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Abstract

The present paper deals with the deformation and flow of muddy clay or heavy sedi-
ment-concentration liquid. A fundamental procedure for solving the problem in this
paper rests on the principle of the rheological consideration. A theoretical examination
was carried out for the deformation of muddy clay with time and the flow of muddy clay
and relatively small sediment-concentration liquid in open channels. Also experiments
were conducted in order to verify the above theoretical treatment and to make clear the
characteristics of muddy clay. The experiments showed that the theoretical treatment is
valid for explaining the behavior of muddy clay and the flow of relatively small sedi-
ment- concentration liquid.

1. Introduction

As a first step in investigating mud-flow, the present paper deals with the
deformation and flow of muddy clay or heavy sediment-concentration liquid.
Mud-flow means the flow of the terrestrial deposit layer saturated with rain
in a mountain stream. In Japan, many human lives and possessions are lost
by the mud-flow every year. In addition, because of the occurrence of mud-
flow, the river bed rises and mud-flow breaks structures in a river.

In order to prevent these disasters, the character of mud-flow should be
made clear. Although there are many ways of approach in investigating
mud-flow, the problem is treated here especially from the view point of
establishing the mechanics of the flow.

First, this paper deals with the rheological law of muddy clay. The pro-
blems of the creep of muddy clay and the deformation law of such soil are
discussed in Chapter 2.

In Chapter 3, we discuss the flow of muddy clay in an open channel in
which the clay is loaded by the stress, r greater than the yield stress zy.

In Chapter 4, the rheological property of the lower layer with heavy
sediment-concentration near the bed in the flow of liquid with relatively
small concentration is discussed.

2. Deformation and flow of muddy clay

Generally, material such as muddy clay deforms following the rheological
law. The Bingham law or the pseudoplastic law applies to mud-flow. The
Bingham plastic is characterized by the flow curve of a straight line having
the yield stress 7, expressed by an intersection with the shear-stress axis as
shown in Fig. 1. The yield stress 7, is the stress to exceed before the flow
occurs. The rheological equation for the Bingham plastic may be written
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p=T"22 <>
223

where # is the rate of strain de/dt
and u» the plastic viscosity.

The pseudoplastic flow has not any
value of the yield stress and the
/ . typical flow curve for such materials

T (Bffl)gham g ) indicates that the ratio of shear stress
qrd Yeaua to the rate of strain, which may be

T termed the apparent viscosity s is

Fig. 1. Explanation diagram of flow not constant, but decreases with in-
curves. crease in the rate of strain and that

the flow curve becomes approximately linear only at very high rates of strain
as shown in Fig. 1. The logarithmic plot of the rate of strain against the
shear stress in this case is often found to be linear. As a result, the follow-
ing empirical expression is widely used to characterize a fluid of this type:

.

r=— @
where g, is the pseudoplastic viscosity and # a constant expressing the
degree of non-Newtonian behaviour.

However, it is not clear which materials this relation will fit and what
characters these parameters have.

It is obvious that at least two parameters must be made for any non-
Newtonian fluid by measurements in order to determine its rheological pro-
perties. To do this, the properties of muddy clay have been investigated by
using a coaxial cylinder viscometer.

The relation between the measured torque 7 and the angular velocity w of
the inner cylinder for the Bingham plastic filled in the coaxial cylinder
viscometer, is given by

, \
T (17_1_)_7_?/11-12 (3)

0=—-—F—
drhup \ ¥  75% 7. 2 41

\

where % is the depth of liquid and 7, and 7; are radii of the inner and outer
1 1)
7'—12—7'—22)' the rela-
tion will be expressed by a straight line with a slope of 1/usr when T exceeds
the yield value of torque 2zry7:%h.
Therefore, by measuring the angular velocity and torque in the coaxial
T

cylinder viscometer and plotting the relation between @ and —( 1*-L),
4drh 712 7’22

cylinders respectively. Hence if o is plotted against 4—3}!—(

the values of xpr and 7,, can be decided.
On the other hand, for the pseudoplastic, the relation between T and w is
given by

©= 2;:,1,, ( 2:£h)n( rllzn "%) )

Hence if log w is plotted against log 7, the. relation will be expressed by a
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straight line with a slope =.
Some results of the tests con-
ducted by these authors are
shown in Fig. 2. From these
graphs, it can be judged that
the material is plastic. Eq. 1
explains the parts which are
straight lines in Fig. 2. The
details will be described in the
following chapter.

