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On the Diffraction of Elastic Plane Pulses
by a Crack of a Half Plane (Three
Dimensional Problem)

By
Michiyasu SHiMA

Abstract

The diffraction of plane elastic longitudinal () and transversal (S)
pulses of rectangular type propagated in a three dimensional space by a
crack of a half plane, was treated by using D. S. Jones’s method in the
diffraction of a scalar wave. The dependence of the amplitudes of the

diffracted pulses on azimuth was evaluated on the electronic computer, KDC-1.

1. Introduction

In the previous paper?, the writer has investigated the two dimensional
problem of the diffraction of plane elastic P and S pulses by a crack of the
half plane ; the plane of incidence of the pulses is perpendicular to the edge
and the stress is equal to zero on such a half plane. In this paper, the
three dimensional diffraction by the crack of the half plane which is a free
surface is treated by D. S. Jones’s method in the diffraction of a scalar
wave?. That is, firstly the formal solutions for the harmonic wave are
obtained by his method and, taking the inverse integral transform, the

solutions are calculated for the incidence of the plane pulses of a rectangular
type.

Notation :
a, b, cr : velocities of propagation of P, S, and Rayleigh waves,
respectively,
k, K : wave numbers of P and S waves, respectively,

Duy, Dyz, Doy : components of stress tensor,
#1, 4z, s : components of displacements in the x,y, z-directions,

respectively,



0 : density, and

e, €y, e, : unit vectors parallel to the x,y, z-axes, respectively.
2. Formal solution

We choose the orthogonal coordinates system, the z-axis of which
coincides with the edge of the crack of the half plane, as shown in Fig. 1.
On both sides of the half plane, the boundary conditions are

Dyt =Pu =Py =0 on y=0, x<0,

. @
Dot Dayt, Dysf, #if, #st, #s® are continuous on y=0, x>0.
y
z incident
pulse
Fig. 1.
The boundary condition at the edge is such that®
D, Dayf, Dyst~rl/? for r— 0. &)

Now split the total potentials ¢¢ and ¢* into the incident part and the
scattered part
F=pte  p=gity,
and derive the formal solutions for the diffraction problem of the P and S
waves of the simple harmonic type incident from any direction to the edge
of the crack of the half plane in a uniform isotropic elastic medium.

The displacement can be written in the form

ut= —grad ¢¢+rot ¢°, @



where the scalar potential ¢¢ and the vector potential ¢¢ satisfy the equa-

tions

1 3¢t az¢c az‘¢: 02¢‘ 1 02¢£ _ ang‘ a:"gb‘ + az¢: (4)
For 9 T o T B o T oxr T Gy T o

Then, consider an auxiliary coordinates system x, ¥, &1 which is advancing
in the direction of the negative z-axis and is connected with the above by

means of the following formula.

X=X
y=y
t1=t—§.

From the physical point of view, the state is static in such a moving
system ; that is, the displacement depends only on the three variables,
x, ¥, t*. Inserting this result into the wave equations (4), we obtain for

the potentials (or displacements)

1 az¢z _ az¢c az¢t 1 a%sbt _ 82511‘ a¢: 1

@? Ot 0x% L Oy'°  bE OtF  6xF ' o2 -
1 _1_ 1 1 _1 1
af @& &’ BB o

The potentials ¢, ¢ as the superposition of plane waves can be written

in the form

o=\ TuQ, k)e—i“‘kt‘H(“H/E[:ﬁ'y')dkdz

®

¢s=
(Z1k=b1K

where 1 for >0, 2 for y<0. In order to satisfy the radiation condition
at y—oo, we must interprete the integrals in (6) as the limits of those
along the path L in the complex plane shown in Fig. 2, when semicircles
around seven singular points +%, +K, 424, & are made vanishingly small.

