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1. Introduction

In an aseismatic design of structures, structures were designed so as to
resist the statical horizontal load at each story. The accumulation of many
vibration records of strong earthquakes, the advance in the non-linear vibration
theories and the progress in analog and digital computers make it possible to
design structures by a dynamic analysis. In the dynamic design of structures,
it is necessary to represent the complex structures by some mechanical
systems containing some concentrated masses connected with linear or non-
linear springs. In the analysis of such systems, it is necessary to determine
the relation between the horizontal load and the relative displacement at
each storey, i.e., the restoring force characteristics in elastic and elasto-
plastic regions. There is little theoretical results or experimental data on
the restoring force characteristics of existing or experimental frames.

The author will conduct research on the following two subjects in this
respect.

First, the relation between the vertical load and the restoring force is discus-
sed here. In multi-story building frames, the axial force of a column at lower
stories is large. When the frame is displaced laterally, the axial force produces
the additional moment to the column. The additional moment has been
ignored in designing the structures, but in the design of multi-story frames,
it should not be ignored. In this paper, the effect of the axial force of the
column on the elastic characteristics of multi-story frames is to be discussed
theoretically. The revised theory of Muto’s method! usually adopted in
statical analysis, is proposed here in consideration of the effect of the axial
force. Further, with the aim of investigating the relationship between the axial
force of columns and the strength of structures or the restoring force charac-
teristics after yielding, the experiment on miniature portal frames is carried
out, and their elasto-plastic characteristics are discussed.

In the second place, to investigate the elasto-plastic characteristic of frames
under repeated horizontal loading, the experiment of portal frames is carried
out. At each cycle of loads, the absorbed energy is calculated. Their energy
absorption is a very important factor in investigating the damping capacity
of the elasto-plastic vibration of structures.

2. The elastic behaviour and practical method of analysis of tall frames
subjected to horizontal and vertical loading

2.1. The buckling length of columns in lall frames.
The buckling length of columns of portal frames fixed at their base is equal
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to the column length % or 2k, corresponding to the relative stiffness ratio of
beams o or 0, respectively. For ordinary relative stiffness ratio it is between
% and 24, With the increase in the number of stories the ratio of the bucking
length to %, Ii-/h of frames becomes larger. A certain minimum stiffness
of the horizontal member, therefore, is necessary to keep the buckling length
within economic limits. Fig. 1 illustrates the relation between the buckling
length of columns in single-bay rectan-
gular frames divided by the column
length and the relative stiffness
ratio of beams for several numbers
of stories. It will be noted that the
ratio lx-/h of 5-story frames is ap-
proximately equal to that of 30-story
frames. The buckling length is af-
fected by the number of bays. Fig. 2
shows the buckling length of 4-story
frames with several bays?. With the
I —— increase in the number of bays the
10 restraint of beams against the end
] 10 20 30 ) o
K rotation of columns is liable to be
Eig. 1. Buckling length of single-bay intensified and the buckling length
frames, fixed at the base. becomes shorter. It is found that the
buckling length of frames
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lk/h 1 [E ,‘ ‘, i T - relative stiffness ratio of
| beams ks, is equal to that of
30—+ o ’ single bay frames whose rela-

" g tive stiffness ratio of beams
is 2kn.

In the foregoing discussion
several simplifications are
S made ; (1) every column and
' beam have the same moment

ST T of inertia and length ; (2) the

k column load is applied at the

Fig. 2. Buckling length of four-story frames, top of the column. These
fixed at the base. assumptions deviate from

conditions which prevail in
real building frames. More practical cases are analysed and the results are
shown in Fig. 3. In these cases, in order to simplify the calculation, the
column load and the moment of inertia of beams and columns vary from
storey to storey following a fixed rule; all the columns would buckle at
the same time, if they were pin-supported at both ends. According to the
design data of the Tokyo Station building project”, this assumption is satis-
factory for every storey except the top. (Table 1) Fig. 3 shows that provided
the above assumption is satisfied, the buckling length does not differ from



