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On the Diffraction of Elastic Plane Pulses 

  by a Crack of a Half Plane (Three 

        Dimensional Problem)

 By

Michiyasu SHIMA

Abstract

   The diffraction of plane elastic longitudinal (P) and transversal (S) 

pulses of rectangular type propagated in a three dimensional space by a 
crack of a half plane, was treated by using D. S. Jones's method in the 

diffraction of a scalar wave. The dependence of the amplitudes of the 

diffracted pulses on azimuth was evaluated on the electronic computer, KDC-1.

1. Introduction

   In the previous  paper", the writer has investigated the two dimensional 

problem of the diffraction of plane elastic P and S pulses by a crack of the 

half plane ; the plane of incidence of the pulses is perpendicular to the edge 

and the stress is equal to zero on such a half plane. In this paper, the 

three dimensional diffraction by the crack of the half plane which is a free 

surface is treated by D. S. Jones's method in the diffraction of a scalar 

 wave2). That is, firstly the formal solutions for the harmonic wave are 

obtained by his method and, taking the inverse integral transform, the 

solutions are calculated for the incidence of the plane pulses of a rectangular 

type.

 Notation  :

a, b,  cR  : velocities of propagation of P,  S, and Rayleigh waves, 

            respectively, 

k, K : wave numbers of P and S waves, respectively, 

 PYY,  Ale,  p.,, components of stress tensor, 

 tti,  u5,  u3 : components of displacements in the x, y, z-directions, 

            respectively,
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 p : density, and 

 ex,  ey,  ez  : unit vectors parallel to the x, y, z-axes, respectively . 

                   2. Formal solution 

   We choose the orthogonal coordinates system, the z-axis of which 

coincides with the edge of the crack of the half plane, as shown in Fig. 1. 

On both sides of the half plane, the boundary conditions are 

 puyt=p„,t=  puze  0 on  y=0,  x<0, 

 py„,,  px,,,  py,,,  uit,  u2,,  us, are continuous on  y=0,  x>0. (1) 

 y 

                                         edge 

           \ , 

           \ ,g 

 scattered 
 pulse 

 z incident 
                                   pulse 
                                     Fig. 1. 

   The boundary condition at the edge is such  that37 

 pzyt, for r  -4 0. (2) 

   Now split the total potentials  cbt and  cbc into the incident part and the 

scattered part 

 of.=  00+0  cbc=  00+0, 

and derive the formal solutions for the diffraction problem of the P and S 

waves of the simple harmonic type incident from any direction to the edge 

of the crack of the half plane in a uniform isotropic elastic medium. 

   The displacement can be written in the form 

 ut  =  -  grad  +rot  fit, (3)
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where the scalar potential  cbt and the vector potential  0' satisfy the equa-

tions 

 oot  mot  620  6201 6201 a2/,C azsbc 
     a2atz8x2 ay2 az2 '  bz 80= 8x2ay2 az2  ' (4) 

    Then, consider an auxiliary coordinates system x, y, ti which is advancing 

in the direction of the negative z-axis and is connected with the above by 

means of the following formula. 

 x=  x 

 y=y 

From the physical point of view, the state is static in such a moving 

system ; that is, the displacement depends only on the three variables, 

x, y,  t14). Inserting this result into the wave equations (4), we obtain for 

the potentials (or displacements)         

1   aagY — 620 +8201 620t 620C acbt 
        a12 542 ax2ay2 ' b12 at12 ax2 ay2 ' 

 (5)    11 1 1 1 1 

      a12= a2  c2  ' b12 =  b2  c2  '  / 

   The potentials  0,  0 as the superposition of plane waves can be written 

in the form 

 q5= S:  k)e—iaikt1+i(2x+-1/1z2-2z1Y1)  dkca 
 Cb1= L1,2(2, K)e—ib1Kt1+i(2x+1,/ K2—1)                                         22'YdKdA 

                                        (6)  (P2  = 5  Mi,2(2, K)e—ibiKti+i(Ax+-1/ K2—I111                                         22'YdKdA 

