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        76. Flow through Curved Open Channels 

    Part 1. On characteristics of upper layer in fully developed region 

                  By Yoshio MURAMOTO 

                      (Manuscript received October 2, 1964) 

                             Abstract 

  This paper describes the hydraulic characteristics of the upper layer in a fully de-
 veloped region of curved flow, as the first stage of the analytical approach to the general 

 curved flow. On the basis of the fundamental equations of the upper layer unaffected 
 by the wall shear, the effects of the secondary, radial flow on the main, tangential flow, 

 and the variance of the hydraulic behaviors in curved flow with increase in centerline 
 radius are discussed. Furthermore, the radial distribution of the tangential velocity and 

 the surface profile derived from the present theory are examined in comparison with 
 the experimental results in two kinds of test flumes with a single curved section of 

 central angle 90° and 180°, respectively. 
  Resulting from the present study, it was confirmed that the existence of a fully de-

 veloped region in the curved open channels is restricted to the latter portion of the curv-
 ed section, and the experimental verification in this region supports present theory. 

1.  Introduction 

 It is generally considered that the curved reaches in rivers and canals are 
weak points of the structure which lead to undesirable situations, such as 
bank erosion, progression of meanders etc. Of no lesser importance is knowl-
edge of the law of curved flows in the design of navigation and many other 
hydrotechnical structures. 

 For this reason, much effort has been devoted in the past to various la-
boratory studies and field investigations of the flow through curved channels. 
The remarkable phenomena in curved flows, as main subjects in previous 
studies, are as  follows  ; (1) superelevation of the water surface, (2) behavior 
of secondary flows, (3) deviation of the high velocity filament to the outer 
bank, (4) development of separating regions, (5) local energy dissipation of 
curved flows. 

 All of these phenomena are essentially caused by the reciprocal action bet-
ween a centripetal acceleration of fluid and frictional effects at the boundary. 
However, for lack of statistical fluid mechanics which describes the internal 
structure of non-homogeneous, or non-equilibrium flow field with mean hy-
draulic quantities, most previous studies stayed at the points of the qualitative 
explanation of the local phenomena in curved flows. 

 In the present study, as the first stage of the analytical approach to the 
general curved flow, the hydralic characteristics in the fully developed region 
of a circular curved reaches, which has a uniform equilibrium velocity distri-
bution in the direction of the main flow, are considered. For this kind of 
curved flow, there are two useful  approahes  ; the theory of laminar flow and
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the theory of three-dimensional boundary layer. 
  The former approach is, as seen in previous  studies1),2)0),4) on a curved 

pipe, only valid for the flow around gentle bends at a very small Reynolds 
number. Recently, a similar analytical  method2) has been applied to obtain 
the secondary, transverse velocity profile of the turbulent flow in a curved 
open channel. However, even for gentle bends, it is impossible to determine 
the distribution of the main, longitudinal flow and the surface profile. 

 On the other hand, the latter approach is not restricted by the condition 
of the radius of bends and is applicable to turbulent flow, if we assume ex-

pressions for the velocity distribution and the shear stress in the bed. But, 
in previous  studies6',7),2),2), the hydraulic behavior of the upper layer unaf-
fected by the bed shear is not examined in detail, and the flow as a free 
vortex, or a forced vortex, was the main subject treated. 

 In this paper, the fundamental equations of the upper and lower layers 
are derived from the Navier-Stokes equation of motion and the approximate 
expression of continuity. As for the upper layer, the effects of the secondary 
flow on the main flow and the hydraulic characteristics of the variance of 
centerline radius are discussed. Further, on the basis of the experimental 
results in two kinds of test flumes with a single curved section, the existence 
of a fully developed region, the radial distribution of tangential velocity and 
the surface profile of the curved flow are verified. 

