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                             Abstract 

  In order to analyze the earthquake responses of structures, it is first very important 
 to predict reasonably an earthquake excitation pattern referring to the model of a  structu-

 ral system and the measures of aseismic safety. It is not possible, however, to know the 
 excitation properties of future earthquakes so assuming that future earthquakes will have 

 approximately the same properties as past earthquakes, it is necessary to analyze the 
 properties  of the accelerograms of past earthquakes. Most of such accelerograms are 
 likely to be random time functions. And their statistical quantities are, in details, 

 different from each other depending upon the individual past earthquake, the recording 
 place of accelerograms and other conditions. 

  In this paper, the auto-correlation functions and amplitude probability density dis-
 tribution functions are estimated for a number of past strong earthquake accelerograms. 

 It is also shown that an earthquake accelerogram has a spectral density with a few peaks 
 and non-Gaussian probability density distribution. On the other hand, the statistical 

 model for the equivalent earthquake excitation pattern is presented by considering the 
 common properties based on the above statistical results. Although it is difficult for the 
 earthquake response analyses to give the dimensional quantities-intensity, frequency 

 characteristics and so on-of earthquake excitations relating to individual soil conditions, 
 the dimensionless parameters which define the statistical model of the equivalent earth-

 quake excitation pattern can be determined in the case of the assumption that the influence 
 of the ground-structure coupling being small. Then it is found that the spectral density 

 of a simplified equivalent earthquake excitation pattern may consist of the band limited 
 white noise spectrum and the delta functions corresponding to a noise component and 

 periodic components. 
  It should be noted that this paper was presented to the First Chilean Sessions on 

 Seismology and Earthquake Engineering held in July, 1963. 

                             Nomenclature 

 v, T,  r=sampled nondimensional time, time and nodimensional time. 
w,  Sl,  (0=angular frequency with respect to  v, T,  r. 

 Tri,  dT N=sampled duration, sampling interval of time and total sampling 
   number. 

 1=1/g/m= coefficient of the time transformation. 

 {F5} = normalized sampling data. 
A(v), a(T),  a(r)  = wave shape functions. 

 ao(r)=shifted wave shape function defined by eq. (7). 
 as(r) =stationarized wave shape function.
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 rd—nondimensional duration of the wave shape function. 
 (RI)),  R(T)  ,  R(r) =auto-correlation functions. 

 Rs(r),  Rro(r),  nR70(r),  Rf  (r)  =  auto-correlation functions defined by  eqs. (9), 

   (10), (12) and (17). 
 S(w),  S(12),  S  (CO)  =  spectral densities. 

 .%((0),  Sro(co),  Sfo(co)=spectral densities defined by eqs. (19), (20), (21). 
 q  =co/coo  =  total number of cycles in the duration. 

 coo =  27r/rd= reference angular frequency. 
 n=sampling interval of amplitude and number of division. 

 m  =  number of the sampled data included in the jth interval of amplitude. 
 dvt,  dri,  ch-t= time intervals contained in the infinitesimal interval df of 

    amplitude. 
 W(f)=W(f)= W(f)  =amplitude probability density distribution function of 

   the wave shape function. 
 re(r)  dimensionless wave shape function of the equivalent earthquake  ac-

   celeration 
 ase(r)  =dimensionless wave shape function of the equivalent stationary earth-

   quake acceleration. 
 Rss(r),  S„(co)  =auto-correlation function and spectral density of  aso(r). 

 ase(T)  =wave shape function of the equivalent stationary earthquake accelera-
    tion. 

 co—level of the band limited white spectrum of  ase(T). 
 ci= power of the predominant periodic component of the spectral density of 

 a„(T). 
 S2.=27c/Tz, .Co=--27r/Tu=upper and lower angular frequency limits of the band 

   limited white spectrum of  ase(T). 
 i21.  =angular frequency of the predominant periodic component of  ase(T) 

 0).,  =upper and lower nondimensional angular frequency limits of the band 
   limited white spectrum of  ase(z). 

 co,  =  nondimensional angular frequency of the predominant periodic cmponent 
   of  ase(r)• 

 r1,  =ratio of the power of the predominant periodic component to that of noise 
    component. 

 rfi  =ratio of the lower angular frequency limit of the band limited white 
   spectrum to the upper angular frequency limit. 

 rfl  =  ratio of the angular frequency of the predominant periodic component to 
   the upper angular frequency limit. 

 p= nondimensional intensity parameter of the dimensionless earthquake ac-
   celeration. 