Thus the stresses



sl - (S
V/ Ka—ELuiutdy/ KE= BN, zlemd; ‘
b=\ Puetedr=2o0\" {100/ BT i (Ko - 220N
—ﬁlfixLl,zlL "1—’721/1{"—;2/1/11 Jbetted) \ (7)
pue="_Pueiedi=20" {1298 Bp - (U
—K2+/2)L1,24321/K2—42M1,2+—~~ INsfetied], /
Jue=1£]7, M,z =M+ M?
Lis=+Li+L%,  Nig=+N+Ne
R oA
o £y o
Fig. 2.
Insert (7) into the boundary conditions, we obtain
—{ e -G b Joby/ Ko {ane - @R 12l g ‘/
20y BB~y KB/ K BN - “Eapl - @k pl o g)

20k e -y KO RM —/ Ko = P L+ DR L

Then, J, L, M, N, can be expressed in terms of three unknown functions.
That is,

' 2 2
Jr= { _ 021:1: +£¥'__ _ZZ}-RZ’
e= — )/ K2— 2R,

VR pL =2 BBy KB R,
AME— /K2 —2L%= )R,

Q)
P SLLE S ﬂ(—“lkz +)2>R
T 7T cz TN




alk _ a12k2 KZ
MNP = LZ_")‘(”zT_THZ)RI
/K’Z’—‘A‘ZNl— =2E-2yVEK - 2R,
VE BN B g R Kl - SRR,

Next, split the transformed stresses into the following two parts

Py, 9) =Py (A, )+ Py~ (4, ), \‘
0
Pyy*(X,9) = 1_S_mpwe'“zdx, # (10)

Py=Q, y)_TS pne=dx, J
For brevity, we shall sometimes write f(A) or f(y) instead of f(2,y) when
there is danger of confusion. An expression like f(£0) will always refer
to the value of f(4,y) for y=0, where +0 means the limit as y tends to
zero approached from positive values of ¥, etc.. Now we define the A-plane,
not lower than the real axis as limits of the line L shown in Fig. 2, to be
the upper one, and the plane not above the real axis to be the lower one.
When the solutions satisfy the radiation condition, Pyy* is regular in the
upper plane, Pyy~ regular in the lower. We also split the displacements

into the following two parts in the same way
UH=U0+D+U W, ?

+ ZL 0 — iz
U+ an_wue dx, an

U-Q) = z% S: ue-tedy,

On applying the above definitions to (10), (11) and considering the boundary

conditions, we find

K2 2
Pyy*(0) 4 Pyy=(0) =208% <——£2‘E}:__,{2)
+(d1 )/kz_,{zl/ffz_p\ilez (12,

Pey* (O +Pay () = — 2088 (52— ) (B2 &% _ o)

+2/ -2y K- zﬂle +pb? “;k VEZER, (12).
(Zlk F alzk"
Pyt (0) + Py (0) = b ,IL———-ZCz -2



oy KiZE R —obly/ KE— R,  (12)s

e e f 2b2 2 ~
U+(+O) — U+(—O) = —Zi;\w,/Kz—P(ngTf"— IZ{ )R1+%€R3 (13)1
V(40 = V(-0 = i O k) TR a3
W (+0) — W+ (~0) =2i1] wk K -PR+R). 13)s

For simplicity, introduce the notation
U+(+0)-U+*(—-0)=D,* )
V+(+0) - V*(—0)=D,* | 14
WH(+0) - W*(—-0)=Ds*. j

Eliminate R; between (12) and (13). Then

Pyt(0) +Pyy-(0) = i2PE2— )y K= 2F(D)Dy* as
yy vy /dlzkz o\
\ o2 +K“)
26D JP
D= o my @-ma—m L DD {1
where ,
=5 -8 )+ BBy BB R an

First, we investigate the diffraction resulting from the incidence of the

plane longitudinal wave in the following form
¢o=e—ia1kl‘1+i(xx+1/};2—7x2y) l
=0, J

and look for the function R;. In the equation (14), P,*(0) is known from
the boundary condition (1). In fact

(€E))

P +(0) = L idz g, OO (° A, ¢ «—Nz _ oA,
v (O)—erg_m( byeiedx= T S-m 1€ dx_n'i(/c—l)
ao
where
_ K2 a?k?
Al__<7_702__ Z)'

The equation (14) now becomes

Py~ O | oy 805K =D V' K+ 1D F*(D
VE-IF-()  * ( K alzzle2 ) ’ } 20
C



where

A
ni(e—AD vV K-2F-(D "

Next consider the decomposition of the function F(2) in the form of a
product F*() F-(1) by means of the splitting of f(2)=log F(2) into the
form of a sum, where F*(1) and F-(2) are regular in the upper and lower
half planes, respectively. The singular points of log F(1) are +k, +K,
+Ar, zeros of F(A), and

FQ)~1+ CO;ZSL for A— oo,

J(O can be written in the form by Cauchy’s theorem

(D=

- _ 1 logF@@ 1 log F(2)
f® =log F(D 2m-SF+ z—1 dz"%sr— ey R

=+, @D
where contour I'*, I'~ is shown in Fig. 3, 1 is contained in the domain
enclosed by I'* and I"-. Taking the singular points +k, £K, +1r into
consideration, we can write (21) in the following way

K2 a2kt \ 2
( (‘2__ 202 %) 1 dz
1+7 a’k? S~ | 2—A

(5 t2t)y B =2 (Ko 2D) J

c?