It is seen, however, in Fig. 2
that the slow flow appears
even when t<r7,. Such slow
flow is as important as in the
region of a high rate of strain
for the mud-flow.

Some of the results of the
tests for creep by shear are
given in Fig. 3 showing curves
of angular velocity @ under
constant stresses in which the
time ¢ is taken as an abscissa.

The deformation of materials
at a given moment of time ¢,
is the sum of the recoverable
and wunrecoverable parts of
deformations. The former is
proportional to the stress; that
is an elastic part. The latter
is related to the rate of strain;
that is a viscous part.
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Fig. 3. Relations between angular velocity @
and time ¢.

The behavior of an ordinary viscoelastic body is characterized by a modulus
of elasticity r and a coefficient of viscosity x, and the shear stress is expressed

by
d
r=r-6+ﬂ7§ ®
The solution of Eq. 5 is
“Ie, 1t Te
e=e¢ * E°+ZSoT°eu dt) ®

where ¢, is the strain at £=0. When r=constant, Eq. 6 becomes

e=%+@—%%ﬁ1 ™

if € is zero, Eq. 7 is written as

T

e=—f—(1—e—7t> ®

T
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Therefore, the strain rate is

-
de _ T )t ®

dat
Since de/dt=w, the following equation is introduced :

1 =log——T-tloge 10
ogw g” P g

Eq. 10 means a linear relation between log @ and ¢.

It is fond, however, from the plots of data that this relation is generally
not linear but concave as shown in Fig. 3 and the values of o tend to be
constant with the lapse of time. The difference in the tendency is caused
by the assumption made in deriving Eq. 10 that y and x are constant. This
phenomenon is always seen in the creep of a viscoelastic materials.

Therefore, the following equation will be used instead of Eq. 5:

=7 —l—,u(e)% an

The behavior of materials for which the stress-strain relationship is ex-
pressed by Eq. 11 may be described by the integral equation of Boltzmann?,
The deformation at a certain time £, caused by a stress varying with time
is expressed as follows :

=0 +{ gu-orae 12)
At a constant stress, the equation takes the form
T 11
e =T+l gt~ de a3

When the stress r workes from &(<?) to &é+d¢, the deformation during
that time is the sum of the deformations ¢, and —e¢;, in which ¢ is the defor-
mation from £ to ¢ in Eq. 13 and —e; is the deformation from é+d¢ to 2.

(23 t-E-az B
a®-a® =t gt-0ds-{" " gt-¢-dpds (19)
(yemh The deformation at time £ is the sum
60 of the instantaneous deformation and
the deformation progressing with time.
40 : :
The latter is the integral of Eq. 14 from
ec, (@] et Or g q
2050170 t=0 to t=t.
T Since it is difficult to solve Eq. 14, the
fo expression for the deformation after a
50 5_3_(‘_",,—-0" certain time is written in the following
10 |-, O] form from experimental results shown
8 in Fig. 4:
6 e=Ar* (15)
6 8 10 20 40 60 80 fo0
e (revolvey ~ where 2 is a function of ¢ and ¢ is a