 0-1  =  nondimensional frequency parameter of the dimensionless earthquake 
   acceleration. 

 a—maximum amplitude of the dimensionless earthquake acceleration. 
 1S2  =27r/iT=fundamental natural frequency of a structural system. 

 ,co  —27r/is-  =nondimensional fundamental natural frequency. 
 A=maximum amplitude of earthquake acceleration. 

 So  =level of the band limited white spectrum of earthquake acceleration . 
 M  K,  T  =  reference values of mass, rigidity and deformation of a structural
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   system. 
 au,  v,„  d.= variances of the dimensionless wave shape function of the equivalent 

   stationary earthquake acceleration, velocity and displacement. 
 avO,  240,  C120  =  variances of the equivalent stationary earthquake excitation 

   defined by a set of parameters  rp,  rfi,  rn,  coil  =1,  (e.=1. 
 Au,  17,,,  D.= variances of the earthquake excitation. 

 c.,  cd  = dimensionless constants of the frequency characteristics of the 
   level of the band limited white spectrum represented by constant stan-

   dard deviation of acceleration, velocity and displacement. 
 Ca,  Cu, Ca = constants of the frequency characteristics of the level of the band 

   limited white spectrum of  Aa.,(T). 
 W'(0)  =amplitude probability density at zero calculating from  R.0(0) on the 

   assumption of the normal distribution. 
 Ruo'(0)  =variance calculating from W(0) on the assumption of the normal 

   distribution. 
 si  =  ratio of  W'(0) to  W(0). 

 s2=ratio of  R'uo(0) to  R.0(0). 
 ss  =ratio of  thie maximum amplitude to the standard deviation. 

s(x) =step function, s(x) =0 for x<0,  s(0)=1/2, s(x)  =1 for x>0. 

 6(x)  =delta function,  8(x)  =0 for  x  0,  6(x)dx=1. 

 E(X(Y))=mean of X with respect to Y. 

X(X)  ID  Y(y)  =  correspondence  between Fourier trasform pair  X(x)  =  2-.Cc—    x  Y(y)ei.ody,  Y(y)  =  f  X(x)e-JY2dx,  j=V  -1. 

                                                      - 

 X*  Y=  convolution of  X  and Y=
..X(x) Y(z- x)dx =Y(y)X(z-y)dy. 

1. Introduction 

 For earthquake response analyses to establish the principle of aseismic 
design of structures, an earthquake excitation pattern should be given together 
with a model of structural system and the measures of aseismic safety. To 

predict the properties of earthquake excitations which will occur in the 
future, we have to analyze the accelerograms obtained in the past. Most of 
the accelerograms seem to be random time functions, and their statistical 

quantities are different in details depending upon various conditions. 
 In this paper, the statistical properties of several earthquake accelerograms 

recorded in U.S.A. are estimated as the problem of determining the typical 
input pattern for the earthquake response analysis of  structures1)-". Auto-
correlation function and amplitude probability density distribution function 
are calculated for each accelerogram, and by inducing common properties in 
these results, a statistical model for the equivalent earthquake excitation 

pattern is presented. 

2. Wave shape function of accelerogram 

 The wave shape function is obtained by normalizing the original accelero-

gram so that the mean is zero and the maximum value is unity. At first, 
the wave shape function A(v) is defined as the following piecewise linear
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type function by using the time series  {Fi}, for j=0,  1,  N sampled for 
the interval  ilT=Ta/N from the original accelerogram having the time du-
ration  Td. 