= (1) = 4 L :
f <D—izm~gﬁ,_l°gjl
\\

(22

(B _atk
=10g2Riz+1S¢Ktan‘1f 2 2 2) 1 dz
Kl " nde B0\ (@R )y G|

Fig. 3.

Split g1(2) into two parts in the same way as (21)
L&D =D +a~ D

+ _ prAl
&= R (e DF-0O)
0b* 44 I 1 1 ]

mk—D Y/ K-1F-(O) K=k F(x) J{

s = @3



where g1*(1) is regular in the upper, g1=(4) is regular in the lower. Insert
(23) in (19) and rearange

PO - ipb* (K2 — k) Y/ K+ 1Dy*F*(Q)
I — e = — (4.
1D = K- T8W (i alzkz> &a*(. @
l c2

In this form the function I;(1) is regular in the upper plane and also
regular in the lower, i.e., in the whole of the plane, since these two half
planes overlap. And we proceed to examine the behavior of the function
I,(2) as 2 tends to infinity.

From the edge condition and the Abelian theorem®

Li(D)-— W for 21— o 25)

Ii(%) tends to zero as 2 tends to infinity in any direction. Hence, from
Liouville’s theorem I;(4) must be identically zero, i.e.

~ A/ K-1F-(D
27i(A=r)V K—& F-()GQ)

(26)

g =

Now we seek for Ry, R;. Add the (12)2 and (12); multiplied by %}k and
subtract (12); multiplied by from (12): to find
Pay (0 +Pay(O) + 22 (P,.+(0) + Py (0} = ~20BGCD Ry @

Poy () +Poy©) — 5 {Pos* @+ Py O} = — b (K= 29

[ K2 a?k® ak
e /e B, a0
Eliminate R;, R; between (13) and (27):, and rearange the resulting equa-
tion. Then,
XPJ:I (O) + alk P]/Z_ (O)
I — . -
2(A) = 1/k—]F D +g:- (A
=ipb2K—2(KZ—k2)/h/m(D1 & Dy ) F ) gt D)
=P A
W= Vh—k (k- /DF(/:)’
o axk J o 1 _ 1 ]
g (=" <)A"’+ AS)I (k=D VE=IF-Q) (-1 x/k‘—,;“F—(,c)}'

@8
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By the same procedure, we rearange (27)2. This gives

P,~(0) - k ny )
LD = JE—3

e D= By KFADe~ 5D - g D,

cl
OE e ) —(z)—pbz(Az_WAOJ N
BB s - T T w0 WWE-1 VE-«I
29
From the edge condition
+ }-8/2
D~ for |Al—oo. (30)
Dyt~ A-312

In this from ZI2(2), I3(2) are regular. Hence, from Liouville’s theorem

I,(2), I3(2) must be constants, i.e.

a1k

ob? - B
L)=——t
@ iV k—r F-(r) 3D
_ pszz
13(1)_ ﬂi]/ﬁ.
Then,
. V= 21/K2—22<K2+ o’k ){mz+-‘?ﬁ o~ G- DB F-)
iDy*+ _ |
2 mir/ b=x A=) B+ ) P-0 6
252
”‘k (Az ”k 3—(z—x)32‘)

a2k - (32)
c? )

Determine the unknown constants, By, B; so that the right hand side

of (32) may satisfy the condition of regularity in the upper plane, i.e. at

the point Z=~—6~ch_—i. Therefore, we must put the expression (32) equal to

zero for A= a;k . Then, putting both the real and imaginary parts of (32)

equal to zero, we find

_ o +o3ts )
Bi=a = )[ (33)
Bz =d3— (0’11'2 +0'2T1) +Bl‘l'z,

where
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'a‘éﬁAz + ICA'«; a;kA 3 ICAZ i‘
o1=— —3 o= ‘
@tk oy 97K ‘
24 o2 k%4 s | 34)
alk ’
T = Ky K-« F— (&) o= Vo ; ‘
Vok—r) (K- F2) ’ 1/2<k—h><K2 B F—(k) "
Thus, we obtain Ry, Ry from (13), (14), (28), (29), (3D).
yE= s+ E 4 B GBI - (35
R =
! 2nivVk—k A(A— x)F—(x)G(Z)
ak cA
ar Ar— A )+ Q- 0)B, ,
R= s I ( ) VR —‘gi’;-AZ)Rl}
(12_;_ K nt(A—k) 1/K 1V K—2

