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                             Abstract 

  The present paper deals with the deformation and flow of muddy clay or heavy sedi-
 ment-concentration liquid. A fundamental procedure for solving the problem in this 

paper rests on the principle of the rheological consideration. A theoretical examination 
was carried out for the deformation of muddy clay with time and the flow of muddy clay 

 and relatively small sediment-concentration liquid in open channels. Also experiments 
 were conducted in order to verify the above theoretical treatment and to make clear the 

 characteristics of muddy clay. The experiments showed that the theoretical treatment is 
 valid for explaining the behavior of muddy clay and the flow of relatively small sedi-

 ment- concentration liquid. 

1. Introduction 

 As a first step in investigating mud-flow, the present paper deals with the 
deformation and flow of muddy clay or heavy sediment-concentration liquid. 
Mud-flow means the flow of the terrestrial deposit layer saturated with rain 
in a mountain stream. In Japan, many human lives and possessions are lost 
by the mud-flow every year. In addition, because of the occurrence of mud-
flow, the river bed rises and mud-flow breaks structures in a river. 

 In order to prevent these disasters, the character of mud-flow should be 
made clear. Although there are many ways of approach in investigating 
mud-flow, the problem is treated here especially from the view point of 
establishing the mechanics of the flow. 

 First, this paper deals with the rheological law of muddy clay. The pro-
blems of the creep of muddy clay and the deformation law of such soil are 
discussed in Chapter 2. 

 In Chapter 3, we discuss the flow of muddy clay in an open channel in 
which the clay is loaded by the stress, r greater than the yield stress  ry. 

 In Chapter 4, the rheological property of the lower layer with heavy 
sediment-concentration near the bed in the flow of liquid with relatively 
small concentration is discussed. 

 2. Deformation and flow of muddy clay 

 Generally, material such as muddy clay deforms following the rheological 
law. The Bingham law or the pseudoplastic law applies to mud-flow. The 
Bingham plastic is characterized by the flow curve of a straight line having 
the yield stress  ry expressed by an intersection with the shear-stress axis as 
shown in Fig. 1. The yield stress  ry is the stress to exceed before the flow 
occurs. The rheological equation for the Bingham plastic may be written
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                              T—Ty (1) 

                                             = 

 P  R                                 'N° 

 where  r is the rate of strainde/dt 

dEs%                                    and dun the plastic viscosity.                                                                -N 

dtb9\\).q)99'2,                                  The pseudoplastic flow has not any 

      4.,                                 value of the yield stress and the 
                         of'k.‘-'                 /typical flow curve for such materials 

         Ti(to5yiel              es/ (Bindahu-aluames)indicates that the ratio of shear stress                                  to the rate of strain , which may be 
                                 termed the apparent viscosity  //a  is 
   Fig. 1. Explanation diagram of flow  not constant , but decreases with  in-

       curves.                                  c rease in the rate of strain and that 

the flow curve becomes approximately linear only at very high rates of strain 
as shown in Fig. 1. The logarithmic plot of the rate of strain against the 
shear stress in this case is often found to be linear. As a result, the follow-
ing empirical expression is widely used to characterize a fluid of this  type  : 

 . 

 r=— (2) 
 pP 

where  pp is the pseudoplastic viscosity and n a constant expressing the 
degree of non-Newtonian behaviour. 

 However, it is not clear which materials this relation will fit and what 
characters these parameters have. 

 It is obvious that at least two parameters must be made for any non-
Newtonian fluid by measurements in order to determine its rheological pro-
perties. To do this, the properties of muddy clay have been investigated by 
using a coaxial cylinder viscometer. 

 The relation between the measured torque T and the angular velocity  w of 
the inner cylinder for the Bingham plastic filled in the coaxial cylinder 
viscometer, is given  by') 

               T  1 1Tyr2       w=ln (3)  47rhpR\ ri2  r22 pi?  ri 

where h is the depth of liquid and  ri and 12  are radii of the inner and outer 

cylinders respectively. Hence if  co is plotted against T11the rela-                                                     47r/zr i2r22  /' 
tion will be expressed by a straight line with a slope of  1/  fin when T exceeds 
the yield value of torque  2irr,,r22h. 

