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Abstract

In order to analyze the earthquake responses of structures, it is first very important
to predict reasonably an earthquake excitation pattern referring to the model of a structu-
-ral system and the measures of aseismic safety. It is not possible, however, to know the
excitation properties of future earthquakes so assuming that future earthquakes will have
.approximately the same properties as past earthquakes, it is necessary to analyze the
properties qf the accelerograms of past earthquakes. Most of such accelerograms are
likely to be random time functions. And their statistical quantities are, in details,
different from each other depending upon the individual past earthquake, the recording
place of accelerograms and other conditions.

In this paper, the auto-correlation functions and amplitude probability density dis-
tribution functions are estimated for a number of past strong earthquake accelerograms.
It is also shown that an earthquake accelerogram has a spectral density with a few peaks
and non-Gaussian probability density distribution. On the other hand, the statistical
model for the equivalent earthquake - excitation pattern is presented by considering the
common properties based on the ahove statistical results. Although it is difficult for the
earthquake response analyses to give the dimensional guantities—intensity, frequency
characteristics and so on-of earthquake excitations relating to individual soil conditions,
the dimensionless parameters which define the statistical model of the equivalent earth-
quake excitation pattern can be determined in the case of the assumption that the influence
of the ground-structure coupling being small. Then it is found that the spectral density
of a simplified equivalent earthquake excitation pattern may consist of the band limited
white noise spectrum and the delta functions corresponding to a noise component and
periodic components.

It should be noted that this paper was presented to the First Chilean Sessions on
Seismology and Earthquake Engineering held in July, 1963.

Nomenclature

y, T, r=sampled nondimensional time, time and nodimensional time.

w, £, w=angular frequency with respect to », T, 7.

T4, 4T N=sampled duration, sampling interval of time and total sampling
number.

A=+ K/ p=coefficient of the time transformation.

{FY} =normalized sampling data.

A®), a(T), a(r)=wave shape functions.

a, (r) =shifted wave shape function defined by eq. (7.

a:(¢) =stationarized wave shape function.
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7o=nondimensional duration of the wave shape function.

(Rv), R(T), R(r)=auto-correlation functions.

R:(2), Rro(1), 1Rr (1), Ryrs(r) =auto-correlation functions defined by egs. (9,

_ 10, (12) and UD.

S), S(2), S(w) =spectral densities.

S:(w), Sr(w), Sro(w) =spectral densities defined by egs. (19), (20), 2.

g=w/wo=total number of cycles in the duration.

wo=2r/t.=reference angular frequency.

4f, n=sampling interval of amplitude and number of division.

ms=number of the sampled data included in the jth interval of amplitude.

dv, dTy, dr,=time intervals contained in the infinitesimal interval df of

_ amplitude.

W(f) =W(f) = W(f) =amplitude probability density distribution function of
the wave shape function.

a.(7) =dimensionless wave shape function of the equivalent earthquake ac-
celeration. '

as.(t) =dimensionless wave shape function of the equivalent stationary earth-
quake acceleration.

R, (1), Sse(w) =auto-correlation function and spectral density of ase(z).

ase(T) =wave shape function of the equivalent stationary earthquake accelera-
tion.

co=level of the band limited white spectrum of ;. (7).

ci=power of the predominant periodic component of the spectral density of
as.(T).

R2u=2n/T:, £1=2r/Tw=upper and lower angular frequency limits of the band
limited white spectrum of a. (7). .

£1=angular frequency of the predominant periodic component of &, (7).

ou, ov=upper and lower nondimensional angular frequency limits of the band
limited white spectrum of a, (7).

o1=nondimensional angular frequency of the predominant periodic cmponent
of as.(7).

7p=ratio of the power of the predominant periodic component to that of noise
component.

7ri=ratio of the lower angular frequency limit of the band limited white
spectrum to the upper angular frequency limit.

rn=ratio of the angular frequency of the predominant periodic component to
the upper angular frequency limit.

p=nondimensional intensity parameter of the dimensionless earthquake ac-
celeration.

~!=nondimensional frequency parameter of the dimensionless earthquake
acceleration.

a=maximum amplitude of the dimensionless earthquake acceleration.

12 =2z/,T =fundamental natural frequency of a structural system.

1w =2n/17 =nondimensional fundamental natural frequency.