(36

Finally, the scattered part for the harmonic P plane wave is

_ < 1 [K-2 F-(b H D
- gradg_ iV E—r F(r) A—£)-GQR)

% e—z'axktx+i(,2x+1/kz-—12 lyDg,

M1S=S +

WE=W K= pPF-(DH:(D )
211/ K~k F-(£) A~ ) G(D) (\'xmﬁg&) :

22 —B2)

WV E= ey E+ 22+ 2 )

4+

x g~ bt +HiQx+V K2 =223]) 7,

s_SN s 7?——2 F—(Z> H2(Z> > (37>
“=) 2%V Kx F(o G-06D

o~ ihEn+iQe+V K =2y g,

alTM{l/-kZ — 2 —Bs)

U3 =Sm rZF

B ST So (e

M VE- WK - BF-(DH(D
+

90y B=r F-(x) (/12+ )(x DG ~

w e~ ib Kt +iQe+V K =22y g,



H D= (%—%ﬁ’zﬁ—xﬂ) (B -2 p)eny GO E=D
ak
B2y K-V "(k—r) K+DQA—£)
a*k? TN T LN c
x (12 )V(k—/D(K+l):t =
HW=(5 -2 )+ ) G DE-D

FVETDE-R (o - L)

{z n alzkz + alk —— Q=) }
1/k~ —K?
Specifying the incident £ wave in the form
by =g~ DKt +iCex+V K= rly]) }

¢:¢1=¢2=07
we find also in a similar way

> 1 /K-2 F-(MHDKW
—w 20t B—x F-(0) A—0)G)

x g~ iwkti+iQx+VE=2|y) 4,

uf = —gradS

GRIE e+ BB o)

uls:S—“;“i 7r1/K—;:1/K+/I(/I—/c)(/1“+ 12 )
SIS R0 SOM
2V B—x F~(x) (A— x>()z+ )G@) J
x e~ ihKt+iQx+V K =2 y]) g,

us=S"’ F /B2 s F-DEKW
T %V k= F-i) Q-G

x e~ ibiBL+iQGx+V K =2y g

AR e BG-0)

w=|. L:Fn\/K—x\/K+Z(Z—/c)< 2R )

J

qlckfc_ VE-IVE = EF-(DK:(D)
+

2 VE=KF-() Q= 1) ( ;2+7—)G(z>

x e~ ibKt+iQx+V B =2y 4,

(38

39

(40)
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_ K2 g2k Y
KD =x vV E- 0 BFm) (5~ 5] |

(( K2 A _a’R ) o NTRE

:F.i<”72*_'cz) . 9 I-Z ‘\/<k 2) (K+)\)

dlk
c

VE-DE+D A-K) ’, [h))

K=V E-—r)(E+r) vE+DE-D <22+%2k2)

K g’k ZZ>X{(KZ )i_ a’k?  Biak(Q—«k) ,; “‘

R

2 T 2ef T K 2c? KC >
3 Kz k
A1=—IC\/K2—ICZ A2=T—ICZ A3="%c—'c.

3. Transformation of the integrals

In this section we derive the solutions of the diffraction of the P and
S pulses from the known solutions of the harmonic waves by the inverse

integral transform. Assume that the incident P plane pulse has the form

u°=eD{t— %(cos a'-x+cos B'-y+cos r’-z)},

e(= sin(eak) —iak(t—=%) @
= ?S_, aL a Idk
where
e=cos a'-ez+cos f'e,+cos r'e,,
cos @' =cos a-sin 7, cos B'=sina-sin 7y, cosy' =cCosy
x=vsin f cos ¢, y=vsin {sin ¢, z2=vrcos {.

