (10) and (12) 4/8 becomes
d 1/ u*\/u*d
5= (7)< 5 ) .............................. 3D

The drag coeflicient of a sphere Cpz in Eq. (30) can be expressed by
the function of the Reynolds number as shown in Fig. 16. And the Reynolds

number #.d/v can be written as
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Fig. 16. Relation between drag coefficient of sphere and Reynolds number
in comparison with other bodies’.

The velocity component w in the vertical, z-direction can easily be ob-
tained by integrating the equation of continuity

617 6w = B I I R R I N ]
o2tz =0 @
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under the boundary condition that @=0 at z=0. Calculating the value of
w at z=d, denoted by ws, from these results, taking into consideration that
#p/6z=0 in the boundary layer and 8p/6x=0 in this region, and insert-
ing these results into Eq. (25) yields the following relation for the uplift
_b A5\ aw* \efurd Nag, 1 (wF\ urd iz
Ra= g ndruConl () (55) 1= 5 (D )(5ON 69

v v

in which Cpuws is the function of the Reynolds number expressed by

R B (2 o L () 0

Inserting the above relationships into the equation of equilibrium

condition expressed by Eq. (21) and rewriting the equation, the following
relation can be obtained.

uc*Z 4,
(0/o—Dgdtany 3¢, "
in which

ol 8 o (7))

el (52 H )2 im0

v

and it is evident that the limit of applicability of Eqs. (36) and (37) is
d/e<l.

b) The case when d<d: In this case, a part of the sand gravel is exposed
beyond the boundary layer. The representative velocities #; and %z are equal

to the velocity U in the main

hyD 2D E<é &>4,

4 0o ® o flow. In order to evaluate the

e 0 o O . . .
I 2 e | e o fluid resistance acting on a
a o - spherical sand graveI? express-
P v ing the representative velocity

K
—] ' —5 ) as #;= (14+m) U under the as-
i @ .

4 ‘ ° sumption that the square mean
. | | 45 values of velority fluctuations
2 4 6819 2 x4 68,0 are proportional to the time-
Fig. 17. Variations in turbulence intensity average velocity based on the

in wall jet issuing from submerged outlet
with distance (after Henry, replotted by
the author). by Henry!® shown in Fig. 17,

experimental results obtained
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the fluid resistance R4 can be written as

0 U\
Ry= g nd2ur2Cor{ A +m)28.( S )+ A= g (L)}, o (39)
in which Cp is the function of the Reynolds number expressed by
" U \(u*d
Rou= (u_*) ( ” ) ................................. 39

The value of w: does not exist when calculated from the main flow,
but the value exists, even though it is very small, when calculated from the

boundary layer. Taking the calculated results in the latter, the uplift Ry
can be expressed as

Ri= ?ndzu*‘(;pm( u* ) ( o) > ..................... 40)

in which Cpuz is the function of the Reynolds number expressed by

Rewrm 2 (BN (EL) )

Inserting these results into Eq. (21), the relationship corresponding to
Eq. (36) can be obtained as follows.
uo*? 4
(o/o-Dgdtane  3¢:°

in which
¢z_cm( 7 ) (A rmrgt Q= 0)+ (5 ) Comts( U Jran .- (43)

(i) The case when the turbulent boundary layer is assumed: In the
turbulent boundary layer in this region the Blasius 7th power law of veloc-
ity profile is established. The following theoretical consideration is developed
for the general case.

Since it is necessary to consider the characters of turbulence in the
turbulent boundary layer, the calculation for evaluating the characters of
turbulence is made on the basis of the results of the hydrodynamical study
on critical tractive forces by Iwagaki” and of the turbulence characters ob-
tained by experimentations.

a) The case when 6>d: As described above, in this case the sand
gravels are completely in the boundary layer, and Bs=0. Now consider
§p/0x of the second term on the right in Eq. (23). The pressure gradi-

ent 0fp/0x is generally the sum of that resulting from time-average ve-
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locities and that resulting from fluctuating velocities. Since the velocity in
the main flow U is constant in this case, the pressure gradient in the former
vanishes, and also, that in the latter does not exist in the case of the laminar
boundary layer. It is, however, necessary to consider the pressure gradient
resulting from fluctuating velocities in the turbulent boundary layer.

In evaluating the pressure gradient 6p/6x resulting from fluctuating
velocities, expressing —0p/0x in Eq. (23) by pDu/D1t, based on the Eulerian
equations of motion, and taking the statistical mean of the expression by
the same procedure as Taylor?® did by putting #=#%+#' and w=w+wu' in
which # is the time-average velocity component in the x-direction, #' the
momentary departure therefrom, that is the fluctuating velocity, w the time-
average velocity component in the z-direction and w’ the fluctuating velocity,

the following relationship can be obtained:
1 8p = ‘/ ‘/ ou' \?
o 0x =V IZ (a—x)
——@ /%Zl —,/ oW \E
+1/w’2{ 0z + ( 0z ) f+w ( 0z > (44

Introducing the scales of minimum eddies ez, dzr and A.., the pressure

gradient becomes

L0 _ a0 oVER sV ET
0 0x —1,/14 Z{ 0x +1/2 Acz }+1/2u zx
/ ulz ]_ aulz 1 aurz 2
!
tvw Z{ +V 2 e +417¢’2 . +“’l/2 e 4u'z )

In order to calculate further the above equation, it must be clarified
how the quantities #, W, %2, W'%, lez, Aee and Aer distribute vertically in
the boundary layer.

Using the value expressed by Eq. (14) as time-average velocities in the
x-direction #, and calculating the time-average velocity component in the
z-direction w from Eq. (33) by the same procedure as described already,
the relation becomes

B U( 2 w6

Under the assumption that the values of the time-average velocity com-

ponents % and % are used for representative velocities in calculating the
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fluid resistances, the representative velocity #, takes the value of Eq. (4)

at z=d, and inserting the result expressed by Eq. (16) into Eq. (46)
we _+D) D) o u¥ \3/ y*d \»
o= R () ()

Y

Now consider the fluctuating velocities expressed by square means in

the boundary layer. Fig. 18 is the experimental results of distributions
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Fig. 18. Distributions of square means of fluctuating velocities in boundary layers
with zero pressure gradient (after Spengos, replotted by the author).

of turbulence intensity, expressed by the ratios of turbulence intencities in
each direction, in the boundary layers on a smooth flat plate in uniform
flow obtained by Spengos?® and replotted by the author. Although the ex-
perimental data are quite scattered it is found that the following relations
assumed by Iwagaki” in the theoretical consideration on the critical tractive

force can be applied in the boundary layer.

VHRR2u¥, Y/ WEZUF e 48

The distributions of the scales of minimum eddies in boundary layers
have not been clarified. Assuming that, therefore, the theory for isotropic
turbulence can be applied to the relations among sz, Az and e, and that
these scales are proportional to the mixing length /, the relations are writ-
ten as

Aez =12 @l, Auz=Aupm= @l eeoerereeneneinneienns (49)

in which @ is a constant which is not clear, but it will be about 2=12.5 by

estimating on the basis of Iwagaki’s study on the critical tractive force.
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Furthermore, it is assumed that the

experimental results, shown in Fig. 19,

-t obtained by Spengosw in the boundary

layer developing on a smooth flat plate

can be applied in evaluating the dis-

0.5

ol
T B

tributions of the mixing length in the

boundary layer developing in wall

jets.
o \ i 1 Evaluating the pressure gradient
° 2 reu o> at z=d, denoted by (8p/0%)a, by using
UsS az) o

Fig. 19. Distribution of mixing the above relationships, and calculating

length in boundary layer (after the fluid resistance by applying the
Spengos). relation us=%-+ vy %'? as Iwagaki did,

the fluid resistance Rz can be written as

Ry =g nd?u*iCpy {(x) ‘”*1’/2(“;1) +2}

+Tnd2u*2[ {2@+HVD+ - e /s 2 d>"(2+”led)}

204 D) @t D) (- e an () (g
+2y TEEDLIED, G (47 (4], )

in which /; is the value of [/ at z=d and Cps the function of the Reynolds

number expressed by

u d >7L+1

v

Ram - ses(874

Now next consider the pressure gradient 9p/0z in the second term on
the right in Eq. (27) by the same procedurc as described above. Taking the
statistical mean of 8p/9z, it becomes

L2 0 (9 (G
+1/w’2[6w+\/ } J(%’g» ............ (52)

Transforming the above equation as done in Eq. (45), Eq. (52) can be

written as
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1 w w?
- 72—‘5—\/_’2{—+x/ 2 fo }+\/2u‘/;1
+‘/w,2{86—1;}+‘/ 2 \/:":}z }>+\/2_1/w ............... (53)

Calculating the value of (8p/02)4 as done in evaluating Ry by applying the
theoretical results for the isotropic turbulence to A, in the above equation,
and evaluating the fluid resistance by introducing the relation of w.=w+
v w'2, the uplift Ry finally becomes

Ry= %”dzu*chwz{w - (n+1)/2<u‘*\2( u*d )"+1L2

v |

T ndm*z[ [a+2y/ D)+ (24

+ (n+1)§2n+1) (%*) }] + 41 @n41) (D)~ /2
% (LU*)2< u:d )"{1 _ (n+1)’§2n+1) (- v /zn(%) (3n+1)/n( ujd )
A@IED, WY 58

in which the drag coeflicient Cpuwsz is the function of the Reynolds number

~ expressed by

Rowz= w ()~ @+ /z(”_U*)Z( ”:d )nﬂ ............ (55)
Inserting the expressions for Ry and Ry into Eq. (21), the following
relationship can finally be obtained.
U *? 4
(c/o—Dgdtan¢o 3¢ps°
in which

gs=Conf =0 (25D ol ol Do 24y 2y 4 (- 000 8

x ( uc:d ) (2+ [flld )} =2(n+1D 2n+1) (- ®D /Zn(Lgk> (am+1) /7

()T SRR el ) (2]

Qalg v

+prz{;(n+1) @nt1) (D)= @+ /z( u"U \ (uc*d) +1} tan ¢

+2[ QTN e A U




28

4 (n+1)1§2n+ 1)_(%)2}} +m+1) @n41) ()- #v/
X ( u;]* )2(%*4 )n{l _eraiﬂ) ()~ @+ /zn(“%j"‘) (z””)/”(ﬂ:i)