 03=5—  N1,2(2,  loe—ibiKti-ki(Ax+V  K2-221YDdKcIA 
 a1k=  b1K 

where 1 for  y>0, 2 for  y<0. In order to satisfy the radiation condition 

at we must interprete the integrals in (6) as the limits of those 

along the path L in the complex plane shown in Fig . 2, when semicircles 
around seven singular points  ±k , +K,  ±AR;  ic are made vanishingly small. 
Thus the stresses
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伽 一∫1..罐 ・・一・・bZ」=..{一(雫妊 雅 ・・)五・干解 ・1

γ・瓦7LI,,± λγ〆匝 譲 湖,、}4肋42…
1

勘 一 ∫=
..瓦 〃・　 ・・一・…1..{± ・1,　z/k・ 一 ・・ん ・《 胸 ・・)N,,21-..1

(7)

率 ・L・,・士解 藩 一繊 ・}・噸[ く

嗣=贈 ・・一・・bZJ=..{士・解 ゾ伊一翫 《 掌i

-K・+λ ・)L1,・干λゾKLλ ・砥 ・+讐 凪 ・}e2.1xd」,,1〆 〆

11,2=ノ1士12,M,,2=M1±MZ

L,,2=± 五1十L2,ハrl,2=± ハ η十 く雇.

Fig.2.

Insert(7)intotheboundarγconditions,weobtain

-{α …磐2-一 ≦zlZk　
2bz三一一丑一λ2トノ2一量一}//1(2一λ2{λ2w-一撃L2}-o、

・・/・・一・・ノ・イK・ 一・・{/π ・一・嘩 解M・}+・{・N・ 一 等んL・ト ・1(・)

攣/・ ・一・り帰 画 ・{・M帰K・ 一・・L・}+α 獅 酔 αき鯛 一・.

Then,ノ,五,M.,N.canheexpressedintermsofthreeunknownfunctions.

Thatis,

1・十 筆iξ2+ぎ 一λ・}R・,

12=-2γ/K2一 λ2R1

λ〃 ・L/K・.J,・L・ 。 塑/ん ・.λ・/K・.λ ・R2
C

溜 ・一/K・ 一λ・L・一 λR, 《
10)

・N・ 一 撃 五・一/・ ・一 ・・(0芸k2　2+・ ・)R・
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               a 2 K     AN2—aik L2 = A(                 ze2k222 + 22)Ri 
 V  K2  _  22  NI.  aclk  =  Ai/  k2_  22  V  K2  22  R2 

   VK2 A, N2a cikv .10 12k22   +22}Ri—  aclkRs.) 
Next, split the transformed stresses  into the following two parts 

 Pyy (A, y)  =  P7111+  (2,  +  Puy- (A,  y) 

 PUY+  (A,  Y) =  
.Puye-"zdx,                                            (10) 

 Pyy-  (2,  y) = 217 pvye-"xdx, 

For brevity, we shall sometimes write  f(A) or f(y) instead of  f(A, y) when 

there is danger of confusion. An expression like f(±0) will always refer 

to the value of  f(A,  y) for  y  =  0, where +0 means the limit as y tends to 

zero approached from positive values of y, etc.. Now we define the  2-plane, 

not lower than the real axis as limits of the line L shown in Fig. 2, to be 

the upper one, and the plane not above the real axis to be the lower one. 

When the solutions satisfy the radiation condition,  Puy+ is regular in the 

upper plane,  Puy- regular in the lower. We also split the displacements 

into the following two parts in the same way 

 U(2)  =  U÷  (A)  +  U-  (2), 

 U+  (A)  =  15-ue-"wc/x,  27r (11) 

 U-  (A) =  1   C.*ue-"zdx,                             27r 

On applying  the above definitions to (10), (11) and considering the boundary 

conditions, we find 

 Pyy+  (0)  +Pyy-  (0)  =  2p  b211.-  ( K2a' 2c2k222)2               22 

 +  ac12,k2  +22)1/  k2  —  22  V  K2—  22  :R2 (12)1 
 Pxy+  (0)  +  P.2-  (0) 2= — 2pbat,Ka  22)  (22a12c22k222) 