Restoring Force Characteristics of Multi-storey Frames 31
y , _
! B| 13 ~ - _
kI ] IR F.5 k. ROE
2 \ th Ry ‘P. R 5 P.
K 3 Z= El =const. Rl 8 5 5 hh
k4 H} R n m
N 8l i” 2
| X 2 3 4 5
K L ) (b} (c}
Stiffness ratio of columns
Fig. 3. Buckling length of a five-storey frame. The axial loads and
stiffness of colunns vary from storey to story.
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x/h | v/ h 1) Li/h m Li/h D
0.5 1.9306 LO3IL | +0.03 10187 | —o0.61 1878 | —1.70
1.0 1.5372 15388 | +1.10 1.5298 | —0.49 1.5221 ‘ -0.98
1.5| 1.3798 1.3792 | —0.04 1.3748 = —0.36 1.3682 | —0.84
i (%) (%) J (%)
b= 2X (Beam Stiffness)
k11 kn
kn=Column Stiffness of ' story
TABLE 1. Project of Tokyo Station.
(cm.)
Column Beam
Seismic Coefficient : 0.2 Storey| - - T
Steel . JIS SM 50 (oy = D ¢ B } Z ’ D ’ tw
N )
3,300kg/cm?) 25 . 60 1.6 = 25 1.9 60 0.9
Column Beam 20 65 1.9 30 2.8 70 | 0.9
d g -
3 HIJ o | 15 70 2.2 35 3.2 80 0.9
7owl ] 10 75 . 28 40 | 3.2 0 1.2
o+ Fed 5 8 | 32 | 45 3.2 | 100 12
8 | 40 | 50 32 | 110 | L2
B4 | 9 | 60 | 55 32 | 120 | L2
Axial Load |Column Length s NR? Slenderness
Storey N h(cm) | zr= EI ratio
25 34.9 350.0 | 8.91410% 29.19
20 193 350.0 I 32.69 26.90
15 363 350.0 42.49 24.95
10 543 350.0 42,53 23.72
5 734 350.0 37.93 21.78
1 942 412.5 ! 47.28 _ 24.08
B4 500.0 35.82" 25.12

1079
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| i ; 2
Storey | Load | Ne=Tyil | Nazod | NN | NN | NN
LNk 100t) ' |
25 1107 386.9 1121 315  0.09 3.11
20 1423 582. 6 1439 1353 | 0.33 13.41
15 1773 843.4 1790 20.47 | 0.43 20.28
10 2406 . 1261.4 2426 22.59 | 0.43 22.40
5 2030 | 1826.3 2949 25.07  0.40 24.90
1 3856 1966.9 3888 24.43 047 24.23
B4 6348 2973.7 6408 17.00  0.36 16.84

that in the example shown in Fig. I.
In order to get the buckling length of real uniform building frames,

therefore, it will be permissible to get the buckling length from Fig. 1 regarding
the frames as single-bay frames and to correct it according to the number
of bays in reference to Fig. 2.

In general the buckling length of rectangular frames is closely related to
Taking this nature into account, the author reported®

their flexural rigidity.

in 1954 a method of calculating the buckling length of frames, but further

investigations have not yet been made into tall frames ; the effect of varying
relative stiffness ratios of columns and the effect of arbitrary combinations
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J

of column loads and moments
of inertia of columns have
not been studied.

2.2. The reductiori of the flexi-
bility and the addition-
al  bending  moment
caused by the axial load
of columns.

‘I'he buckling load of rec-
tangular frames corresponding
to the buckling length of col-
umns discussed in the previous
section is, as a matter of fact,
the vertical load which causes
the frames a lateral deflection
without horizontal loading. In
real building frames the axial
load of columns is not so large
as the buckling load, for col-
umns are designed safely
enough against the vertical load.
Table 1 expressly indicates that
the ratio N/N: (where N is the
column load and Ne is the
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Fig. 6. Reduction of the flexibility.

buckling load of columns)
is about 0.13 to 0.25. Even
such a small amount of
column load decreases
the flexibility of columns.