2. Fundamental equations of curved flow 

 The equations of motion and continuity for a fully developed region of the 
curved flows are expressed by a system of cylindrical coordinates  (0, r, z) 
and corresponding components of velocity (u, v, w), as follows, 

               au     vuvau  
 Orr8z + +w–1g+ v(V2uu /' (1) 

                                  2 

 av  avIap       +w =mg(2)  Or  r az p  Or +1)(17.211---v)' 
 0  = 1ap                                               (3)                      P8z 

  r  arazw—8(1,v)+a   =O. (4) 

                           1,  m,  n  ; directional cosine of gravitational acceleration for cylindrical co-
ordinates,  p  : pressure with hydrostatic distribution along vertical axis z,  I); 

                         621a62  kinematic viscousity of fluid
, and p2= 872 +rOr+az2  • 

 According to the boundary layer concept, the whole region of the flow is 
assumed to be divided into two  layers  ; an upper layer which has a tan-

gential velocity U(r) and an outerward radial velocity V(r), and a lower 
layer which is influenced by the frictional resistance of the channel bed and 
has a tangential velocity u(r, z) and a radial velocity v(r, z). At the boundary 
between the two layers,  z=8(r), three components of velocity are expressed 
by
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                   8'88  u8=U  (r),  v  8  =V  (r) and w 6 = - 1-F(r5ovdz)+ Vw. (5) 
Considering these conditions, the momentum equations of two layers are ob-
tained from Eqs.  (1)-(4), for the upper layer 

        1,.Tir{r2UV (h - 8)}+U  6  1vdz                Udr(1).) 
 =  (h—  8)  igl  ±  v(F  r2U  U )1 

               72' (6) 

                           U2          _1_dfV2 (h _r1_,,,._ a,±V d                            (ITvdz1I          rdr`r                   'fv`irdr0 

                   =(h- 8)-{gm+gndrdh +v(pr2VV )'                           1)-(7) 

                             2 and for the lower layer 

 (r2C8tev Ud (fo,_,U   r2 dr\ 0dz)drlriovaz)-gt8+240(P2u, )dz,(8) 
  1 dVd            in Cov2dz)2,1reu2dz  H6 vdz) 

  

( 7 drrdr0 

                                         v)dz =gd(m+n  dr 0 dh)+IT(172v-72' (9) 
                                           in which h is the depth of flow and  pra=d2/dr2+d/rdr. As seen from the 

left hand sides of Eqs.  (6)-(9), the second term of Eq. (6) corresponds to 
the second term of Eq. (8) and the third term of Eq. (7) to the third term 
of Eq. (9), which indicates mutual interference of the momentum between 
the upper and the lower layer. 

 On the other hand, the expression of continuity in the whole region becomes 
from Eq. (4) 

            r  ilddr.1'orydz=-r1-1r-r(h- 8)V +.<1vdzi=0(10)                               0r' 

and putting this relation into Eqs. (6) and (7), the equations of motion for 
the upper layer reduce to 

 V  dU  +UV ___I±(,.,2uU                 dr-r-rglyr 

        dVU2Ur2 '                           dh  
            drr=mg+ngdr+1)(r77-2V 72 '(11) v                                               (12) 

 Consequently, according to the boundary layer theory, the fundamental 
equations of the curved flow are expressed by Eqs.  (8)-(12). However, this 
system of differential equations cannot usually be solved, for the sake of 
the non-linear property of functions. Then, instead of Eq. (10) we introduce 
the assumption for the cotinuity between two layers, 

                          3rhvdz = 0,                                                (13) 

 0
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and the equation of  continuity for the upper layer, 

                      1d 
             r—dr  (rV)  =O. (14) 

Eq. (13) is a sufficient condition of Eq. (10), and Eq. (14) is confirmed by the 
measurement of the radial velocity in the fully developed region of the curv-
ed flow. 

3. Theoretical consideration of upper layer 

3.1. Solutions of upper layer equations and effects of secondary flow. 
 In Eqs. (11) and  (12), the viscous terms will be ignored except the region 

near the side walls and for the sake of simplicity, putting  l=i=const. (=cen-
terline slope of bed), m=0 and  n=  —1, the radial velocity, the tangential 
velocity and the depth of flow are obtained from Eqs. (11), (12) and (14), as 
follows, 

 V  =Ci/r, (15) 

 U  =gir2/3C1+C2/r, (16) 

 h=gi2r4/36C12—  (C12+C22)/2g72+2iC2r/3C1+Cs, (17) 

in which C1,  C2 and C3 are integral constants. The superelevation of the 
water surface in the radial direction is given by 

 jh  rr2  =  Cgi2r4/36C12  -  (C12  +  C22)  /2g0+2/C2r/3COr:  , (18) 
in which r1 and r2 refer to the inner and the outer radius of the curved sec-
tion, respectively. 