 Therefore, by measuring the angular velocity and torque in the coaxial 

cylinder viscometer and plotting the relation between  co and ( 11\                                                        zinhT ri2 r22 
the values of  fiR and  7-,, can be decided. 

 On the other hand, for the pseudoplastic, the relation between T and  ai is 
given by 

        w__ 1- T1 1(4)                             2n
ii,\27-rh\ri2n2-2"/ 

Hence if log  w is plotted against log T, the relation will  be expressed by a
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straight line with a slope n. see' 
40.:,,g.:1 * sec"/ Some results of the tests con- 401 ducted by these authors are1 301=1=MM 

                                          I 

                                                30•t5 
        Ii'IA shown in Fig. 2. From these w

20,IMI 20-;..MEMMIIMMII= graphs, it can be judged that142M4IMMIllEll 
                                                                                        4, the material is plastic. Eq. 1Z. .:AMEM101111 

explains the parts which are /01/0a 

straight lines in Fig. 2. The  : Oilliriall.                               •=Emil. 
details will be described in the 0 002 004 0 04  06  /2 /6 
following chapter. T [_1__%)(  9/cm'l 

                                                                         47Lhlr,2 722/   It is seen
, however, in Fig. 2 

that the slow flow appears Fig. 2. Relations betweencoand  ( 1 _1\ 
                                                              4rch1r12r22) even when  r<r

y. Such slow for Bingham body . 
flow is as important as in the 

region of a high rate of strain  (sec-'). 
for the mud-flow. 600  

 Some of the results of the 400 
0 1fCD%    z  (9/cm') 

 0 tests for creep by shear areIIII5 34.8 
 34.8 

given in Fig. 3 showing curves 200
we'Cu o  44  7  1129.2 of angular velocity w under 35.5 

                                                   /00,''Z',., 
 80

iiki  •  33.i constant stresses in which the 
                                                                                                                   ....m••^.., time t is taken as an  abscissa.zAkk.7                 6 0 r .27,M0.IIIIII=  The deformation of materials4 0wi041111114• 

 ••,s 

at a given moment of time  t,0• 
                          I•• is the sum of the recoverable20EN. 

   

1  --^ 

and unrecoverable parts of 
deformations. The former is  /0    0  20 40  60  80  /00  /20  /40 

proportional to the  stress  ; that  I  (sec) 
is an elastic part. The latter Fig . 3. Relations between angular velocity  co 
is related to the rate of  strain  ; and time t . 
that is a viscous part. 

 The behavior of an ordinary viscoelastic body is characterized by a modulus 
of elasticity r and a coefficient of viscosity  ft, and the shear stress is expressed 
by 

                          de  
       r—r.(+Pdt (5) 

The solution of Eq. 5 is 

                        _ r ,
0

p, 
                     E = e' - '''E±1tz-• eP--dt) (6) 

 0 where  eo is the strain at  t=  O. When r  =  constant, Eq. 6 becomes 

               E = —7-+(E0—'i-)e-im'(7) 
               7' 7' 

if  E0 is zero, Eq. 7 is written as 

 E=— (1—  e f`t  r) (8)
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Therefore, the strain rate is 

                   dc 7  it                                              (9) 
 dt=pe 

Since  dc/dt=co, the following equation is  introduced  : 

                 logco= logz"—-7"--t log e (10) 
                    P P 

 Eq. 10 means a linear relation between log  co and  t. 
 It is fond, however, from the plots of data that this relation is generally 

not linear but concave as shown in Fig. 3 and the values of  co tend to be 
constant with the lapse of time. The difference in the tendency is caused 
by the assumption made in deriving Eq. 10 that r and p are constant. This 
phenomenon is always seen in the creep of a  viscoelastic materials. 

 Therefore, the following equation will be used instead of Eq.  5  : 

                                dc           r =r (E)+p(E)-df (11) 

 The behavior of materials for which the stress-strain relationship is ex-
pressed by Eq. 11 may be described by the integral equation of  Boltzmann2). 