A=maximum amplitude of earthquake acceleration.

Sy=level of the band limited white spectrum of earthquake acceleration.

M, K, d=reference values of mass, rigidity and deformation of a structural
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system.

@, Vs, dy=variances of the dimensionless wave shape function of the equivalent
stationary earthquake acceleration, velocity and displacement.

@, Uw, dwo=variances of the equivalent stationary earthquake excitation
defined by a set of parameters 7,, 751, #r1, cA=1, wu=1.

A., Vi, Dy=variances of the earthquake excitation.

Ca, Cv, ca=dimensionless constants of the frequency characteristics of the
level of the band limited white spectrum represented by constant stan-
dard deviation of acceleration, velocity and displacement.

Ca, Co, Ca=constants of the frequency characteristics of the level of the band
limited white spectrum of Aea:. (7).

W’(0) =amplitude probability density at zero calculating from R-,(0) on the
assumption of the normal distribution.

R./(0) =variance calculating from W({0) on the assumptlon of the normal
distribution.

si=ratio of W/(0) to W(0).

sz=ratio of R’7¢(0) to R (0).

ss=ratio of the maximum amplitude to the standard deviation.

s(x) =step function, s(x) =0 for <0, s(0) =1/2, s(x) =1 for x>0.

d(x) =delta function, 6(x)=0 for x=0, rma(x)dx=1.

E(X(Y))=mean of X with respect to Y.

X(X) DY (y) =correspondence between Fourier trasform pair X(x)= ln—j .
xYedy, Y(3)=|" X@emdr, j=y/-1.

XxY =convolution of X and Y—-S mX(x) Y(—x)dx= rmY(y)X(z—y)dy.

1. Introduction

For earthquake response analyses to establish the principle of aseismic
design of structures, an earthquake excitation pattern should be given together
with a model of structural system and the measures of aseismic safety. To
predict the properties of earthquake excitations which will occur in the
future, we have to analyze the accelerograms obtained in the past. Most of
the accelerograms seem to be random time functions, and their statistical
quantities are different in details depending upon various conditions.

In this paper, the statistical properties of several earthquake accelerograms
recorded in U.S.A. are estimated as the problem of determining the typical
input pattern for the earthquake response analysis of structures”~®. Auto-
correlation function and amplitude probability density distribution function
are calculated for each accelerogram, and by inducing common properties in
these results, a statistical model for the equivalent earthquake excitation
pattern is presented.

2. Wave shape function of accelerogram

The wave shape function is obtained by normalizing the original accelero-
gram so that the mean is zero and the maximum value is unity. At first,
the wave shape function A(y) is defined as the following piecewise linear
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type function by using the time series {F7}, for j=0, 1,----- , IV sampled for
the interval 4T=T,/N from the original accelerogram having the time du-

ration 7.

AW) = Z}{Ff L (FI—F-Y) (- (G-IDHs@-—G=1) =s(w—=7} weeeere D

EAG) = 7|, A dv=EAF) =0, |AG) lnae=Folmas=1 wersoeeee @
__{FP-E{FD} Fy =1 F+F” SRl

EY = B b EEP =0 +R @

The wave shape function 2(7) with respect to the time 7, and the nondime-
nsional wave shape function a(r) can be obtained easily from A (), if we per-
form the following transformation related to the independent variables.

a(@)=e(T)=AQ) for t=AT=24Ty = oeeeeieeme 4)
(@) imae=18(D) Imaz=1, E(a(x))=E@(T)) =0 -covceereeee (5)

where 7, T and v are the nondimensional time, time and the sampled nondimen-
sional time variableirespectively. (0, 7a), (0, 74) and (0, N) are the corres-

ponding intervals. 4 is the coefficient of the time transformation. s(v) is a
step function defined as follows:

s(») =0 for v<0, s(u)—-— for v=0, s() =1 for p>0 - creeerreee ®)

The stationarized wave shape function a:(r) is now defined by using the
above obtained wave shape function a(r) as follows:

s (T) =ﬂ.§ gn (1- _#Td) , Qo (T) = a(r_i_ _T2’.1._) ............ (7)

were
ay(1)=0 for |t1<r4/2, au(x)=0 for Ir|>14/2
and
s (T) maz = |t () lmaz = A(T) Iz =1 eeeeeeeeen ®

3. Statistical quantities of wave shape function

The statistical quantities are defined here only with respect to the above-
mentioned wave shape function of accelerogram, assuming that it is a part
of the ergodic stationary time functions. The quantities determining the
statistical properties of the wave shape function for the finite interval can
be reduced to the auto-correlation function or the spectral density and the
amplitude probability density distribution function of the stationarized wave
shape function.