 As deduced from Eqs. (15) and (16), the vorticity components (E,  72, C), 
corresponding to the coordinates (0, r, z) become 

        E.=0, 72=0 and C=gigi  r<0                                   V 

which indicate a rotational flow with the vertical downward vorticity increased 
linearly to the radial direction. 

 The effects of the secondary flow on the main flow will be examined from 
a comparison between the present theory and the free-vortex theory. Against 
the velocity distribution of the free-vortex, the first term in Eq. (16), 

 gir2/3C1 (>0) is added and expresses the effect to increase the tangential 
velocity to the outer bank. On the other hand, for the superelevation, the 
additional term in Eq. (18), 

 (gi2r4/36C12 —  C12/2gr2+2giC2r/3COrr2>0 

shows the effect to increase superelevation by the secondary flow. 
3.2. Relation between integral constants  C1 and  Cy 

 In order to determine the characteristics of the curved flow from the re-
sults of the previous article, the integral constants  Cs, C2 and  Cs in Eqs. (15) 

 —(17) have to be evaluated by the boundary conditions of the side wall .
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However, the behavior of the flow near the wall  is so obscure that cannot 
be simplified to give the definite conditions of the velocity and the depth of 
flow. 
  Hence, to relate C1 to C2, we use the following assumption for the depth 
of flow, that is, "in one cross section of the curved flow , the mean depth 

 (12) coincides with the depth  (he) at the centerline radius". According to 
the various experimental results, this assumption is valid for the flow through 
bend with any small radius, as long as a seperation zone is not present . 

  By the use of Eq. (17), puttingh=12c , the following relation is obtained 

             1.Cr2(n r4— n2/r2+nsr+C2)dr=nirc4— ns/rea+n+ C3,      ri 

in which  B: the width of channel,  re: the centerline radius,  /31=gi2/36C12 , 
 n2=  (C12+C22)/2g and  n3=2/C2/3C2. After several calculations , the relation 

between C1 and C2 is expressed by 

                    11\                C12 (C12 C22)=—9—g2i2B6ret2; 72'2+  40)(rei2 —741-P (19) 
where re' is a ratio of  re/B (>1/2). Usually, C1 is much less in magnitude 
than C2 according to  V  <U in the upper layer of the curved flow, so that by 
ignoring the term  C14 in Eq. (19), theapproximate expression becomes 

               CI C2 =giB3rc'j/(re/2)(rcia ). (20) 
  Fig. 1 shows an example of the relation between C1 and C2 with parameter 

 r1' calculated from Eqs. (19) and (20) under conditions of g=980  cm/sect ,  i= 
 2x  10-3 and B=25 cm. Evidently, Eq. (20) may be applied instead of Eq. (19) 

for the region where C2 is larger than C1 in one order. 

 io5      Wa111111110111111EIMEWRINWP11111^111111111M   
 6 SMMMMMEIWIMLIIKIIRNNAII^^^M   E1.( 19  ) 

 4 ILI Eq. ( 20) 

 2 

  10- 

  69 

2 ^111111\11M.11^11111111111ELNI
k  10  •24 6 8 10 2 4  8  8  1  •  2 4  6  8  10 2 4 6  8  10. 

                                                                                            Cr 
          Fig. 1. An example of relation between  C1 and  C2 (g=980  cm/sect , 

 i=2x10-3 and B=25 cm).
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3.3. Tangential velocity and surface profile 
  General properties of tangential velocity and free surface profile with in-

crease of the relative centerline radius  r,' are examined before the determi-
nation of the distribution of the tangential velocity and the surface profile. 