 A(v)  =  E{FJ-1+  (Fi  FJ-0(v  –  (j–  1))}{s(u–  (j  –  1))  –s(2.,  –j)}  • (1) 
                        )._ 1 

                             1 •N        E(A( v)) –N0 A(v)dv – E({FJ})= 0,  IA(0  =1  (2) 

             - E({FJ})}PO+ FN1_} .     -(Fi)  —E({FiD = EFt (3) 
            - E({P})17.  iv  l  2  A  =1 

The wave shape function a(T) with respect to the time  T, and the nondime-
nsional wave shape function a(r) can be obtained easily from  A(v), if we per-
form the following transformation related to the independent variables. 

 a(r)  =a(T)  = A  (i.,) for  r  =  AT  =  (4) 

 la(r)  rm.=  I  a(T)I.=  1,  E(a(r))  =  E(a(T))  =0  (5) 

where  r, T and  1.) are the nondimensional time, time and the sampled nondimen-
sional time variable respectively.  CO,  raD,  CO,  T  dD and  CO,  ND are the corres-

ponding intervals. is the coefficient of the time transformation.  S(v) is a 
step function defined as  follows  : 

 1  s( p) =0 for  v<0,  s(v)=— 2for  v=  0,  s(v)=1 for  v>0  (6) 

The stationarized wave shape function  as(r) is now  defined by using the 
above obtained wave shape function  a(r) as  follows  : 

                                                    co  as  (r)  ao  (7-  –  prd),  ao(r)  =  a(r  +    )   (7) 
were 

 ao(r)-0 for  1r  1-±,Trd/2,  ao(r)0 for  Irl>ra/2 

and  

las  (r)  lao(r)  la(r)  =  1  (8) 

3. Statistical quantities of wave shape function 

 The statistical quantities are defined here only with respect to the above-
mentioned wave shape function of accelerogram, assuming that it is a part 
of the ergodic stationary time functions. The quantities determining the 
statistical properties of the wave shape function for the finite interval can 
be reduced to the auto-correlation function or the spectral density and the 
amplitude probability density distribution function of the stationarized wave 
shape function. 

 3.1.  Auto-correlation function 

 The auto-correlation function of  c4(r) is defined as  follows: 

            Rs(r)lirn- 1a(t) a (t+r)dt= E Rror–/era)  (9) 
 x--  2A _Ag
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 Rro  (r)  =  — d/2, ao(t) E ao (t +– pza)dt-fts(z+2.1-i2)}  (10) 
 J–re2 tk= —1 

                Rro(r) = hRrO(r)-FnRro( – (11) 

                 hRrO(r) =Rro(r)(s(r)–s(1--112)}  (12) 
Among the auto-correlation functions corresponding to the variables  7", T and 
v, the following relation  exists  : 

 hRrO(r)  =hRro(T)  =1R.0(v) for  2T  –24Tv  (13) 

Herein,  hPro(v) can be calculated from the following  formula  : 

           ,pro(o=AAjial.+,-EA„+,-Elis(v)–s(–1\L-)}- (14) 
                                        2 where 

            AK=—21{24(x-1)+A(K))-for  is  =1, 2,  N  (15) 

 A„0 for  0  </c<N,  A,<=  0 for and  K>N, 

 x="4 means such an integer as  x-1/2<p<x+1/2. Introducing the auto- cor-

relation function  Rio  (r) corresponding to  ao(z),  Rro(r) is expressed by the 
following formula 

           Rr0(r)= E Rfo(r itrd){ s(r–– (16) 
      A-1 22  ) 

 Rfo  (r)  =  ijr4/2  ao(t)ao  (t  +  r)dt   (17)                                      —rd/2 

 Rfo(r)40 for  Ir  I  <rd and  Rfo(r)  0 for  Irl�rd. 
Particularly, the following relation is valid among the mean squares of the 
various wave shape functions. 

