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                     (Manuscript received October 13, 1964) 

1. Introduction 

 In an aseismatic design of structures, structures were designed so as to 
resist the statical horizontal load at each story. The accumulation of many 
vibration records of strong earthquakes, the advance in the non-linear vibration 
theories and the progress in analog and digital computers make it possible to 
design structures by a dynamic analysis. In the dynamic design of structures, 
it is necessary to represent the complex structures by some mechanical 
systems containing some concentrated masses connected with linear or non-
linear springs. In the analysis of such systems, it is necessary to determine 
the relation between the horizontal load and the relative displacement at 
each storey, i.e., the restoring force characteristics in elastic and elasto-
plastic regions. There is little theoretical results or experimental data on 
the restoring force characteristics of existing or experimental frames. 

 The author will conduct research on the following two subjects in this 
respect. 
 First, the relation between the vertical load and the restoring force is discus-

sed here. In multi-story building frames, the axial force of a column at lower 
stories is large. When the frame is displaced laterally, the axial force produces 
the additional moment to the column. The additional moment has been 
ignored in designing the structures, but in the design of multi-story frames, 
it should not be ignored. In this paper, the effect of the axial force of the 
column on the elastic characteristics of multi-story frames is to be discussed 
theoretically. The revised theory of Muto's  method" usually adopted in 
statical analysis, is proposed here in consideration of the effect of the axial 
force. Further, with the aim of investigating the relationship between the axial 
force of columns and the strength of structures or the restoring force charac-
teristics after yielding, the experiment on miniature portal frames is carried 
out, and their elasto-plastic characteristics are discussed. 

 In the second place, to investigate the elasto-plastic characteristic of frames 
under repeated horizontal loading, the experiment of portal frames is carried 
out. At each cycle of loads, the absorbed energy is calculated. Their energy 
absorption is a very important factor in investigating the damping capacity 
of the elasto-plastic vibration of structures. 

2. The elastic behaviour and practical method of analysis of tall frames 
  subjected to horizontal and vertical loading 

2.1. The buckling length of columns in tall frames. 
 The buckling length of columns of portal frames fixed at their base is equal
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to the column length h or 2h, corresponding to the relative stiffness ratio of 
beams 00 or 0, respectively. For ordinary relative stiffness ratio it is between 
h and 2h. With the increase in the number of stories the ratio of the bucking 
length to h,  1kr/h of frames becomes larger. A certain minimum stiffness 
of the horizontal member, therefore, is necessary to keep the buckling length 
within economic limits. Fig. 1 illustrates the relation between the buckling 
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column load is applied at the 
   Fig. 2. Buckling length of four-story frames, top of the column. These 

   fixed at the base. assumptions deviate from 

                                         conditions which prevail in 
real building frames. More practical cases are analysed and the results are 
shown in Fig.  33'. In these cases, in order to simplify the calculation, the 
column load and the moment of inertia of beams and columns vary from 
storey to storey following a fixed  rule  ; all the columns would buckle at 
the same time, if they were pin-supported at both ends. According to the 
design data of the Tokyo Station building  •project  0  , this assumption is satis-
factory for every storey except the top. (Table 1) Fig. 3 shows that provided 
the above assumption is satisfied, the buckling length does not differ from
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         Fig. 3. Buckling length of a five-storey frame. The axial loads and 
           stiffness of colunns vary from storey to story. 

 k-=  const.  k5=  5k: 

 kb (1) (a) (b) (c) 

    Lk/h Lk/h  (a)  -  (1)                                Lk/h(b)-(1)  Lk/k  (c)-  (1)        (1) (1)  (1) 

0.5 1.9306 1.9311  +  0.03 1.9187  -  0.61 1.8978  -1.70 

1.0 1.5372  1.5388  +  1.10  1.5298  -  0.49  1.5221  -  0.98 
1.5 1.3798 1.3792  -  0.04 1.3748  -  0.36 1.3682  -  0.84 

       (%) (%) (%) 

           kb-             2 X (Beam Stiffness)                     k
n-i  +kn 

 k7,=  Column Stiffness of  nth story 

                     TABLE 1. Project of Tokyo Station. 
                                                                     (cm.) 