%\ & Y/ *
_ 4:(27;1«:‘1) (}\)_rn+1)/2n< ulc] ) el (u:d>Htan (D, teerrrerasneraaane (57)

and the condition of applicability is ()~ ®+V /2" (u*/U)YV"™(uc*d/v) <1.

b) The case when 6<d: In this case, a part of the sand gravel is exposed
beyond the boundary layer. By the same procedure as in the laminar bound-
ary layer the representative velocity is chosen and the effects of fluctuating
velocities are evaluated. Applying the value at z=4 corresponding to the
second term on the right in Eq. (500 for the resistance resulting from the

pressure gradient in the boundary layer, the fluid resistance Ry can finally

TV ra-so ()}

+-brdrun(1 - |2 {2(2+1/2>+( u )(2+n )
(n+1D (2n+1)(

be written as

Rp=—4- ndm*zcm{ a +m)23s(

+2v2 U)f 2(n+1)(2n+1)( )] ------------ (58)

in which Cp is the function of the Reynolds number expressed by Eq. (39)
and /; the value of mixing length at z=9.
In the same manner, the uplift in the vertical direction Rz can finally

be calculated as

(n+1) Cn+1) ( u*

RL=%nd2u*ZAszw { >+1} Tﬂdzn*ZAz

n \U
[ d jl+1/2(2+ ) (n+1)(2n+1)(1,;;) }
_2(n+D (n-;3) (2n+1)2( u*) + 4D (2n+1)( )] ............ 9

in which Cpuwz is the function of the Reynolds number expressed by

Rova— n+D Cn+1) (u_*)( u*d )

n U v

Inserting these results into the equation of equilibrium condition, the

relation corresponding to Eq. (42) can be obtained as

uc*Z 4

(¢/o-Dgdtang 3¢, "
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in which
—c,.( U\ [d S
¢4_CDI< uc*> {(1+m)2ﬁs+(1—ﬁs)}+2(1—'ﬁ)La—lﬁ{z(z'}‘\/2)

+ ;5 ) (240 D) 2,7 D CAAD (%)}

—2(n+1) (2n+1)<“§*\J+AZ[CDw2{W¢M<u5)+1}Z

+2( )14y 2 (24 2 ) 4 @D CAD) (k)

2D @t 3) (2”+D2<L§>3+(n+1) @+ D (%) Jtan g (62

As described above, it is found that the criteria for scour in the region
of the zone of flow establishment, £§<242, can be expressed by the following
relationships for both cases of the laminar and the turbulent boundary

layers.

ue*? 4 i
WE:W" (G=1, 2, 3, 4) -eoererreereerann 63)
in which
Gi=d{ue*d /v, Ue¥ U}, veeemeeeeriieniiieeen (64

Considering the relation C;=2(#.*/U)% in calculating Eqs. (63) and
(64), the values of #.*/U do not change much with the Reynolds number
in practical cases. Therefore, Eq. (63) can be expressed by the relation
between u.*?/(s/p—1)gdtan ¢ and wu.*d/y with the parameter of #.*/U.
Fig. 20 shows the relation between the friction coefficient C; and the
Reynolds number UL/y based on the results shown in Fig. 9. When the
criterion for scour is considered for the range of the Reynolds numbers of
UL/v=108~10%, it seems to be adequate to calculate Eqs. (63) and (64)
for the ranges of #.*/U, from 0.1 to 0.06 for the laminar boundary layer
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Fig. 20. Relation between Cr and UL/v in region of §<2a2
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Fig. 21. Dimensionless expression of criterion for scour in zone of flow
establishment obtained by the theory.

and from 0.06 to 0.04 for the turbulent boundary layer.

Fig. 21 presents the theoretical curves for the criterion for scour in this
range calculated by using the assumption that m=0.1 based on the experi-
mental results shown in Fig. 17. The notations of 7 and ¢ show the theore-
tical curves in the laminar and the turbulent boundary layers respectively.
The theoretical curve for the critical tractive force obtained by Iwagaki”
is shown in the figure for comparison.

In addition, the value of #.*%/(¢/p—1)gdtan¢ in Eq. (63) tends to
approach 0.056 independently of the values of #.*/U when the value of #c*d/y
becomes lesser than unity, and is equal to 0.056 in the range where the
Stokes law can be applied to estimete the drag coefficient of a spherical
sand gravel.

3) Theoretical consideration for the zone of established flow

In this region, the maximum velocity of a wall jet given by Eq. 'OF
and the boundary layer growth is expressed by Eq. (13) in the case of
laminar boundary layers and by Eq. (17) in the case of turbulent boundary
layers respectively.

It is difficult to consider the criterion for scour in this region by ap-
plying di}ectly the results of the boundary layer growth obtained in the
second chapter. The theoretical consideration for the criterion is made on
the basis of the relationships neglecting the second terms in the brackets
in Egs. (11), (13), (17) and (19). This treatment is based upon the reasons
why, as is seen in Fig. 13, the results of Egs. (17) and (19 do not suf-
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ficiently agree with the experimental data close to £=2a? in the turbulent
boundary layer and the effects of neglecting the second terms in the brackets
in Eqs. (A1, (13), (I7) and (19), for the both laminar and turbulent bound-
ary layers do not influence the ranges of slightly larger values of & than
2a¢®- The theoretical results on the two-dimensional turbulent jet expressed
by Eq. (4) are applied to the velocity profiles in a main flow, and moreover,
Henry’s experimental results already described are useful in evaluating the
fluctuating velocities.

(i) The case when the laminar boundary layer is assumed: As just
described in the preceding paragraph, it is assumed that the velocity fluctua-
tions do not exist in the laminar boundary layer. The criterion for scour
will be considered by dividing it into two cases; one case is when the sand
gravel is in the boundary layer and the other case is when a part of the
sand ravel is exposed beyond the boundary layer.

a) The case when §>d: By using Eq. (19) for the velocity profile
in the boundary layer and applying Eqs. (11) and (13) in which the second
terms in the brackets on the right are neglected, the fluid resistance Ry
can be written as follows by replacing U in Egs. (30, (81) and (32) by
%o.

__0. . (B (AN (N2
Ry=- ndwurCrl 2 ) (5 ) 2= (5)F 65)
in which
d/8= (1/2) (0*/th) UFA/p) -+ eevvereemmmnineaneannn. (66)
and the Reynolds number for Cps can be written as
_ Lwrdag, 1 (wN\wrdNL
R‘Z——T( v / lz— 2 (uo)(\ v >} 6D

Taking into consideration that the velocity #o in Eq. (9) changes with
the distance by the relation of Eq. (6), the velocity component we in the
z-direction at z=d can be obtained from Eq. (33) as follows.

%= 152 <Z_’:)‘( “:d )2{2_%(%)(“2‘1)} ............... (68)

From the result, -the uplift Rz can be written as

Rp= %ndzu*chwz(l—sz)g(%)6< u:d )4 (2— %(%:) <u:‘_d)}2, - (69)

in which Copwz is the function of the Reynolds number expressed by
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Rewz=_5_<’;*) (“*d )i{z-%(ﬂ)(“*d)} ............... (70)

12 v U v
Inserting above relationships into the equation of equilibrium condi-
tion, the following relation is finally reduced to

U *2 4
(6/o—Dgtano 3¢s

in which

e deal 222 o () )
oS (22 o () 2 e 2

Ug v Uo Ug

and it is obvious that the limit of applicability of this relation is a/e<l.
b) The cases when 6<d. Since a part of the sand gravel exposed beyond
the boundary layer, the fluid resistance Rr is considered by dividing it into
the two parts which are the fluid resistance in the boundary layer and that
in the main flow. By the same treatment as in the consideration for the
region of £<2q® described already, the fluid resistance expressed by Eq.

(14) can be written as
2
Rpp= T‘; 7d%u*2Cpy (1 — Bs) ('Z’: ) ) e (73)

in which Cp; is the function of the Reynolds number expressed by
Rez= (ho/w*) (U¥d/p). «rvveermeeemmrmeerecissinnnnes (74)
And by using the value at z=4§ corresponding to Eq. (68) the uplift ex-

pressed by Eq. (27) can finally be written as

Ru= %ndzu*chwz(%>242(z—j>z, ..................... (75)

in which Cpuwz is the function of the Reynolds number expressed by

Rawn=(35/18) (% /tho) (UAd /1), «wrveoresreresvomnnnnes (76)
and 4, is represented by Eqs. (28) and (29) which is the function of ass
expressed by Eq. (66).

Now next calculate the fluid resistance in the main flow. The relations
of Eq. (14) "using ¢=0.00858 which is the coefficient of mixing length in
the wall jet as described already, can be applied te compute the velocity
components of # and . Although the values of fluctuating velocities of

1/12—’2 and v/ %'% in the wall jet and the distributions have not been clarified yet,
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the same relation that /%'2=m#% as described already may also be applied
to this region by considering that 4/#'2/%=const. for the region of £<&
from the result shown in Fig. 17, and the same relation that v/ w'2=mw
for the fluctuating velocity in the z-direction, as mentioned above, may be
assumed.

Under the above treatments the first term on the right in Eq. (23) can
be expressed by

Uo

R = ~g-nd#u*3Cp (1 +m>z;as( o

2
) sech2 £y, weeeverermmee an

in which Cp is the function of the Reynolds number expressed by

Roi= (tho/w*) (u*d/v)sech? £y, veoeeemeeeesinemennnnns (78)
As is shown in Fig. 22, taking the value at z

z=4 for the representative velocity, the value T cateutated 1y

of {1 in Eq. (78) can be expressed as Eq. — U”(M/ry,smmgr.m
(79 by using Eq. (13) neglecting the second [ \&\ ]
term in the bracket on the right side. S {;)\ %7 x

Er(= 008/ %) = (10/3) st /u)® - (19) . ©

Fig. 22. Representative veloc-

Since, as is seen in Fig. 5, the velocity ities in zone of established
of flow decreases rapidly with the distance flow.
from the bed, the fluid resistance may be evaluated too low if the value
of velocity #; at z=d in the figure is taken for the representative velocity.
On the other hand, as the velocity profiles in both cases of the critical
tractive force and the criterion for scour at the downstream end of a smooth
bed depend upon the logarithmic law, the fluid resistances have been evaluat-
ed higher than the true fluid resistances, and the theoretical results agree
with the experimental data. Based on the above fact, therefore, the describ-
ed treatment for the representative velocities has been assumed.