 The deformation at a certain time  t, caused by a stress varying with time 
is expressed as  follows  : 

 E  (t)  =  r  (t)  +5'  g(1-6)7(E)dE                                               (12) 

 Pt a constant stress, the equation takes the form 

 c(t)=1+1Tog(t-E)d6 (13) 
 When the stress r workes from  $(<0 to  E+dE, the deformation during 
that time is the sum of the deformations  El and  -Ey, in which  el is the defor-
mation from  6 to  t in Eq. 13 and  —E2 is the deformation from  E+dE to  t. 

           Ei(i)—(0=75t-tg(t- E)de - r5t0-E-4Z-c16)d6 (14) 

                                  0 

 (9/cm') The deformation at time  t is the sum 
  60  of the instantaneous deformation and 
                               the deformation progressing with time. 

  40 The latter is the integral of Eq . 14 from  20 
 t=0  to  t=t. 

  20 Since it is difficult to solve Eq. 14, the 
 0expression for the deformation after a 

           50 seccertain time is written in the following 
  to form from experimental results shown 

 8 in Fig.  4: 

 E  =  kr" (15) 
    6 8 /0 20 40 60 80 /00 

 ( revolve) where is a function of  t and  CO is a 
Fig. 4. Relations between stress r and constant. Then, Eq. 15 is used instead 

  deformation  c with a parameter of time. of the first term of the right hand in
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Eq. 14, in the same way as that of Nakano's  treatment°. 
 Similarly the second term is expressed in the following  form  : 

       Ar+ dTr9dT(16) 

where  T  =t—z. Thus 

                (t)--c2(t)=dA(T)  v9dT (17)                             dT 

 Integrating Eq. 17 from  t  =  0 to  t  =  t and adding the instantaneous deforma-
tion at time  t, the following expression is derived for the total deformation 
at time  t  : 

            (7')t             ((t)-
7-cadTdT = r +ecl                        10dTA(T) dT (18) 

Putting 
 dA(T)   =x(t) (19)  dT 

then, Eq. 18 is written as 

 c(t)=-7,-Ez-95:  ic(t)dt (20) 
From the plots of data shown in Fig. 5, the  I0   

• ratio of the deformation to that at the upper 08  _0= 9/un, 
limit of the yield point may be expressed06 0 z =4249/cm2          – •  • 
as follows :  E • 

 (Au=  (Ou)  b (21)  Eu  0.4   •  

where  cu is the value of deformation atthe • 
upper limit of the yield point, and  to is a  0.2  
duration time until the deformation reaches 
the value  eu. 

 Next, using Eq. 21 as the expression for 0.1   
the deformation at any time, from Eq. 20 01  02 0.4 0.6  08  co  tit° 
the following relation is  obtained  :                                                  Fig . 5. Relation between  €/eu 

                                                      and t/tu.        1-950K(i)Cli=Eu(—tut(22) 
or 

             IC (t) =2-4•L(-)b1(23)                               tut 

in which the value of b can be regarded constant, independent of the stress 
r from the experimental results. For instance, when the concentration by 
weight  cg is 45.5 per cent, the value of b is 0.96. 

 The deformaticn to be added after it exceeds the upper limit of the yield 

point is expressed as 

 E  = 1  ry)  —  tu) (24) 
 PR 

Therefore, the deformation at time t  (<tu) is written as 

                                     ty  E  (t) =1+r9Stc(t)dt+ (r  ry)  (t—tu) (25) 

 0
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This equation is available for use when muddy clay is loaded by a stress r 
which is greater than  ry. 

3. Flow of muddy clay in open channels 

  When r is greater than  ry, the muddy clay flows. The character of the 
flow in open channels is discussed in this chapter. 

a) Bingham flow 

 The following equations are derived in general for uniform flow in an open 
channel. 

           (1—  z/h)=7/ro (26) 

 zo  =pghIe (27) 

where z is the distance from the bed, h the depth of flow,  ro the shear stress 
at the bottom, p the density of the fluid, and le the energy slope. Substitut-
ing Eq. 26 and 27 into Eq. 1, the expression for the velocity distribution is 
obtained as  follows  : 

                                  (a,_                        h
r„-c2;   )  U =(28) 