 Rs (0) =  Rn(0)  =  2ARro  (0)  =Rf0(0)  (18) 

3.2. Spectral density 
 The spectral densities of  as  (r) and  ao(r) are defined as the Fourier tran-

sforms of the corresponding auto-correlation functions. 

 .1?(z)D,Ss(o)  =Sro  (co)  (1  +2E cos  pz-  do)  =  S  10(w)  (1  +2E cos  proo)  (19) 
                                                                                              µ=1 

                  Rro(r)DSro(w) =od/2Rro(r)  cos  cozdz  (20) 

                                  r 

 Rio  (r)2,  S10 2C (v) cos  cozdz  = I  F0  (fro) la (21) 

         

• Tr; 

where 

 ao(r)  DF0  (1)) =r/2 ao (r)e-j'rdT  (22)                                         –rd/2 

Among the angular frequencies  co,  12 and w  corresponding to variables  r, T
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and  v respectively, the following relation is valid, 

 CD =  S2/2=w/(247')  (23) 

so that, the spectral densities are related to each other by the following ex-

pression. 

 Si,  (CO)  =  2.5,(2)  =  AzIT§;(w) for  p=  s, ro, fo  (24) 

The spectral density  g-0(w) with respect to  V is given by the following for-
mula. 

                                             1 V12                 Rro(v)Dgro(w)  =2f hr2,-0(v) cos wuclv  (25) 
 0 Therefore,  Sro(w) can be calculated by the following formulae corresponding 

to the total number N of the sampled data. 

 w 
 F/2_3  = sin  costau        g

ro(w)  =2E hRro(p) 2 (26) 
                                                 =0 

                           2 

                             w w(1-– 
               +2hPro(N)sin4cos2 4                 2wfor N is even, 

                            4 

and 

                          w 
 (N  –1)/2— sin-2cos few           §

,.0(w) =2  E1A-0(p) for N is odd. (27) 
 µ=0 

                           2 

Instead of w defined in the interval  (-00,  00), the total number of cycles in 
the duration, 

                               wrd.QT,1 _ wN  

                         = 

   27r  27r  27r(28) 

may be used in the same interval  (–co,  00). It can be shown that the fol-
lowing relations exist between  Sr0(w) and Sio(w). 

                                          1z
2co                  Sro(co) =—1Sfo(w) (1 + 2 cos raw)**COsin (29)   7I 

       E {Sr0(0) – Sf0 (0))–iprd0)=OC  E  (RrO  (T.  —  rd)  R10  (r  —tad)}  0  (30) 

 = 

 S  ro  (Pah)  =  S  10  (UCD0) for  p=  0,  +1, ±2,    (00  27r                                                  (31)  rd 
and 

 Sro  (CO =  Sfo  (pc°  o) 1  sin  rd(a)  —  t[(-00)   
p  =  –  Co  —  pC00 2 

 (32) 
 =)  E Sro(itwo) 1 sin rd(w–

limp"  7rf= -/MOO
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Since  ,Ss(w),  Sro(co) and  S10(07) are even functions and the wave shape func-
tions  as(r) and  ao(r) have the zero mean values, the following relation is 

 valid  : 

 S3(0)  =  Sro  (0)  S  fo  (0)  =  0  (33) 

and also, the following relation exists in regard to the total power. 

             rSs(co) do)= Sro  (co) dco =  1S10 (co) dcoRro (0)  (34)       0 7T  o  7r  0 

3.3. Amplitude probability density distribution function 
 Assuming that the wave shape function  as(r) is ergodic and stationary, 

the amplitude probability density distribution function  is-defined by the fol-
lowing equation as the time  ratio  : 

 mf  mf  mf 
 Edri  dT1  Edvz 

               w(d f =  =1.1  =  =,1   =   =1  (35) 

where  {dri},  {dT  i} and  {dvz} for i=1, 2,  ,  mr relating to the variables r, 
T and  v, respectively, are the successively arranged infinitesimal time in-
tervals contained in the infinitesimal interval (f, f+df) in the common co-
ordinate for the normalized amplitude of  a(r), a(T) and  A(v).  W(f) is an 
invariable quantity with respect to time transformation and has the integral 
over the defined interval (-1, 1) contributed to unity. 