As described already, the first term on the right in Eq. (26) can be
expressed by Eq. (80) with the aid of Eq. (4.

<1+m

= L d 212 = "
RLml 4 Cle 200

A ) (222} (2 sechs £~ tanh £)2, -+ (80)
in which Cpw1 is the function of the Reynolds number expressed by

Rew1 = (1/20’0) (uo/u*) (u*d/y) (2:1 sech? C1 —tanh C1) """""" (81)
and 4, is represented by Eqs. (28) and (29) which is the function of d/§

expressed by Eq. (60).
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Next, consider the second term on the right in Eqs. (23) and (26).
Although both of the pressure gradients of 8p/6x and 8p/0z are the sum
of the pressure gradient resulting from time-average velocities and that
resulting from fluctuating velocities as described already, the former of the
two resistance may be considered to be negligible in the wall jet as appli-
ed in the analysis of boundary layer growth. In the region of 2a?<é<é&.,
therfore, only the pressure gradient resulting from the velocity fluctuations
will be calculated in the sanie manner as described in the region of £<2g2.

Putting Eq. (4) and the fluctuating velocities expressed by the treat-
ment described already into Eq. (35), expressing the scales of minimum
eddies by the relations of Eq. (49), and considering that the mixing length
in the wall jet is equal to /=cx, the second term on the right in Eq. (23)

can be reduced to

tanh ¢
) (secht ¢, )fM vl_mms:&iza

Ropmg = Tndzu*zﬂs(

X (2% sech? &1 —tanh CI)+m771(2(1 tanhCl———)

m(l+m) tanh ¢, 1 . /2
+'_”;0— 71 \2:1 - sech? Cl ){ 2((1[,‘)5 + 042 tanh Cl} }’ ......... (82)
in which
M(=8/%) = (5/3) (U* /1) 3(U*A[1), ++oreememersernineens (83)

and {; is expressed by Eq. (79).
By using Eq. (53) similarly, the second term on the right in Eq. (26)

can finally be written as

Rima= ndzu*z/h(—) e ) (sechzy) {25771 (sech2 ;)

X (27, tanh &, —1) +tanh ¢ 1+21/2( )m(z , sech? 2, — tanh ¢1)

(2\ 1— ;::}g £1 ){ 9 /i (]. 4"1 tanh 1) sech? (1
+ %;'C:”) 7(21 sech?; —tanh :1)}]. ................................. 84)

Inserting these relationships into Eq. (21) and transforming the result,

the criterion for scour in this region can be reduced to

uc*Z 4

(o/o—Dgdtang 3¢’

in which
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(i

X )2{ (A+m)2B:Cpy sech &1+ A — Bs) Crn }
+2ﬂx(

) (sech ¢, ){M —my _tanh{; @Z, sech? ¢,

1
sech? [,

_ » » 1y, mQ+m) tanh{
tanh {,) +m771(251 tanh {; D) )+T 771(25 —chi>

x {ch)z oot tanbe £af | +2( ’;:‘ )2{(1;7:”)2/110”1

X (2%1sech?{; —tanh {;)2 +( 35 ) przAZJtan ©

22 (- otsc ) Csechs £ [2am (sech® £2) 24 tanh ¢4~ 1) +tanh

.
2/ 2 (20 ) 2% seche a—tanh £ +(20, 20051 )
=1

X{77/1(1—4{1 tanh :1)sech2 :1

n A+m)

ace. (221 sech? Z; —tanh &) Htan (Du e (86)

(ii) The case when the turbulent boundary layer is assumed: In this
region, the Blasius law for the resistance law in the turbulent boundary
layer can not be applied, and the relationship shown in Fig. 9 should be
used. But the theoretical consideration for the criterion is made for the
general case as presented already. For the boundary layer growth and the
distribution of shear velocity along the bed, Egs. (11) and (19) neglecting
the second term in brackets on the right are applied respectively.

a) The case when ¢=d: Using Eq. (14) replacing # by m as velocity
profiles, considering fs=0 as formally done, and applying the relation ex-
pressed by Eq. (48) to evaluate the fluctuating velocities in the boundary
layer as described already, the first term on the right in Eq. (23) can
finally be reduced to

d \nm
Roo =% ﬂdzu*chz{(%XT)" 4ol 87
in which
d/s=Q) " (ni+1>/2m (w* ) Um L 10 PRI E (88)

and Cp: is the function of the Reynolds number expressed by

Ra= ()~ D/2m gy S Ammd/m g ya o, 89
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The uplift, which is expressed by the second term on the right in Eq. (23)
resulting from the pressure gradient can be calculated by the same procedure
as in the theoretical consideration for the zone of flow establishment. Ap-
plying Eq. (14) replacing # by #:, and calculating the representative velocity
we corres_ponding to Eq. (47) from Eq. (43) the result can finally be reduc-
ed to ’
w5 G D @

o

Uy

—(m+1)/2n1(£)(2m+1)/m(ﬂ)

Uo ]

+

Moreover, inserting Eqs. (14) and (90) into Eq. (45) under the as-
sumption that the relations expressed by Eqgs. (48) and (49) can be applied
to the turbulance intensities of 1/%'2 and /@2 and the scales of minimum
eddies of Asz, A2z and As, respectively the second term on the right in Eq.

(23) can be expressed as follows.

Ravn=-Lrasuwo (L) (22 4y D+~ Ty

Y

(
o PGP o <m“>/2(“* Py
)

AT <"‘“>/2(ﬂ> =y

Uy Y

X{?Zh-:‘ll QD (n1+1)/2m( u*)l/nl(u*d)+2(n1+1)” ...... @D

Uy

+n1(n1+1)]

In the same manner as described above, calculating the relation cor-
responding to the first term on the right in Eq. (27) and also calculating

the second term, the uplift corresponding to Eq. (54) can finally be writ-
ten as

Ra= —ndm*zcl,wz( o ) ( ! e {(2n1+1) @mAD )= Gut1)/om

8 u* / (410 +1)
W \Cm+1D/my w¥d \ | 20m+1) Qm+1) [ u* \2)2
T I e R = e ol

oo )4 LRI

R
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+ (3n1+1) (M)zul) —(3m +>1)/n1< u*d \)2( 33m+1)

4o 41 v n+1
u*d " u* \Un | Ao (m+1) —(m+1)/2m
+2(n1+1)/h< ) (uo ) +W (21)
ukd \~1( y¥ (2n1+1)/n1]) d @Cni+1) B +1)
() () +;;§‘(7>+ dn+1
=CGu+1)/2m( w* \Qm+1)/m/ w*d — d
x (1) (%) (] +evz+n ()],
................................. (92)
in which Cz is the function of the Reynolds number expressed by
_ —m+1/2/ w*d \m+1 [ (2m+1) Bm+1) —(m+1)/2m
Rewa= () (*3%) {(n1+1),(4n1+1)_ )
w\C@u+D/m(urd\ 2m+DCm+D/u*\yy
% (%) (7)) ©3

and /; shows the value of / obtaining from Fig. 19 by using the value of
d/d expressed by Eq. (88).
Inserting the fluid resistances of R, and R obtained above into the

equation of equilibrium condition, the criterion for scour in the range of
d/8<1 can be reduced to

u.*2 _ 4
(o/o—Dgdtany 3¢ °

in which
b= Con{ () (%) 42 2 Z e+ D+ 0~

(uc*d)nx<2+ ald> 4(5:1:11) ul)—(m+1)/2(u70>a
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(m+1)/2
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v

+n1<n1+1>}+21/2(izlii)( )(A) (n1+1)/2<1,1¢:0 )z/uc:d>m
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. Uy
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X
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x(“°:d>2{3(z¢j:§1>+2(n1+1)1 (uc*d> ( 1::‘)1/”1

4m, (m +1) —Cu+1)/2m [ uFd \"1{ u* \Cm—1)/m
g1 A (2% f

1 (2711 + 1) (37’11 +1)
+1/—2< )+74n i o

X(uc d)J+(21/2 +1)< )}tan(p. ....................................... (95)

b) The case when 6<<d: Since the sand grevels are exposed beyond
the boundary layer in this case, both fluid resistances of Rzm and R
exist. Consider at first Rpp. Calculating the relation corresponding to Eq.

(711 +1)/2n1<u_,,*) (2711+1)/7’ll

Uo

(91), the fluid resistance Rrs can be obtained by the same procedure as in
Eq. (58 as follows.

Rpv= -ndwuxaCpy (1- ﬂs){( )+2} - mdmr(1 - o)

<[ () ey oo 50 ()}
20m+1) @m245m+1) (u_*)

41, +1 U

i et

in which Cpz is the function of the same Reynolds number as Eq. (74).
Since Eq. (4) can be applied to the velocity profile in the main flow,

Rom becomes finally equal to the sum of Eqs. (77) and (82), and the
following relations can be used for £y and % in the equations.

O @mtD@m+Dw*\e
’;1(—00 x) 200 a1 (uo), €,
and
_d (2111 +1DGm+D —Bm+1)/2m u* \Cm+1)/m [ w*d
(‘ x> dnt1 (u_o.) ( v )
................................. (98)

By the same treatment as described above, Rz, can be written as

Roe %ndzu*ZprzAz{ @n+1) @2 +101,4-3) ( u*) +1}

(n+1) (dn+1) %o
01 "ty \ 400 @ + D202 +5m+2) ( u* \2
+oyd “*2A2[2<F)[ G + D)2 (u_o)
@Bm+1) 2m +1)2 3@m+1)
e ) el GV ( H m+1
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20+ 1) (T (2
Uy
+4?5131(1m++1%) (21)—<m+1)/m(%*>z} %L%ﬂ(%jz
‘/2( d )}_{_(14_2‘/2)( )] ....................................... (99)

in which Cpu: is the function of the Reynolds number expressed by

Roug— @ +1) Cn2+10m,+3) < Zil \L u*d)
(m+1D) dn+1) U /N y
For the uplift Rzm in the main flow, the relations expressed by Egs.
(80) and (84) replacing {1 and 7 in these equations by Eqs. (97) and (98)
respectively can be applied.
Inserting the results obtained above into the equation of equilibrium
condition, the criterion for scour in the range of d>¢ can finally be writ-
ten as

U ¥2 4

Glo—Dgdtans™ Sn "

in which

do= AL+ m)p( 2 o Con secht Zi-(1 - BoCon( 20 ) +2)°
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As described above, it can be seen that the criterion for scour in the

+

—(m+1)/n1< z:::‘ )2}+ (2n1+4}z)1f111+1) (uTc:‘)z

region of £.>§>2a%, the zone of established flow, is expressed by the
following relationship for both cases of the laminar and the turbulent
boundary layers.