 PR 1—a' 

where a' is equal to  zy/h, zy the depth at the point were  ry appears, and 
 C=z/h. In this case, the velocity reaches maximum value at z=zy. Substi-

tuting C=a' into Eq. 28 yields 

                                       a 

            uma.= 2(112a')  I (29)JCR 
The mean velocity is 

                                                          a\              CZYudz ±u.(h— zy) a'2(1 ——3/i 

 y  

    Um=   g, g =(30)                                          2 (1 — a') 

Then, the relation between the slope  I and the mean velocity  um is expressed 
as  follows  : 

                        3/4..1  PE  
 I=  To                                 319(1 — a')  

       pgh pgh2(31) 
Now, putting 

                 PR   Pa  
3  (1  —  a')13 

Eq. (31) corresponds to the resistance law for the laminar flow of the New-
tonian liquid. Also, the resistance coefficient f' is introduced by the following 

 expression  : 

                               1 u,,,a   / =/'  R  2
g (32) 

 For Bingham liquid, even when the mean velocity is the same, the velocity 

gradient on a boundary, or the boundary shear stress, is varied with the
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variation of  ry or  pi?. Therefore, the resistance coefficient f' does not always 
correspond uniquely to the mean velocity  U.0. 

 Then, the specified velocity U which is expressed as 

                      Z7, 

                               FB1(a)  U2  =u2dz = um2FRi (a),24  1(33)                                                                              '2 

is adopted here instead of  um. 

 In this case, the velocity U is different from  um in Eq. 32. The velocity 

distribution for the laminar Newtonian flow is given by 

 u= pn(z2zh ) (34) 
then, 

         5 

                  U2 =h111U2c12=715Cr°h)2 (35) 
              0.pR 

 The mean velocity for laminar Newtonian flow in an open channel is 

 un,2  =1  9\(/h2 (36) 

Therefore, the value of  FRI in Eq. 33 becomes 1.2 for laminar Newtonian 
flow. 
Thus, the energy slope for the Newtonian flow is expressed as 

                   1U2   1= ft.2,7*h=1.2fIV*h1u2g.2 =flyhu2g207)                     2g 

where  1.'1,7=1.211N* and the suffix N denotes the resistance coefficient for the 
Newtonian flow. The expressions for the Bingham flow are 

                 21uni2  
                  R*-1U h 2g=Fin (a)ft h 2g (38) 

 Or 
 1.2-2gh/                                                (39) 

 R=1,17n2Fm(a) 

where the suffix B denotes the quantities for the Bingham flow. 
 In order that the relation between the resistance coefficient  f  ni and the 

Reynolds Number  Ren for the laminar Bingham flow may hold the expression 

 IR=6/R03 for the Newtonian liquid, the Reynolds Number  Ren should be 
written as 

                         pumhFm(a)       Ri ell— (40)  1.2pR  
 M  (1  –  a') 

b) Pseudoplastic flow 

 In the same way as to the Bingham liquid, Eqs. 26 and 27 are also applied 
to the uniform pseudoplastic flow. Substituting Eqs. 26 and 27 into Eq. 2 the 
expression for the  vlocity distribution is obtained  follows  : 

                          kron  
            u__ (1— C)n±l}  (41)
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Therefore, the mean velocity isexpressed as 

           _1Ch'_ liro(42)                      um—h Joudz— (n+2)P 5 
and the energy slope is 

 I— ro  ppi/Thund.in  (n  +2)1/.                                              (43) 
                     pgh  pgh1+1/n 

when  n  =1, Eq. 43 coincides with Eq. 38 for the laminar Newtonian flow. 
 In this case, even when the mean velocity is the same, the velocity gradient 

is varied with the value of n. In the same way as for the Bingham liquid, 
the following equations are  derived  : 

                  U2= 1n 0u2dz=u,7,21;1(2)              h 

              n+2)221 1  Fpi(n)  =(n+1)2 11n+2+(43)2(n+1)+1i- 
                      , ,1. 2 .2gh./                                               (44)                        /"=  

u.2Fp1(n) 

 3 philnum2F2,1(n)       R'
,,,—(45)                              (n+2)1/nu m" 1. 2p," 

where the suffix p denotes the quantities for the pseudoplastic flow. 

c) Comparison between the experiment and the theory 

 mo  TABLE 1. 
                                                         Ranges of experiment. 