                   +227/k2 — 22 -1/K2 — 22-1/?+b2 i/K2 —R3 (12)2                        JP 

 pv,+  (0)  ±  pyr  (0) = pb  a
cik2(K2a2i2ck22 
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 —  21/  k2  —  22  V  K2  —  —  pb2  /  K2  —  22R3,  (12) 

     U+ (+0) - U+ ( - 0) = 2i. 1/K2— 22( a21c2k22 K22  )Ri ±a cik R3]  (13)3 
     V+ (+0)— V+ (— 0) = i( a c122k2 + K2)-1/ k2 — 22 R2 (13)2 
 W+(+0) —  W÷  (—  0)  —2i2111/K2-22R1 ±R2]•  (13)3 

For simplicity, introduce the notation 

 U+(+0) —  U+(-0)  =D1+  ) 

 V+  (+0)—  V+  (  —  0)  =D2+ (14) 

 W+(+0)—  W+(-0)  =D3+. ) 

Eliminate R2 between (12) and (13). Then 

 P55+  (0)  P  y  (0)  =  i-Pb2  (K2  k2)1/  IC2  -P  (2)D  2+ (15) 

 

(   a12k2  +K2) 
 c2 

 2G(2)   F(A) = _=F+ (2)F- ()) (16) 
 (K2—  k2)-1/  (k2  -  22)  (K2  -  )2) 

where 

 G(2) = (22c2k2A5)5+ (22+ al2k2 )1/(1e2 — 22) (K2 — 22). (17) 
  22 

First, we investigate the diffraction resulting from the incidence of the 

plane longitudinal wave in the following form 

 cbo  =  e—  ia  ikt  +i(Kx+-1/  igy)  1 (18) 
       0°=0, 

and look for the function R2. In the equation (14),  Plly+(0) is known from 
the boundary condition (1). In fact 

  1 °b2A1       P 
„+ (0) = _(— p„o) e-clx =P 7r1)2_Aie'('-x)zdx =  7'ip(x_2) 

                                           (19) 
where 

 Ai(K22a21e22                          k2 K2) 
The equation (14) now becomes 

 P  u-  (0)ipb2 (K2 — k2) K+ 2D2+F+ (A)                   +
gi.(2) =    -1/K—  2F- (2)  (K2+  

           c2(20)
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where 
 pba.A.1  g i  (A)  = 

 ni(K  —  2.)  -1/  _cc  —  2F-  (2) • 

   Next consider the decomposition of the function  F(2) in the form of a 

product  (2)  F-  (A) by means of the splitting of  f(2)  =  log  F(2) into the 
form of a sum, where  F+  (A) and  F-(2) are regular in the upper and lower 

half planes, respectively. The singular points of  log  F(A) are ±k, ±K, 

 ±  AR, zeros of  F(2), and 

            F(2)  _1+ coAnast                                       for A -4 0 0. 

 f(A) can be written in the form by Cauchy's theorem 

                 1  Slog F(z)1 log F(z),z 
 f(2)  =  log F(2) 27i r ÷  z_ dz  - 27ri r_   z_a 

 =  f+  (2)  +  f-  , (21) 

where contour  r+,  F- is shown in Fig. 3, is contained in the domain 

enclosed by  1"1- and  T-. Taking the singular points  +k, ±K,  AR into 

consideration, we can write (21) in the following way 

 

(   K2  ai2k2 z2)2 
     C\22c2 ) dz  f+'-(2) =. 3log/1+ 

                                 al2         zarir +"2  +e) v(k2_e)(K2_e)z 
 c2 

 

(   K2  a12k2z 
 =log 2) 2      AR±A15".\2 

      K±+n-Tv.ai2k22 2c                            +z2)1/(kia_zz)(Ka_z2)f zdz(22)    1 ( 
                                     c2 

                                      1— 

           . .rz K XR 
                 -K -1a 

                                   Fig. 3. 