Uu*2 4
(¢/o—Dgdtangp 3¢:

(£=5, 6, T, 8),---wrerreeresremes (103)
in which
1= Ge{te¥d/y, UF[Ug}. -evvnrermmiiiinianinin 104

In calculating these equations, it is necessary to consider the relation
between the friction coeflicient C; and the Reynolds number #,L/y as des-
cribed already. Fig. 23 presenfs the relation between Cr and #,L/y, and
the solid lines in the figure are.the relations expressed by Eqs. (13) and
(20) neglecting the second terms in brackets on the right.

Now consider the range of the Reynolds number #,L/v from 6x10° to

4
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Fig. 23. Relation between Cr and uoL/v in region of £>2at.



41

107, and it will be adequate to calculate Egs. (103) and (104) for the ranges
of uc*/uy from 0.1 to 0.06 for the laminar boundary layer and from 0.09 to
0.06 for the turbulent boundary layer respectively. By applying the values
of #, and A; used in the analysis of the boundary layer, that of 4y corre-
sponding to the value of ¢ as described already and m=0.1 to Eqs. (103)
and (104), the theoretical curves for the criterion for scour can be calculat-
ed as shown in Fig. 24. In the figure, Iwagaki’s theoretical curve for
the critical tracive force” is shown for comparison. Besides, in the case
of the laminar boundary layer the value of %*2/(s/p—1)gd tan ¢ tends to
approach 0.056 independently of the values of #*/u, when the value of
u*d/v becomes lesser than unity and the value is equal to 0.056 in the

range where the Stokes law can be applied to the drag coefficient.
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Fig. 24. Dimensionless expression of criterion for scour in zone of established
flow obtained by the theory.

From the above descriptions and the ‘theoretical results shown in Figs.
(21) and (24), it is clear that the criterion for scour from wall jets is
presented by the three parameters, #.*2/(¢/p—1)gd tan ¢, u.*d/v and u*/U
or uc*/uy, and especially by comparing the results with the critical tracitve
force and the criterion for scour from flows downstream end of a smooth
bed®, it is found that a parameter u*/U or u*/u, should be added.
Although this fact is based on the boundary layer growth, the tendencies
of change of the theoretical curves are very complicated as is seen in Figs.
(21) and (24), and the effect of the parameter u.*/U or u*/u, may not

be large, especially in the region of established flow. It is also concluded
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from the comparison between the above theoretical curves and those for the
critical tractive force that the criterion for scour from wall jets is presented
by the lesser critical shear velocity than that for the critical tractive force
in the region of sufficiently large #.*d/v.

4) Theoretical consideration for the third region where the study of

wall jets cannot be applied

Since the theoretical results of the wall jet described in the second
chapter can not be directly applied to estimate the characteristics of flows in
this region owing to the existence of a free water surface, the characters of
flows should be dependent only on the result that the maximum velocity of
the flow will more rapidly derease with a distance than that in free turbu-
lent jets. To consider mathematically the criterion for scour in the region
would be impossible. Hence, the relation between the criterion for scour in
the region and that in the two regions described already is considered by
the procedure of dimensional analysis based on the results shown in Fig. 3.

As described already, the most important parameter in the criterion for
scour is the shear velocity along the bed. Instead of the shear velocity,
maximum velocity of flows will approximately be applied. It is clear
from the results shown in Fig. 3 that the characters of the maximum ve-
locity expressed by %/U in dimensionless form, in the region of &<¢ are
closely connected with the ratio of the tail water depth to the length of an
apron expressed by Ao/L, and furthermore, the flow should approach the
uniform flow at a long distance from an outlet.

In the region of £<¢&,, the tail water depth has been essentially ignored
in the boundary layer growth and the criterion for scour as described
already. Then, if the length of an apron and the water temperature are
given, the velocity of water jets under the criterion for scour can surely
be decided. Considering the fact and the characters of the flow described
above, the criterion for scour in the region of £>&. will ai)proximately be
expressed by the following relation in connection with the theoretical results

for the criterion in the former two regions.
U/ U= f(ho/L), rwrerrrenevnrnnnassnanasaninnans (105)

in which U is the velocity of an outlet already defined under the criterion
for scour in the case when the length of an apron L, the characters of sand

gravels, the opening of the outlet and the water temperature are given, U
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the virtual velocity of a wall jet corresponding to U under the same con-
ditions, and f(ko/L) which is the function of ho/L and which should be
decided only experimentally.

Furthermore, the more precise consideration for the criterion may require
a clarification of the characteristics of flows in the region, although it may
be very difficult to disclose theoretically the criterion due to very com-
plicated phenomena associated with the development of local and gross tur-
bulence. From the above assumption, if the relation expressed by Eq. (105)
is considered and can be verified by the experimental results, the criterion
for scour in the region may be estimated on the basis of the theoretical

results for the two regions already described.

(2) Experiments on the criterion for scour resulting from wall
jets

In order to consider the actual phenomena of the criterion for scour
based on the theoretical considerations already described, the experiments
for the three regions were performed.

1) Experimental apparatus and procedures

(i) Experimental water tank : With the experimental water tank des-
cribed in the second chapter, the experiments on the criterion for scour
were carried out by constructing the model apron on the upstream side and
spreading sand gravels on the bed downstream of the apron. The length
of the apron was determined for the three regions already described in con-
nection with the opening of an outlet, and the aprons were made of a smooth
brass plate.  Control of discharge was done by installing the sluice valves
in pipes connected with the experimental water tank. Velocities of the
outlet were measured by the Pitot-tube with an outer diameter of 0.200 cm.

(ii) Properties of sand gravels used: The properties of the sand
gravels used in the experiments are shown in Table 1. In order to take
uniform sand gravels, the mean values of the sieve sizes, 0.03~0.06 cm, 0.06
~0.12 ¢m, 0.12~0.25 cm, 0.25~0.50 cm, 0.50~-0.70 cm, 1.5~2.0 cm and 2.0
2.5cm were used respectively. The values of the frictional angle of sand
gravels, denoted by ¢, the shape factor defined by ¢/v/ab, in which a, &
and ¢ are the maximum, intermediate and minimum mutually perpendicular
axes of a sand gravel, and the numbers of sand gravels exposed per unit

area shown in Table 1 were measured by the same method as used by the
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Table 1. Properties of used sand gravels and steel spheres.

| Graindii;meter Speciﬁ;/%ravity tan o 1;;’;3,‘??5 a‘;:{lf)asgés_%ae‘;d S%laf/e vf;_ztor
0.0450 2.479 0.790 191 0.624(0.276~0.876)
‘ 0.0900 2.507 0.984 64.9 0.634(0.198~0.889)
} 0.185 2.512 1.045 23'.7 0.651(0.354~0.904)
0.375 2.527 1.036 8.96 0.671(0.328~0.924)
; 0.600 2.528 1.082 3.78 0.678(0.600~0.917)
: 1.75 2.661 1.041 0.811 0.562(0.316~0.869)
! 2.25 .2.660 1.019 0.572 0.571(0.346~0.835)
| (orhars) 7.615 | 1.021 9.70 1
author®

Besides, as an example for comparing the differences of shapes and
specific gravities of sand gravels, the experiments for the zone of establish-
ed flow were performed by using a steel sphere, shown in Table 1.

(iii) Experimental procedures: The relation between the velocity of
an outlet and the rate of sediment transportation, expressed by the numbers
of sediments, at or near the downstream end of the apron were measured
by setting the sand gravels on the bed downstream of the apron and con-
trolling the discharge of flow. But the criterion for scour in the third
region where the study on wall jets may not be applied, was decided on the
intuition of an observer because the accurate measurement of the rate of
sediment transportation was very difficult owing to the development of com-
plicated turbulence.

2) Experimental results and considerations

In the following, the experimental results obtained above are compared
with the theoretical results for the three regions respectively.

(i) Considerations for the zone of flow establishment: From the ex-
perimental data in this region, some examples of the relations between the
ratio, denoted by po 9%/s, of the rate of sediment transportation, which is
expressed by the numbers of sediments, to the numbers of sand gravels ex-
posed per unit area, which was proposed by the author in the preceding

paper®, and the velocity of jets can be obtained as is shown in Fig. 25.
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Applying the value po=0.5 9%/s, which was determined by the author

in the previous paper, to the criterion for movement of sand gravels, the

velocity of the outlet corresponding to the value can be obtained from the

results shown in Fig. 25.