 50   , conditions                                                                         ranges 
                                                 of flow  dm-  0000" 

 0  I  I  I discharge 5— 20  I/sec 
   0.00/  .002 .003 .005 .007 00/ .02 .03 .05 .07 0/0 020mm depth 5— 14 cm 

                     d 
                                                    concentration 0-350  gr/1 

   Fig. 6. Cumulative diagram ofgrain size                                            b
ed slope 1/100      di

stribution of sediment used. 

      114       I b= 

       0-ri0 d,,,.•0.8)( 102MM For the pur
Bpose of 

 - 

 0  • 153lisec.  A  /54 VA  15.4lig /5/  7! /4.8Of  15  12.verifying the theore- 
      1 7.732CM  A 766mi 769prA778FA 7.35El/0.5 i 

 0.6- u•. 8.23C1%,,m 
              Am 905=8.78•1 925r8.48-10.7•tical treatment de-         z = 0 glbter 2  75IM448Am 8/0164.3.A= 06.771  04

iscribed above and    ,rINI:-Insalso of disclosing the 
 02characters of the hr ,-ir.PrFir1II .111mud-flow, experi-  °/W."WIIWUMI 
  00811111.. SIIIIMFAMENIMIMMMENIMMEMMments were carried 

 006Pr out by using a steel         I 
. . 

 004 channel of 0.2 m 
 • 0 c  o  • width and  20  m 
 0.02  '' length and the clay 

   6 8  /0  /2  /4  /6  /0  /0  /0  /0 
 (1/11,. of  0.8  X  10-2  mm in 

    Fig. 7. Dimentionless expressions of velocity profiles at mean dimeter as 
   center of flume. shown in Fig. 6 under
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the condition shown in Table 1. Velocity distributions were observed by the 
applied Pitot tube  method6?. Some examples of the experimental results for 
velocity distribution are shown in Fig. 7. 

 Since it is found from the results of the experiments that in the case of 
the concentration cg>300  g/1 the velocity above a certain depth being almost 
constant, the flow in such a case was treated as that of Bingham liquid. 

 CM   /0 .48  cm      
I I  

  0.008 mm05 0 
      3/.,14x/c132.1Lc•0.4  

                       cm4   8 ,II 
 0  observed0 .3o 

  value du                                        d
z  6  02 

                                                      P. -0224gsec 
                                                                 0.1 

 • o /11011111111111M.                                    0 0.1 0.2 0.4 
                                             -Zy 0.6                                                                9km' 0.8X10' 

                                        Fig. 9. Relation between du/dz and  r—ry 
                                          for data shown in Fig.8. 

      0.2  0.4 0.6 0.8 1.0  1.2 
 U  in/sec A typical example of the velocity distri-

Fig. 8. Comparison of velocity butions under this condition is shown in 
  profiles obtained by experiment Fig. 8. It seems that  ry occured at  z= 

 and theory. 6.25 cm, and therefore the relation between 

                             (r  —yr) and  du/  dz is plotted as shown in 
Fig. 9. From this result, the material is considered as a Binghum fluid. The 
viscosity is not always constant over the flow layer. The viscosity near the 
upper limit of the yield point is estimated as 0.224 g•sec/cm2. The velocity 
distribution calculated by using the above value is shown in Fig. 8. As there 
is very little data, the validity of Eqs. 39 and 40 were not checked for open 
channels, but the data of pipe flow was checked. 

 In pipe flow, the following equations are introduced corresponding to Eqs. 
39 and 40 by the procedure similar to that for the Bingham liqued in an 
open channel  :" 

       fR—D•2g   1 u .  FB2  (a)FR2(a) = 9 (5 + 6a — 11a2)1 a  5(3+2a+a2)05) 

       4a182pDum2FE2(a)Tyre—  4a+3  R
en =a=,112= (46)  PR  TO 12a 

 On the other hand, for the pseudoplastic liquid, the resistance coefficient 
and the Reynolds number are 

        hr.  D  •  2g3 n+3F
p2(n)= (47)              JP— I upbaFp2(n) 4  n+2 

                 Rep= 6(n+ 3) 1-1/7apum2-2/n                                               (48)  2 

where D is diameter of pipe,  hr the loss of head.
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1  -mmomilommumm••••••=ms Results of the  experi-
      e  1/1•••1111111E  C., %  D  Cm  mum ment which was  con-

   mig^gum^ 0 0 2.72 11E11 ducted by using plastic 

  liViiir :20.0:2,. .7029III                                             pipes of 2.72 cm and 
                  El  028 .3 272  4.09  cm in diameter for 