The scattered pulse for the incidence of the pulse of the form (42) can be
obtained by the inverse integral transform of the solution (37) for the

incidence of the harmonic wave. Namely, the P part is for >0

Xdk-di

. : T k
~ 1(= (» P(hr) sineak —iakt+i(astyB=2]y+2%,
u-”—grad—.g_mgﬁm G- 7 ¢ 4 )

i1
1 JE=AF-WH G
Pi,p)= 2m'\/ K—x F-(0GQ)

For ¢ <0, —¢ takes the places of ¢.

43

Exchange the order of integration, change the variable i to & defined
by A=k cos d=Fkcos(p+is) and deform the contour C to the line ¢ =const.,
—oo<s<co as in Fig. 4. Integrate with respect to %, to find
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_ H(a) e-x 2 P(8,a) sin (p+1s)
uf=—e G(a) D(t_ >—gradSSl E(cos (p+1s) —cos @)

s P(01a) sin (p+1s)
- gradS —s B(cos (o+15) —cos a) as. 4o

a(f—e)—7cosycosd
rsin_rsin 4
k=kcosa=Kcos 8,

a(f+e) -7 cosy cos

Sy =cosh™1 - .
! ¥ sin y sin @

s Sz=cosh1

where the first term expresses the reflected pulse and vanishes for |¢|<a,
and the second and the third express the diffracted pulse and are the com-

plex conjugate of each other.

I SR — — - — - “--
2 g0 k& -] &
0 8l a n 0 g 6 71
oo .

Fig. 4. Fig. 5.

Next, we obtain the S part of the scattered pulse in a similar way for
©>0

ult=—

. . . &
1(= = @4k sineb K —zbth+z(zx+1/K2—12|y|+6Lz
S—ooS-—oo k(z_ﬁ) K ¢ )de)‘a
,a,fk_ VB 2
0t ___E“k £2~Bp) (A—x) ANVE— VR R (Z)Hg(l)

,.2.—'{‘
ms/K—m/KH(x“ ) omi VE- ~kF-) 2+ 5 )G

1 =T F—(/DHZ(/D
Q=T iV K= F- (DG
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alk 45

K V=2 - B} (-0 ﬂ«k——wkfw-mzw
)G(D

Q=7

+
m'\/K—m/KH(/: @k ) 2ni VE—<P- (@(

Exchange the order of integration and transform the contour in 4 plane to
the path in ¢’ plane defined by A=K cosd’=K cos (p-+15) as shown in
Fig. 5.

e &Vhk—kVE+eH;®) 5, B 1Q,(0',x) sin (p+1s)
) ( 24 a1 k )G(}c) Dt —€'x) 2Resslk(cos (p+1s) —cos B) ds
;S‘S" ¥ VE= P \/KZ—J’ZF AN H (D
Tl=s! YRk F-(x) (1'2+ )k(cos (o+8) — cos B)

ds

k'—,‘i Hz(l‘i)
K-t G

1€ (8" ,x) sin (@-+is)
s k{cos (p+15) —cos B}

S =y F-QDH(D ds
—s! \/K £ F-(x)E{cos (¢p+s) —cos B)

TR D(t—e'x) —21263

Bk R VETRHN )
U= — ¢ v —D(t-e'x) —ZReS
(Ic2+ @ jG(tc)

52 §Q,(¢7,k) sin (@+1is)
sy E{cos (¢+1s) —cos B}

Gh R VR - D Ha ()

_ls—s" ds
~s' VE—gF- (x)( )k{cos (o) —cos B} |
4D
s (G ) e
(g %) H(B+ VG- (- 2%
alk ,
L VEFOE-D( Yy G ) {WF L «%E) f

(1/24_ ) VAR (KA - 1'%

» @n

A=K cos (¢o+s),
b1(l1—€)> r_ _1<b1(l1—e)>
s Sz’ = cos™H ——=),

sy =cos™! - -
! ( 7 sin § ¥ sin §



16

e’ =cos a''e;+cos ''ey+cos v''e,,
cosa''=cos Bsinvy, cos B/'=sin Bsin7, cosy!''=cos7,
where the first term vanishes for o> —g.
In a similar way as above, we can obtain the displacements due to the

incidence of the plane S pulse of the rectangular form.

Assume that the incident pulse has the form

%,°=cos ﬂ”D{t—%(cos a''»x cos B!+ y+cos 7”-z)}

48
U= —cosa'’'D t—l(cos a’+x+cos B''-y+cosyt'-2) 48
b

u3°=0
The scattered pulse for the incidence of the pulse of form (48) can be

obtained by the inverse integral transform of the solution (40). The P part
is for ¢>0.