3.1. Aulo-correlation funciion
The auto-correlation function of as(¢) is defined as follows :

Ri(7) —11m -

Yl Sl as (t) (443 (t+ T) di =#=i;waﬂ(T —‘ﬂTd) ------------ (9)



Earthquake Accelerograms and Equivalent Excitation Pattern 53

s 200 2 astte—prddtfs(z+ 5 ) =s(z =)} e 10)
Rro(t) =aRr(t) +aRro(—7) e an
wRro(7) =Ry (1) [s(r) —s(‘r —%)} ............ a2

Among the auto-correlation functions corresponding to the variables =, T and
y, the following relation exists :

ILRrD (T) = ILRTO (T) = hﬁro (U) fOI' iT = EAT)J """""" (13)

Herein, ,R-(v) can be calculated from the following formula :

WRro () =27 §1AK<AK2+AW_N}{s@> —s(y- %)} ------------ (14)

where
AK=%{A(A:—1)+A(IC)} for k=1, 2, - N as)

A0 for 0<k<N, A.=0 for £k<0 and £>N,

%=y, means such an integer as x—1/2<u<x+1/2. Introducing the auto- cor-
relation function Ry (r) corresponding to aw(r), Rr(z) is expressed by the
following formula

Ry (o) =#=21_in0 (z—pra) { s(r —|—%> - s(r - % )} ............ (16)

Rr(o) = 1_145 ?;i /000 Oa@+)dt e an

Ryro() %0 for |7|<ta and Rro(z)=0 for |v|=7a.
Particularly, the following relation is valid among the mean squares of the
various wave shape functions.

Rs (0) = an (0) = ZILRTD (0) = Rfo (O) """""" (18)

3.2. Spectral density
The spectral densities of as(r) and «,(r) are defined as the Fourier tran-
sforms of the corresponding auto-correlation functions.

Ri() DSs(@) =Sr0 (@) (1 +2§lcos utaw) =Sre(e) (1 —|—2§ cos UTa@) *+eoe 19
= =

Rro(2) DSro(w) = ZS;d/ero (v) coswrdr ~ eeereeene 20)
Rro(®) DS75(@) =20, Ro(0) cos wrdr = Faj) 2 wovvver @D

where
ao(t) DFo(joo) = ST_"i i/zaD (De-dorde e 22)

Among the angular frequencies w, £ and w corresporrding to variables z, T
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and » respectively, the following relation is valid,
w=82/A=w/QdT) e 23)

so that, the spectral densities are related to each other by the following ex-
pression.

Sp(@) =A5,(2) =24TS,(w) for p=s, 70, fO -wereeeeeees 240
The spectral density Sro(w) with respect to v is given by the following for-

mula.

= = 2 —
R,0<u>35,0<w)=zj FRo() coswudy e ©5)

N,
0

Therefore, §TO<W) can be calculated by the following formulae corresponding
to the total number N of the sampled data.

W
sin——cos pyw

= N/2-1—= 2
S;-()(’I/U) =2 Z hR;-o(ﬂ)x ............ (26)
=0 w
2
sinlcos w( N_ ~1—)
+2hﬁro(%) 4 W 2 4 for N is even,
4
and
.. w
= (N-1)/2— SIHTCOS nw
S,-g(w) =92 Z(:) Iz,Rr()(ﬂ) —*7‘“** for N is odd..-------- (27)
K= —
2

Instead of w defined in the interval (— oo, ), the total number of cycles in
the duration,

_ Wta _ .QTd _ wN
qg= o= = on = o e (28)

may be used in the same interval (—oo, o). It can be shown that the fol-
lowing relations exist between S,(w) and Syo(w).