The reduction of flexi-
bility makes the funda-
mental period of structures
longer and is considered
to be favorable for aseis-
matic analysis of struc-
tures; nevertheless, con-
sidering the additional
moment mentioned below
and the reduction of ducti-
lity after the bearing ca-
pacity is reached, the re-
duction in the flexibility
may be unfavorable.
Figs. 4, 5, 6 show the
reduction in the flex-
ibility for several values
of the column load. In
these figures, (c) and (@)
show the deflection curves
and the bending moment
diagrams of columns, re-
spectively. The lower end
bending moment of columns
subjected to shearing force
@ and axial load N (Fig.
7) is the sum of the bend-
ing moment @uk and the
additional bending moment
NJ, where 7k is the height
of the inflection point. Figs.
4 (d), 5(d) and 6(d) show
the increase in the end

N
o
/ :
T
T
")

[

Fig. 7.
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bending moment for the increasing column load.
2.3. Revision of Muto’s practical aseismatic design method of structures.

Muto’s practical aseismatic design method of structures consists of two pro-
cesses : The first process is to decide the shearing force distribution in vertical
members using D-values, the shearing force distribution coefficients ; the second
is to get the inflection point and bending moment of columns. This method
is based on the analysis of uniform rectangular frames, and the effect of the
vertical load is disregarded here. As was discussed in the previous section,
the axial load of columns of multi-storied frames decreases their flexi-
bility and increases the bending moment in columns. We are now con-
cerned with the analysis of rectangular frames subjected to vertical and
horizontal loading in an attempt to show a method for the correction of Muto’s
theory.

i) The shearing force distribution coefficients of col-

._1,_[‘.’0 umns
| kp ks We now take up the problem of a continuous frame
B g % 8 (Fig. 8), every column of which is subjected to the
A %5 Al kg |A same shearing force and vertical load. Assuming that

Q the inflection points of columns and beams are at the
. middle of each member the end bending moments of col-
Fig. 8. umns and beams are obtained by the slope-deflection

method as follows :

MAR=MRA=2EK0k0(r0_rR> } (1)

MAA' ks Mnn’ =2EK0kB(30>

where f=angle of joint rotation
R=slope angle of columns
K,=standard stiffness ratio of members
kg, ko=relative stiffness ratio of beams and columns
E=Young’s modulus

1 _ ZsinZ-Z%cosZ
2 2(—cosZ)—-2ZsinZ
1

g=1. Z2—7sinZ
2 2(—cosZ)—-2ZsinZ

_ AN
z=\ ERss

The equilibrium equations of moments at joint A and the shearing forces of
columns are

Map+Mad =0
Substituting eq. (1) into eq. (2) and solving for @,
12EK.R

_ Tk _
Q_2r+3]7¢.k0‘ 7 NR
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where %= 2::

Using the relations Z= \/ E%]% and 6=Rh, the above equation can be written
0

in the form

_ TE _2 . 12EK,
Q‘(2r+37e 12)"’"' w0 ®

According to the definition of the shearing force distribution coefficient D,
the following relation is obtained :

_Q _( k. Z2
D=3 =(grrar 12 )%, @
the unit of D being that of T2

For ordinary frames, the relative stiffness ratio 2 is obtained as follows
(Fig. 9) :
kitk+ks+ Ry

T 0k ®
N
ki k2
ke 5 I :
k3 kg A
Fig. 9.

The D-value of columns fixed at one end is obtained by applying the same
procedure outlined above. The end bending moments are as follows (Fig. 10) :

Map= ZEKokO(,Bﬁs —-TR)
Mga= ZEKoko(aﬂn -rR) 6
M}m' = 2EK0k3(303)

The equilibrium equations are

Mgs= —aMzzp'
_ Ma+Maa } )
Q_—T e .
Solving eqs (6) and (7) for @, we obtain
_l/a—p+6ak __ Z*\, 12EK
Q= 6( a+3ar T2 )k"' 2 ®
Assuming a=%, we have
_l/a—p+2r _ Z¢ 12EK8
=5("at 3 Joor g ®

According to the definition, we obtain the D-value of columns fixed at one
end ;

_Q _1l(a—p+2k _ Z°
D= =5 T ko a0
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In the case of Fig. 11, the relative stiffness ratio % is given by

k| k2
ch ,;JITHZ_ an
(]
Fig. 11. ii) The standard height of the inflection point of columns
The standard height of the inflection point of columns
P Lt l,': can be derived from the analysis of uniform continuous
o :B mey 7 frames. Fig. 12 shows the frame and the assumed loading.
H *f k: h The relative stiffness ratio of beams to columns is .. In
= ) the following analysis the increment of the axial load of
Z:, g2 h columns caused by the shearing force of beams being
/Jy kg é n  neglected; the frame in Fig. 12 shows tlie same behavior
Fig. 12. for continuous frames having beams whose relative stiffness

ratio is k/2.