  By the use of Eqs. (16) and (20), the first derivative of the tangental 
velocity with respect to r is expressed by 

        dU  _2gi  (2,3_ 3C1C2)_   2gir —1B,e/2 ±___1_)(re1-)1  dr —3C1r2 2gi 1— 3Cir2t2rVe40 4 

Accordingly, the condition  dU/dr0 is dependent on 

               r„, 12rc„±40 A1 yrc4 /'„_1(21) 

where r' is a ratio of r/B and has the property  1r' —  rc'1�1/2.  An equality 
in Eq. (21) indicates the value of r' at the minimum value of U because of 

 d2U   _2gi 2C22gi 1,/(/2_,1V1„ 
       dr23C1r3=3C1r13 re40 Are— 4 )1' 

 While, for the surface profile, derivating Eq. (16) twice with respect to r 
and eliminating C2 on the basis of Eq. (19), the curvature of the free surface 
becomes 

 d2h gi2 ( 29C12(C12+C29). g22 4,6BG, /2(,, /24_ 1 )(,,/2_   1 )^ 
    dr2 3C12— g2i2y4=3Ci2r41'' 401\- 4 11' 

and the condition d2h/dr2-0 isgiven by 

  1,./3)„,,;Ayc,2+40\)(re,2    4)- 6 
                                        ir An equality in the above equa-Ir-rd< ./r 

tion indicates the value of r' at  5 

            ErrA the point of inflection of the 

surface profile. 4rr                              AM; 
 Fig. 2 illustrates the charac- teristic diagram of the tangentialROE 

                                   — velocity and the surface profile 3 
                                                                            Eq(21) based on Eqs. (21) and (22).AA 

Region I and III have the pro- 2 0E
,(22) 

perties of the flow similar to the 
forced vortex and the free vor- AI 

                                                                                                       _ tex, respectively. Region II has 
 // a singular property combined 

both patterns.  o   
 0  0.585 22.38 3 4 5 6 (a) T

angential  velocity  : U(r) (r„) (r0) 
 As shown in Fig. 2, the distri-

                                  Fig. 2. Characteristic curves of  dU/dr=0 CEq. bution of the tan
gential velocity,  (21)) and  d2h/dr`=0  CEq.  (22))  (re,=rc/B, r' 

with increase of the conterline =r/B) . Region I:  dU/dr>0,  d2h/dr2>0, Region 
radius, transfers from the region II:  dU/dr>0 ,  d2h/dr2<0, Region III: dU/dr<O, 
with  dU/dr0 to the region  d2h/dr2<0.
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dU/dr>0. The latter region has been verified experimentally by many in-
vestigators and assumed as the flow with the velocity profile of the forced 
vortex, or proportional to  r  (n: positive constant value). On the other 
hand, the former region has not been detected by previous studies, but will 
be considered as the transitional region between the flows similar to the free 
vortex and the forced vortex. The value of  r,' at the boundary of two re-

gions,  ree', is calculated by Eq. (21) and the marginal condition of a channel  
I  e—re/1=1/2, as follows, 

 4  (r601  —  1/2)6 =  reo'  (r12co  +  1/40)  (7/2/0  —  1/4) 

and  rco',  2.36. 
 Consequently, the maximum and the minimum values of U are determined 

separately for two regions,  0.5<rc'�_2.36 and  2.36<re'. 

(i)  0.5<re'2.36  ; 
 From Eqs. (16) and (21), the minimum value of U becomes 

 U.in=/2+ r''45-2ire 
     3Ci 40 (23) 

in which  ro'  =  .N/re'2(rc'2+1/40)(re'  —1/4)/4. 
 The maximum value of U exists at the inner or the outer bank, and the 

value of  rc' at the condition  U1=  U2, where subscriptions 1 and 2  refer, to 
the inner and the outer bank,  rei', is obtained from 

          C2 rei'—1/4     U2 — ui =4} =0,                 12 (rci'z — 1/4)Bis-I/ (rei'2+ 1/40) (r61'2 — 1/4) 
and  r611=  0.585. Hence, the maximum value of U becomes for  0.5<re'0.585, 

 Umax Ui                    giB2 i(re' — 1/2)3+ reii/(r,'2+1/40) (r6'2— 1/4)). 
        3Cir,'—1/2(24) 

and for 0.585<r2'_2.36, 

               giB2(re' + 1/2)3+ icil/ (ye/2+ 1/40) (re'a— 1/4) t  U.=-(25)          U2—3C 1re' +1/2 

(ii)  2.36�re'  ; 
 In this region, evidently the maximum and the minimum values of U are 

given by Eqs. (24) and (25), respectively. However, at the large value of 
 re', Eq. (20) is developed in series, 

               gire391 (-)( 1                   c 1c2= 3 tr` 80rc'2 640r,'4re"11' 

and the following approximation may be adopted 

for  2�7c1<5,  G1C2=  gir's  (1  9) (20)'  3802'6'2 

and for  re'  �_5,  G1C2=gire3/3. (20)" 