  Nino' :2;24479  II" the Bingham and New- t; aromin...IL-,-thims.e37 .6 232  Emmitonian flows are shown 
   =MI 4`. 71111.M............ in Fig. 10. It is seen 

 mom ';,t'og'--E., from this figure that 
                                              the above relations 

   IIIIIIII.(17''..(illail,;•:;144:44/4)-407 may be adopted not 
 millinimmiilie,                                                 onlyforapparentlami- 

001NOnarflow butalsofor 

 

- 
02  ro3'  /04  10" apparent turbulent 

                                 Rea 

  Fig. 10. Relation between fR* and Ren for Bingham flowflow. The word "ap-
 in pipes.parent" is used here 
                                              corresponding to the 

  ,/.01...n....m....mmimimm. relation between the 
    MIMMEMENMINI''''''NEN•resistance coefficient 

   q
kmollimi „q,,. oum and the Reynolds num- 
                     oo 272 linber for the Newtonian 

                               2017 z 

                     0,  +.03 flow. 

  IIIILI 111111ea  ,...:t             1111111=111111 Fig. 11 shows the                                                 data for the pseudo- fP."—_-61^IMMEMEMMIM=MININ 
    1....1.1.0 02),, mom•ssmim•11^ plastic and Newtonian 

                                              flows. It is considered 

             re, f/riii:.243",.(4,15z; Q07)that this expression is                                               also applicable to ap- 

  1111111111.1111.111iiiiiparentturbulentflow.  001• It is foundfrom Fig. 12 
  102103/0'105  Repin which the relation 

   Fig. 11. Relation between  f2,* and  Rep for pseudoplastic between  1/1/ ./R and 
   flow in pipes. ReR- V fn is plotted that 

                                  the resistance law of non-Newtonian  10  
    0  0,-  20.1  % flow is expressed as 

 8  -  0 

  1 

 Pa (D 28.3 "000 1   =A+B logio(RoiVfn )  (49)    6war.611-€8 Itta                                   1/  f R 

  4 i  where A and B are constant. For in-
   2 4 6  8  103 

 Ree irestance, in the case of Fig. 12,  A=  –0.07 

  Fig. 12. Relation between 1/1/fR and                                   and B=2.0. The resistance law in 
   ReRi/ fB for Binghamflow in pipes.pipe flow obtained by the authors for 

                                 clear water is 

             1  =2 .0 logio(ReVf )  –  0.07, (50)                  1/1- 

Therefore, if the resistance law of non-Newtonian flow is expressed by the
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modified Reynolds number defined by Eq. 46 or 48, the values of A and B in 
Eq. 49 are equal to those for the  Newtonian. flow. However, it is generally 
known that  A= —0.8 and B=2.03 for the Newtonian flow. Accordingly, the 
resistance law of the non-Newtonian flow for Bingham liquid in a pipe may 
be expressed as 

              1              —=2 .03 logo(RoWfB)— 0.8 (51)                  /
.fR 

For the pseudoplastic,  Refi and  fn in Eq. 51 can be replaced by Rep and  fp 
respectively. In an open channel, referring to the experimental result for 
the Newtonian flow in open smooth channels by  Iwagaki7), the relation 
described above, will be written as 

 1  
 vf—,A=  2.07  +4.07  log10  (RioRi/f  R) (52) 

4. Characteristics of flow with low sediment concentration 

 The data of the flow with low concentration in the previous experiments 
are treated in  this chapter as the Newtonian flow by applying the logarithmic 
law of velocity distribution expressed by 

         —u
*K               1    =A+ in ks (53) 

                       u where,  u* is the friction velocity, K the universal constant, A a constant and 
 ks the equivalent roughness. 