Split  gl (A) into two parts in the same way as (21) 

 gi  =  gi+  (A) 

                                   2 

       gi+ (AK             ) =---pbA,                        - K (IC2)F- (K) 

                           2 

      gr(A) = pbAi  j 1 1(23)                 nt (A;K 2F - (A)-1/F- (K)  I
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where  (2) is regular in the upper,  g1-(A) is regular in the lower. Insert 

(23) in (19) and rearange 

       P  (0) i pb2 (K2 — k2)1./ K+ 2D2+F+ (A)   11(A) —• -- +( 
K2 + al2k 

           (A) =gi+ (A) . (24)   -/1,K—F-  (A)2 
 c2 

   In this form the function  I1(A) is regular in the upper plane and also 

regular in the lower, i.e., in the whole of the plane, since these two half 

planes overlap. And we proceed to examine the behavior of the function 
 11(A) as  J, tends to infinity. 

   From the edge condition and the Abelian  theorem" 

 11(A)  1121 for  A  —>  co (25) 

 /1(2) tends to zero as A tends to infinity in any direction. Hence, from 

Liouville's theorem  I1(2) must be identically zero,  i.e. 

                 — K— AF-(A)     R
2.=(26)                  2

7ri(2—K)7/K—(K)G(A) 
                                                       aik

and Now we seek for R1, R3. Add the  (12)2 and (12)3 multiplied by                                             2 

subtract  (12)3 multiplied by  ac  Ak from (12)2 to find 

P,+ (0) +(0) +aik{P  yz+  (0)  +Pyz-(0)}  =  —  2pb2G  (2)  (27)1 

 Pxy+ (0)  -FPzy- (0)  ac  ik{Py..+  (0)  +  Pyz- (0) = —  Pb2(1C2 —  A') 

                                                 i(.22              xK2alc22k222)Ri + pb2-1/ K2 22ack+aik)R3. (27)2          22 

Eliminate R1, R3 between (13) and  (27)1, and rearange the resulting equa-

tion. Then, 

 2P.ry-  (0) +  alk P (0) 
 12(A)  =  +  g2-  (2)         ^k — 2F- (A) 

 =  i  pb2K-2  (K2  —  k2)21/  k+  A(D  1+  +  D3+  )  F+  (2)  —  g2+  (2) 
             AA2+  aik  A3 

g2+ (A) = Pb2    7ri  -1/  k  -  2)F-  (K) 

g2_ (A) pb.2(A2+ a1k A8\1  1         7ric 1 (K - 2) k — 2F- (2)  (K  —  2)  ̂k—K  F-  (K)} 
                                            (28)
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By the same procedure, we rearange (27)2. This gives 

             c2   P .,-  (0)               a
ik  Pyz-  (0)                              ipb2  1-3(2) =+gs- (A) =-1/2-{——c                                               aik1)31-1-g3+ (A) '     -1/ K —2 

 pb2(A2— ait•AkA3)C   (2)Pb2(A2aik A3)  j   1 1   ) 
g3+ CA) =  rril/K—K(K—  A) '  ga-  =  ni(K  —  A)  li/K—  —  K-- 

                                         (29) 

From the edge condition 

 D1+-2-3/2                         f
or  121--400. (30) 

In this from  12(2),  13(2) are regular. Hence, from Liouville's theorem 

 12(2), 13(2) must be constants, i.e. 

 pb2alle 
 12(4=  

 7ri1/  k—  F-  (K)                                          (31) 

 /3  (A) = p  b2B3    
 rril/K—K • 

Then, 

 iDi+  
       AI/ k_ 2-1/ K2_ 22(Ka+  al2k2 )1AA_ + aick  A3_   aik  (2— K)Bil F-(2) 

         2 

 2=                47i-j/k—K(2 —x) (A2+ ac12,k2  )F-(K)G(2) 
          ai2k2 (A2cA A3io2)               Z-1-1-1ir,bus    C2a

ik                                           (32) 