 W(f)  =  W(P=  W(f), f 1W(f)df=1  (36) 
                                                          - This quantity is expressed by the following formula by using the previously 

defined time series  {AK} for  /C  =  1, 2,  , N : 

   n11          W(f)=EWi,s(f—(j--2—)4A—s(f—(j+2)44 (37)                                    1- 
 j=  -  n 

where 

 m  j/  (1\1  f) 

and mj for j=0, +1,   •  ±n is the number of the sampled data from  {AK} 
included in the jth interval 

         (i---2),df___f<(j+ 1 2 )4f for j0,  +1,  ,fn  (38) 
 df   

where  .61f is the equally devided sampling interval of the amplitude and 2n+1 
is the total number of division. 
3.4. Numerical results 

 Accelerograms of four strong-motion earthquake records furnished by the 
U. S. Coast and Geodetic Survey are analysed  statistically". The sampling 
intervals are selected as 4T=0.02 sec and  4f=0.05, and the auto-correlation 
functions and the amplitude probability density  distribution functions for the
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wave shape functions are computed using the Kyoto University Digital  Corn-
puter—KDC-I—and, the results are shown in Figs. 1 to  11 and in Figs. 12 to 18, 

 respectively",". In Figs.  1  to  11, the abscissa denotes  I.)=T/  =  r/  (A4T), the 
coordinate does  hkr0  (V)  =  hr?r0  (T)  =  hRro  (7)  for  '1'  =  AT  =LIT:), and the number 
inscribed are the values  2,S,0(0)=A0(0+0)=Rroc0o. In Figs. 12 to 18, the ab-
scissa and the coordinate represent the amplitude and the probability density, 
respectively. 

4. Equivalent earthquake excitation pattern 

  Equivalent earthquake excitation pattern for the earthquake response an-
alysis can be inferred from the above obtained statistical quantities of the 
wave shape function by the following procedure. At first, stationarized 
quantities  R,o(r) and  Sro(co) are approximated as the sum of known statisti-
cal quantities of typical stationary random processes. 

              Rto(r)ERroA(r)-Is(r2– s(r –            =0 2 ) 
 (39) 

 in  r  

                   Sro (CO)Sro  A  (CD)*  sin 
 n  x-0  CO  2 

where 

 Rro  (r)  S  ro  (co)  ,  Rro  A  (r)D  Sro  A(0.) for  2  =  0, 1,  , 

Although the wave shape function of the accelerogram is assumed to be re-

presented by the finite part of a stationary random function  ase(r), the fol-
lowing approximate relation may be valid if the duration  rd is long enough 
to compare with r. 

             Rro(r) Rso(r)-{s(r s(r r2' )1- 
 (40) 
          1 1     S ro (co)Sse(co)* sinreo                       co2 

where 

 Rs,  (r)  DSse(co) 

From the above two approximate relations, we have the auto-correlation 
function and spectral density of stationarized equivalent earthquake excita-
tion pattern. 

 Rse(r) =RrO A (r)Sse(co)  =  ESro  A((0)  (41) 
         2=0 X=0 

Therefore, the equivalent earthquake acceleration pattern can be obtained by 
cutting off the finite interval  rd from the equivalent stationary random func-
tion  as,  (z) having the above obtainedstatisticalquantities. 

           ao,(7-) = as, (r).{s(r2s(z-ra 2 )1- 
 (42) 

 a,  (r)  =a0,( 2 =  as,  (r){s(r)  —  s  (7-  —  ra)}
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As an example of such equivalent stationary statistical quantities, the fol-
lowing may be considered with wide application. 

