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Abstract

The goal of this research is to define the non-malleability of a key en-
cryption mechanism (KEM) and prove equivalence between the indistin-
guishability and non-malleability for KEM and the data encryption mech-
anism (DEM), respectively, which are ISO standards. In addition, this the-
sis proves the equivalence (or reducible properties) among three crypto-
graphic channels, a secure channel (SC), an anonymous channel (AC), and
a direction-indeterminable channel (DIC).

These days, we are surrounded by network infrastructures that provide
us with information environments. In these network infrastructures, we
communicate with friends and associates using convenient network systems
such as the Internet, e-mail, and web phones. The issue of security has be-
come increasingly important as the amount of network communications in-
creases, i.e., private and individual information are exposed to many risks.
Therefore, adequate security measures must be established in the current
information society. The contribution of this thesis is to aid in providing se-
curity against many threats and risks facing the current information society.
This thesis comprises three brief compositions: semantic security for KEM
and DEM; universal composability for KEM and DEM; and universal com-
posability for three cryptographic channels with Probabilistic Input Output
Automata (PIOA).

1. Semantic Security for KEM and DEM

First, we study the basic cryptographic security notion, semantic se-
curity, for KEM and DEM. KEM and DEM were introduced by Shoup
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to formalize asymmetric encryption specified for key distribution and
symmetric encryption specified for data exchange in ISO standards.
The system consists of KEM and DEM and enables a key delivery
mechanism and message sending mechanism with a high level of se-
curity. Shoup defined “semantic security (IND) against adaptive cho-
sen ciphertext attacks (CCA2)” as a desirable security notion of KEM,
i.e., IND-CCA2 KEM. This thesis defines ”non-malleability (NM)”
for KEM, which is a stronger security notion than IND. We provide
three definitions of NM for KEM, and show that these three defini-
tions are equivalent. We then prove that NM-CCA2 KEM is equiv-
alent to IND-CCA2 KEM and that non-malleability against adaptive
chosen plaintext/ciphertext attack (NM-P2-C2) DEM is equivalent to
IND-P2-C2 DEM, respectively. More specifically, we show that NM
is equivalent to IND for KEM under the CCA2 attack and that NM is
equivalent to IND for DEM under the P2-C2 attack, although NM is
stronger than IND.

2. Universally Composable KEM and DEM

Second, we studied the universally composable (UC) framework for
KEM and DEM. One of the essential frameworks for security com-
posability, the UC framework, was introduced by Canetti. The frame-
work investigates the composability of security functions such as pub-
lic key encryption, authentication, and a secure channel. We define
universally composable functions for KEM and DEM, and show that
IND-CCA2 KEM (or NM-CCA2 KEM) is equivalent to UC KEM
and that “IND against adaptive chosen plaintext/ ciphertext attack
(IND-P2-C2)” DEM is equivalent to UC DEM.

3. Universally Composable Three Cryptographic Channels with
PIOA

Third, we studied the relationship among three cryptographic chan-
nels, a SC, AC, and DIC using UC with the precise framework PIOA.
The relationship among the three cryptographic channels was investi-
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gated by Okamoto. He showed that the three cryptographic channels
are reducible to each other, but did not thoroughly consider commu-
nication schedules and composable security. This thesis refines the
relationship among the three channels in light of the communication
schedules and composable security. We model parties using the task-
PIOA to treat communication schedules, and adopt the UC frame-
work by Canetti to treat composable security. We show that a class of
anonymous channels, two-anonymous channels (2AC), and DIC are
reducible to each other under some types of schedules and that DIC
and SC are reducible to each other under some types of schedules in
the UC framework using the PIOA model.
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Chapter 1

Introduction

1.1 Background

Security is one of the most important notions in the current information-
based society. These days, individuals take steps to protect personal in-
formation such names, addresses, and card numbers because this type of
information is exposed to risk by strangers in the current network society.
To protect this information and secret data, we must construct a security
system or at least implement some rules. For example, a network system
and application system that implements a high level of security should be
constructed to protect against disingenuous attackers.

In the theoretical security paradigm, we employed symmetric key en-
cryption until the 1960s and implemented public key encryption to protect
information against network attackers in the 1970s. Symmetric key encryp-
tion has a problematic point when users must exchange the information re-
garding the key. However, public key encryption solves the key delivery
difficulty.

The Key Encapsulation Mechanism (KEM) and Data Encapsulation
Mechanism (DEM) were proposed by Shoup as ISO standards for hybrid-
public-key encryption (H-PKE) [55]. The security notion of indistinguisha-
bility (IND) (or semantic security) for KEM and DEM was also defined by
Shoup. On the other hand, a definition of another stronger security notion
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“non-malleability (NM)” was introduced by Katz and Yung for private-key
encryption (or DEM) and they investigated the relations between IND and
NM [37] (their results included proof that IND-P2-C2 is equivalent to NM-
P2-C2 for private-key encryption).