Fig. 4. Relations between stress ¢ and constant. Then, Eq. 15 is used instead
deformation € with a parameter of time. of the first term of the right hand in
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Eq. 14, in the same way as that of Nakano’s treatment?.
Similarly the second term is expressed in the following form:

d
At + d’.,;‘ ™dT (16)
where T=t-z. Thus
a® —ea®)=—

Integrating Eq. 17 from £=0 to ¢{=¢ and addmg the instantaneous deforma-
tion at time ¢, the following expression is derived for the total deformation
at time ¢:

di (T)

wdT an

SORRS eo A a7 - —+T"So AL ar (18)
Putting
T
AT x> (19
then, Eq. 18 is written as
O ———+T“’S x(t)dt (20)
From the plots of data shown in Fig. 5, the 10 . :
ratio of the deformation to that at the upper 08 L O T =155 9/cm* _f___
limit of the yield point may be expressed os | @ T=r249km’ o
as follows: £
¢/eu= (t/t) QD € o4 o a8
where ¢, is the value of deformation at the /

upper limit of the yield point, and £, is a
duration time until the deformation reaches
the value ..

Next, using Eq. 21 as the expression for al
the deformation at any time, from Eq. 20

02

o/ a2 04 08 08 Lo

/1
the following relation is obtained: Fig. 5. Relation betuween e
t\° and ¢/tu.
oo kO di=e(+) 22
or
YA

in which the value of b can be regarded constant, independent of the stress
7 from the experimental results. For instance, when the concentration by
weight ¢; is 45.5 per cent, the value of b is 0.96.

The deformaticn to be added after it exceeds the upper limit of the yield
point is expressed as

¢ =%(T ) (1) @0

Therefore, the deformation at time ¢ (<#,) is written as

ty
€@ =;+T«’So x(t)dt—!—ﬁ(f— o) (-t (25)
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This equation is available for use when muddy clay is loaded by a stress ¢
which is greater than 7.

3. Flow of muddy clay in open channels

When 7 is greater than 7, the muddy clay flows. The character of the
flow in open channels is discussed in this chapter.

@) Bingham flow

The following equations are derived in general for uniform flow in an open
channel.

(A-2/h)=1/7 (26)
Ty =pghl, @n
where z is the distance from the bed, % the depth of flow, 7, the shear stress
at the bottom, p the density of the fluid, and I. the energy slope. Substitut-

ing Eq. 26 and 27 into Eq. 1, the expression for the velocity distribution is
obtained as follows :
(a/ —i\
2/

/’
_ Wty | /]
TTur U 1= [ @8

where @’ is equal to zy/%, 2z, the depth at the point were r, appears, and
{=z/h. In this case, the velocity reaches maximum value at z=z,. Substi-
tuting {=a’ into Eq. 28 yields

_hry | a
o= =y | (29)
The mean velocity is
2y
S udz+ tmae (N — 2y) e a’i"(l —%\
= =2 \ == 18 B=yii—a 30
) Uz 2(1—-a”)

Then, the relation between the slope I and the mean velocity . is expressed
as follows:

3“’”{ ﬁ%izi a) }'

I=_%0 -
ogh pgh? @D
Now, putting
_ MR
He=301—a)g

Eq. (81) corresponds to the resistance law for the laminar flow of the New-
tonian liquid. Also, the resistance coefficient f’ is introduced by the following
expression :

_p Ll i
I_f R zg (32)

For Bingham liquid, even when the mean velocity is the same, the velocity
gradient on a boundary, or the boundary shear stress, is varied with the
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variation of 7y or us. Therefore, the resistance coefficient f does not always
correspond uniquely to the mean velocity #x®.
Then, the specified velocity U which is expressed as
1¢* 1
U2=—S U dz=um2FR1((1), Fm(a)— E)—m

2y Jo

33

is adopted here instead of #.
In this case, the velocity U is different from #, in Eq. 32. The velocity
distribution for the laminar Newtonian flow is given by

)
then,
= et =7 () @

The mean velocity for laminar Newtonian flow in an open channel is
— LT\,
()

Therefore, the value of Fs in Eq. 33 becomes 1.2 for laminar Newtonian
flow.
Thus, the energy slope for the Newtonian flow is expressed as

1 Uz 1 “n?
I=Fs gy =12

where f/x=1.2fx* and the suffix N denotes the resistance coefficient for the
Newtonian flow. The expressions for the Bingham flow are

—f 1 ui® 37

f/ *L l—Fm(a)f ¥ 1 1'2‘"” (38)
g
or
_ 1.2-2ghl
f'a= Ut F (@) 39

where the suffix B denotes the quantities for the Bingham flow.