Obtaining the value of Cr corresponding to the

Table 2. Experimental results for the criterion for scour in
region of flow establishment.
d cm L/D Uem/s | u*/U u*em/s | uFd/v |u*/(o/p—1)gd tan (‘D‘
0.0450 5.66 27.4 0.0599 1.64 6.97 0.0524
0.0900 ” 31.1 0.0588 1.83 15.5 0.0279 .
0.185 ” 38.0 0.0573 2.18 38.0 0.0166 |
0.375 ” 50.0 0.0556 2.78 97.8 0.0133
0.600 ” 70.0 0.0538 3.77 212 0.0146
1.75 8.16 135.0 0.0476 6.43 901 0.0139
2.25 ” 146.0 0.0472 6.89 1242 0.0127
0.0450 9.96 29.8 0.0556 1.65 7.04 0.0532
0.0900 ” 36.7 0.0543 1.99 16.9 0.0296
0.185 ” 41.3 0.0534 2.21 38.5 0.0171
0.375 ” 53.2 0.0519 2.76 97.4 0.0132
0.600 ” 69.4 0.0507 3.52 198 0.0128
o
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Reynolds number UL/v, which is calculated from the value of U, the length
of an apron L and the kinematic viscosity p, from the results shown in
Fig. 20, and estimating the critical shear velocity #.* from the results, the
values of #.%2/(c/p—1)gd tan ¢ and ##d/v can be calculated. In this case,
the relation shown in Fig. 20 by the chain line was applied to estimate the
value of Cr in the case when the value of UL/y became about 2X10%. The
relationship between Cr and UL/y close to the above value has not been
clarified yet. Since, however, this corresponds to the case when the size of
sand grain is equal to about 0.045cm, these many differences will not

remain in practical problems. The experimental results obtained above are

2 T T
— P°-0.5.%/s
& YN
N . © 5.66 0.053-0.060
- @ 8.16 0.050-0056
C G o8(D) 8 996 0047-0048
T cos(t)—
/\>— FETE=—Z005(4) Q06(t) =
T RS 2 \‘Nyh_]. T 1T
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~
6
4 3
| 2 4 [} !lo 2 4 5 |02 2 . 4 6 !|O3 2 4 6 ',IO‘
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Fig. 26. Comparison of experimental results and theoretical curves for
criterion for scour in region of flow establishment.

shown in Table 2. Fig. 26 presents the comparison of the theoretical curves
for the criterion and the experimental results shown in Table 2. The theo-
retical curves in the figure were decided as follows. By introducing the
sheltering coefficient proposed by Iwagaki” into Eq. (63), it can be writ-
ten as
U*? 4
(¢/p—Dgdtang  3eps’

(B=1, 2, 3, 4)--vreerrveenres 106)

in which ¢ is equal to 0.4 on the basis that the hydraulic mechanism for
the sheltering coefficient may approximately agree with that in the case of
the critical tractive force” and the criterion for scour at the downstream
end of a smooth bed” Since the theoretical curves are not expressed by

one curve with the parameter w*/U because the transition of the boundary
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layer from laminar to turbulent is not clear, the complete comparison of

the theoretical curves and the experimental results cannot be made.

In

spite of these many assumptions, the theoretical curves agree well with the

experimental results, and it seems that the effects of the parameter uc*/U

on the criterion do not come within the range of the experiments.

(i1) Considerations for the zone of established flow :

The experiment-
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Fig. 27. Variations in rate of sediment transportation, expressed by po %/s,

with velocity of outlets in case of sand grains.

al results arranged as des-
cribed above are shown in
Figs. 27, 28 and 29. Fig. 27
shows some examples of the
ob-
the

experimental  results
tained by
sand grains, Fig. 28, by
using the gravels and Fig.
29, the
spheres.
Fig. 25, the variations in

using

by using steel

As is shown in
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Fig. 28. Variations in rate of sediment trans-
portation, expressed by po %/s, with velocity
of outlets in case of gravels.
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the velocity of the outlet U
with the rate of sediment
transportation po 9%/s are not
great enough, and especially
for the region, all of the ex-
perimental data for the case
of %,/L<0.288 obtained from
Fig. 4 are expressed by a
curve when the water tem-
perature is constant, in spite
of the expression with the
parameter of A/L. This fact
will be the natural outcome

to be expected from the

characteristics of wall jets described in the second chapter. The limit of

applicability will be explained in the considerations of the next region.

Calculating the velocity #, by Eq. (6) by applying the definition for

the criterion for movement of sand gravels, expressed by po=0.5 %/s, to

these experimental results as described already, and estimating the critical

shear velocity by using Fig. 23 instead of Fig. 20, the final results can be

obtained as shown in Table 3. Fig. 30 represents the comparison between the

Table 3. Experimental results for criterion for scour in region of established flow.

dcm L/D Uem/s | u*/uo | uc* em/s
0. 0450 23.4 32.6 0.0788 1.713
0.0900 ” 4.7 0.0823 2.45
0.185 7 53.4 0.0850 3.03
0.375 4 64.0 0.0839 3.42
0.600 4 92.2 0.0821 5.05
1.75 29.0 168 0.0774 7.76
2.25 7 213 0.0761 9.70
0.0450 40.0 39.0 0. 0859 1.704
0. 0900 7 53.5 0.0836 2.30
0.185 4 66.5 0.0823 2.78

uc*d/v |ue*?/(o/p—1)gd tan ¢
8.16 0.0569
22.9 0. 0457
58.7 0.0318
138.0 0.0227
312 0.0275
1086 0. 0203
1747 0. 0252
7.72 0.0562
21.7 0. 0403
54.0 0.0270
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0.375 ” 80.5 0.0813 3.33 130.5 0.0191 i
0.600 ” 106.6 0.0801 4.39 271 0.0208 *‘
0.0900 40.1 49.9 0. 0832 2,12 22.8 0.0342 ‘
0.185 ” 67.4 0.0814 2,80 60.7 0.0274 :
0.375 ” 86.7 0.0806 3.56 158.9 0.0218 |
0.0450 55.8 50.8 0.0822 1.807 9.58 0.0633 i
0.0900 ” 61.2 0.0816 2.16 22.9 0.0357
0.185 ” 76.0 0.0803 2.64 53.4 0.0243
0.375 ” 103.6 0.0785 3.52 156.2 0.0213
i 0.600 ” 130.0 0.0770 4.34 305 0.0194
0,322 23.4
(steel sphere) 115.2 0.0809 6.22 199.1 0.0179
4 55.1 180.0 0.0765 6.01 193.4 0.0167
2 T ]
oize | PomO5%/s & Ut/up |
G © 234 0078~0.085
10 Send . © 29.0 0076-0077
%. e gravel o 40.1 0.080~0086
= g 2 ug © 558 0078~0082
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Fig. 30. Comparison of experimental results and theoretical curves for
criterion for scour in region of established flow.

theoretical curves for the criterion and the experimental results shown in
Table 3. The theoretical curves for the criterion in the figure are expressed
in the form of

UKE

4
(¢/o—Dgdtan ¢  3egy

in which ¢ is equal to 0.4 as described already. As described in the case

(i=5, 6, 7, 8)-rrreererrreeenne. aon)

of Fig. 26, the theoretical curves are not expressed by one curve with
the parameter #c*/u#o, so the complete comparison with the experimental
results can not be made. It is clear, however, that the comparison is

well and especially the experimental results obtained by using the steel
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spheres agree well also with the theoretical curves. It will be deduced
from the fact that the effects of the shape factor 6f a sand gravel on thef
criterion for scour expressed by the relationship between u#.*2/(¢/p—1)gd
tan ¢ and #*d/y are not very great, as concluded in the pfeceding paper
by the author®. if the shape factor is of the range. from 0.56 to 1. And
it is found that the deviations in the theoretical curves especially the de-
viations in #%*%/(¢/p—1)gdtan ¢ at a given value of us*d/v with the para-
meter #:*/#y, are in the same order as those in the experimental results, and
the fact that the effect of the parameter #,*/#o on the criterion for scour
is not clear and not very great, may be verified by the experimental results.
The conclusion based on this fact should be decided on the basis of the
model experiments with a large scale or the field observations for an actual
outlet because the range of values of #.*/#, in the experiments are not
sufficient.

Taking the comparison of the results shown in Fig. 26 and those shown
in Fig. 30, it is clear that the variations in the theoretical -curves with
the parameter #*/U in the former case- are greater than those with the
parameter #.*/u#, in the latter case, but both theoretical curves show closely
the same tendency close to w#¥d/v=103. For the range of u.*d/v=103,
however, it seems that the former changes are complicated with the para-
meter #.*/U, the value of u*?/(a/p—1)gdtan ¢ is nearly constant for 1_:;he
change of #:*d/y, and on the contrary, the value in the latter decreases
with- the parameter #,*d/v. In order to clarify the comparison of the
theoretical curves and the experimental results in this range, it is neces-
sary to perform the model test having a large scale or the field observations
because the size of gravels in the range becomes larger than 5e¢m approxi-
mately. In particular, although the theoretical curve of #.*/u,=0.06 tends
to separate from that of #.*/#,=0.08 at or near the value of which. #*d/y
=6x10%, the detail considerations for the theoretical curves can not he
made, since the Reynolds number in calculating the curve of #.*/u,=0.08
has become the critical Reynolds number of a sphere close to the value
of us*d/y above mentioned. Therefore, the considerations should be applied
only in the experiments.

(iii) Considerations for the third region where the study of wall jets
is not applied: Based on the consideration on the criterion for scour des-

cribed already, the relation of Eq. (106) can be verified by the experimental
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results for this region. As

& 390 s5i 133
described already, the deci- i St e by
sion for the ecriterion for 2 4-r200-6598 :f’:: S o o
scour in this region was made th ° beco o o o
on intuition of an observer | © o
by an assumption, so the ex- -
perimental data may scatter.

But the discrepancy in the o
hydraulic phenomenon of the ° 02 04 o 08 08
criterion for scour may not Fig. 31. Relation between U/U, and ko/L.

exist. Fig. 31 is the result considered for the relation expressed by Eq.
(105), based on the above experimental results. It is clear from the results,
that, for larger values of %,/L than a certain one the velocity of an outlet
agrees with the virtual velocity of a wall jet, which was defined already,
in spite of the changes of €z, D and d. Therefore, the region corresponds
to that already described.

On the other hand, the value of U/U., increases rapidly with the de-
crease Qf the value of %,/L in the case where the value of %o/L is lesser
than the critical one. The region is to be considered in this section. It
will be seen from the results shown in Fig. 31 that the relation between
the ratio, which is expressed by U/U.w, of the velocity of an outlet to the
virtual velocity of a wall jet and that, which is expressed by 4,/L, of the
tail water depth to the length of an apron can be presented by only one curve
in spite of the changes of the opening of an outlet, the ratio of the length
to the opening and the size of sand gravels in a vast range. And it may be
concluded from the fact that the relation of Eq. (105) obtained by means of a
dimensional analysis with the aid of the theoretical considerations for the
criterion for scour in the two regions described already, is practically correct.