Applying the slope-deflection method, the end bending moment of columns
and beams at joint # and the shearing force of columns of the #* storey are
obtained as follows;

Mpn.n— =2EK(aan+Bﬁn—1 —rRn)

Mp.ps1=2EK(abn+ BOni1— 1 Rn+1)

Mnn = ZEKk (307») (12)
Qu=— 2K (Gt 0>~ 0Ra)

where K =stiffness ratio of columns
h=column length
»=joint rotation at joint »
R.=slope angle of n* storey

8=27—-%2—

2=\ Ex.

The moment equilibrium equation at joint # is given by

M1+ Mun+ My =0 . as
Substituting eq. (12) into eq. (13), we get

BOnir+ QCa+3k)0n+ BOn-1—1 (RetRus1) =0 | ad
From the equilibrium of forces at #t* storey, we get another equation :

Qu=m—-n+1)H . as
Substituting eq. (12) into eq. (15), we get

Ru= {1 Gnt )+ g o=+ D} 16)
Eliminating R» and R..: with the use of eq. (16), eq. (14) is written as follows :

hH
0””_290”-'—0"_1=2E—K.ﬁ(2m—2n+l) an
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ab-r 4 Sk
where 9= —W

Eq. (17) being valid for #z=1,2,--, m—1, we have m—1 equations of this
type. In order to determine m+1 joint rotations two additional equations
are needed. One of these equations is obtained from the assumption that
the bases are fixed;

as)

Go=0 . 19

The other equation is obtained by applying the same procedure outlined
above to the top joint #. This leads to the equation

(7%~ B0) -1+ {1~ 83+ ) Y= — ST @0

Considering eq. (17) as a second order finite difference equation which must
satisfy the boundary conditions (19) and (20), we obtain the solution as follows ;

r@Cm—2n+1) hH @D
2r6—4r?+3kd 2EK

6»=C; cosh 2.+ C; sinh A»+

where  A=cosh-lg

B . ) hH
C=- s arrars @t Dopg ]
C,— — 1Ua=p)d—@m~+1D{(r*— B6) cosh (m—1)A+ ("~ ad—3kd) coshmi}) | (22)
2= (216 — 4r2+3k8) ((r2— B6) sinh (m— 1) A+ (r*— ad— 3k3) sinh m1) [
rH |
2EK |

The end bending moments of columns are obtained by substituting eq. (16)
into eq. (12) :

e N T
Mn—l-n=M§= (a— 5—>0n—1+\ﬂ—7)0n—?(m— n+1DhrH
.\ 23

Myn—=Mzp= <ﬂ— g—z)ﬁn—1+<a— %)07;_ g(m—n+l)hH

Assuming the value of Z, we can determine the joint rotation

f» from eq. (21), and then the bending moments of columns n

from eq. (23). j
The standard height of the inflection point of columns is Yoh

easily derived from Fig. 13 as N n-1
]
Mn .
== Fig. 13.
Yn M5+Mn . @b 8

The value of y» was calculated for several frames by the author. The results
show that the effect of the axial load of columns on the standard height of
inflection point is small enough to be negligible.
iii)- The bending moment of columns subjected to shearing force and axial
load.
If the axial load of columns is known, we can obtain the D-value of columns
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from eq. (4 or (10) and we can determine the shearing

N
Hon force distribution. The height of inflection point y is obtained
Mh Qn { by refering to Muto’s tables.
S" v The bending moment of columns is derived from Fig. 14 as
)
tan 70 2
NN Ma=Quyalt-+ NRayah=(1+ 50 ) Quyah
Fig. 14. Zko (25

M= (14 {5p7)@a(1=3a)h

where D, and ko are the shearing force distribution coefficient and the rela-
tive stiffness ratio of columns, respectively.