- \/K—E K1<a)
W= = G

%2 P1(3,a) sin (o+is) o
si K(cos (p+18) —cosa)

D(t—e-x)

g

49

+2grad Reg

Piy=_1 [EKE=2F-(WDKQ¥K
H)= i Vi @G
where the first term expresses the reflected pulse and vanishes for ¢> —aq,
the second expresses the diffracted pulse.
Transform in the same way as the case of the S part for the incidence

of the P pulse, then the S part is for ¢>0

el FPVE S K D(t_e,x>_2ReS” iQ,(8",6) sin (p+is)

Uy

(fcz+ g‘;@)c(m) s1 K (cos (p+1is) —cos B)

\ [

-4 AV E= VR TRP-OO R
w

p )K(cos (p=+1is) —cos B)

—s' V/e——lcF‘(x) <2,2+ a::Zkz

s, KKa(8) o Sz 1Q'2(8',x) sin (p+1s)
U=+ G(r) D(t-e x):I:ZReSm K(cos (¢p+1is) —cos B)
. —s’ Y F‘(Z’)Kz(] n
i;g —s,' Vk—r F(x)K(cos (p+1is) —cos B) ds
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dlk
c

u33= e (
Lt R BT B P QD B
_= ds,
S—SZ' VE—kF-(r) (Z’Z-f— )K(cos (¢p+is) —cos B)

K \/m K’(/C) Sz 40!
/ 2 (8',£) sin (p+1is) !
)G(,c) D(#—-¢'x) _2Reg K(cdos (o+is) —cos B) ds

(50)

dlzkz x \\
Qr—s G et S maol Rk
niVK—,cVKH(AZJr—C_Z’i) anVk—xF—(x)(P—f—*k)G(D
=3 F- (DKW
Q' =F o N s T GOD
GEAE ot BG-0} YEn k1 BB DR
Q=

mVK—,cVRﬁ(AZJr—"fZ—kZ) i 2m1/k o - (,a( )G(x)

B =V = BV =1 K=T )(x'2+ﬁlzk’ )( Kz "lzkz —w)z

:F(Ié d12k7_x,zj(x,2+ )1/(2/2 2 (K2— 1%

((K:  N\NA @l Biak(Q'—k)
Xl( 2 KZ) K 2c2 xC JL’

2 2c%

GD

where for |p|< g the first term vanishes.
4. Numerical results

In our numerical examples, we assumed

K=1"11/3k

a=30°

r=60°
We investigated the diffraction picture resulting from the incidence of the
plane longitudinal pulse, where the front of the incident pulse is always a
plane intersecting the z-axis at the point z=%. This point is a vertex of the
cone occupied by the diffracted pulse. We calculated the azimuthal distribu-
tion of the displacement of the diﬁacted pulse, which is the second and

third term in the equation (44), at x/ar—s=0.1 and t=%+e for the diffracted
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P pulse or t=%—l—e for the diffracted S pulse.

The ¢-dependence of the displacements, #,, %2, #; of the diffracted pulse
for #=constant is rather similar to that of the amplitude in the case of the
incidence perpendicular to the edge of the plane P pulse as shown in Fig. 6.
That is, the amplitude of the diffracted P pulse increases at a uniform rate
with the approach of ¢ to £30° and the phase is reverse at the shadow
boundary of the incident P pulse and the reflected P pulse ; the displace-
ments are a kind of double jerk. However, the composite displacement of
this pulse with the reflected P pulse for ¢ <0 or the incident pulse for ¢>0
is continuous at the boundary. While with respect to the diffracted S pulse
the displacement varies continuously and becomes zero at ¢=63°6/39"" for
>0, the phase is reversed at the boundary ¢= —63°6'39"" for ¢<0 and the
composite displacement of this pulse with the reflected S pulse is continuous
at this angle. Being different from the two dimensional problem, %, u;*
components of the displacement of the diffracted S pulse take large values

near (p=:t§, respectively. These correspond to the first term of the equa-
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tion €.

f-dependence of the displacements of the diffracted pulse for ¢ =const.
is shown in Fig. 7. They take maximum value at #=60" or 73°14’ and their
phases are not reversed at this angle, which is different from their dependence
on ¢.

The writer wishes to express his hearty thanks to Prof. K. Sassa for his

valuable suggestions.
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