In order that the relation between the resistance coefficient f's and the
Reynolds Number R,z for the laminar Bingham flow may hold the expression
f'3=6/R.s for the Newtonian liquid, the Reynolds Number K.z should be
written as
oumh Fg (@)

_ 12pr

38(-a)

-,R /en= (40)

b) Pseudoplastic flow

In the same way as to the Bingham liquid, Egs. 26 and 27 are also applied
to the uniform pseudoplastic flow. Substituting Egs. 26 and 27 into Eq. 2 the
expression for the vlocity distribution is obtained follows : '

h?,'on

=m{l— A-r+1} 4n
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Therefore, the mean velocity is expressed as

_1(» _ h
um—wsoudz— TR 42)
and the energy slope is
_To #pl/numlln(n_i_Z)l/n
I= pgh - pgh“l/" (43>

when n=1, Eq. 43 coincides with Eq. 38 for the laminar Newtonian flow.

In this case, even when the mean velocity is the same, the velocity gradient
is varied with the value of #. In the same way as for the Bingham liquid,
the following equations are derived :

h
Uz= %So wrdz = u2Fp (n)
n+2)2 2 1 )
Fou(n) =S f1-
=Gt T a2 Y2 D A1) “3)
1.2-2gh1
7 g -4 LTt
o =7 Fop (1) 4o
3 ohY 72 Fpy (1)
7 —
R er — (n+2> 1/numl/n 1 2/11)1/73 (45)
where the suffix p denotes the quantities for the pseudoplastic flow.
¢) Comparison between the experiment and the theory
100 TABLE 1.
[
L1 .
Ranges of experiment.
% —
0 > Coonfdglo?;ls ranges
L4+ dso= 000g™"
-
. \ | | discharge 5— 20 1/sec
0007 002 003 005 007 00/ 02 .03 .05 .07 0/0 Q20mm depth 5— 14 cm
d
Fig. 6. Cumulative di ] o concentration | 0—350 gr/1
1g. 0. umuiative diagram OI grain size
distribution of sediment used. bed slope 1/100
. I,=Yi00  dn= 08 x10"mm For the purpose of
ogh 9~ 53Ysecy [ 1 154 1971 154 157 _Jo Y ide [ Jisi verifying the theore-
- 7t 4 4 105 .
P s B AL A AN R AN A tical treatment de-
4| B0 Yltiter 275]l | 490 80 f| |43 3067 ¢ scribed above and
Jg c/ ‘/{7 % j also of disclosing the
; 02 & N )’67@ 0 4 ?,9’ characters of the
h ;Z' K /J ;f . mud-flow, experi-
P P 7 3 9 ments were carried
o0s|—F f g o t out by using a steel
004 ! / ? channel of 0.2m
/ o |1 o b width and 20m
002
6 8 1012 14 16 10 10 10 o 10 length and the CIa:y
u/ug of 0.8X10-2mm in
Fig. 7. Dimentionless expressions of velocity profiles at mean dimeter as

center of flume. shown in Fig. 6 under
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the condition shown in Table 1. Velocity distributions were observed by the
applied Pitot tube method®. Some examples of the experimental results for
velocity distribution are shown in Fig. 7.