3. Elasto-plastic behavior of frames subjected to vertical and horizontal
loads

3.1. A general survey of recent researches.

In the foregoing discussion frames were treated in terms of elasticity. The
slenderness ratio of columns scheduled to be used in Tokyo Station is about
20~30 (ref. Table 1) ; therefore the problem of frame behavior under vertical
load is in the range of the plastic buckling.

Moreover plastic range is taken into account in dynamic vibrational analysis
of frames subjected to the earthquake force, so that it is of great significance
to recognize what will happen to the load-deflection relation in that range.

When only the horizontal load is applied to a frame, it increases until the
frame attains to a mechanism, followed by the formation of adequate yield
hinges at the joints of the frame and the frame becomes unstable. (ref.
Fig. 15) After the formation of a mechanism a frame sustains a constant
maximum horizontal load in the process of deflection. On the contrary, when
a horizontal load is applied to the frame subjected to constant vertical loads,
the maximum load with which the frame becomes unstable is small in com-
parison with the former instance, and it decreases once above the sta-
bility limit under the influence of the vertical load-deflection effect (ref.
Fig. 15).

Kato has investigated the load-deflection relation of columns fixed at Both

o3

i~y
H 7 7 $ PabRy_|
‘,' A / $P.
h=04
. . .J

/ 05

/ A*I55 |
8 o
LA 4 Y g
// oz
/———"—\
B 08
0 10 20 30 U..,

U
Fig. 15. Load-deflection curve, Fig. 16, Load-deflection curve.
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ends subjected to the large axial force with the axial stress 0.4~0.8 gy (0s:
yield stress), and to the horizontal load which is applied to the top of
columns®. The slenderness ratios are 17.5 and 31.

The calculative method is similar to JeZek’s approximate method of the
column strength on the assumption that the material is ideally elasto-plastic,
and that the deflection curve is looked upon as a sine curve, and is solved
from equilibrium condition of the internal and the external forces at their mem-
bers’ ends. Fig. 16 illustrates the solution by this method.

Makino has indicated a method

concerned with frame behavior in the J'T -
elasto-plastic range similar to JeZek’s H_Mu

accurate method of the column ! k=04
strength, under equilibrium condi-

tions of the internal and the external 2o - 06

forces throughout the member. Fig.
17 illustrates a solution by this me-

thod. o= y IPekR
Oxfort has investigated a con- ’ R | A7
.
tinuous beam over four supports with /

rectangular cross sections, the center
span being subjected to a compres- L
sive force and a lateral load at its o ol 02 03 04 05 06 O7
center, and he has made use of these ) ) R (Myl/ED
results in the case of an elbow frame Fig. 17. Load-deflection curve.
and has drawn a load-deflection
curve® .

Here both the vertical load P
and the lateral load #NN increase,
and the ratio of the axial force of
the column N to nN is constant, AN
so that this load condition differs 2,
from that of the earthquake force. <
Vogel has studied the same frame s @ | 5_ =
investigated by Oxfort and ob- / T 6
tained the load-deflection curve o P, 1=~
on the assumption that in the / ______
members of the frame yield j o
hinges are formed in due order % [ e
at the cross sections where the Y e
internal moment attains to the /
full plastic moment and that the
frame becomes a mechanism?.

In Fig. 18 the solid line shows
Oxfort’s result. ) a2 o4 06 08 10 2y pla

At point A yield begins at the Fig. 18. Load-defletion curve.
compression side of the cross
section. At point B frame becomes unstable. The dotted line shows Vogel’s

[s]
g P/ong
/

OJ]
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result. At point G, the first yield hinge is created at the bottom of the
column, and at point G:. the second one is created at its top, that is, point
G indicates the attainment of a mechanism.

3.2. Model tests on steel protal frames.

Experiments were conducted to investigate the effect of the axial force on
the elastic-plastic behavior of tall steel buildings subjected to the earthquake,
particularly on the horizontal ultimate strength, deformation capacity within
the limit of stability and deformation property in the range of frame insta-
bility. Models were end fixed steel portal frames consisting of beams and

columns with rectungular cross sections and were cut
Il off by a machine from 10 mm mild steel plates without
1k

i heating. Two frames were welded by 6 mmg bar at
LRI ! joints and at the centers of the beams and columns
to avoid lateral buckling before the attainment of a

@E frame collapse mechanism in the plane of the frame.
Fig. 19. Test frame. The yield stress of the materials obtained from the

tension tests was 2.73t/cm? or 2.50 t/cm?.

