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Part II Singular Hydrologic Amount and Rejection Test
1. Introduction

It is needless to say that the statistical treatment of ihe hydrologic data
should be rational in the sense of stochastics to be significant as a useful
tool for the hydraulic works. Usually, the very large or small data which
seem to be singular in an ordinary sense are to be contained in a.family of
hydrologic observations. In hydrologic frequency analysis, the rejection
test of such data is essential in the sense of stochastics, while evaluation
of the singular value defined later is important in the sense of engineering.
It seems, however, that the course of treatment for such problems is not
always successfully planned, in the field of hydrologic statistics. In this
part, a theoretical and practical method of treatment for such problems is

developed!® 20,
2. Definition of singnlar hydrologic amount

In a family of hydrologic data of size IV, the very large variate xes or
the very small variate #e is often contained, whose population probability
of exceedance 1—F(xes) or of nonexceedance F'(xe) is very small.

According to the help of the sample theory, the probability é=Py(x=
%ey) or Py(x<xs) with which such a variate is contained in a sample of
size N is greater than the population probability 1—F (%) or F(xe), under
the condition of finite sample size N.

& = Pr(x2x0) = 1—F(xew) }

= 2.1
E = PN<x§xel> = F(xel>

Or, for a fixed value ., the smaller the sample size N is, the larger

the probability & becomes in spite of the fixed population probability.

In hydrologic frequency analysis, the above facts should always be
considered so far as the analysis is based on a sample of small size. And
it is desired in the hydraulic planning and design to utilize the reasonable
information obtained by the frequency analysis of the hydrologic data as
for as possible.

That is, as the expected value for the desired return period 7, the
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value of Xew or xg for §=1/T rather than that for 1-F(x)=1/T or
F(x)=1/T should be considered for discussion. In this paper, the former esti-
mate is named the expected singular hydrologic amount in a stochastic sense,
or simply the (expected) singular value, and the latter estimate is called
the expected hydrologic amount in an ordinary sense, or simply the (expected)
ordinary value. Moreover, the probability &€ is simply called the singular
level for the singular value xe.

To find the theoretical relation between the singular value x¢ and its
singular level €, the sample theory should, strictly speaking, be extended
on extremes, but it seems to be difficult since a satisfactory sample theory
has not yet been developed. Therefore, in this paper, the theory of rejection
limit in the sense of Thompson, which is obtained as a special case of the
two-sample theory on normals, will be utilized as a convenient approach.
This idea is all but analogous in an essential sense to that adopted by
Ogawara?®’, by which he studied the stochastic limit for the maximum pos-
sible amount of precipitation.

Now, let 7 and $»2 be the sample values of mean and variance, respec-

tively, in a sample of size N from a normal population N(m, ¢%), defined as
- 17
v—Tvgm )
1 2.2)
sv2=Wzi:(77t—i)z

If 7¢ is another sample of size 1 which is obtained from the same population
independent of the adove-state sample, the following equations are satisfac-
tory clearly,

E(:—7)=0

E(r= )= 11 0*
The statistics

are independent of each other and they follow the x2-distribution of freedom

N-1 and 1, respectively, Therefore, the statistics

— N-1 (775—:)5)2
F=y @2.3)

must fol]ow the F-distribution of freedom 1 and N-1.
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Next, let Fly-1(28) be value of F for a given singular level & which
corresponds to the level of significance of one tail in the case of the rejec-
tion test on a normal sample. Then Eq. (2.3) becomes,

Teu } ﬂis,,}/ﬁfF'N_l(za @4

Ner
where 7%e, and 7%e are the values corresponding to the singular level &,
provided on the normals.

Generally, the following relation is satisfactory for the upper tail.

O(ten) = Vz“‘s"sw exp{ LDy < oy =
= S;uexp{‘g‘z_ﬁi)i}dyée 2.5

And the similar relation to it for the lower tail can be presented. It can
be easily considered that there is a simple relation between the singular
level & and the value of @(Mew) or @o¢(Mew), which will be defined as a func-
tion of sample size IV if a relation as Eq. (2.4) can be made available.
The above discussions provided for the normals can be easily extended

to the extremes.

3. Estimation of singnlar hydrologic amount

based on extremes

If all parameters included in the asymptotes for the largest value dis-
tribution which are expressed as
F(x)=exp(—e™),
for the first asymptote: y=a(x—u), 2.6)
for the second asymptote ; y=alog(x+b)/(®+b),
are known, the expected hydrologic amount can be obtained by the follow-
ing equations,
for the first asymptote ; x=u+1/a)y } @n
for the second asymptote ; log(x+b)=log(u+b)+ (1/a)y
And as is well known, in estimating the amount for the desired return
period 7 in an ordinary sense, the value of y defined by the following

equation must be adopted in Eq. (2.7)
y=—lg{lg T/(T-1)} (2.8)
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Table 2.1 Reduced extremes y for given return period.
T 1-F(x) y
2000 0.00050 7.60065
1000 100 6.90725
500 200 6.21361
400 250 5.99021
300 0.00333 5.70212
250 400 5.51946
200 500 5.29581
150 667 5.00730
100 0.01000 4.60015
80 1250 4.37574
60 1667 4. 08596
50 2000 3.90194
40 0. 02500 3.67625
30 3333 3.38429
25 4000 3.19853
20 5000 2.97020
10 0.10000 2.25037
8 12500 2.01342
7 14286 1.86982
6 16667 1.70199
5 0. 20000 1.49994
4 25000 1. 24590
3 33333 0.90273
2 50000 | 0. 36651
63212 0