       TriV•KK+ 2(2—0(22+acir2 ) • 
   Determine the unknown constants, B1, B2 so that the right hand side 

of (32) may satisfy the condition of regularity in the upper plane, i.e. at 

the point 2= aik  i. Therefore, we must put the expression  (32) equal to 

            ki 
zero for  A=ac  i. Then, putting both the real and imaginary parts of (32) 

equal to zero, we find 

                                  +621-2  
     T1 r =                                          (33) 

                        B2 =a2 (air2i-a2T +B1r2, 

where
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鮨 ・+・D,解A一 ・ん}
の　 『7雫 「az　 =　 a

lzkz　
Az+_Cz.._1(,4)

ワ 、(護無 デ ω,_ゾ 、(、.ll轟娠)、
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ゾ 肩{為+融A,漁 々(λ一κCC)B・}F-(・)(35)

R】e
2ni　1/k=涯 λ(λ一 κ)F-(κ)G(λ)

&下毒鑛 等襟 讐 雁 畷 一肇一測
(36)

Finally,thescatteredpartfortheharmonicPplanewaveis

-・ ・adl=毒》琵≡1男藷(、 襲 訪

×6-iaikti+i(dx+γ ん2一 λ21yD4λ

r__α 髪2(レ/ん2一 κ2-B2)咀

・・ ±
。1/K-・ ゾK+・(alzkaλ2十CZ)

λ1/々 一 λ1/K2一 λ2F-(λ)HZ(a)「
+

・。ゾK-。F-(・)(・ 一・)G(・)(・・+礎L)」

×e-ibiKti+ゴ 伽+γK2一 λ21の4λ,

u2s-1=
..孟 〆農 多≡lll(玩(λ)λ一κ)G(λ)'(37)

θ一ib・Kt,+Z(λ 計v/1(2一 え21yl)4λ

蜘{1/k・ 一 κ2-B2}

蝋=〔 ㌃K≒ ゾK+・(桝響)

0・kレ/々 _λ ゾK2_λ2F-(λ)H2(λ) 、

+

躍 熊 鯨)(α12ん2λ2十CZ)(・一のG(・)」1

× 。-ibiKt・+i(dx+γK2一 λ21ツD4λ



12

私 ω 一(ξ2-r髪 奮一一κ2)({箋≡2一宅誓2一λ2)士・γ〆侮 ・)(K-・)

B、色 左ゾ π=和/(々 一κ)(K+λ)(λ 一κ)

・(alzkz2十62
κ)ゾ ⑭一・)(K+・)±cゾ 、一κ

HZ(λ)一(」 罫 」 欝 一・・)(λ・+α 轟ん2)ゾ(k+λ)(K一 λ)1(38)

干(・+・)(K-・)(・ 髪 一筆1髪2-・ ・)
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Specifyingtheincident,:waveintheform

鶴 ご驚+画D}(39)
we丘ndalsoinasimilarway

u・一一・・ad∫=嘉/舞 論 繕1書(、)

× θ一∫αユ妬+i(λ κ十1/為2一 λ2Lソ1)dλ

,..,礎1一 優2-・ ・+争B・(…)}u
ls=Lし 士

・ゾK-・ ゾ 妄+・(・ 一・)(・・+鴨

+κ ル/k一 λ1/K2一 λ2F《 λ)K2(λ)「

・・伽F-(・)(・ 一・)(・・+α 浅ん1)G(・)」

×e一 ゴゐ1K'1+ゴ(λκ+》 κ2籔2D夕1)4λ

晒 ∫1..叢/舞 黄畿 籍 暑12)》(⑥

×e-ib,Ktl+ゴ(λ κ+》 κ2一 え2{ッi)4λ

嬉∫1〔干藷鶏 叢1罎)

嘩 匂 々一λ》π・一λ・F-(λ)Kz(λ)、+

・。》・一・F-(。)(・ 一。)(J2+雫2)φ(・)」

xθ 一ぬ κ'1+ぬ κ+v!酢 藷iッ.1)ぬ,
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 K1(2)  =  (k-  K)  (K+  K)(  2c2ai2k2 22) 
 -(t(  io)2  a21c2k:  11-2  -  2)  (K+  A) 

 adz  (k -  2)(K+  2)  (A--  K) (41) 