Since it is found from the results of the experiments that in the case of
the concentration ¢;>>300g/1 the velocity above a certain depth being almost
constant, the flow in such a case was treated as that of Bingham liquid.

cm o 10.48cm sed’
I | ]
0
d=0008mm | OT » ?
F=1.34x10° 35€ y 04
8 , — cmt L] O
o observed |° l 03 /’é
z du
] value iz g /(/ |
) > gsec
J Mg =0224 omT
ar
4
¢ UL
9/ 0 o 02 04 06 08 X100~
2 T-Ty 1 9/cm*
ol
o B~ Fig. 9. Relation between du/dz and 7—7,
0 for data shown in Fig. 8.
02 04 06 08 0 L2
U msec A typical example of the velocity distri-
Fig. 8. Comparison of velocity butions under this condition is shown in
profiles obtained by experiment Fig. 8. It seems that 7, occured at z=
and theory. 6.25 cm, and therefore the relation between

(t—1ty) and du/dz is plotted as shown in
Fig. 9. From this result, the material is considered as a Binghum fluid. The
viscosity is not always constant over the flow layer. The viscosity near the
upper limit of the yield point is estimated as 0.224 g-sec/cm?. The velocity
distribution calculated by using the above value is shown in Fig. 8. As there
is very little data, the validity of Egs. 39 and 40 were not checked for open
channels, but the data of pipe flow was checked.
In pipe flow, the following equations are introduced corresponding to Egs.
39 and 40 by the procedure similar to that for the Bingham liqued in an
open channel :®

_hr D-2g 9(5+6a—11a?)

=T e Fm@ - TP =500y 179 “45)
_ 4aB20Dun’F iy (@) _Tr _a‘'—4a+3
Re}i = un ) a= To ’ BZ 12(1 (46)

On the other hand, for the pseudoplastic liquid, the resistance coefficient
and the Reynolds number are

_h _D-2g _3 nt3
fo=7 Ut Fpa (1) Foa(m) = 4 n+2 “n
-1/n -2/n
Ryp= 8D gt (48)

2 ﬂlln

where D is diameter of pipe, %r the loss of head.
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Results of the experi-
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ment which was con-
ducted by using plastic
pipes of 2.72cm and
4.09 cm in diameter for
the Bingham and New-
tonian flows are shown

in Fig. 10. It is seen

ae

from this figure that
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the above relations
may be adopted not
only for apparent lami-
nar flow but also for
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flows. It is considered
that this expression is

97) _| also applicable to ap-
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~ood| parent turbulent flow.
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Fig. 12. Relation between 1/4/fz and
R.5V fr for Binghamflow in pipes.

1 _
7}722'0 log,o (R.V/ ) —0.07,

d

Relation between f,* and Rep for pseudoplastic

It is found from Fig. 12
in which the relation
between 1/1/fz and
R.zV f= is plotted that
the resistance law of non-Newtonian
flow is expressed as

10°

Vife
where A and B are constant. For in-
stance, in the case of Fig. 12, A= —0.07
and B=2.0. The resistance law in
pipe flow obtained by the authors for
clear water is

A+ Blogu, (Re)ﬂ/f_n) 49

G,

Therefore, if the resistance law of non-Newtonian flow is expressed by the
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modified Reynolds number defined by Eq. 46 or 48, the values of A and B in
Eq. 49 are equal to those for the Newtonian. flow. However, it is generally
known that A=—0.8 and B=2.03 for the Newtonian flow. Accordingly, the
resistance law of the non-Newtonian flow for Bingham liquid in a pipe may
be expressed as

1 _
Vi 2.03 logio(RerV fa) —0.8 (GD

For the pseudoplastic, R. and fr in Eq. 51 can be replaced by Re and f
respectively. In an open channel, referring to the experimental result“for
the Newtonian flow in open smooth channels by Iwagaki?, the relation
described above, will be written as

1/1];,;=2.o7+4.07 logio (R sV f'5) (52)

4. Characteristics of flow with low sediment concentration

The data of the flow with low concentration in the previous experiments
are treated in this chapter as the Newtonian flow by applying the logarithmic
law of velocity distribution expressed by

> —A+pin} _ (53)
where, ux is the friction velocity, K the universal constant, A a constant and
ks the equivalent roughness.