                Column Beam 
 Seismic  Coefficient  :  0.2  Storey 

 Steel  .  JIS  SM  50  (ay  =  D  t  B  tb,  D  tw 
3,300k g/cm2)                   25 60

,1.6 25 1.9 60 0.9 
  ColumnBeam20 65 1.9 30 2.8 70 0.9 

 n,,,1 15 70 2.2 35 3.2 80 0.9                       -I- 
   _1  1J1 10 75 2.8 40 3.2 90 1.2  

I--D 1  I-B-i 5 80 3.2  , 45 3.2 100 1.2 

                                                                                               

1,                  185 4.0 50 3.21101.2 
 B4 95 6.0 55 3.2 120  1 1.2 

               Axial Load Column Length z2=Nh2 Slenderness  Storey 
N(t) h(cm) El ratio 

     25 34.9 350.0  8.91  x  10-3 29.19 

    20 193 350.01, 32.69 26.90 

    15 363 350.0 42.49 24.95 
    10 543 350.0 42.53 23.72 

    5 734 350.0 37.93 21.78 

    1 942  I 412.5 47.28 24.08                                                                                                          ...: 
 B4 1079 500.0 35.82 25.12
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           Buckling  ! NE= N
y=0.fiA                           N/Nk N/NE, N/Ny  StoreyLoadh2                 (

I) (00) (%)  (%)  N
k(t) (1000 

  25 1107 386.9 1121 3.15 0.09 3.11 

  20 1423 582.6 1439 13.53 0.33 13.41 

  15 1773  843.4 1790 20.47  1 0.43 20.28 
  10 2406 1261.4 2426 22.59  ! 0.43 22.40 

  5 2930  i 1826.3 2949 25.07 0.40 24.90 

  1 3856 1966.9 3888 24.43  0.47 24.23 

 B  4  ! 6348 2973.7  ! 6408 17.00  0.36 16.84 

that in the example shown in  Fig. 1. 

 In order to get the buckling length of real uniform building frames, 

therefore, it will be permissible to get the buckling length from Fig. 1 regarding 

the frames as single-bay frames and to correct it according to the number 
of bays in reference to Fig. 2. 

 In general the buckling length of rectangular frames is closely related to 

their flexural rigidity. Taking this nature into account, the author  reported 

in 1954 a method of calculating the buckling length of frames, but further 

investigations have not yet been made into tall frames ; the effect of varying 
relative stiffness ratios of columns and the effect of arbitrary combinations 

 PPof column loads and moments 
 H  i5hH  

1 1 1hEKNO of inertia of columns have 
 4  tlien• 0.4.Px  PA=  Elasticnot been studied.  3 
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, ' I 
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   • 
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                         •,-- 
                   4.510 

                L5.50 
                 0.420  [=Moment of  columnscaused by the axial load  3070inertia of                                                   of columns.                                         The buckling load of rec-                                          t

angular frames corresponding 
                                     to the buckling length of  col-

     P•0  P.  0.4  1.,  P•0.8 PR umns discussed in the previous 
 13.7 22.4 683 

     10.7 178  55.1 section is, as a matter of fact, 
 77ir12.638.9the vertical load which causes     (el 

     4.7z5  21.4 the frames a lateral deflection 
   L9 Fh H28 6.6without horizontal loading. In    I ) 

 124  EK.1 real building frames the axial 

 600  1082  ---30.35 load of columns is not so large 
 600.  600  8:70  10.34  2546  -"Ill   -33.95 as the buckling load, for  col-

   600 5.97  10.38 10.18 3252  -"dig -  59 umns are designed safely 
(11  ao3  5.78  10.38  9.46  34.7 -"gip . - 2768 enough against the vertical load . 

 622  5  1044  5.99  3580  'A. 11.99 Table 1 expressly indicates that 
 7.75 10.68 21.13 '411'the ratio  N/Nk (where  AT is the 

    Fig. 4. Reduction of the flexural  rigidity. column load and Nk is the
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   12.3  78 173                                          the increase in the end      I

Lo  '  so  r  5.7 
          (C•h) N 

 Q  I  -
      24  75Fr^215 
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  4. 67 1374y204365'-464tot 
 Id)   67 68  209 4 260 504 -- 5L6  T  0  -  -- 

 9.7  118  282 -Al  258 596 --""11111 41.0 N  6 
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      Fig. 6. Reduction of the flexibility. Fig. 7.
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bending moment for the increasing column load. 