 Under considerations of the approximation in Eqs. (24) and  (25), the maxi-
mum and the minimum values of U become
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for  2r,'<5, Umtn—Ui'giB2 -1(2'0'1)2+ rei (re"— 9/89)' (26)             3C1\2 rc'—1/12 

               umax_u.2giB2 i(7c, ±  1\2+ re' (2'0'2— 9/80)1.(27)                     ' 3C1\2/ re +1/12 1' 
and for  re'.5. U,nin—U1ib-2 ,{(r'1)2+rc'—r°13              ,-gC'e21/121(26)'                                 '3' 

             Unutz—U2gi132 .1(r'+1)2 +  

                

' 3C
i,°2re' +1/121'(27)' 

  Now, from Eqs. (16) and (21), a non-dimensional expression of U is given 
by 

                Ur'3+re'i/(re'8 +1/40) (r c12 — 1/4) .   re' (28)  U  
e=re'3+ re'V (re'2 +1/40) (re'2— 1/4)  r'  ' 

where  U, is the velocity at the centerline radius. For the large value of  re', 
using Eqs. (20)' and (20), Eq. (28) becomes 

                      Ur'3+re' (re/2-9/80) for  2rc'  <5,(28)'                       U 
e—(2re'-9/80)r" 

and for re >_-'/ 
                  U 1(r'2+r   ).(28 5,)"  U  

c 2 re'2r' 

 ..V.. Fig. 3 indicates typical  ex-   ue  U. 
 3.0  1.2- amples of the velocity  pro-

     1.110111111111111 files for  re'  =r  el'  =0.585,  re' = 
2.0  1.1.  111111•111111.111111116  rco'  =  2.36 and  re'  =5 calculat-     M^^^^^

MPall  ed fromEqs.(28)—(28)".  (b)Surface  profile  : h(r)  Lo-  1.0  Itillillilleall1111 As shown in Fig. 2, for 
 Elligismill111111^11 all  re' larger than 0.5, the  1111

11111110  0-0..6.or (1) —1-‘:• 0.585value of ((Ph/ .1'1'2) varies                                          from the negative to the                       iN (2)--- r== 2.36 
                                         positive sign approximately 

  os iminmui (3)  --- r:= 5.0                                          at the point of the centerline,  (1)(2)(
3) 0.0(36 •0.¢85    (1)•• 10s6 r' so that the surface profile 

 (2)1.98 236  286 r' varies from a convex shape 

 (3)      4;55t05.5  r' to a concave shape. And, the      '"* 

                                       point of inflection is almost  Fi
g. 3. Typical examples of tangential velocity consistent with the center -

  profiles  (Eq.  (28)).                                            line radius for  r
e/�5. 
 By the use of Eqs. (17) and (20), a non-dimensional expression of the sur-

face profile is given by 

h—h, _gi2B3J,,(j _ 111                                        (re'2+40)(r e's— 4  )ri                                    c2   B—36C12 l 7—`rc,2\rc,,'40.1\r4 ) 1,2 +8re')/ 
     —re'4+2(re'2+ )(re/2—")-8rc'2)/(r,,,+1_\(ir,a_1'i                                               (29)  40440)1(To'S i/'
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and the approximate expressions become 

 h —  gi2B3 —(2re,—r '4)-1 for 2�Ii<5,              B • 36 C
i2 .\ 20a  r/2 

                            9  +8(re'3—')7' — 7re' + -109 rc'2}-,  (29)' 
       80 

           gi2B31  and for  r
,'  5,h—                 B36C.12(r/4 2ra/6ri2  +8r,13r/  —7re'4) (29)" 