 Rso(r)  = to sinwu–cou+COLC1        r cosCr+ cos wiz227r (43) 

 Sso(w)=  Aco(s(w+wu)–  s(co+  (00+  s(w–  (el)  –  ceu)}  -Fcia(lco –  on) 

where the first term corresponds to the band  limited white  noise2),3) com-

ponent, and the 2nd term is related to predominant periodic component. The 
parameters contained in this expression  cot,  c1,  wu,  wz,  o are all nondimen-
sional quantities. On the other hand, the original statistical quantities with 

physical dimensions are easily obtained by the transformation of independent 
variable r  =2T  . 

           sin flud-Qz   Rge(T) = TsinT cosT+Cl--cos S21T        it2co       2 -2hr (44) 

  :98e(2) =co{s(S2+ Qu)– s(S2+91)+s(2 ––s(S2 – flu)}±c18(1Q1  –S20 

where  co,  kou=  Qu,  2w1=,Qi are the level, upper and lower limits of angular 
frequency of the band limited white spectrum with respect to the original 
wave shape function  agog.), respectively, and  c1,  2w1 are the power of 

predominant component and its angular frequency. Besides, the level of the 
noise component and the power of the periodic component of the equivalent 
spectral density of original acceleration with the maximum amplitude A are 
expressed by the following, respectively. 

 So  =  COA2  Sl=  CIA  2  (45) 

Among the nondimensional parameters which define the equivalent stationary 
statistical quantities, the following three are most important. 

 ci.Co  8(w–  col)dco  c408(12  –  Qi)dS2  ciA208(Q  –  S2i)dS2           r"=—A
co(a).– WI)=Co (12.–1)—C0142 (S2 uI)  (46) 

                 wiSl1„,cyz1.21   r
f  1  —= ,/Si = =  wu  JLu  wu  JLu 

where  ry is the ratio of the power of predominant periodic component to 
that of noise component, and  pn,  711 are the ratios of the predominant angular 
frequency and the lower angular frequency limit of the noise component to 
the upper angular frequency of the noise component respectively. If the 

parameters  rp,  rri,  rri are appropriately selected corresponding to the pro-
perties of the earthquake and the soil conditions,  c1,  WI,  on are determined 
in reference to  coil  wu which are containable in the nondimensional intensity 

parameter p and the frequency parameter  0-1 of the earthquake excitation, 
respectively. 

                        p=ai/Aco=S0112M31 4/K3142- 

         1co ig2 Tz (47) 

                   ( 

                    (1)–= Q
u  ir
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where  a=  A.1171/1?4 is the maximum amplitude of nondimensional earthquake 
acceleration with zero mean, and  iCo(=  Q  =27r/ir=27r/iliT)  is the nondimen-

sional fundamental natural angular frequency, where  1=1/k/M.  1.Q=27cAT 
is fundamental natural angular frequency of a structural system.  T0=27r/S22. 
is the lower limit of period of the noise component, and M,  K,  I are the re-
ference values of mass, rigidity and deformation of the structural system, 
respectively. Then, the parameters which define the equivalent stationary 
statistical quantities of an earthquake excitation with the nondimensional in-
tensity parameter a are given as  follows  : 

 COu=  iCO  /  (In =  iCOrrlAb,  iCt)r  r 

 (48)           a2c02 =p2,  a2cil 08 (co—(Di) do)= P2icor p(1 —/ 1 
A group of earthquake excitations for the response analyses is supposed to 
be determined by the frequency characteristic of the level of spectral density 
So of the noise component. This frequency characteristic, for instance, may 
be given by the constant standard deviation of acceleration, velocity of dis-
placement. The variance of the dimensionless wave shape function of the 
equivalent stationary earthquake acceleration, and those of the corresponding 
velocity and displacement obtained by integrations are expressed by the fol-
lowing  formulae. 