 K2(2) =^(k- K) (K +K)(k+ 2)(K-A) (22+ ac12k2 ) 
 K2  ai2k2                 22)Xi(2K2Kz)2aizkaB(2-  

   22c22c2 

            K2(2,4        A
i= - K / K2 -Ay=0A3-        22c 

            3. Transformation of the integrals 

   In this section we derive the solutions of the diffraction of the P and 

S pulses from the known solutions of the harmonic waves by the inverse 

integral transform. Assume that the incident P plane pulse has the form 

              u° =eD-{t--1                            a-(cos  a'  •  x+cos  )3'  -y±cos  r'-z) 
                                          (42) 

                                     e-iaik(t --ex                )  esin(sai                                      a
c/k             7r3--k)  

where 

 e=  cos  a'  •  ez+  cos  Yey+cos  r'ez, 

          cos  a'  =  cos  a-sin  r,  cos  y  =sin  a-sin r, cos  r'  =  cos  r 

 x  =  r  sin  0  cos  co,  y=r  sin  0  sin  co,  z=r  cos  0. 

The scattered pulse for the incidence of the pulse of the form (42) can be 

obtained by the inverse integral transform of the solution (37) for the 

incidence of the harmonic wave. Namely, the P part is for  co>0 

         1
1 

                p (A,„) sin ,chke-iaikt+i(2x+1/ kz -2,2 ly1 + 
                                                          a

ci Z uP = grad 7i57.,S:k(,l—K)k )X dk • dA 
                  1  /K-  F-(2)H,(A,K)     P(2

, K) =(43)  27ri  V K- F-  (K)  G(2) 

For  c) <O,  cc, takes the places of  co. 

   Exchange the order of integration, change the variable to 8 defined 

by  2=  k  cos  8=k  cos(c.o+ix) and deform the contour C to  the line  co=  const., 

 co  <s<co as in Fig. 4. Integrate with respect to k, to find
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 H(a) e  •  x  uP  = e G(a)Dk/ta)-grads' P(8,a) sin (0+ is)                                                  ds  k( cos(cD-I- is)  -cos a)sl 

 -  grad '91  P(81a)sin(co+is)  
 _s2k(cos(co+is)-cos a)ds. (44) 

 =  cosh-1  a(t  e)  -r  cos  r  cos  0 ,s2= cosh-1a(t+e) -r cos r cos 0              r sin r sin 0 r  sin  2-  sin  0 

 =  k  cos  a=  K  cos  )3, 

where the first term expresses the reflected pulse and vanishes for  lyol  <a, 

and the second and the third express the diffracted pulse and are the com-

plex conjugate of each other. 

 -k  -
 0  3  a  T1  •  e 

                                                                                                 4. 

       Fig. 4. Fig. 5. 

   Next, we obtain the S part of the scattered pulse in a similar way for 

ca >0 
                                           I  u  ig= 15-5-Q(2,10 sinEbiK e-ibiKt+i(Ax+VK2- 2zIYI+caik z)dKcIA,  7r—k(2 -7r)  K 

        2k2       al        -  -  (^E2- B2)  (A 
 c2   

Q±-AN/k-AV K2- 22F- (2)H2(2)  
 k,      7ri^K-K+(22+ a`22"‘:42TriN/IC(K) (22+a2k2   )G(2) 

                                                                     2 

 Q2  =  1   /k-A  F-(A)H2(A)   27ri  K-  K  F-(x)G(A)
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      alk  A{ -V k2c2 —Ba} (A— K) alkvk — A .%/K2 _22F_ (A)H2 (A) ) (4.5) 

3='T C  + c                     l2k2•askni V K — K' s/ K+ 2(22+ace)+VKKF- (0(22 +a0 )G(2) 
Exchange the order of integration and transform thecontour in A plane to 

the path in  8' plane defined by  A=K  cos  8'  =  K  cos  (co+is) as shown in 

Fig. 5. 