Sro(w) = %S ro(@) (142 €os tqw) *%sin szw ............ 29

ygiST()(m) - Sfo(w)}_jﬂrdm = OC,F%w{RTO@- - #T(z) — Ry (T - #Td)} =0 +ereer (30)

Sro(uwe) = Syo(puws) for =0, £1, +£2, - , wo=

and

Sro(@) =22 31 Syo(uwe) — L gin-Tel@— #w0)
T pileo ® — pw, 2

oo

o 1 .. ta(w— pwo)
=2 s qip. e 0)_
T ”Ew ro(ﬂwo) — pwo sin 2
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Since Ss(w), Sr(w) and Sr(w) are even functions and the wave shape func-
tions as(r) and we(r) have the zero mean values, the following relation is
valid :

Ss(O) =Sr0(0) =Sf0 (O) =0 e (33)
and also, the following relation exists in regard to the total power.
%jo Se(w)der= %jo So(@do="1 So Sro(@)dew=Rya(0) -rrreeeee 34)

3.3. Amplitude probability density distribution function

Assuming that the wave shape function a:(¢r) is ergodic and stationary,
the amplitude probability density distribution function is-defined by the fol-
lowing equation as the time ratio:

my mr mr
12(1‘” ZdTL Zdl)t
_i=1  _i=1 —_t=1_ .
W(frdf= te  Ta N @
where {dr.}, {dT:} and {dw)} for i=1, 2, - , my relating to the variables 7,

T and v, respectively, are the successively arranged infinitesimal time in-
tervals contained in the infinitesimal interval (f, f+df) in the common co-
ordinate for the normalized amplitude of a(r), a(T) and A(). W({f) is an
invariable quantity with respect to time transformation and has the integral
over the defined interval (—1, 1) contributed to unity.

W(H=W(H= ﬁ—/(f), 511W(f)df=1 ............ (36)
This quantity is expressed by the following formula by using the previously
defined time series {Ax} for x=1, 2, ----- , N:
i { [, .1 ) ’ .1
W =;=E._nWJlS(f_(J__2_)Af>_s(f_ <J+7)Af>} ............ (37
where

Wi=m,/(NAf)

and my; for j=0, +1, -+ . +7 is the number of the sampled data from {A,}
included in the jth interval

(]‘_%)Afgf<<]‘+féﬁ)df for j=0, &1, - B o JETI TSP P (38
af=1-

where 4f is the equally devided sampling interval of the amplitude and 2741
is the total number of division.
3.4. Numerical resulls

Accelerograms of four strong-motion earthquake records furnished by the
U. S. Coast and Geodetic Survey are analysed statistically?. The sampling
intervals are selected as 47 =0.02 sec and 4f=0.05, and the auto-correlation
functions and the amplitude probability density distribution functions for the
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wave shape functions are computed using the Kyoto University Digital Com-
puter—KDC-I—and, the results are shown in Figs. 1 to 11 and in Figs_. 12 to 18,
respectively?'®. In Figs. 1 to 11, the abscissa denotes v=7/4T =1/(24T), the
coordinate does nRr(») =1Rro(T) =1Ry(r) for t=2AT=14Tv, and the number
inscribed are the values 2.R»(0) =#R-0(0+0) =R,(0). In Figs. 12 to 18, the ab-
scissa and the coordinate represent the amplitude and the probability density,
respectively.

4. Equivalent earthquake excitation pattern

Equivalent earthquake excitation pattern for the earthquake response an-
alysis can be inferred from the above obtained statistical quantities of the
wave shape function by the following procedure. At first, stationarized
quantities R, (r) and S, (w) are approximated as the sum of known statisti-
cal quantities of typical stationary random processes.

R0 séRm © {s(r+%) ~s{r- %)Jl

Taw

STO (Q’> = 71” 'éosrox ((D) *—i»sin 2

where
Rro(T)DSru(O)), Rrul(‘r):)sroz((l)) fOI' l=0, 1, """ , M

Although the wave shape function of the accelerogram is assumed to be re-
presented by the finite part of a stationary random function as.(z), the fol-
lowing approximate relation may be valid if the duration 7, is long enough
to compare with .

Riro(7) = Ree(7) {s(—r—{__‘%d_) _ S(T = )} i

Taw ‘

2

Sro (@) ;; Sse(w)*%sin
where
Rse (T) :)Sse (CD)

From the above two approximate relations, we have the auto-correlation
function and spectral density of stationarized equivalent earthquake excita-
tion pattern.