The span and column height were both 200 mm, the same dimensions being
used throughout all models. (ref. Fig. 19)

The slenderness ratios 2 were 100, 50 and 30, the effective length being
taken as the column height.

The beam/column stiffness ratios were 0.5 and 1.0.

Therefore the models were divided into six series. The vertical loads
are 0%, 10%, 20% and 40% of the elastic (A=100) or the plastic buckl-
ing load Pc of models (A1=50, 30). It was applied to the tops of the
columns of all the models by two oil jacks, each having 10 tons capacity,
and was maintained constant while the horizontal loads were applied to the tops
of the columns by
a testing machine,

0 10 20 30 40 50cm

having 30 tons
=L L capacity.
i [ I Side deflection
T was measured by a
#_ ] 1 ” dial gauge at each
] _Hc gL horizontal load
ma lamn =
= =1 LETLLh ~ stage. Apartoftest
: A | v results (load-defle-
LAY 1 3 il I\MODE,_‘ — tion curves) have
OIL JACK ) TESTING i
T | | BACHINE been plotted in

The dotted lines
show the re-
sults calculated by

‘| Vogel’'s method.
It is observed
" Fig. 20. Loading system. from Figs. 21~23,

[ﬁﬁw ] Figs. 20, 21, 22, 23.
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that the horizontal maximum load considerably decreases as the axial
force of columns increases. The horizontal load decreases once above the
stability limit when £=0.2 or 0.4 and the amount of the deflection at the
stability limit also decreases. When the axial force is large, the horizontal
ultimate strength deviates largely from the values given by Vogel’s method.
The horizontal load becomes maximum when the frame has attained a
tmechanism, but when a column is subjected to a large axial force, the
plastic zone extends along the longitudinal axis of the column above the
elastic limit, so that the column stiffness is rapidly lost and the frame
becomes unstable before the attainment of amechanism.

The lower-storied columns of tall buildings are subjected to large axial
forces so that the greatest care should be taken in the design of tall buildings.
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Fig. 23. Load-deflection curve.
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Fig. 24. Load-deflection curve.
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4. Elasto-plastic behavior of frames and frames with diagonal bracing
under repeated horizontal loading

4.1. A general survey of vecent researches.

The structural strength, stiffness and damping are very important factors
in the survival of structures under strong motion earthquakes. The structural
stiffness is related to the fundamental period of vibration under dynamic
loading. The earthquake feeds energy into a structure, and for survival the
structure must consume all the energy imparted to it. The structural damping
depends on many factors.

In the case of steel frames the damping depends mainly on the energy dissi-
pation caused by the internal friction between structural elements and by the
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inelastic deformation. To indicate the structural damping capacity quantita-
tively, it is required to perform many experiments under various structural
conditions.

In our country, some experiments on various structures and structural
elements have been carried out. In the case of steel structures, Tanabashi
carried out experiments on riveted joints and welded joints, and showed that
the riveted joints dissipate quite a lot of energy even under a small deflec-
tion“”’“’.

Taniguchi conducted experiments on steel frames and joints, and showed
that in steel structures the damping mainly depends on the internal friction
between structural elements and on the inelastic deformation'®. Experiments
on welded joints, reveted joints and bolted joints were carried out by Sumita
and Igarashi, resulting in the discovery of the relationship between ductility
factors and equivalent viscous damping capacities!?.

Onitake carried out experiments on braced frames and showed that the
lowering of the structural stiffness is very small under repeated loading condi-
tions even when the compression bracing buckles, and that the strength of
structures does not change unfavourably even under buckling deformation of
the compression bracing!?®.