In the flow with suspended materials, there are two problems for the
velocity gradient. One is the increase of the velocity gradient in the upper
region of flow, i.e. the decrease of the universal constant, and the other is
the problem that the lograithmic law does not apply near the bed

Vanoni® and Ismail® pointed out the former problem based on experimental
study. A theoretical explanation of this problem, was studied by Einstein
and Chien'@, Tsubaki'’, Shimura'® and Hino’.

Einstein and Chien'®, and Ishihara, Iwagaki and Sueishi® pointed out the
latter problem by their experimental data. But the mechanism was not
mentioned sufficiently. According to the experiment by the authors, the
thickness of the region is reached to 15 per cent of the water depth.

The phenomenon in this region seems to be very complicated because of
being near the boundary, and in addition, it is very difficult to measure the
velocity distribution. Therefore, as a first step, the flow in the region is
treated as non-Newtonian flow.

For the upper region, Eg. 53 is used. Taking aks as the thickness of the
lower region, and #, as the velocity at z=aks;, the distributions of velocity
and sediment concentration are expressed respectively as follows.

u _ 1. 2z
e ux TE 2k €
C h—z ak Ws
= s K
Cotr { P h—akslf i (55)
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= where Cak, is the concentration at z=aks; and

100 ws the settling velocity.
60 The flow in the lower region is treated as
&0 the pseudoplastic, because it is generally known
40 that a flow with a concentration of over 3 per
cent is of pseudoplastic liquid and that of over
20 5 per cent is of a Bingham liquid. The validity
of this treatment was checked by the data of
du Einstein and Chien. From their data, it was
dz ’f,? found obviously that the logarithmic law cannot
5 8 be applied to the lower region. The relation
. between logt and logdu/dz in the lower layer
’ @F O lowerlayer is shown as a streight line in Fig. 13.
{ @ Upper layer Using the expression of the velocity distribu-
2 tion for the lower layer, «, is written as follows.
f hTo”
Upy=—~—{1-1A-07"
‘o o0z o4 05 10 ? (’H‘l)ﬂv{ a-omy (56)
T 9/em* . .
Then, the velocity %, at z=ak, is
Fig. 13. Relation between du/dz A 5
and 7 in lower layer of sedi- To™ 11 1 GQFs 57
ment laden flow. (ﬂ-l-l),up ( h > } G
Therefore, the mean velocity %, is expressed as
1 aks h
Un= 7~ updz+ u-dz
X g
_ 1 A=y (w1 h-ak, 1
(1 7) (n+1)ﬂp{ n+-2 1—77 } 77{ Uy + K In aks I{-]L
=1 =) Ump+7* thmn (58)
where
_ To™h _ 1 1 —yn+2
e = Dty iz 1oy J (59)
o 1, h—ak 1
—u*-l—Kln ah K (60)
aks

As a result, the mean velocity of the flow with law concentration is
expressed in the form of the sum of the Newtonian and non-Newtonian regions.

If the low region is thin and therefore negligible, the above equation be-
comes the well-known equation by taking »=1 as follows :

Um h

1
U —A_f ' (62)

where A is shown as 19
10 K/0.132

A=%6

(63)
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a) Universal constant K

The universal constant K decreases with increase in the concentration. The
theoretical explana-

tion of this effect o authors experimen-t

has been given by | 4 O vanonis experiment ——

some researchers as | / — T [®

previously mention- ZODC&TQ o .

ed. Fig. 14 shows ;| 2 3 4 5 6 7 8 9 /0X/0° C(K-1)guwi(h-a)
the plots of experi- W(23kgl-1)
mental results ac- Fig. 14. Relation between 1/K and cTs—Degws(h—a)
cording to the ex- u*3(2_310g%—1)

planation of Shi-

mura'®, which fits in fairly well with the theory. In the figure, @ is the
height of roughness, g the acceleration of gravity, rs the spe01ﬁc gravity of
sediment particles, and ¢ the volume concentration.