Ru@=SRu(, Sul@)=FSmi(@) =~ e @n

Therefore, the equivalent earthquake acceleration pattern can be obtained by
cutting off the finite interval rs from the equivalent stationary random func-
tion as.(r) having the above obtained statistical quantities.

2

ac(T) =aOa(IT_ 1-2"1‘) =ase(T>{S(T) _S(T" Td)} j

aoe(’r) = ase(‘l’){S(T‘F Izi) —S(T —
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As an example of such equivalent stationary statistical quantities, the fol-
lowing may be considered with wide application.
23¢y . wu—w

|4 wutwr
SN ———5—7 COS
T 2 2

Rse(7) = T+ 67: COS anT l

Sse(w) =}Cc{s(w+ﬂ.‘u) —s(wt+ o) +s(w—wr) —s{w—ww) } +c10((w| — w1) J

where the first term corresponds to the band "limited white noise?’® com-
ponent, and the 2nd term is related to predominant periodic component. The
parameters contained in this expression col, ¢1, wu, i, w1 are all nondimen-
sional quantities. On the other hand, the original statistical quantities with
physical dimensions are easily obtained by the transformation of independent
variable =47

260 in .Qu
2l S

S26(2) =co{S(2+92u) — s(2+2) +5(2— 21) —s(2— 2)}+:8(121 —2)

2y

Reo(T) = _;"Ql T+%cos oT

_Ql
5 T cos

where ¢y, dwu=2u, A1 =£; are the level, upper and lower limits of angular
frequency of the band limited white spectrum with respect to the original
wave shape function as(7), respectively, and ¢, Aw;=£; are the power of
predominant component and its angular frequency. Resides, the level of the
noise component and the power of the periodic component of the equivalent
spectral density of original acceleration with the maximum amplitude A are
expressed by the following, respectively.

So=coA2, Si=c A2 e (45)

Among the nondimensional parameters which define the equivalent stationary
statistical quantities, the following three are most important.

615:5((0 —w1)dw 015:5(!2 —-2)de ClAZS:6(Q —9)de f
_}Co(wu—mz) T G (24— 20 = AT (D= 20 \’ )

Yp=

7,_col_.Ql 71_(01_.91
1=~ =" n=___="0
4 Wy -Qu’ Wy -Qu

where 7, is the ratio of the power of predominant periodic component to
that of noise component, and 7, 75 are the ratios of the predominant angular
frequency and the lower angular frequency limit of the noise component to
the upper angular frequency of the noise component respectively. If the
parameters 7,, #r1, #ri are appropriately selected corresponding to the pro-
perties of the earthquake and the soil conditions, ¢, wi, w: are determined
in reference to cA w, which are containable in the nondimensional intensity
parameter p and the frequency parameter ¢-! of the earthquake excitation,
respectively.

p=a‘/‘}?0 =Sol/zM3/4/K3/4j

e 2 n_ T ‘( ............ 4D
(/)_(Du_gu—ﬂ'_lT ]
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where a=AM/K7 is the maximum amplitude of nondimensional earthquake
acceleration with zero mean, and i0(=2/A=2r/,r=2r/AT) is the nondimen-
sional fundamental natural angular frequency, where 1=V EK/M. @=2z/,T
is fundamental natural angular frequency of a structural system. T,=2rn/2,
is the lower limit of period of the noise component, and M, K, 4 are the re-
ference values of mass, rigidity and deformation of the structural system,
respectively. Then, the parameters which define the equivalent stationary
statistical quantities of an earthquake excitation with the nondimensional in-
tensity parameter a are given as follows:

wu=10/¢, or1=10711/¢, ©1=10771/¢ 1

azcld = P2, a"clg:(F(m —w)do=pho?ry(1-77) /¢ J

A group of earthquake excitations for the response analyses is supposed to
be determined by the frequency characteristic of the level of spectral density
So of the noise component. This frequency characteristic, for instance, may
be given by the constant standard deviation of acceleration, velocity of dis-
placement. The variance of the dimensionless wave shape function of the
equivalent stationary earthquake acceleration, and those of the corresponding
velocity and displacement obtained by integrations are expressed by the fol-
lowing formulae.