2.3. Revision of Muto's practical aseismatic design method of structures. 

 Muto's practical aseismatic design method of structures consists of two  pro-
cesses : The first process is to decide the shearing force distribution in vertical 
members using D-values, the shearing force distribution coefficients ; the second 
is to get the inflection point and bending moment of columns. This method 
is based on the analysis of uniform rectangular frames, and the effect of the 
vertical load is disregarded here. As was discussed in the previous section, 
the axial load of columns of multi-storied frames decreases their flexi-
bility and increases the bending moment in columns. We are now con-
cerned with the analysis of rectangular frames subjected to vertical and 
horizontal loading in an attempt to show a method for the correction of Muto's 
theory. 

                   i) The shearing force distribution coefficients of col-
    IN  umns    

•  k
g  kg We now take up the problem of a continuous frame 

 Ey.                  (Fig . 8), every column of which is subjected to the 
                  same shearing force and vertical load. Assuming that      keAko .A 

      Niti? the inflection points of columns and beams are at the 
                 middle of each member the end bending moments of col-

      Fig. 8. umns and beams are obtained by the slope -deflection 

method as  follows  : 
 MAR—MRA-2EKoka  0—rR) 

        MA41M=2E KokR(30) (1) 

where  B=angle of joint rotation 
 R=slope angle of columns 
 Ko  =standard stiffness ratio of members 

      kR,  ko  =relative stiffness ratio of beams and columns 
 E  =Young's modulus 

 r=a+19 
             1   Z  sin  Z—  Z2  cos  Z          a= • 
            2  2  (1  —  cos  Z)—  2Z  sin  Z 

 1   Z  sin  Z  
            2  •  2  (1—  cos  Z)—  2Z  sin  Z 

       Z=   hN   EK
oko 

 The equilibrium equations of moments at joint A and the shearing forces of 
columns are 

 MAR+  M  AA'  =  0 

     2MAR(2)              Q =  NR 

Substituting eq. (1) into eq. (2) and solving for Q, 

                   Q=rk  ko•  12EKoR  —NR  21-  +3k  h
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whereiz=         21e          koR  

                   hN Using the relations  Z=1ET  c  
017, and  8  =Rh, the above equation can be written 

in the form 

              Q=(  rk Zak_ 12EK0  a.  (3)                      2r +3k 12  )uh2 

According to the definition of the shearing force distribution coefficient D, 
the following relation is  obtained  : 

            D =  Q=(  rk Z2  ‘)leo (4)                     \ 2r  +3k 12) 
the unit of D being that of 12EK012, 

For ordinary frames, the relative stiffness ratio  iz is obtained as follows 

(Fig.  9)  : 

                         k= ki±k2±k3+44   (5)  2ko 

 k2  
                 k  B 

       kc e• Brr-a1M11.1.717°— 

 ke;  A  A  M 
    Fig. 9. Fig. 10. 

 The D-value of columns fixed at one end is obtained by applying the same 
procedure outlined above. The end bending moments are as follows (Fig. 10)  : 

 MAR =  2EKoko  (130B — rR) 

 M  RA =  2EKoko(aOR —  rR) (6) 

 MBR'  =2EKOkR(3810  • 

The equilibrium equations are 

 M  RA= —  aMBEr 

          M4R+ MRA(7)       Q =NR 

Solving eqs (6) and (7) for Q, we obtain 

                Q=1a —48+64 Z2  \ k_  12EK08                                               (8)  6  \  a+3ak  r  2)  h2 

Assuming  a= we have 

                 ()=1 (a—(9+2k  „_Z2 12EK08                                                (9) 
        6  \2ha. 

According to the definition, we obtain the D-value of columns fixed at one 
 end  ; 

                D_Q1 (  a —48+2k Z2           —=8= 6\ 
a+k 2l'a (10)
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           In the case of Fig. 11, the relative stiffness ratio k is given by  k
i I k2 
      1(cle= k±k2                                                 (11) 

  Fig. 11. ii) The standard height of the inflection point of columns 

                 The standard height of the inflection point of columns 

  H  iP can be derived from the analysis of uniform continuous 
  H "8 m_ih frames. Fig. 12 shows the frame and the assumed loading. 