 ar,=  E  (a  —  E(a))2  =  1  I~Sa(w)dcv=  2(.0  (0).±Cl 

                   1 —Acce—onCi 1                                    0U       vv=E(v—E(v))2=Sv(co)dco = (49) 
                     o 7C Ceurell r (012 

 dv=E(d—E(d))2  =  rsa(co)dco=   Ac°"43 — "3 +  ci   1  
                         .o  3n  ccu3coi3  it  col' 

where 

 a=  ase(r),  E  (a)  =  E(ase(r))  =0 

 v=v(r)=S  crso(r)dr  (50) 

 d=d(r)=  (v  E  (v)) 

 S  ci(co)  =  Sse(co)  ,  S  v  (co)  =  Sa(w)  /  (02  S  a  (CO)  =  S  a  (CO)  /  CO4  (51) 

The variances of nondimensional earthquake excitation are expressed in 
terms of the variances of the equivalent stationary earthquake excitation 
which is defined by a set of parameters  rp, r10,  rr1,  co2=1,  wu=1, namely 

                  -a
y =  Pico ct P20                          .v=vve,(iv(±) 3dvo 

              la>='co (52) 

 74=a2av,  Dv=a2vv,  liv=cradv 

where
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 aro  =  (1–  rrt)(1+rp) 

              1 „             vvo =—I,rprn-2)  (53) 

 dvo =  –  rri)  (rri-1-1-  Trz-4-Frri-3)  /3}  +  rprfl 

In terms of the original physical quantities, the variances are expressed as 

 follows  : 

 A„=  SoDuavo =  27rSo 

 V.  SoS2.-1v.o=  (27r)  -1S0  Ti  (54) 

 D„=.50C2.-340=  (870)-1-S07'04o 

The frequency characteristics represented by constant standard deviation of 
acceleration, velocity and displacement are given by the following equations 
corresponding to the nondimensional system and the physical system, respec-
tively.               

.h,/.-1'2  =Ca,pcb./2=cd                        1 (55) 
               so 1/2z-1/2=ca, sov2T11i2=Soli2Ti312 = Ca I 

where,  cd,  cy, cd are dimensionless constants and Ca,  Cv,  C4 are constants 
which have the dimensions corresponding to acceleration, velocity and dis-

placement, respectively. Now, we consider the equivalent stationary statisti-
cal quantities simplified by substituting  co  =0 in equation  (43), and  Qz  =0 in 
equation  (44). 

 Ace 

. 

   se)=—sinCOur 

                                    -cos  wir     rcr (56) 

                   =Aco{s(co+cou) — s(co —co.)} -Fc18( 1(01  —  col) 

             Rse(T)  _  Co                      7rTsin Slur + Cl-cosf2IT       i  (57) 

            S,e(f2) =(S(f2 +2.) – s(S2 –S20} +ci8( IQI —Q1) 

The variances of velocity and displacement tend to infinity in this case, and 
this figure seems to be unreal. However, we should be permitted to make 

practical use of this simplified formula, because the earthquake response of 
ordinary structural systems may not be affected by the very low frequency 
component in the neighbourhood of zero and the consideration of this range 
is marginal as far as engineering safety is concerned. If we introduce the 
finite duration  rd, the spectral density of the stationarized wave shape func-
tion may be obtained by the following equation. 

          jlco frd(u±wu)/2 sin xd
x+174(0)wi)1  sin ra (co— coi)   Sro(co) 

rd(w+cou)/2  XCO= 7i+CO1 sin 2a)–COI 2 

 (58) 

The parameters which define the simplified stationary statistical quantities
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given by equation (57) are calculated from the previously obtained auto-cor-
relation functions of typical earthquake accelerograms, shown in Table 1. 