a,,=E(a—E(a))2=%S:Sa(w)dm=%(wu—mz)-I-%

v,,=E(v—E(v))2=-;—5:su(m)dm=}—?%+%m%, ............ 49)
where
a=0s(1r), E(@)=E(as(r))=0
v=0() =Simasc(r)dr 1 ............ 0
d=d(o) =Siw(v—E(v))dr J
Sa(@) =Sse(@), So(w) =Sa(w)/w?, Si(w) =Sis(w)/wt  reweee - (51)

The variances of nondimensional earthquake excitation are expressed. in
terms of the variances of the equivalent stationary earthquake excitation
which is defined by a set of parameters 7, 771, 711, coA=1, wu=1, namely

__the P gl
= ¢ G0y O 10 Uw;  dy pz(xm)dw ............ (52)

?Lv = azau, 17.5 = azv,,, d~1; = aﬂdv

where
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Avo = %(1 =770 (1+72)
Uno =%(1 — ) ey L (53)

oy = %(1— rr){(rr i+ rr 247073 /3} 7o)

In terms of the original physical quantities, the variances are expressed as
follows :
Ao =502ua0 =21S,T:1 " an

Vo= Sn 20 W= (27() _ISu Tﬂ)go ............ (54)
Do =S,2.3ds = (872) 15,1 :3dyo

The frequency characteristics represented by constant standard deviation of
acceleration, velocity and displacement are given by the following equations
corresponding to the nondimensional system and the physical system, respec-
tively.
p¢-1/z=ca’ ﬁ¢1/z=6‘u, p¢3/z=cd 1
Sul/sz‘l/z=Ca, 501/2T11/2=C1;, Sul/tha/z=Ca J

where, c., ¢», c2 are dimensionless constants -and Ca, C., C. are constants
- which have the dimensions corresponding to acceleration, velocity and dis-
placement, respectively. Now, we consider the equivalent stationary statisti-
cal quantities simplified by substituting w:=0 in equation (43), and 2:=0 in
equation (44).

Rse(T) =ﬂsin (DuT'l‘ iCOS w1T 1

T T (56)
Sae(a)) =}Co{$(w+&)u) —S(w—wu)}+018(|w|—m1) J
E&a (T) = %Sin guT'l“iCOS Q]T 1

T T e D
Sec(2) =co{s(2+422) —s(2—2.) }+c:18(121 — 22) J

The variances of velocity and displacement tend to infinity in this case, and
this figure seems to be unreal. However, we should be permitted to make
practical use of this simplified formula, because the earthquake response of
ordinary structural systems may not be affected by the very low frequency
component in the neighbourhood of zero and the consideration of this range
is marginal as far as engineering safety is concerned. If we introduce the
finite duration 7, the spectral density of the stationarized wave shape func-
tion may be obtained by the following equation.

T

Sra(e) = Aco Sta(w+am)/2 sin LFP g{ 1 in ta(0+w1) 1 . T,z(w—ml)}

totwou)/2 * T w+wls 2 +w—a)1 st 2

The parameters which define the simplified stationary statistical quantities
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given by equation (57) are calculated from the previously obtained auto-cor-
relation functions of typical earthquake accelerograms, shown in Table 1.
Finally, we shall consider on the amplitude probability density distribution
function of the equivalent stationary earthquake excitation pattern as(z). In
general, the previously obtained amplitude probability density distributions
of the wave shape functions-are not purely Gaussian. The distortion of the
probability density distribution function from the normal distribution may be
approximately estimated by the following nondimensional parameters.

WO L RO® 1
= TR VRS &9

N

where, W’(0) is the density at zero calculating from R-(0) on the assump-
tion of the validity of normal distribution, and R’»(0) being the variance cal-
culating from W(0) under the same assumption. Therefore, s, or s: repre-
sents the distortion of density in the small amplitude of the wave shape
function. On the other hand, s; indicates the distortion in large amplitude

TABLE 1.
Parameters of the statistical quantities of the wave shape function for the equivalent
stationary earthquake acceleration.

T parameter rad rad

co(sec) 1 Qul ]| Q1 7 rre

accelerogram ( sec ) ( sec) ’
El Centro, May 18, 4,94 1,06 2.55 137 8.39 5.36
1940, N-S, 0~29 sec xX1073 X 1072 x10 %10 X102 X107t
Santa Barbara, June 30, 4.76 3.46 3.91 2.67 1.85 6.81
1941, N45°E, 0~4 sec X 1073 %1072 %10 X10 X 1072 X107
Santa Barbara, June 30, 2.09 2.41 3.88 2.67 1.56 6.87
1941, N45°E, 0~10 sec xX 1073 1072 »10 > 10 %107t X107t
TABLE 2.