 Some examples of surface  h-n. 
profiles obtained from Eqs.  73— 

 (29)  ---(29)" are shown in Fig. 0.04 
4 under conditions of g=980  0.02-  ̂   

 cm/sect,  i  =2  x10-3,  B=25 cm  0.00-
and  C1=10,  102, 105/2 for  -0.02 

 re'  =0.585, 2.36, 5.0, respec- 
- tively. The variance in the—0.04/ (1) —re=0.585  (2)  --- r;.= 2.36 

curvature of the surface—0.06.                                                            —(3)  —  r  =  5.0 

profile is remarkable for the  —0.08-
small value of  re', but, for the  (I)  0,085  0,585  1.085  r. 
large  re', it will be difficult to  (2)  1.96  236 2.86  r' 
detect the point of inflection                4.5 5,055 r' 
by the usual experimental (3) 
methods.Fig. 4. Typical examples of water surface 

 On the other hand, the su-                                    profiles CEq. (29)). 

perelevation of water surface is obtained from Eqs. (18) (20), as follows, 

    zth=gi2B1 rC2c'j/(r± 1Xrc/2—1±1I.'                                               (30)       9C.:12 1404\  llre'240(7c/2-1/4)  4 

and the approximate expressions become 

for 4h=gi2B4r11                  9C2c,(,7cF20/(30)' 

                             oi2B4 
and for  re'�5,re'3.  (30)"                             3C

12 

4. Experimental Verification 

4.1.  Experimentcl equipment 
  The experiments were conducted in two kinds of  flumes  ; a curved flume 

with lucite walls at the Hydraulic Laboratory in Engineering Research In-
stitute, and a curved concrete flume at Ujigawa Hydraulic Laboratory in the 
Disaster Prevention Research Institute. 

  The former flume has a uniform rectangular cross section 25 cm in width 
and 37 cm in height. It consists of four straight sections, and eight curved 
sections with 90° and 180° central angle and, each other, four kinds of cen-
terline radius that can be composed to give any desired alinement. The 
alinements adopted in this study consist of a straight approach section 10.25 
m in length, one of the four curved sections with  0=90°, in central angle,
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and a straight 4.25 m exit section. Four kinds of the centerline radii in 
the curved section are  rc=25 cm, 50 cm, 75 cm and 100 cm, namely, the 
relative radii  re'  =1, 2, 3 and 4, respectively. And, the centerline slope was 
set at 0.002 during this experimental program. 

 The latter flume is constructed of a uniform rectangular cross section 50 
cm in width and 30 cm in height. It consists of a straight 9 m approach 
section, a single curve of central angle  0=180° and 150 cm in centerline 
radius, namely,  r01=3, and a stright 10 m exit section. The centerline slope 
was also set at 0.002. 

 For the expriments in both flumes, flow depths were measured with point 

gauges to an accuracy of 1/10 mm and velocities of the main flow with round-
nosed Prandtl tubes with 3 mm in diameter. Further, in order to indirectly 
determine the radial and the vertical velocities, three-dimensional flow direc-
tions were measured by the use of a  cylindric,  1 pitot tube with two holes in 
a horizontal plane and a pitot sphere with five holes. 

 In the next two articles, on the basis of the experimental results in two 
curved flumes, assumptions and the theoretical considerations for the flow in 
the upper layer will be discussed. 
4.2. Experimental verification of 90° bend 

 Fig. 5 presents the experimental verification of the assumption,  Tz=he, for 
the flow depth in the previous section  C3.2). If the water surface in the 

                                    curved section has a profile as a 
 0  

       .= 9C'  (cad 
        e .90° 
a   

                                   re
handvohr:ewxi,lthewraeylsatiboenhb<ethw,ebeen- 

                                  cause of  d2h/drz<0. And, if it has 
                                    a profile of a forced vortex, the 

 6inequality will beh>he because 
                                    of  d2h/dra>0. The experimental 

                                    values are in accordance with the 
 4 

                                  straight line of  li=he for any case 
                                    of  rc', and indicate justification for 

  2  o 1 the assumption. Other than at the 

 /0 2                                     station  8=90°, it is proved by fur 

o-                                3              1 94ther experimental results that this 
 0 2 4  6  e 10 assumption will be able to used                                   h

,tem) 
                                    even for the undeveloped region   Fi

g. 5. Experimental verification of as-
                                     without a separation zone.      sumption, it= he.                                        I

n Fig. 6, the theoretical curves 
related C1 to  C2  CEq.  (19)) are compared with the experimental values, that 
are calculated from Eqs. (15) and (16) by the use of the observed values of 
the tangential velocities and the flow directions in a horizontal plane. Any 
decrease of  re', that is, increase of the curvature of the curved section, is 
seen as a larger deviation from theoretical curves. Probably, it is consider-
ed that in the small value of  rc', the development of the secondary flow is 
not enough to establish the equilibrium region of the curved flow within 90° 
bend. This property for the development of the curved flow is also illustrat-
ed from the variation of the tangential velocity profile within the bend.
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  Fig. 6. Comparison between theoretical curves  (Eq.  (19)) and observed values for 
    relationship C1 to  C2  . 