 In the flow with suspended materials, there are two problems for the 
velocity gradient. One is the increase of the velocity gradient in the upper 
region of flow, i.e. the decrease of the universal constant, and the other is 
the problem that the lograithmic law does not apply near the bed 

 Vanoni" and  Ismail pointed out the former problem based on experimental 
study. A theoretical explanation of this problem, was studied by Einstein 
and  Chienn),  Tsubakill),  Shimura12) and  Hino13). 

 Einstein and  Chien'", and Ishihara, Iwagaki and  Sueishi" pointed out the 
latter problem by their experimental data. But the mechanism was not 
mentioned sufficiently. According to the experiment by the authors, the 
thickness of the region is reached to 15 per cent of the water depth. 

 The phenomenon in this region seems to be very complicated because of 
being near the boundary, and in addition, it is very difficult to measure the 
velocity distribution. Therefore, as a first step, the flow in the region is 
treated as non-Newtonian flow. 

 For the upper region, Eq. 53 is used. Taking  aks as the thickness of the 
lower region, and  uo as the velocity at  z=aks, the distributions of velocity 
and sediment concentration are expressed respectively as follows. 

 uuo1   
          u*=u*+ K In aks(54) 

 C  =too                              — z a               1hks 1Ku* (55)                   Cdko z h—aks
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 sec' where  Caks is the concentration at  z=  aks and 
 100    Ws the settling velocity. 

 60   The flow in the lower region is  treated as 
   60   6 the pseudoplastic , because it is generally known 

 40   that a flow with a concentration of over 3 per 
                        cent is of pseudoplastic liquid and that of over 

 20   5 per cent is of a Bingham liquid. The validity 
                        of this treatment was checked by the data of 

                         Einstein and Chien"). From their data, it was d
.zu10                 I  found obviously that the logarithmic law cannot  a

.8 
 s   be applied to the lower region. The relation 

                        between log r and log du/dz in the lower layer 

     4 

 a  t irerlir is shown as a streight line in Fig. 13. 
       .r 0 Upper  layer Using the expression of the velocity distribu-    2 tion for the lower layer,  up is written as follows. 

 /  e?  I{                            Up=hron                                           1 – (1 –C)"+1.1 (56) 
    o., 02 04  061001+1)1.4 

 T Wm'                            Then
, the velocity  uo at  z=aks is 

Fig. 13. Relation between du/dz 
 and  r in lower layer of sedi-u0 =hron ji(,ahks V'+11.                                               (57) 

 ment laden flow. (n+1),upI1'If 

                         Therefore, the mean velocity  um  is expressed as 

         11Calesrh      um=v130 updz+u. dzi-                           tries 

       = (1 —V)                    'rank 1  1 — 72n+2 Up _,11 h–  aks   _  1  i 
              (u+l)pp i1– n+2 1–>2 )12(u*-iKin  aks K 

 =  (1  –72)ump+v•u7,0, (58) 

where 

 Tonh1  1-72"2 t 
                         ump–                       (n+l)ttpi1–n+2 1--)2)(59) 

                       u0  h– aks1  
        z,.–°  + In(60)  un                u

* K  aks K 

                           aks        72=1–h (61) 

 As a result, the mean velocity of the flow with law concentration is 
expressed in the form of the sum of the Newtonian and non-Newtonian regions. 

 If the low region is thin and therefore negligible, the above equation be-
comes the well-known equation by taking  v=1 as  follows  : 

                     u = Am            11Inh(62)                           +—— 
           u*KK k, 

where A is shown as  10' 

                               10  R1°'132  `q  35 .45
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a) Universal constant K 

 The universal constant K decreases with increase in the concentration. The 
theoretical explana-
tion of this effect  5   0  author's experiment has been given by  4 0  vanonis experiment  limmimmorpon77-- 
some researchers as 34 Am•--.....^11111111.11111 
previously mention-  2•;'',;;11- 
ed. Fig. 14 shows  / 2 3 4 5 6 7  8 9 /0X/0-2 urs-ogursrh-a)  
the plots of experi-                                                                          uw3(2310.34-1) 
mental results ac- Fig . 14. Relation between 1/K and c(rs-1)g",(ha)  
cording to the ex- u*3(2.3 logL- —1) 

                                                                            a planation of Shi-
mural°, which fits in fairly well with the theory. In the figure, a is the 
height of roughness, g the acceleration of  grav,ity, rs the specific gravity of 
sediment particles, and c the volume concentration. 