     K Vk—K-V K+ K112()Ss'  iQl0' ,K) sin (C°+is) ds  uis  —D(t c'x)2Re 

       (c2+ac122k2)G(K)  s,  k  (cos (yo+is) — cos18) 
 15—S1' A'  V  k—  A' V K2 — A' 2F- (29112(29 ds 

 7r—.22'  V  K—  K  F-  (0(2'2  +   acir2  )k  (COS  (Ca  +  s)  —cos  18) 
U21 = ± A iIk.1- KxHz(ic)D (t — 6' x) —2R4s2Ai,C420(s81(V±sZ(cac+osisi4ds 

    1 

           —si',
_,A,  F-(29112(29    ±C/R 

 n  J  —s2,Af  K—  K  F-(K)k{cos  (yo+s)  —  cos  le) ds 

   k          ai           s/k— K-VK+KH2 (K) 
ue  =c                          D (t e'x)2ReSs2  iQ3(8'  ,k) sin (c 0+4is,s).}ds                                        si k{cos (co+is) — cos       (c2 + aCz2k2 )G() 

                aik  ,/ k_2, ,/ K2 _212F- (ADH2(20 

    _ 

 1f— siic   ds
,       ir3—s2',,/K — KF- (0(2,2 ±  al2k2 )k{cos (co+.3) — cos13} 

                                                 (.2 

                                           (41) 

      (  K22a22ck22ic2)( K22 a22c.k222,2)(A,,±ai2A.2)v(_k_ic,)(K_ Ao 
 112(Aj)  =  s

l' Kaa2k2,,,,\ 4,/.eziak2 \2 
                22c2—A--rV2 +c2)()'2' — k2) (K2 — A'''') 

                                                ad?                                     h..82  c (A' 01 
        ±-V(k+ K) (KK)(I2a2ck2a22)A'K+ aC12,;'2± .\/k2_ 0  

      { 

                  i2k2  x  (2'2+a0 )  V  (212  —  ka)  (K2  —  212) 
                                           (47) 

 A'  =  K  cos  (yo+s), 

              /                b1(t1-2) \/  b1(11—  2) \         si' = C°S-1r Sill 0)s2i cos-1(  sin0)'
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         e' = cos  a"ex-F  cos  R"ey-I-  cos  rHez, 

 cos a" = cos  i3 sin  r, cos  R"  = sin  13 sin r, cos  r"= cos  r, 

where the first term vanishes for  co>  —(3. 

   In a similar way as above, we can obtain the displacements due to the 

incidence of the plane S pulse of the rectangular form. 

 Assume that the incident pulse has the form 

 ui°  =  cos R"D{t—T(1cos  a"•  x  cos19" •y +cos r"•z)} 
        u20= — cosa".1,-(t--1(cos a"• x+ cosr.y+cos r".z)}-(48) 

 u30=0 

The scattered pulse for the incidence of the pulse of form (48) can be 

obtained by the inverse integral transform of the solution (40). The P part 

is for  co>0.

^K—K Ki(a)  
        uv=e   D(t—e•x)  ^ G(

a) 

                      sP 
            +2grad Re•)(8,a) sin (go-Fis)ds'(49) 

                              s 

                     K(cos (cod-is)  —cos a): 
 p  (2,0 =   1  K—   F-  (2)  ICI(2,k)  

 27ri  F-()G(2)  ' 

where the first term expresses the reflected pulse and vanishes for  go> —a, 
the second expresses the diffracted pulse. 