 Finally, we shall consider on the amplitude probability density distribution 
function of the equivalent stationary earthquake excitation pattern  as(r). In 

general, the previously obtained amplitude probability density distributions 
of the wave shape functions  are not purely Gaussian. The distortion of the 

probability density distribution function from the normal distribution may be 
approximately estimated by the following nondimensional parameters. 

                     s1=  W'  (0)                                s2-.512  = R2.31(0)S3 -1   W(0)',                       R
70 (0)N/RrO (0) (59) 

where,  W'(0) is the density at zero calculating from  Rro(0) on the assump-
tion of the validity of normal distribution, and  R'ro(0) being the variance cal-
culating from W(0) under the same assumption. Therefore,  si or 53 repre-
sents the distortion of density in the small amplitude of the wave shape 
function. On the other hand, s3 indicates the distortion in large amplitude 

                                TABLE 1. 
  Parameters of the statistical quantities of the wave shape function for the equivalent 

 stationary earthquake acceleration. 
      -- ------___ parameter 

                     co(sec) ci csui rad \,(rad \  rp rti                                       ksec)"1sec)  accelerogram 

 El Centro, May 18,  4.  94  1.  06  2.55 1 37  8.39  5.36 
 1940, N-S,  0-29 sec  x  10-3  X  10-2  X  10  x  10  x  10-2  x  10-1 

 Santa Barbara, June 30,  4.  76  3.  46  3.91  2.67  1.85  6.81 
 1941, N45°E,  0-4 sec  x  10-3  x  10'2  x  10  x  10  x  10-2  x  10-1 

 Santa Barbara, June 30,  2.  09  2.  41  3.88  2.67  1.56  6.87 
 1941,  N45`E,  0-10 sec  x  10-3  x  10-2  x  10  x  10  x  10-1  x  10-' 

                                TABLE 2. 
  Parameters of the amplitude probability density distribution function of accelerograms 

 referring to the Gaussian distribution. 

     parameter W1(0) R'ro(0)  '93=   W(
0) Rro(0)  W'(0) si= W(0)1                                       S2- Rro(0)  1  accelerogramI/Rro (0) 

 El Centro, May 18,4.33 6.21 3.85        3.09 1. 92 4.81 1940, N-S,  0-29 sec X 10-2X 10-1 x 10-1 

 Santa Barbara, June 30,7.04 6.88 4.72        2.191.51 3.77 1941. N45°E, 0-4 sec x 10-2x 10-1X 10-1 

Santa Barbara, June 30, 2.98 4.63 2.15        4.992.31 5.79 1941,  N45`E,  0,-10 sec x 10-2x 10-1x 10-1
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because it is defined as the ratio of the maximum amplitude of the wave 
shape function (i.e. unity) to the standard deviation. These parameters cal-
culated from the data of the previously mentioned typical earthquake ac-
celerograms are shown in Table 2. As a result, it should be noticed that 
the amplitude probability density distribution function of equivalent 
stationary earthquake acceleration is not exactly normal, since the density 
at small amplitude is quite higher than that of normal distribution and the 
density at the amplitude larger than the several times of standard deviation 
is always zero. However, to find the analytical expression of the density 
distribution, the higher central moments will be estimated in detail. 

5. Conclusion 

 As a result of the statistical analyses of earthquake accelerograms, it has 
been shown that an earthquake accelerogram has spectral density with some 

peaks and non-Gaussian probability density distribution function, and that 
the statistical properties of the wave shape function of accelerograms are 
different in details, depending on each earthquake, the direction of the component 
and the sampled duration of the accelerogram. However, from the stand-

point of earthquake engineering, a statistical model of the equivalent earth-
quake excitation pattern should be inferred to common statistical properties 
of accelerograms. To define it the nondimensional parameters have been 

presented. Assuming the ground-structure coupling is small, the spectral 
density of the equivalent stationary earthquake acceleration pattern will 
consist of the "band limited white noise" spectrum and the delta-function 
corresponding to a noise component and predominant periodic component, re-
spectively. As regards the amplitude probability density distribution function 
of the equivalent stationary earthquake acceleration pattern, it should be set 
up remembering that the maximum amplitude is several times as large as 
the standard deviation, and that the density at small amplitude is quite 
higher than that of the normal distribution having the same standard devia-
tion. The above mentioned statistical model of the equivalent stationary 
earthquake excitation pattern can be used as the input pattern for the earth-

quake response analyses to use analog or digital computer. 
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