  Hh The relative stiffness ratio of beams to columns is k. In 
  Hke 

         2 17the following analysis the increment of the axial load of 
 h columns caused by the shearing force of beams being  -

Im  he  101  h  neglected  ; the frame in Fig. 12 shows the same behavior 

     Fig. 12.for continuous frames having beams whose relative stiffness 
                ratio is k/2. 

  Applying the  slope-deflection method, the end bending moment of columns 
and beams at joint n and the shearing force of columns of the  nth storey are 
obtained as  follows  ; 

 Mn.n-i  =2EK(a0.+(0.-i—rRn) 

 Mn.n+1=2EK(a0.+Aen+i—rRn+i) 

 M.=2EKk(30.) (12) 

 (27Z  = 2EhK{r(0.+On-i)-8Rn) 

where  K=  stiffness ratio of columns 
 h= column length 

 On= joint rotation at joint n 
 R.= slope angle of  nth storey 

 Z2  8 =2r--
2  2 

 Z=PhEK  
. 

The moment equilibrium equation at joint n is given by 

 Mn.n-i  +Mnn+  Mn.n+1  =  0  . (13) 

Substituting eq. (12) into eq.  (13), we get 

 490711-1±  (2a+3k)On+  ^30n-i  —r  (Rn+  Rn+i) = 0 . (14) 

From the equilibrium of forces at  nth storey, we get another  equation  : 

 Qn  =  (m—n+.1)H . (15) 

Substituting eq. (12) into eq. (15), we get 

                    hH -1-                Rn =---{r (On+ On-i)EK(m n1)}•                                                 (16) 

Eliminating  Rn and  Rn+1 with the use of eq. (16), eq. (14) is written as  follows  : 

                         hH                                        •
138—r2             On+i— 20.+On-i  (2m  —  2n  +  1) (17)             2EK
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                      3                         cra —72±-
28 whereg— 

Q8—r2(18)• 

Eq. (17) being valid for  n  =1,  2,••-,  m—  1, we have  m—  1 equations of this 
type. In order to determine m+1 joint rotations two additional equations 
are needed. One of these equations is obtained from the assumption that 
the bases are  fixed  ; 

 00=0 . (19) 

The other equation is obtained by applying the same procedure outlined 
above to the top joint m. This leads to the equation 

                                   Kr Cr' —Ba)Om-i +{r2 — 8(3k + a) }0. =EKr  . (20) 
Considering eq. (17) as a second order finite difference equation which must 
satisfy the boundary conditions (19) and (20), we obtain the solution as  follows  ; 

 On=  CI  cosh  2.-1-  C2  sinh  A.+  r  (2m  2n  +  1)  hH                                                (21)  4r2+3k8 2EK 

where  =cosh-1  g 

C1=   (2m+1)hH                           2
7.8 — 4r2 + 316 

 e2=  r((a—  ()8  —  (2m  +  1)-(  (r2  —  498) cosh  (m—  1)2+  (r2  —  a8--  3k8)  cosh m2})  (22)  (2
ra  —  4r2+3k8)C(r2  —  BO) sinh  (m—  1)2+  (r2  —  aa  —3k8)  sinh m),) 

                                              hH  
                                           2EK  ) 

The end bending moments of columns are obtained by substituting eq. (16) 
into eq. (12) : 

      Mn-iy2—)0+(B—')0n+l)hH        
                                              (23)                      \r         Mn.n-1==(ft —(a —8=)On,—8(m— n+l)hH 

   /\• 

Assuming the value of Z, we can determine the joint rotation 
 0n from eq. (21), and then the bending moments of columns n  mn 

from eq. (23).                                                                  h 
 The standard height of the inflection point of columns is  y 

easily derived from Fig. 13 as  n-1 
                                                                        Mn 

 Mn   y
n=(24) Fig. 13.             Mii+ . 

The value of  yn was calculated for several frames by the author. The results 
show that the effect of the axial load of columns on the standard height of 
inflection point is small enough to be negligible. 
iii) The bending moment of columns subjected to shearing force and axial 

    load. 
 If the axial load of columns is known, we can obtain the D-value of columns
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 N from eq. (4) or (10) and we can determine the shearing 
 Qn  N force distribution. The height of inflection point y is obtained 

               by refering to Muto's tables.       Rni ynh The bending moment of columns is derived from Fig. 14 as 
            , MnMu 

 T Qnw  Mn=Qnvnh+NR7anh=  (1  + Z2k° )(2.vds                                          12D. 
 Fig. 14. Zzko`(25)                    M.= (1+ 12D./)(in(1 — yn)h 

where  DTh and  ko are the shearing force distribution coefficient and the rela-
tive stiffness ratio of columns, respectively. 