   Transform in the same way as the case of the S part for the incidence 

of the P pulse, then the S part is for  co>0 

     OVIC° —,v2 K2(K)S2 ••-•s •  D(t —ei  x)-2Re.(41(8,x)(co±is)  u1s=ds 

                       \ 

      (0+ aci22/22 )G(0  K(cos  (cod-is)  —  cos  R) 
 1 C—sit                KAI/ k—/ K2—F- (20 FC2(2')  

         Sz'kF- (K)(2 '2 + ac12k2 )K(cos  (co+  is)  —  cos13)ds 
    KKK(K)SS22(8',K) sin(0+ iS) u28=D(t eix)±2Reds      G(

K)K(cos (cod-is)  —  cos R) 

           sit 

        •1 k — F-(201C2(2')     i
t_9,1Nk—KF(K)K(cos (cod-is)  —  cos13)ds
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 K / K2 K2 K2(10  Sz  it3S =   D  (t  —  e'x)  —  2RegicOs%c?-1t) "C44)ds       (ea
cizzk2 )G (x) 

     1 

              alkk A' V Ka 2'2 F - (A') R2(21)      c 
 ds,       7r3  —.92'  K  F-  (K)(A'2+  ac12,k2  )K(cos  (co+is)—cos() 

                                          (50) 

     ch2k2 fK2                ic2+.132K)}-       c2t22  KA-Vk — Al/K2 — 22F- (A) K2 (2) 
1' b                                                                         2       rcii/ KK+ A(A2+ ac122"227ri1/ k K F- (K) (22+aci2k2   )G(2) 

 Q2,  =  f  lc /k   F-  (A)  K2(2)   27ri  k  K  F-  (K)G(),) 

      a
Cik2.1K22e±a2B2,/0(  Kvk21/K2_22F_ (A) K2Go  ( c  (2

31  =              K+ (22+ ac12;'2 27ri1/k F- (0(22+ alc1k2 )G(2) 
R., (AO =^(k— K)(K — K)1/ ( — k _ 29 (K 29(2,2+ ac122k2  )(K2' a22ck22  212)2 

 K22k2,„\ ( 2,,+ al2k2  
       2 2c2"c2  )1/  (212—  k2)  (K2  —  212) 

 Xf( K2K2)A'   Biaik  (A'     1\2
K  2c2  KC 

                                          (51) 
where for  Icol  <IR the first term vanishes. 

                   4. Numerical results 

   In our numerical examples, we assumed 

 C  V11/3  k 

 a= 30° 

 r  =60° 

We investigated the diffraction picture resulting from the incidence of the 

plane longitudinal pulse, where the front of the incident pulse is always a 

plane intersecting the z-axis at the point  . This point is a vertex of the 
cone occupied by the diffracted pulse. We calculated the azimuthal distribu-

tion of the displacement of the diffracted pulse, which is the second and 
                              1= third term in the equation (44), at,\/r =0.1 and t= 4-e for the diffracted
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P pulse or  t---  f  -Ps for the diffracted S pulse. 
   The co-dependence of the displacements,  u5, u2, u3 of the diffracted pulse 

for  0  =  constant is rather similar to that of the amplitude in the case of the 

incidence perpendicular to the edge of the plane P pulse as shown in Fig. 6. 

That is, the amplitude of the diffracted P pulse increases at a uniform rate 

with the approach of  co to  ±30° and the phase is reverse at the shadow 

boundary of the incident P pulse and the reflected P pulse  ; the displace-

ments are a kind of double jerk. However, the composite displacement of 

this pulse with the reflected P pulse for  co<0 or the incident pulse for co>0 

is continuous at the boundary. While with respect to the diffracted S pulse 

the displacement varies continuously and becomes zero at  co=63°6'39" for 

 co>0, the phase is reversed at the boundary  co  = —63°6'39" for  co<0 and the 
composite displacement of this pulse with the reflected S pulse is continuous 

at this angle. Being different from the two dimensional problem,  u10,  u30 

components of the displacement of the diffracted S pulse take large values 

near  co  =  ±12-r-, respectively. These correspond to the first term of the  &lila-
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tion  Q. 

 8-dependence of the displacements of the diffracted pulse for  cc  = const. 

is shown in Fig. 7. They take maximum value at  0=60° or 73°14' and their 

phases are not reversed at this angle, which is different from their dependence 

on  cc. 

   The writer wishes to express his hearty thanks to Prof. K. Sassa for his 

valuable suggestions. 
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