 For the different values of  r,'  =1-4, the observed radial distributions  of 
the tangential  velocity at three stations,  0=30°  , 60° and 90°, from beginning 
of bend, are shown in Figs.  7-1---7-4. Three curves in these figures indicate 
non-dimensional expressions of the velocity profiles as a free vortex  U  /U  e= 

 re'  /r'  , as a forced vortex  U  /U  c=r7re'  , and Eq. (28) derived in the previous 
section. 

 In the cases of  ra'=1-3, the observed distributions at  0=30° and 60° il-
lustrate the deviation of the higher velocity filament to the inner bank similar 
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       Fig. 7-1. Fig. 7-2.
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   Figs.  7-1-7-4. Comparison between theoretical velocity profiles and experimental 

     data at  0=30°-90°. 

to the free-vortex pattern, but its formula is only valid in the case  r  c'  =1. 
And, the forced vortex formula is not valid in any case. The validity of 
the theoretical curves based on Eq. (28), however, is only recognized at 0= 

 90° in the cases  1'01=3 and 4. Accordingly, as in the argument in Fig. 6, the 
equilibrium region with fully developed secondary flow will be restricted 
near the exit section of bend with the value of  r,' larger than 3. 

 Figs.  8-1-8-4 show the comparisons between the observed surface profiles 
at  5=90° and the theoretical profiles based on Eq.  (29), in which Ci is cal-
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culated from Eqs. (16) and (20) by the use of the experimental values of the 
tangential velocity. In all cases of  rc1=1-4, agreement between them is 
fairly good except near the side walls. 
4.3. Experimental verification of  180° band 

 In Fig. 9, the assumption  h=he is examined by the experimental values of 
flow depth at  8=900-1800 with the range of discharge,  Q=5-30 1/sec. Ac-
cordance between them is fairly good within the accuracy of our measuring 

 apparatus. 
 Figs. 10 and 11 give the observed radial distribution of the tangential ve-

locity at different stations and with different discharges, in comparison with 
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   Fig. 9. Experimental verification of Fig. 10. Comparison between theoretical velocity 
    assumption,  ii=lu. profile and experimental data with constant 
                                       discharge at different stations. 
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the forced vortex formula and Eq. (28). As shown in Fig. 10, except near 
the side walls, the experimental values at  0=120°-180° coincide with  the 
curve of Eq. (28) rather than that of forced vortex formula. While, Fig. 11 
illustrates that the velocity profile given by  the non-dimensional expression, 

 U/Uc,  will be independent of the rate of discharge in accordance with the 
form of Eq. (28). Accordingly, the fully developed region is considered to 
exist in the reach  0-120*-180° for this bend. 

  Lastly, in Fig. 12, the theoretical surface profiles are compared with the 
experimental values at 0=150° for the different discharges, Q=5-30 1/sec. 
Although, for the case of the larger discharge, the slight deviation from the 

predicted curve is seen to be due to the higher disturbance of surface, both 
theoretical and experimental results are to be in good agreement except for 
those near the wall. 

5. Conclusion 

 The hydraulic characteristics of the upper layer in the fully developed re-

gion are discussed in detail, as the first report of the research program on 
the internal structure of the flow through curved open channels. 

 In consequence of the present study, an illustration was given of the theory 
that the secondary flow has influence upon the main flow in shifting the 
higher velocity filament to the outer bank and in increasing the supereleva-
tion of the water surface. Further, the existences of the fully developed 
region, the theoretical distribution of the tangential velocity and the surface 

profile were confirmed by experimental results in two kinds of curved flumes. 
 Hereafter, on the basis of the present study, the hydraulic behaviors of 

the flow near the wall affected by the shear force will be examined. 
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