3. Elasto-plastic behavior of frames subjected to vertical and horizontal 
   loads 

3.1. A general survey of recent researches. 

 In the foregoing discussion frames were treated in terms of elasticity. The 
slenderness ratio of columns scheduled to be used in Tokyo Station is about 
20-30 (ref. Table  1)  ; therefore the problem of frame behavior under vertical 
load is in the range of the plastic buckling. 

 Moreover plastic range is taken into account in dynamic vibrational analysis 
of frames subjected to the earthquake force, so that it is of great significance 
to recognize what will happen to the load-deflection relation in that range. 

 When only the horizontal load is applied to a frame, it increases until the 
frame attains to a mechanism, followed by the formation of adequate yield 
hinges at the joints of the frame and the frame becomes unstable. (ref. 
Fig. 15) After the formation of a mechanism a frame sustains a constant 
maximum horizontal load in the process of deflection. On the contrary, when 
a horizontal load is applied to the frame subjected to constant vertical loads, 
the maximum load with which the frame becomes unstable is small in com-

parison with the former instance, and it decreases once above the sta-
bility limit under the influence of the vertical load-deflection effect (ref. 
Fig. 15). 

 Kato has investigated the load-deflection relation of columns fixed at both 

     0.3  
          H                                                                                              12.14.t, 

                                      P    IA/J h*  0.4 
 A 02  

 05    
 A.•  15.5 

 a 0.6  
  H  1P0.1 

                                        0.7  

 1  B  J  U.8 
 0 10  2  0  3.0  U„,,, 

  Fig. 15. Load-deflection curve. Fig.  16. Load-deflection curve.
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ends subjected to the large axial force with the axial stress  0.4—'0.8  ay  (av  : 

yield stress), and to the horizontal load which is applied to the top of 
 columns°. The slenderness ratios are 17.5 and 31. 

 The calculative method is similar to  Jdek's approximate method of the 
column strength on the assumption that the material is ideally elasto-plastic, 
and that the deflection curve is looked upon as a sine curve, and is solved 
from equilibrium condition of the internal and the external forces at their  mem-
bers' ends. Fig. 16 illustrates the solution by this method. 

 Makino has indicated a method  k  0 
concerned with frame behavior in the  acr 
elasto-plastic range similar to  Jeiek's  H  (P k-04  
accurate method of the column 
strength, under equilibrium condi- 

                                                              2.0 
tions of the internal and the external.  Q6 

forces throughout the member. Fig. 
17 illustrates a solution by this me-

thod.  H  k 

  Oxfort has investigated a con-              1.0A=1 7 
                                                                                                                                                                                                                 , tinuous beam over four supports with 

rectangular cross sections, the center 
span being subjected to a compres-
sive force and a lateral load at its 0  0.1 02  03  04  05  06 0.7 
center, and he has made use of theseR (irlyi/E1) 
results in the case of an elbow frameFig. 17. Load-deflection curve. 
and has drawn a load-deflection 

 curve°. 
 Here both the vertical load P  as\   —  
and the lateral load nN increase,  aN 
and the ratio of the axial force of  0.,  
the column N to nN is constant, 
so that this load condition differs  0.0   e.44, f
rom that of the earthquake force. 

Vogel has studied the same frame  cs   0, 

investigated by Oxfort and  ob-

tained the load-deflection curve  04 ,,s 

on the assumption that in the  1  A 
members of the frame yield  03   ft  •  0.1 

hinges are formed in due order                                                                             I
v. 

at the cross sections where the  02 ,32.21k  
internal moment attains to the 

full plastic moment and that the  oi 
frame becomes a  mechanism°. 

  In Fig. 18 the solid line shows 

Oxfort's result.  0 02  04 0.6  0.0 1.0  1• u 

  At point A yield begins at the Fig. 18. Load-defletion curve. 
compression side of the cross 

section. At point B frame becomes unstable. The dotted line shows Vogel's
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result. At point G1 the first yield hinge is created at the bottom of the 
column, and at point G2 the second one is created at its top, that is, point 
G2 indicates the attainment of a mechanism. 