4.2. Some model tests of portal frames.

240
240

The author has conducted some experiments to find the general behaviour
of steel structural frames under
horizontal loading. Test frames P -
are shown in Fig. 25. Four kinds D :l &
of frames with rectangular cross Poii son | 3
sections have been tested under [ﬁ;:&! biaa
monotonous and repeated loading e72
conditions. Their stiffness, re-
storing force and structural
damping are discussed here. i X] FoX X] sox | §
Test frames are made of the
plate with 12 mm thickness only 4“4‘“:1,55 ;_”94"*’";3"4—?‘9—‘
with the aid of machines, so that Fig. 25. Test frames arlxd the loading system
the residual stress by heat may ) '
be very small. Loading systems are also shown in Fig. 25. Horizontal deflec-
tions are measured by dial gauges and strain distributions by wire strain
gauges.
Monotonous loading conditions :
Under monotonous loading conditions, frames without bracing continue to
deform in proportion to the increase of a load, and even after four plastic
hinges are formed, the strength of frames increases by the strain hardening
effect. Braced frames have a very high initial stiffness, but after the bracing
yield, the stiffness is much abated. As the buckling deformation of the compres-
sion bracing increases, the axial force of compression bracing decreases, so
that the frames with bracing attain their maximum load with a ductility
factor of y=5~8. Table 2 shows the comparison of the absorbed energy bet-
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Fig. 26. (b) Load-deflection curve.

ween the experiment and the theory.
As the initial stiffness of experiment-
ed frames is lower than the calcu-
lated, though their strength is higher
than the calculated by 20%, their
energy absorption is smaller under
even fairly large deflection.

Repeated loading conditions :

Fig. 26 shows that under few re-
peated loadings Baushinger’s effect is
negligible in the case of frames with-
out bracing, and that the lowering of
stiffness is very small, even the buckl-
ing deformation of compression brac-
ing occurs in the case of braced

relations between deflections

e

frames. Fig. 27 shows the
/ or ductility factors and

specific damping capacities.
The frames without brac-

ing absorb the energy mainly
in the plastic deformations

E\o\n\; \\3

of plastic hinges, and braced

Snlem) frames absorb it mainly in

the plastic deformation of
bracings and plastic hinges.

Sxl!

L A

— In the case of braced frames,
) the energy absorption is ra-

° o o o manotonou looding
alternative loading

Fig. 26. (d) Load-deflection curve.

ther large even under small
deflections. Equivalent vis-
cous damping coefficient ratio
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TABLE 2.
Comparison of absorbed energy.
Wexp./Wcal.
R(rad.) 3x1073 61073 101073 151073
POII 0.74 0.72 0.80 0.85
SOII 0.67 0.63 0.76 0.88
PXII 0.75 0.82 0.92 0.93
SXII 0.83 0.88 0.95 1.00
Rh
W=S° PhdR h : height of frame
R : slope angle of column
TABLE 3.
Equivalent viscous-damping coefficient ratio.
u 2.0 3.0 5.0 8.0
POII 0.03 0.05 0.11 0.15
SOon 0.05 0.05 0.10 0.14
PXII 0.09 0.12 0.20 0.23
SXII 0.10 0.14 0.19 0.20
. . 46
£ : ductility factor 28y
48 : amplitude of deflection

oy :

calculated deflection at yield point
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of portal frames, represented by a mechanical system —consisting of a
single concentrated mass, a linear spring and viscous damping element having
a damping force proportional to the relative velocity— is calculated and
shown in Table 3.

5. Conclusions

In connection with the restoring force characteristics, which is the basis of the
aseismatic design of multi-story frames, the relation between the vertical force
and the restoring characteristics, and the behaviour of frames under repeated
horizontal loading are investigated. The influence of the vertical load on the
restoring force characteristics is clarified in the elastic region and the design for-
mula is proposed. In the elasto-plastic region, experimental results of minia-
ture portal frames show that the theories are approximately substantiated
by experimental results. The experiments on frames under repeated hori-
zontal loading show that the frames with diagonal bracing have large energy
absorption capacities and large ductility factors. The increase in the energy feed-
ed from the ground into the frame with the increase of stiffness is supplement-
ed by these effects. The adequately arranged bracing in multi-story frames
is very effective as the aseismatic structural element. The frames used for
the experiment here are very small. In order to obtain more reliable data,
it is necessary to experiment with larger frames like existing ones.
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