Now, expressing the relation between U/U, and %o/L by the straight
line shown in Fig. 31, within the range of the experiments, the relation can

be written as
U/Us=2.90—6.59to/L). +-cveerervereroueeenaeens (108)
In the above equation, calculating the value of %o/L at U/Uy=1, the

value is equal to 0.288, that is /,/L=0.288. It is very interesting to note
that the value agrees with the limit of applicability of the theoretical con-



52

sideration on wall jets described in the second chapter. As is seen clearly
from Eq. (108), the influence of the tail water depth on the criterion for
scour appears in the case where the value of Ao/L is lesser than 0.288. And
Eq. (108) describes the fact that the more tail water depth decrease, the
more velocity of an outlet is needed to move the sand gravels at or near

the downstream end of an apron.

4 [ [ I1T
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2 & D=0640 |11
u < d = 0090 third region should approach
s gl AL LR T - long di
s =74 wan jor 51| the uniform flow at a long dis-
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4 H . .
6 TV T order to consider the above in-
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@ d=-0375 [h )
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) > i water depth is shown in Fig. 32.
& DR o Hall jot _ P g
8 ; It is seen from the figure that
6 . [+ .
I 2 4 680 2+ 680 the experimental data soon
ho cm

Fig. 32. Relation between velocity of approach the relation correspond-

outlets and tail water depth under ing to the uniform flow, but the
criterion for scour. nature of the approach cannot

be made clear within the range of the experiments.

(3) Empirical formulas of the criterion for scour and considera-
tions for determining the length of an apron required for
maintenance of an outlet

In this article, an empirical formula for the criterion for scour from
flows downstream of an outlet and that for determining the length of an
apron under the criterion for scour are proposed, based on both the results
of the theoretical considerations and the experiments described above. The
design charts available to derive the length of an apron are developed.
The Bligh formula and the formula proposed at Iowa University are dis-
cussed in comparison with the author’s formula. Moreover, some practical
examples for determining the length of an apron are described and some
considerations are briefly made on the design of aprons.

1) Empirical formulas
In order to discuss the . criterion for scour from flows downstream of

an outlet, the results shown in Figs. 26 and 30 are inadequate for practi-
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cal purposes, so it is necessary to rewrite an empirical formula in simple
form. For the purpose, an empirical formula for the criterion is proposed
as follows.

(i) Empirical formula for the region of L/D<2q¢* (=10.4) : In this
case, the apron is in the zone of flow establishment. Now, expressing the
relation between #:*%/(s/0—1)gdtan ¢ and wus*d/v, shown in Fig. 26, by
the broken line, by neglecting the influence of #.*/U, the lines can be ex-

pressed by the following empirical formula.

R*>1330; %*2=0.0140{(6/0— 1) g tan p)d,

286<R*<1330 ; =0.0391{(s/p— 1) g tan o }13/14p1/111/14
3.68<R*<<286 ; =0.216{(s/0—1) g tan ¢ }7/24/9d1/3, J
R*<2.68 =0.13%{(6/0—1) g tan ¢ }d,
.............................. (109)
in which
R*={(a/p—D gtan @}/2d3/2/y rererreeiriririninnci. 110

Further, simplifying the above relationships by using the values, o/p=
2.65, tan o=1, y=0.01 cm?/s (at 20.3°C) and g=980cm?/s, the results can

be reduced to
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Fig. 33. Graphical representation of empirical formula
for zone of flow establishment.
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d>0.478cm ; %u*2=22.6d (cm/s)?,

0.172<d<0.478 ; =19.34vme, aw
0.00763<d<0.172  ; =8.73d1/3,
d<0.00763 ; =225d,

in which d is in cm and #*? in (cm/s)2.

Fig. 33 is the graphical representatlon of Eq. (111), and the Iwagaki
formula® for the critical tractive force is shown in the figure for com-
parison. :

(i) Empirical formula for the region of 202<L/D<&;: In this case,
the apron is in the zone of established flow. Expressing the relation be-
tween #:*%/(a/p—1) gdtan ¢ and #c*d/v, shown in Fig. 30, by the broken

lines, the empirical formula can be written as

9050 < R*<76400 ; uc**=0.464{ (s/p— 1) g tan p}s/eu1/3d1/2,

670< R*¥<9050 ; =0.0223{(s/p—1) g tan ¢}d,
79.6<R*<670 ; = 0.0947{ (s/p— 1) g tan @)¥/25dss. 5 = (119)
2.68<R*<79.6 ; =0.207{(o/0—1) g tan @}4/5,2/5d2/5,
R*<2.68 ; =0.139{(s/p—1)gtan p}d, J

In Fig. 30, the experimental data -only exist near w#.*d/y=2X103% so
the comparison of the theoretical curves and the experimental results for
the range of larger values of #c*d/v can not be made. In proposing the
empirical formula, therefore, the considerations for-the range should be
questioned. Based on the above consideration and the fact that the theoreti-
cal curves for the criterion in the ranges of 2X10*<u.*d/v<8 X103 agree
well with the experimental results in spite of the variations in the parame-
ter #.*/u,, the empirical formula has been proposed. From this, although
the limit of applicability of the empirical formula has been presented by
u.*d/v=8x10%, which corresponds to R*=76400, the detail conclusion for
the limit should depend upon the field observations in the future.

Making a formula which corresponds to Eq. (111) by using the practical

values described already, the result can be reduced to

1.72<d<7.12em ; u*=47.3d"* (em/s)2,

0.303<d<1.72 ;  =3.61d,
0.0730<d<0.303 ;  =24.2d, S 113)
0.00763<d<0.0730 ;  =12.1d%%,

d<0.00763 ; =225d.
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Fig. 34. Graphical representation of empirical formula for zone of
established flow.

Fig. 34 shows the graphical representation of the above equation. In
the figure, the theoretical curve for the critical tractive force by Iwagaki
is shown for comparison as done in Fig. 33. It is clear from both results
shown in Figs. 33 and 34 that the criterion for scour from flows down-
stream of an apron is presented by a lesser critical shear velocity than
that in the critical tractive force in the range of sufficient large-size sand
gravels. This fact is similer to that resulting from flows at the downstream
end of a smooth bed described in the preceding paper®.

@iii) Empirical formula for the region of L/D>&,: The criterion for
scour has been expressed by Eq. (108) in connection with the results for
the other two regions described already. To express the criterion by the
shear velocity may be generally difficult because the relationship for the
resistance law of flow in the region has not yet been clarified. However,
the expression of Eq. (108) may rather conveniently be applied to practical
problems, so the author will propose the relation expressed by Eq. (108)
without any modification for the empirical formula for the criterion in the
region.

2) Considerations on the design of the length of an apron
(i) Empirical formula for determining the length of an apron: In-

serting the resistance law of flow in those regions into the relationships
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for the criterion for scour described above and transforming these relation-
ships, the relations expressing the length of an apron under the criterion
for scour can be obtained as follows :

a) Formula for L/D<10.4: Inserting the resistance law in laminar
boundary layers and the Blasius law shown in Fig. 20 into the empirical
forinula expressed by Eq. (109), the dimensionless length of an apron can

finally be written as

R*>1330 ;
L /UD\-t Uz 18
ﬁ_?’?'sk Y ) {(a/p—l)gdtan qp} >
286<R*<1330;
_ 6/9, [UD \-2/1 Uz ) 66714
_0'22()(?) ( Y ) {(a/p—l)gd tan ¢/ K
2.68<R*<286 ;
d \20/9 ; UD \11/9 Uz 86/9
30'000434<f) ( v ) Jl(a/p —1)gd tan w} (turbulent),
_ d \8/9/ UD \-1/9 Uz ]ru/g .
_0.0288(5) ( =) /D gaang | Claminan,
R*<2.68 ;
_ UD -1 Uz 12
_0'0691< ) 1(/0—1)gd tan of

In the above equation, both expressions of the laminar and the tur-
bulent boundary layers for the same range of the value of R* are necessary
to calculate for practical purposes because the critical Reynold number in.
transition from laminar to turbulent and the characters of the transition
have not yet been clarified. Aeccording to Fig. 20, the case where the tran-
sition is questionable, is close to #c*d/v=~25 in practical problems, so the
empirical formulas for the region have been presented by the relationships
obtained by using the two resistance laws for the above boundary layers.
Then, the application of the relationships to practical use should be at-
tempted as is explained below. If the value of K*, which expressed by Eq.
(110), calcul.ated from the characters of sand gravels and the water tem-
perature, is in the region of 2.68< R* <286, the length of an apron correspond-
ing to the given characters of an outlet is obtained by using the two for-
mulas for the region expressed by Eq. (114). And, representing the values
of the Reynolds number UL/v obtained by the above results and the local
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skin friction coefficient which is expressed by C,=2(u.*/U)? and calculat-
ed by using Eqs. (5) and (109) under the given codition, into Fig. 20, it
may be concluded from the com-

parison of the results with the Ioa 1

relations shown in Fig. 20 by the : “\ \\ \‘\

two solid and the broken lines, 0

which  relationship  of the 2 \ \

laminar or the turbulent bound- ic* S -ZAG‘ . c‘%_____

ary layer would be adaptable to : \° H \° ? o O%EEE

the case. Lo ! \\ \\ : \\R:::
Moreover, it is clear from om \ \ \

Eq. (114) that the length of an \ \ \

apron under the criterion for th I ita

scour is independent of the open- 6 \ Yy

ing of an outlet in the case of \\

large sand gravels and propor- 2 (A

tional to U*d-"" in which #' is X \

in the range from 5/3 to 5. Fig. lg ‘\‘ \\ “\

35 presents the relationship : %5.0.4 +

among the length of an apron L\ \ \

under the criterion for scour, the 2 \

size of sand gravels and the ve- | [

locity of an outlet, obtained by CE d Zm ‘%%

using the same values as used Fig. 35. Design chart for determining

in Eq. (111 into Eq_ (114). length of an apron under criterion for

i f L/D<10.4.
From the design chart shown in soour in case of L/D<

Fig. 35, the desirable length of an apron under the criterion for scour can
easily be obtained under the given conditions of the size of sand gravels
and the velocity of an outlet. However, the range of applicability of the
design chart is L/D<10.4.