3.2. Model tests on steel protal frames. 

 Experiments were conducted to investigate the effect of the axial force on 
the elastic-plastic behavior of tall steel buildings subjected to the earthquake, 

particularly on the horizontal ultimate strength, deformation capacity within 
the limit of stability and deformation property in the range of frame insta-
bility. Models were end fixed steel portal frames consisting of beams and 

                   columns with rectungular cross sections and were cut 
                 off by a machine from 10 mm mild steel plates without  

1 heating. Two frames were welded by 6  mmq bar at 

 

/  ) joints and at the centers of the beams and columns 
  200  ,  200  1                   to avoid lateral buckling before the attainment  of a 

 I   _  fl  [T  [ frame collapse mechanism in the plane of the frame. 
Fig. 19. Test frame. The yield stress of the materials obtained from the 

                   tension tests was 2.73 t/cm2 or 2.50 t/cm2. 
 The span and column height were both 200 mm, the same dimensions being 

used throughout all models. (ref. Fig. 19) 
 The slenderness ratios  2 were 100, 50 and 30, the effective length being 

taken as the column height. 
 The beam/column stiffness ratios were 0.5 and 1.0. 

 Therefore the models were divided into six series. The vertical loads 
are 0%, 10%, 20% and 40% of the elastic  (2=100) or the plastic buckl-
ing load Pc of models  (2=50, 30). It was applied to the tops of the 
columns of all the models by two oil jacks, each having 10 tons capacity, 
and was maintained constant while the horizontal loads were applied to the tops 

                                                of the columns by 

              0  10  20  30  40  50  en. a testing machine, 
                                                having 30 tons 

                                                       capacity. 
              .- -. 

                     ...,_,_,II ISide deflection  1II 
was measured by a 

  1 Idial gauge at each     will.horizontal load     ,IMIWIlla  tgligillirillir..211111_ stage. A part of test 
          ==._=/............31=11=11....1       11.11.111.^  .I.IUNIZEI LIIM-1arern.l.'''results (load-defle-      -=il 

   -II=      .--.1IIIIMODEL1                                        
1:rESTINGtion curves) have      A_OIL JACK                    IMACHINEbeen plotted in 

 --I   

 n(IV {)  t/  0 11-70 1f)                                                    Figs. 20, 21, 22, 23. 

                                               The dotted lines 
                                       show the  re-                          

1 . sults calculated by 

I 1 Vogel's method.                                                 It is observed 

              Fig. 20. Loading system. from Figs.  21—'23,
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that the horizontal maximum load considerably decreases as the axial 
force of columns increases. The horizontal load decreases once above the 
stability limit when  k  =0.2 or 0.4 and the amount of the deflection at the 
stability limit also decreases. When the axial force is large, the horizontal 
ultimate strength deviates largely from the values given by Vogel's method. 
The horizontal load becomes maximum when the frame has attained a 

 Mechanism, but when a column is subjected to a large axial force, the 

plastic zone extends along the longitudinal axis of the column above the 
elastic limit, so that the column stiffness is rapidly lost and the frame 
becomes unstable before the attainment of amechanism. 

 The lower-storied columns of tall buildings are subjected to large axial 
forces so that the greatest care should be taken in the design of tall buildings. 
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4. Elasto-plastic behavior of frames and frames with diagonal bracing 
  under repeated horizontal loading 

4.1. A general survey of recent researches. 

 The structural strength, stiffness and damping are very important factors 
in the survival of structures under strong motion earthquakes. The structural 
stiffness is related to the fundamental period of vibration under dynamic 
loading. The earthquake feeds energy into a structure, and for survival the 
structure must consume all the energy imparted to it. The structural damping 
depends on many factors. 

 In the case of steel frames the damping depends mainly on the energy dissi-

pation caused by the internal friction between structural elements and by the
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inelastic deformation. To indicate the structural damping capacity quantita-
tively, it is required to perform many experiments under various structural 
conditions. 
  In our country, some experiments on various structures and structural 
elements have been carried out. In the case of steel structures, Tanabashi 
carried out experiments on riveted joints and welded joints, and showed that 
the riveted joints dissipate quite a lot of energy even under a small  deflec-
tionlo ,11). 