These values are tabulated in Table 2.1.

Now, let ¥ in Eq. (2.7) be denoted as ye, which

should be especially

used for evaluation of the expected singular hydrologic amount for the

desired return period 7T'=1/€ in a stochastic sense as discussed in the pre-

ceeding section. Then, the value of ye can be obtained from Eqs. (2.4)

and (2.5) by the transformation of variables as follows :

For upper tail ;

exp(—e V%) = F(ye)=1— 0 (7ew)
For lower tail; exp(—e 7)) =F(ya)=0(n)

} (2.9)
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Table 2.2 Reduced singular extremes y. for given upper singular levels €.

upper singular level €

M 5% | 12.5% | 5% | 254 | 1.25% | 0.5% | 0.25% | 0.05% |
2 | 1314 | 2179 | 3.328 | 4.7 | 5.200 | 6.557 | 7.666 | 10.5
22 | 308 | 163 294 182 113 425 483 | 10.2
24 303 150 265 137 047 319 342 | 9.9
26 298 140 241 098 | 4.991 230 224 72
28 294 130 220 067 943 155 124 56
30 291 122 203 039 903 091 039 40
32 | 1280 | 2.116 | 3.188 | 4.015 | 4.867 | 6.038 | 6.969 | 9.27
34 286 110 175 | 3.994 83 | 5.991 904 16
36 284 104 163 976 808 950 849 08
38 282 099 153 959 785 013 799 o1
10 | 280 095 143 944, 763 880 755 | 8.94
42 | 1.278 | 2,001 | 3.135 | 3.931 | 4.742 | 5.850 | 6.715 | 8.86
44 277 087 127 919 726 824 680 80
46 275 084 120 908 71 801 650 74
48 274 081 113 898 695 778 620 68
50 273 079 108 889 682 756 593 63
52 | 1.272 | 2.076 | 3.103 | 3.879 | 4.670 | 5.740 | 6.568 | 8.58
54 271 073 098 873 658 721 544 54
56 | 270 071 093 865 647 706 523 50
58 269 069 088 859 638 690 503 46
60 268 066 084 852 | 628 676 | 486 43
65 | 1.267 | 2.063 | 3.076 | 3.839 | 4.610 | 5.645 | 6.443 | 8.36
70 265 060 068 827 592 620 410 30
75 264 057 061 817 577 598 382 25
80 263 054 056 807 565 579 359 20
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Table 2.3 Reduced singular extremes y: for given lower singular levels &.

lower singular level &

g 25% | 12.5% | 5% i 25% | 195% | 05% ‘ 0.25% | 0.05%
20 | —0.3688 —0.8042 —1.208 | —1.446 —1.649! ~1.881 | —2.036 | —2.350
22 647 —0.7971| 197 | 433 632 860 | o012 320
24 615 921 189 |  422| 619 844 | —1.993 208
2 580 875|182 | 413 608 80| o7 277
28 567 835 176 | 405 500 | 817|964 | 257
30 547 801 171 308 500 807 | 952 240
32 | —0.3520 —0.7772) —1.166 | —1.392 | —1.583 | —1.798 | —1.041 | —2. 927
34 513 746 162| 87| s17| 791 032 | 214
36 400l 7220 158|382 | s7| 784 |  ooa| 204
38 a7 70 155 | 38 s66 | 778 | 017 195
40 w6 682 152|375 s621 772|910 187
42 | —0.3466) —0.7665 —1.149 | —1.371 | —1.557 | —1.767 | —1.905 | —2.178
44 w57 619 147|369 | ssa| 762 | 899 171
46 w9 63 145 366 | 551 758 | 895 165
48 w1l 62| 143 363 548 754 | 890 | 159
50 134 610 141 361 545 751 886 153
52 | —0.3428 —0.7598) —1.130 | —1.358 | —1.542 | —1.747 | —1.882 | —2.148
54 a2l 5871 18| 357 |  s40|  7aa| 879 | 144
56 a6 5771 136 | 3s5|  s37| 741 876 139
58 4100 568 135 | 353 | 535 | 739 | 873 136
60 406 s60| 134 | 351 533 36| 870 132
65 | —0.3396| —0.7542 —1.131 | —1.348 | —1.529 | —1.731 | —1.863 | —2.124
70 387 5211 10| 45| s25|  727|  es8 117
75 379 514 127| 342 |  se2|  723|  esa 11
80 371 507 125 30|  s19| 79| 80| 108
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where D (pe) = 721718715?2 exp { _%X‘}d'ﬂ
These values, Yeu and yer, for various singular levels, &, are tabulated as a
function of sample size IV in Tables 2.2 and 2.3 for the practical facilities.
It may be easily seen by the help of the values in Tables 2.1 and 2.2 that
the value of ye, for T=1/€ approaches to the value of y for T=1/1—F(x)
with increase of the sample size V.