b) Formula for 104<L/D<&.: Putting the relations for the re-
sistance law shown in Fig. 23 into Eq. (112) by the same procedure as
described above, the relationship expressing the length of an apron under
the criterion for scour in the region of 10.4<L/D <&, corresponding to
Eq. (114) can finally be reduced to
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9050 < R*< 76400 ;
L d \8/18( D \3/16 Us ) 26/32
5=osul5) () e pamne
670<R*<9050 ;
UD \—1/8 Uz 18/10
=10'60(\ v ) {(a/p—l)gd tan qp} >
79.6<R*<670
d \8/24;, D \1/12 Uz 6/6
= 2.73(—D—) ( S ) {(a/p “1)zd tan gp} (turbulent),
d \ 8/46 UD \-2/9 Uz 82/46 .
=21'9(f> ( s ) {(a/p— Dgd tan gp} (laminar),
2.68<R*<79.6 ;
d \%8/ UD\1/4 Ue 3/4
= 1‘317(‘f> < S ) {(a/p— Dgdtan gp} (turbulent),
d \&/26 7 [JD \—5%/% Uz 16/25 .
= 11'74(ﬁ> ( . > {(a/p— Dgd tan 40} (laminar),
R*<2.68
UD \—2/6 Ue 4/6
=16'11( ) {(a/p—l)gd tan qa}

Both expressions of the laminar and the turbulent boundary layers
for the same range of the value of R* in the above equations. depend upon
the same reason described above, and the procedure for the application of
the relationships is also the same as in the former region by using only the
value of the Reynolds number w#,L/v, Eq. (6) and Fig. 23 instead of the
value of UL/U, Eq. (5) and Fig. 20 respectively. And it is clear from
Eq. (115) that the length of an apron is proportional to (U2D)7/8d-",
in which #' is in the range from 5/8 to 15/16, in the case of considerable
large-size sand gravels. Fig. 36 shows the design chart for determining
the length of an apron in the region of 10.4<L/D<§., which is expressed
by the relations among the length of an apron L, the size of sand gravels
d and the quantity U2D proportional to the momentum of flow at the outlet,
based on the relationships expressed by Eq. (115). The necessary length
of an apron for preventing the bed from scour can easily be estimated if the
opening of an outlet, the velocity and the size of sand gravels are given. It
should be mentioned, however, that the range of applicability of the rela-
tionships is the range where L/D<10.4 and the ratio of the tail water depth
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to the length of an apron expressed by ho/L is greater than 0.288.

¢) Formula for L/D>&.: As described already, the empirical formula
for the criterion for scour in the region has been obtained in connection
with the results in the former two regions, and expressed by Eq. (108).
The use of the equation in practical problems is briefly explained below.
Signification of Eq. (108) has already been presented. In order to estimate
the length of an apron in the region, therefore, is necessary to solve simul-
tanously both equations of Eq. (115), in which U in the equation is
replaced by U, having the given condition for the opening, the velocity
of an outlet, the characters of sand gravels, the tail water depth and the
water temperature, and Eq. (108) by the length of an apron. For the pur-
pose, the next procedure can generally be available. Represent the relation
between (U2D),, and L by using Eq. (115) or Fig. 36 under the given
condition into the figure, calculate the following relation which is obtained

from Eq. (108)
(UED) = U2D /(2.90 = 6.59K0/ L)2, +-++veereeneeseeeneens (116)

by using the given values of the tail water depth and U2D. Show the
relation in the same figure, or the required length of an apron will be
estimated from the intersection of these curves. And the value of Uy in
the figure is the velocity of a virtual wall jet defined already.

(iii) Considerations of former formulas for determining the length of
an apron : As described in the introduction, the Bligh formula which is the
only one for estimating practically the length of an apron at the present

time, can be written asl’?

Li=3Cy/R/31/ /T, -wrememremmmmmnmrnnriiiiiciannnn. Qa1n

in which L’ is the overfall width of the hydraulic works protecting the
bed against scour in m. This should be measured in a downstream direc-
tion from the fall, in which the erosion energy is generated, to the end
of the rip-rap, pitching, or such like protecting works ; it being understood
that the width must suffice to dissipate entirely the energy of the fall, so
that no dangerous scour holes may form in the unprotected bed of a
stream channel downstream of the protection, %2 and the height of the fall
from the crest of a weir, or from the top of a shutter or a gate, down to the
tail water level in m, ¢ the discharge per unit length of a weir or a

barrage in m?/s, and T an empirical coefficient characteristic of materials
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of a stream channel which was named by Bligh as the percolation factor,
in so far as its capacity, or otherwise, of being eroded by action of flow
is concerned.

This formula was found on the basis of the idea that the distance of
the toe of a talus from the overfall would vary with the square root of the
height of an obstruction above tail water, designated by %, with the square
root of the unit flood discharge over the crest of a weir, denoted by ¢, and
directly with €, the percolation factor of the river sand. The formula,
though more or less empirical, would give some results remarkably in
consonance with actual values, and would, it is believed, form a valuable
guide in practical design®

Since the critical considerations on the Bligh formula have been made
by Minami® in detail, the author will not discuss the formula. Historically
speaking, there is no doubt that the formula is questionable. It shoul be
mentioned, however, that the formula is a very valuable empirical one, as
it was proposed on the basis of the many results of field observations.

As described already, the Iowa formula? based on the results of labora-
tory experiments could possibly be cited for comparison with the Bligh for-

mula. For the apron without piers, the formula is given by

Lll=qh0/(h0+hl)2, ................................. (118)

in which L' is the length of an apron without baffle-piers, %, the tail
water depth and %’ the effective head of a fall. Furthermore, the formulas
for determining the length of an apron or width of rip-raps, pitching,
or similar loose protections, were proposed, but these will be neglected
in describing and considering because they have no relationship with the
present study. Other examples of a general formula derived from model
tests, such as formulas proposed by Veronese?, Kohsla and Ahmad® as des-
cribed already, may be cited, but these will not be presented here because
the treatments based on the mechanism of local scour by the above authori-
ties are not directly concerned with the present paper.

Although the relation between the former empirical formulas described
above and the author’s empirical formulas expressed by Egs. (114), (115)
and (116) should be considered, the quantitative comparison for both
formulas cannot be described because the reductions of these formulas are

different from each other. Then the qualitative comparisons presented as
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follows:

Now, consider the relation between Eq. (115) and the Bligh formula.
Since Eq. (117) explicitly excludes without the tail water depth, it will be
supposed that the Bligh formula corresponds to the author’s in the region
of h/L>0.288. As described already, the relation expressed by Eq. (115)
is closely related to Loc(qU)/8 d=* in which g=UD, discharge of flow
per unit width, #'=5/8-15/16. Then, expressing the velocity U by the
head of water A! by introducing the discharge coefficient, the relation can

be written as

Loc(q/R)18d~" covvenniinininnnns ererineeeen 119

Supposing that the length L’ expressed by Eq. (117) is nearly the same
as the length L expressed by the above equation, it is clear from the
comparison of -both relations of Eqs. (117) and (119) that the power in the
discharge ¢ in Eq. (119) is twice as large as that in the Bligh formula,
and contrarily, the power in the head of water is nearly the same.
Moreover, Bligh proposed the coefficient for the influence of grain sizes of
sand gravels on the required length of an apron and the relation between
the length and the grain size was found. The qualitative tendency- that
the length of an apron decreases with the grain size is the same as in the
author’s formulas. Then, the fact that the influence of the grain size on the
required length of an apron was introduced in the formula in any form
should be rated high.

Subsequently, the relation between the author’s formula and the Jowa
formula is considered. Supposing that the length L expressed by Eq. (118)
is the same as that in Eq. (119), the power in the discharge of flow in Eq.
(118) is nearly equal to that in Eq. (119). For the special characteristics
of Eq. (118), it is pointed out that the effect of the tail water depth on
the required length is clearly considered and, on the contrary, that of the
characters of sand gravels is neglected. Since it is not clear why the ef-
fects of the characters of sand gravels were not considered, the effect of
the tail water depth is considered only below. In order to consider the
effect, the case of h'>h, should be discussed. In the case of A'/h;<1, the
length of an apron L'/ decreases with the tail water depth for the given
discharge, and contrarily, in the case of A//h,>>1 the length increases with
the tail water depth.
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On the other hand, the author’s formulas are independent of the tail
water depth for the region of £ /L <0.288, so the comparison of the formulas
with that of lowa University can not be made, therefore, only the case of
ho/L>0.288 is considered. As described in (ii), the length of an apron
becomes short generally with decrease of the tail water depth, as the value
of U shown in Eq. (115) in the case is equal to U, expressed by Eq. (116).
It seems, therefore, that the tendency described above corresponds to the
case of #//hy>1 in the formula of Towa University.

(iii) Considerations for determining the length of an apron : Two
practical examples for the design of the length of an apron downstream of
an outlet under the criterion for scour are described on the basis of the
empirical formulas and the design charts described already. Furthermore,
some considerations on the design of the apron are briefly discussed.

a) Example (1): Calculate the relation between the length of an
apron and the tail water depth under the condition that U=5m/s and D=
0.5m for the characters of an outlet and the grain size of sand gravels at
or near the downstream end of the apron is equal to €=6.0cm.

Now it is necessary, first of all, to examine whether the apron can or
cannot be designed in the region of L/D<10.4 under the given condition.
Estimating the necessary length L from Fig. 35 by using U=5m/s and d=
6.0cm, L=80m is obtained, and L/D=160>10.4. Then the apron cannot
be designed in the region. Therefore, the design in.the region of L/D
>10.4 should be considered as is described below.

Since the tail water depth, where the hydraulic jump may occur just at
the outlet -under the given condition of the opening of the outlet and the

velocity, is #,=1.35m from the theoretical relationship expressed by
ho/D=(1/2)(v/14+8Frp2—1), Frp*=aU%/gD.