b) Thickness of lower layer

Since aks:is the thickness of the lower layer to which the mixing length
theory can be applied, the Richardson number ®, showing the stability of
flow with density gradient!®, is adopted as a criterion to decide the value of
aks, because when ®>1, the theory of momentum transport can be used.
Richardson number @ is given by the following expression :

@5@%)” - ZZ (64)

Letting oo and ps be the densities of liquid and sediment particles respec-
tively, the density of the liquid with sediment is expressed by

o= (s — po)c+po (65)

The basic equation of sediment suspension is given by
d
g Wi =0 (66)

where & is the sediment transfer coefficient. By Eqgs. 65 and 66, the density
gradient is written as.

do _ _ wsc(ps=p)
L= 67

Since the velocity gradient is

du/dz=uy/Kz (68)
The condition that @ is greater than 1, is expressed as

[tz \2__ gwsc(ps—po)

[,EJ Zo pEs (69)

Furthermore, ¢ in Eq. 69 is
\
e=uxKz(1- 7 ) 70)

\
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Thus,

gws(ps— 0o)

>c 7D

Letting ¢. be the concentration when @ is equal to 1, and assuming aks is
equal to the height from the bed when c=c., equation (71) becomes
os—o0\  _ uxl (L_ >
(5 )cc— (a1 72
In order to check the validity of Eq. 72 derived under the assumption that
z=Fks where the Richardson number is equal to one, experimental data ob-
tained by Einstein and Chien'® is used here. Fig. 15 represents the comparison

between the value of aks obtained from Eq. 72 by using the measured value
of K that evaluated from the experimental

20 }7 data of velocity distribution. In this case,

the value of aks evaluated from the data
, is taken as the values of distance from the
° ' bed at which the velocity profile starts to
° A deviate from a straight line in the semi-
logarithmic plot in the table of the data
by Einstein and Chien. In Fig. 15, the

value of G in g7

h/aks (coluculated from Eg. 72)
3

o at Z=uks data when the value of aks/2 is less than
® mean culue over 0.05 have been omitted because the exact
the lower layer . .
0 | | value of concentration at z=ak; is not found
0 10 20 in the table for that case. As shown in

h/k ks (evoluated from the data) .
s m the aata the figure, when the value of ¢, is taken as

that at z=aks;, the value of aks obtained
from Eq. 72 is less than the value evaluated
from the data. Therefore. is seems from
Fig. 15 that the value of c¢. is better taken as a mean value over the lower
layer.

Fig. 15. Comparison of aks
obtained by experiment
and theory.

5. Summary and Conclusion

In this paper, the deformation and the flow of muddy clay or heavily con-
centrated liquid with sediment were treated from a rheological point of view.
In Chapter 1, it was mentioned that the study of mud flow is very important
in Japan.

In Chapter 2, it was shown that the deformation is expressed by Eq. 25,
based on Boltzmann’s idea and that the equation is suitable when the defor-
mation is below the upper limit of the yield point.

In Chapter 3, the flow of muddy clay in open channels was treated. The
relation between the resistance coefficient f and the Reynolds number for
non-Newtonian flow was discussed and it was found that the modified Rey-
nolds number proposed here is very useful for the ‘‘apparent’”’ turbulent
region.

In Chapter 4, the layer near the bed in the flow with relatively small sedi-
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ment concentration was discussed. Since the velocity in this layer deviates
from the logarithmic law of velocity distribution applied to the region of
mainflow, the cross section of flow was divided into two parts the upper and
the lower, which were treated as Newtonian flow and pseudoplastic flow

respectively.

It was found that the thickness of the lower layer can be

evaluated on the basis of the condition that the Richardson number is equal
to one at the boundary between the upper and lower layers.
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