b) Thickness of lower layer 

 Since  aks,  is the thickness of the lower layer to which the mixing length 
theory can be applied, the Richardson number  0, showing the stability of 
flow with density  gradient"), is adopted as a criterion to decide the value of 
aks, because when  0>1, the theory of momentum transport can be used. 
Richardson number  0 is given by the following  expression  : 

                       7.1_/ du \ 2dp                  0                                                (64)                d
z/ dz 

 Letting  po and  ps be the densities of liquid and sediment particles respec-
tively, the density of the liquid with sediment is expressed by 

 p=  (ps—  po)c+  po (65) 

The basic equation of sediment suspension is given by 

                         ES dc        d
z±wsc=0(66) 

where  es is the sediment transfer  coefficient. By Eqs. 65 and 66, the density 

gradient is written as. 

                       dp   _  wsc(ps—p)  (67) 
                    dz 

 Since the velocity gradient is 

 du/dz=u*/Kz (68) 

 The condition that  0 is greater than 1, is expressed as 

                         u*  \ a > gwsc(ps—po)                                                (69)                  t
,Kz) TEs 

 Furthermore,  es in Eq. 69 is 
                                      Z  Es  =  u*Kz(1—(70)
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Thus, 
                         ij 2 

                  ic."1) u*Kz(1 h 
 gws(ps—po)  >c (71) 

Letting  c0 be the concentration when  0 is equal to 1, and assuming aks is 
equal to the height from the bed when  c=c,, equation (71) becomes 

 Pg—  Po  \c c= u*Ih\                                               (72)  7 )Kw slak 

 In order to check the validity of Eq. 72 derived under the assumption that 
 z=ks where the Richardson number is equal to one, experimental data  ob-

tained by Einstein and  Chien"' is used here. Fig. 15 represents the comparison 
between the value of  aks obtained from Eq. 72 by using the measured value 

                             of K that evaluated from the experimental 
 20   data of velocity distribution . In this case, 

                             the value of  aks evaluated from the data 
                             is taken as the values of distance from the 

 0  

                           bed at which the velocity profile starts to                   0
00                              deviate from a straight line  in the  semi- 10                             l

ogarithmic plot in the table of the data 

                 Cndue of a in72                            by Einstein and Chien. In Fig. 15, the                        Fri 
   o at  z..-aks data when the value of  aks/h is less than 

 •  mean  value  otter                              0.05 have been omitted because the exact 
                    the  Lower  layer  

0   value of concentration at  z  =aks is not found  0              /0 20in the table for that case . As shown in 
 h/o(le,  (evaluated from  the  data)                              the figure

, when the value of c, is taken as 
    Fig. 15. Comparison of  aks that at  z=ak s, the value of  aks obtained 

      obtained by experiment                              f
rom Eq. 72 is less than the value evaluated       and theory.                               f
rom the data.  Therefore. is seems from 

Fig. 15 that the value of  c0 is better taken as a mean value over the lower 
layer. 

5. Summary and Conclusion 

 In this paper, the deformation and the flow of muddy clay or heavily con-
centrated liquid with sediment were treated from a rheological point of view. 
In Chapter 1, it was mentioned that the study of mud flow is very important 
in Japan. 

 In Chapter 2, it was shown that the deformation is expressed by Eq. 25, 
based on Boltzmann's idea and that the equation is suitable when the defor-
mation is below the upper limit of the yield point. 

 In Chapter 3, the flow of muddy clay in open channels was treated. The 
relation between the resistance coefficient f and the Reynolds number for 
non-Newtonian flow was discussed and it was found that the modified Rey-
nolds number proposed here is very useful for the "apparent" turbulent 
region. 

 In Chapter 4, the layer near the bed in the flow with relatively small sedi-
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ment concentration was discussed. Since the velocity in this layer deviates 

from the logarithmic law of velocity distribution applied to the region of 
mainflow, the cross section of flow was divided into two parts the upper and 

the lower, which were treated as Newtonian flow and pseudoplastic flow 

respectively. It was found that the thickness of the lower layer can be 
evaluated on the basis of the condition that the Richardson number is equal 

to one at the boundary between the upper and lower layers. 
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