In the above. equations, e is the coefficient of velocity profiles and is equal
to unity in the above calculation. The outlet to be considered is in the
case of #,>1.35m. Calculating the relation between (U2D), and L -cor-
responding to the case of d=6.0cm from Fig. 36 as described in ¢) of
2), (i), the final result becomes as is shown in Fig. 37 by the thick solid
line. The- relation between (U2D)y and L in the case of d=6.0cm is also
shown in the figure by the fine solid line. Denoting the intersections of
the thick .and fine lines by B, C, D, E and F corresponding to #=1.35,
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2, 3, 4 and 6 m respectively, the point of D, for example, designates the
location for determining the necessary length of the apron, and from this
the necessary length can be obtained as L=14.9m. That is to say, the
fact is presented that the apron having a length of 14.9m is sufficient to
protect against scour if the tail water depth is less than 3m, but on the
contrary if the tail water depth becomes greater than 3m, the apron is dan-
gerous for scour. The intersection of the straight line of (U2D)w=U2D
shown in the figure by the broken line and the thick solid line, denoted
by G, shows the case where %./L=0.288, and this means that the theoreti-
cal necessary length of an apron for protection against scour does not change
for the greater depth than 2,=9.16 m. The range is of 10.4<L/D <§,, which
is the zone of established flow, and the location of G in the figure should
change necessarily with the value of U2D. The point of A, which shows
the location of L/D=10.4, is unimportant in the present case, as the range
where %#,<1.35m occurs the super-critical flow, and the apron fitting to
prevent the bed from scour cannot be constructed in the region of L/D<
10.4 already described.

Moreover, the points of b, ¢, d, e, and f satisfy h,/L=0.288 for the
values of (U2D),= U2D corresponding to the points respectively, and
describe the same significance as the point of G. For the determination of
the necessary length of an apron in the case where the super-critical flow
appears in downstream of an outlet, the method described here cannot be
applied, though the results obtained in the preceding paper by the author?
will practically be available to estimate the length of an apron.

b) Example (2): Now consider the outlet, as shown in Fig. 13, under
the conditions that the water depth, denoted by H, upstream of the outlet
is constant, the control section for water profiles is in the downstream end
far from the outlet, and the flow downstream of the outlet is assumed to be
approximately uniform flow. For the above outlet, H=5.0m, the discharge
coefficient of the outlet C,=0.4, the characters of the connecting channel
downstream of the outlet, that is, the channel slope i4=1/3600 and the
Manning coefficient #=0.02s/m'/3, and the size of sand gravels downstream
of the apron d=4.0cm, are given. Consider the change of the necessary
length for the criterion for scour in the case when the opening of the
outlet is operating very slowly.

Under the above assumptions, the discharge from the outlet ¢ can be
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written as

9(=UD)=C;v/'2g(H—-ho)D

and the Manning formula can be expressed as
q(= UD) =%ho°/3 iollz

for the relation among the discharge, the tail water depth, the slope of the
bed and th¢ Manning coefficient. Then, if the values of C,, # and 4, are
given, the values of U and 4 can be calculated as the functions of D only.

Calculating the necessary length of an apron from the values of U, &
and d computed above, by the same method as used in Fig. 37, the results
shown in Fig. 38 can be obtained. On the other hand, whether the flow
downstream- of an outlet is super-critical or not could be considered in the
same way as in the example (1). It is found from the consideration that
the super-critical flow does not appear for all of the values of D in practice.
The value of L should be calculated from Fig. 35 for the range of L/D
lesser than 10.4, so the relation between the necessary length of an apron
and the opening of the outlet is presented in the figure by the thick solid

line beginning discontinuously from the point B as limited to the point A.
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Fig. 37. Numerical example for design of length of apron (1); relation
between quantity of (U2D)w and length of apron.



166

03 6 30 T
H:s0m, Cq:=04
A 10173600, N =0.02 S/¥
"“\* - d =40Ccm
\ L/D
02 4 20 |\ \&\ e =
LIS NS Lamsign| S et =g o
hou L ]
L . - u
m/s L ho/L \‘\\
m N —~—
ol 2 10
BQL [T
L/D=104 | ’\\ [ L
{ L/D T
/ L N T~ 4
o) | l ' \:_\' — |
0o 1 2 3 4 5

D m
Fig. 38. Numerical example for design of length of apron (2); variations
in velocity of outlet, tail water depth and necessary length of an apron
with opening of outlet.

Since ho/L<0.288 except for the case where the value of D is very small,
it is clear that the range of D lesser than D=1.71m given by the point A
is L/D>¢&., and on the contrary, the range of D>1.71m is L/D<10.4. It is
disclosed from the results that the theoretical length of an apron in the
case when the opening of the outlet is operating very gradually, increases
rapidly in the range of the small value of D, and becomes maximum at
the point A in which L/D=10.4, and furthermore, decreases rapidly with
the increase of the opening. Hence the value of L shown in the figure by
Lasion which is equal to 17.5m, should be recommended for the necessary
length of the apron in the design.

In the practical examples described above, the necessary length of an
apron for the criterion for scour is estimated under the given conditions for
the sand gravels downstream of the apron. On the contrary, however, it
can easily be considered to the necessary size of the sand gravels down-
stream of an apron for preventing the bed from scour at or near the down-
stream end of the apron.

Based on the above practical examples and the empirical formulas for
determining the necessary length of an apron, some considerations on
the design of the apron are briefly discussed and the author’s view for the
design is also described below.

In the case where the length of an apron is in the region of L/D<10.4,
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the length is proportional to U°d-* in which #' is from 5/3 to 5, so that
the velocity of the outlet should be small for the economical design of the
apron. And use of the large-size sand gravels will be effective for the pur-
pose. As is seen from the above examples, however, the apron has not
been constructed in the region of flow establishment in general, and the
case will be used only for an outlet or a culvert having low head of fall.
For the apron which will be constructed in the range of 10.4<L/D <&, the
length is proportional to (U2D)"8 d-»' in which #’ is from 5/8 to 15/16,
so that the decrease of U is more effective than the decrease of D to
shorten the necessary length. The velocity should be given as small as
possible for design discharge. In addition, it is clear that the use of
large-size sand gravels is very effective to shorten the length of an apron,
since the length in the range is nearly inversely proportional to the size.
By the decrease in the tail water depth within the range of /o/L>0.288,
as is seen from Fig. 37, the necessary length of an apron can be shortened,
but the estimation of the tail water depth should generally be used with
circumspection as the depth will vary with the hydraulic condition at the
end of a stream channel. It will be concluded from the above fact that
the control of the tail water depth may be one of the effective methods to
prevent the bed from scour downstream of the apron being already con-
structed. For practical purposes, an adequate estimation of the necessary
tail water depth should be taken by the same graphical expression as Fig.
37.  Taking the above conclusions into considerations, it will be infered
that it is generally desirable to design the apron in the region of //L
>0.288 for the case where the tail water depth is always constant.

For the apron as described in the second example, the maximum value
of the necessary length of an apron exists theoretically in operating the
outlet. The estimation will firmly be made by the procedure described al-
ready. Although the discharge coefficient of an outlet has been assumed to
be constant in the example for simplifying the numerical computation, the
change of the coefficient with the tail water depth should be taken into the
consideration for a more exact estimation of the necessary length of an

apront4
In the considerations described above, the apron has been assumed to

be of a smooth bed, but the existing apron is never smooth. It can be

supposed from the results obtained in the second chapter and the theoreti-
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cal and experimental considerations on the criterion for scour, that the
estimation in the above examples may generally be safely used. On the
other hand, in order to make the length of an apron as short as possible
by decreasing tractive force of flow, the apron with suitable rough beds
will be used in practical problems. Since, however, the function of drainage
of a culvert or an outlet will decrease, the considerations on the problems

should depend upon future studies.

4. Conclusion

In the introduction of this paper, some problems in design of the
length of an apron to prevent local scour were briefly discussed, based on
the results obtained by many authorities. In the second chapter, the bound-
ary layer growth in wall jets issuing from a submerged outlet in connec-
tion with the criterion for scour from wall jets was analyzed and con-
sidered on the basis of the momentum equation of a boundary layer, and
compared with the experimental results. From the theoretical and ex-
perimental considerations, the followings may be summerized and concluded :
1) The main flows are relatively in good agreement with the results of
two-dimensional turbulent jets, and the limit of applicability has been dis-
closed. 2) The velocity profiles in the boundary layer and the resistance
law are closely connected with the diffusion of jets, and the local skin
friction coefficient in the zone of established flow is much greater than the
Blasius law. 3) The results of computation for the boundary layer growth
using the resistance law based on the experimental results, are in fairly
good agreement with the experimental results, and the limit of applicability
has been presented. 4) The theoretical curves of the shear velocity along
the bed are also in good agreement with experimental data, and the shear
velocity decreases rapidly with the distance from an outlet.

In the third chapter, the criterion for scour from wall jets issuing from
a submerged outlet was considered theoretically by fully applying the results
of the boundary layer growth in wall jets obtained in the second chapter.
From the theoretical considerations, it was disclosed that the criterion for
scour from wall jets in both regions of flow establishment and established
flow are presented by the three parameters, u:*2/(a/p—1)gd tan ¢, u*d/v

and #.*/U or u.*/us. It was clarified by comparing the above theoretical
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results with the critical tractive force and the criterion for scour from flows
downstream end of a smooth bed in uniform flow that a parameter u.*/U
or uc*/us should be added, the effects of which on the criterion are very
complicated and may be not large, especially in the region of established
flow. And it was concluded from the comparison between the theoretical
curves and that for the critical tractive force that the criterion for scour
from wall jets is presented by the lesser critical shear velocity than that
for the critical tractive force in the region of sufficiently large #.*d/v.

The theoretical results on the criterion for scour for both regions
of flow establishment and established flow was compared with the experi-
mental results, and it was disclosed that the theoretical curves for the cri-
terion were in fairly good agreement with the experimental results, although
the theoretical considerations included many assumptions in the development.

The criterion for scour in the region where the results on wall jets
cannot be applied owing to the existence of a free water surface was
considered by means of the dimensional analysis based on the theoretical
results for the former two regions. It was made clear that the most im-
portant parameter in the criterion for scour was the ratio of the tail water
depth to the length of an apron and the relation was disclosed and decid-
ed by the experimental results.

Moreover, the empirical formulas for the criterion for scour from wall
jets and for determining the necessary length of an apron for complete
protection against scour were proposed and discussed on the basis of the
theoretical and experimental considerations. Design charts available to
practical problems in design of an apron were developed.

The author believes that the foregoing results can serve as the funda-
mental data for deéign of the apron of a culvert and an outlet, to pre-
vent scour. Furthermore, the results obtained in this paper will be ap-
plicable to analyze hydraulically the mechanism of scour downstream of an

apron, so the application will be presented in a later paper.
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