 Taniguchi conducted experiments on steel frames and joints, and showed 
that in steel structures the damping mainly depends on the internal friction 
between structural elements and on the inelastic  deformation12). Experiments 
on welded joints, reveted joints and bolted joints were carried out by Sumita 
and Igarashi, resulting in the discovery of the relationship between ductility 
factors and equivalent viscous damping  capacities13). 

 Onitake carried out experiments on braced frames and showed that the 
lowering of the structural stiffness is very small under repeated loading condi-
tions even when the compression bracing buckles, and that the strength of 
structures does not change unfavourably even under buckling deformation of 
the compression  bracing"). 

4.2. Some model tests of portal frames. 

 The author has conducted some experiments to find the general behaviour 
of steel structural frames under 
horizontal loading. Test framesP e2P1^1^11^1.1 
are shown in Fig. 25. Four kinds of frames with rectangular cross  n  P011  n  SOH 
sections have been tested under{ 216                                           }240 ! 1124t210/0240                                                 456 monotonous and repeated loading

C72  
conditions. Their stiffness, re-
storing force and structural r'7.1 damping are discussed here.VN  PDX  a  sox 
Test frames are made of the   

                                                  plate with 12 mm thickness onlyI 240loG240           •C72 
with the aid of machines, so that                                      Fi

g. 25. Test frames  and the loading system. the residual stress by heat may 

be very small. Loading systems are also shown in Fig. 25. Horizontal deflec-

tions are measured by dial gauges and strain distributions by wire strain 

gauges. 
 Monotonous loading  conditions  : 

 Under monotonous loading conditions, frames without bracing continue to 
deform in proportion to the increase of a load, and even after four plastic 

hinges are formed, the strength of frames increases by the strain hardening 
effect. Braced frames have a very high initial stiffness, but after the bracing 

yield, the stiffness is much abated. As the buckling deformation of the compres-
sion bracing increases, the axial force of compression bracing decreases , so 
that the frames with bracing attain their maximum load with a ductility 

factor of  p=  5-8. Table 2 shows the comparison of the absorbed energy bet-
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                _relations between deflections 
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                            TABLE 2. 
                      Comparison of absorbed energy. 

                                 Wexp./Wcal. 

   R(rad.)  3  X  10-3  6  X  10-3  10  x  10-3  15  x  10-3 
 POII 0.74 0.72 0.80 0.85 

 SOII 0.67 0.63 0.76 0.88 

 PXII 0.75 0.82 0.92 0.93 

 SXII 0.83 0.88 0.95 1.00 

     W=r4PhdRh : height of frame 

             o 

                   R : slope angle of column 

                            TABLE 3. 

                Equivalent viscous-damping coefficient ratio. 

 P 2.0 3.0 5.0 8.0 

 POII 0.03 0.05 0.11 0.15 

 SOII 0.05 0.05 0.10 0.14 

 PXII 0.09 0.12 0.20 0.23 

 SXII 0.10 0.14 0.19 0.20 

 ii  : ductility factor  fo--- 
 46 : amplitude of deflection 

 Sy : calculated deflection at yield point



46 M.  WAKABAY  ASHI 

of portal frames, represented by a mechanical system —consisting of a 
single concentrated mass, a linear spring and viscous damping element having 

a damping force proportional to the relative velocity— is calculated and 

shown in Table 3. 

5. Conclusions 

 In connection with the restoring force characteristics, which is the basis of the 

aseismatic design of multi-story frames, the relation between the vertical force 

and the restoring characteristics, and the behaviour of frames under repeated 
horizontal loading are investigated. The influence of the vertical load on the 

restoring force characteristics is clarified in the elastic region  and the design for-

mula is proposed. In the elasto-plastic region, experimental results of minia-
ture portal frames show that the theories are approximately substantiated 

by experimental results. The experiments on frames under repeated hori-

zontal loading show that the frames with diagonal bracing have large energy 
absorption capacities and large ductility factors. The increase in the energy feed-
ed from the ground into the frame with the increase of stiffness is supplement-

ed by these effects. The adequately arranged  bracing in multi-story frames 
is very effective as the aseismatic structural element. The frames used for 

the experiment here are very small. In order to obtain more reliable data, 
it is necessary to experiment with larger frames like existing ones. 
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