Parameters of the amplitude probability density distribution function of accelerograms
referring to the Gaussian distribution.

parameter 1 ' S3=

\ W(O) RTO(O) W’(O) SI=WTE%§_ $2=1%:Z% ___];__
) ’acce]erogram V' Rro(0)
El Centro, May 18, 4,33 6.21 3.85

1940, N-S, 0~29 sec 3.09 %102 | 1.92 %107 | 10wt | 481
Santa Barbara, June 30, 7.04 6.88 4,72

1941, N45°E, O~4 sec | 2-19 x1o2 | 1.5l %1071 %10t | 377
Santa Barbara, June 30, 2.98 4.63 2.15

1941, N45°E, O~10sec | +% %102 | 231 X107 %107t | 579
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because it is defined as the ratio of the maximum amplitude of the wave
shape function (i.e. unity) to the standard deviation. These parameters cal-
culated from the data of the previously mentioned typical earthquake ac-
celerograms are shown in Table 2. As a result, it should be noticed that
the amplitiude probability density distribution function of equivalent
stationary earthquake acceleration is not exactly normal, since the density
at small amplitude is quite higher than that of normal distribution and the
density at the amplitude larger than the several times of standard deviation
is always zero. However, to find the analytical expression of the density
distribution, the higher central moments will be estimated in detail.

5. Conclusion

As a result of the statistical analyses of earthquake accelerograms, it has
been-shown that an earthquake accelerogram has spectral density with some
peaks and non-Gaussian probability density. distribution function, and that
the statistical properties of the wave shape function of accelerograms are
different in details, depending on each earthquake, the direction of the component
and the sampled duration of the accelerogram. However, from the stand-
point of earthquake engineering, a statistical model of the equivalent earth-
quake excitation pattern should be inferred to common statistical properties
of accelerograms. To define it the nondimensional parameters have been
presented. Assuming the ground-structure coupling is small, the spectral
density of the equivalent stationary earthquake acceleration pattern will
consist of the ‘“‘band limited white noise” spectrum and the delta-function
corresponding to a noise component and predominant periodic component, re-
spectively. As regards the amplitude probability density distribution function
of the equivalent stationary earthquake acceleration pattern, it should be set
up remembering that the maximum amplitude is several times as large as
the standard deviation, and that the density at small amplitude is quite
higher than that of the normal distribution having the same standard devia-
tion. The above mentioned statistical model of the equivalent stationary
earthquake excitation pattern can be used as the input pattern for the earth-
quake response analyses to use analog or digital computer.

Acknowledgment

The authors wish to express their appreciation to the Kyoto University
Computer Center for the use of the Kyoto University Digital Computer KDC-
I in carrying out the calculations. They also express their thanks to Mr. T.
Suzuki for his digital computations and Messrs. K. Mizuhata, Y. Inoue, Y.
Takeuchi, T. Fukushima, T. Taniguchi and H. Kumada for their helpful as-
sistance in the preparation of this paper.

References

1) Alford, J. L., Housner, G. W. and Martel, R. R. : Spectrum Analyses of Strong-
Motion Earthquakes, Office of Naval Research, Contract N6. ONR-244, August, 1951.
2) Bycroft, G. N. : White Noise Representation of Earthquake, Proc. of A.S.C.E., EM2,



k)
LY

5

R. TANABASHI, T. KOBORI, K. KANETA and R. MINAI

April, 1960

Caughey, T. K.: Transient Response of a Dynamic System Under Random Excitation,
J. Appli Mech., Vol. 28, Dec., 1961, pp. 563-566.

Tanabashi, R., Kobori, T. and Minai, R.: Aseismic Design and Earthquake Response
of Structure, Annuals of Disaster Prevention Research Institute of Kyoto Univ., No.
5-B, March, 1962, pp. 1-32.

Tanabashi, R., Kobori, T., Kaneta, K. and Minai, R. : On Statistical Property of
Earthquake Accelerograms, Geophysical Papers Dedicated to Prof. Kenzo Sassa, 1963,
pp. 589-597.