It is needless to say that the expected singular hydrologic amount for
the desired return period 7=1/& is obtained from Eq. (2.7) by using ye
instead of ¥, that is, .

for the first asymptote ; xe=u+ (1/a)y.

2.10)
for the second asymptote ; log(xe+8) =log(u+b)+ (1/a)y. } (

The necessity for such an idea or the usefulness of such a proposal as
discussed above in detail, may be easily understood even from several ex-
amples of application presented by Fig. 2.1 which is shown with the proposal
in the next section, and by Fig. 1.8 which has already been shown in Part L.

4. Method of rejection test

In the frequency analysis of observed hydrologic data, the decision of
adoption or rejection of the singular variate contained in a family of the
data must be objectively made from a stochastic viewpoint, because it is
the duty of the hydrologic statistics to offer the most likely information to
hydraulic works.

Since the rejection test proposed in this section is based on the idea of
binomial distributin, it is not necessarly new as an idea, but it may be re-
cognized to be useful as a method.

Generally, the probability of an event that # variates which are not
smaller (larger) than x. for the upper (lower) singular level & are at least

contained in a family of observed data of size N is given by

P{np(x=x0) =7 or np(x=xa) 27}

I, I'(N+D
=12 rOr(N-j+D

Q-&r-Jgl 2.11)

If this probability is smaller than a certain level Bo of significance, the
danger of rejecting such variates under the hypothesis that the event is

very rare may be said to be 100 Bo 9% at most.
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Up to now, if the singular variates in a family of observed data of
small size N are two or more in number in one tail, it is not desirable to
treat them simply in the usual sense of statistics, because a certain physical
reason may exist in this event. Therefore, the singular variate to be made
the object of rejection test should be either a set of two extreme data in
both tails or an extreme datum in one tail. This concept of rejection test
seems to be inevitable from the viewpoint that the treatment or the
evaluation of singular value itself is to be of importance in the hydrologic
statistics.

Thereupon, putting 7=1, Eq. (2.11) becomes,

B=1-1-8~ 2.12)
Table 2.4 Singular levels & for given levels of significance, Bo.
|
}\\f‘{ 10% 5% 1%
% % %
18 0. 584 ; 0.285 | 0. 056
20 ; 525 f 256 049
22 478 233 046
24 438 214 042
26 | 404 197 039
28 | 376 183 036
30 351 171 034
; 32 0.329 0.160 0.032
I 34 309 151 030
36 292 142 028
38 276 135 ' 027
40 263 128 025
42 0.251 0.122 0. 024
44 239 117 - 023
46 229 111 022
48 219 107 021
50 210 103 020
55 0.191 0.093 0.018
60 175 085 017
65 162 079 016
70 150 ' 073 014
75 140 068 013
80 132 064 013




Table 2.5 Examples of rejection test.
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If B is smaller than a given significant
level B¢, the variate for the singular
level xe may be rejected. This is repre-

sented by,
E<&=1-(1-p)¥ 2.3D)
That is, Eq. (2.13) indicates that when

the singular level & of variate is smaller
than &, such a variate is rejected at
the B level of significance. The rela-
tions between & and N for several
values of B¢ are shown in Table 2.4 for
practical facilities.

In practice, the singular level of
variate in question may be evaluated
from all of the other data in which
such a variate is not included, and as
the value of the level of significance
Bo, 59 may be usually adopted.

Several examples of application of
those proposed approaches in hydrologic
frequency analysis are shown in Fig. 2.1,

basing on the data in Table 2.5.
5. Conclusion

In this part, several discussions on
the singular data included in a actual
sample are made from a stochastic view-
point. After definition of the singular
value, a practical method of evaluation
of such a value was successfully deve-
loped by help of the theory of stochastic
limit on normals, and also a course of
the rejection test for such a data was
defined practically by the use of the

binomial distribution.
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Fig. 2.1-(1) Examples of rejection test and of evaluation
of singular value, (1).
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Fig. 2.2-(2) Examples of rejection test and of evaluation
of singular value, (2).

The author believes that these treatments of the singular data are

strongly desirable, and that the results obtained in this part must provide

a useful tool in the field of hydrologic frequency analysis, although these

studies were performed in 1959.
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