In this thesis, we investigate two stronger security notions for KEM
and DEM and research the equivalence (or reducible properties) among
three cryptographic channels: secure channels, anonymous channels, and
direction-indeterminable channels. More specifically, one of the two
stronger security notions is a semantic secure NM for KEM and the other is
UC for KEM and DEM.

NM for public-key encryption (PKE) was introduced [29, 3, 10] as a
stronger security notion than IND and analogous definitions of NM for
KEM were introduced in [41, 42]. Since the NM of PKE has been defined
using amessage spacespecified by an adversary, the existing NM defini-
tions of KEM [41, 42] use akey spacespecified by an adversary, which
corresponds to a message space for PKE. These existing NM definitions of
KEM, however, are available only for a few types of KEM schemes, e.g.,
a KEM scheme constructed from a PKE where a random string plaintext
to PKE is a session key output by KEM. This is because an adversary can
specify a very small key space, e.g.,{K0,K1}, but in a general type of KEM
scheme, it may be hard for a polynomial-time machine (an experiment in
NM definitions) to produce a ciphertext along with a key in this specified
small key space as the output of the encryption function. In other words,
the existing NM definitions cannot be used for such a general type of KEM
scheme.

A weaker security notion of NM, wNM, was introduced and investigated
by Herranz et al. [35]. The wNM-CCA2 KEM is unlikely to imply IND-
CCA2 KEM. Therefore, wNM is not considered to be a feasible definition
of the NM for KEM, since a feasible definition of NM(-ATK) should imply
IND(-ATK) (ATK ∈ {CPA, CCA1, CCA2}) (In fact, the standard definition
of NM(-ATK) of PKE implies IND(-ATK)).

This thesis provides NM definitions that satisfy the following feasible
requirements:
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1. The NM definitions are available for any type of KEM scheme, in
which no key space is used.

2. The NM definitions are stronger than IND, i.e., NM(-ATK) implies
IND(-ATK)). For more detailed description on this matter, see Section
5.1.1and Theorem4).

3. The NM definitions capture the naive NM property that the adversary
is given challenge ciphertextC∗ and he should not be able to derive
another ciphertextC such that its decapsulated keyK is non-trivially
related to challenge keyK∗. Here, we introduce three NM definitions
of KEM, and show that the three definitions are equivalent.

It is easily obtained from one of the definitions of NM that NM-CCA2
KEM is equivalent to IND-CCA2 KEM. That is, we can now recognize
that Shoup’s definition, IND-CCA2, for KEM is as feasible as NM-CCA2,
whereas NM itself is stronger than IND in the definition.

In addition, this thesis investigates other stronger definitions, i.e., the UC
security for KEM and DEM. The UC framework was introduced by Canetti
[13] and it guarantees very strong security, i.e., preserves stand-alone secu-
rity in any type of composition with other primitives and protocols.

Although the UC security for KEM and DEM, as the ideal functionali-
ties of KEM and KEM-DEM, has been defined and investigated in [41, 42],
this thesis modifies the definition, security proof, and description as de-
scribed hereafter.

1. In the previous definition of the functionality of KEM-DEM, only
a single shared key was available in the DEM phase. This thesis
modifies the functionality of KEM-DEM to remove this restriction so
that a single copy of the functionality of KEM-DEM accepts multiple
shared keys in the DEM phase.

2. Another problem in [41, 42] is the proof that UC KEM equals NM-
CCA2, i.e., IND-CCA2), KEM. The proof was based on a previous
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definition of NM which is, as mentioned above, only available for
a few types of KEM schemes. This thesis corrects the proof of the
equality between UC KEM and IND-CCA2 KEM, in which it is di-
rectly proven without using any NM definition (it is equivalent to the
proof through the new NM definition).

3. This thesis follows the new framework of UC that was totally revised
by Canetti in 2005 [13], while [41] and [42] are based on the original
one in 2001. The equivalence between UC DEM and IND-P2-C2
DEM is also proven (through no NM) in this thesis.

Finally, we studied the relationship among three cryptographic chan-
nels, SC, AC, and DIC using UC with the trendy framework probabilis-
tic input/output automata (PIOA). The SC was based on combining KEM
and DEM. The relationship of the three cryptographic channels was inves-
tigated by Okamoto. [46]. He showed that the three cryptographic channels
are reducible to each other, but did not consider communication schedules
clearly as well as composable security. This thesis refines the relationship
of the three channels in light of communication schedules and composable
security. We model parties using the task-PIOA to treat communication
schedules, and adopt the UC framework by Canetti to treat composable
security. We show that a class of anonymous channels, two-anonymous
channels (2AC), and DIC are reducible to each other under some types of
schedules and that DIC and SC are reducible to each other under some types
of schedules in the UC framework with the PIOA model.

1.2 Structure of the Thesis

This thesis comprises eight chapters including this chapter as the introduc-
tion.

Chapter 2 introduces KEM and DEM as ISO standards. A protocol that
combines KEM and DEM, called hybrid public key encryption (HPKE), is
also introduced in this chapter. First, we introduce the basic cryptographic
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protocol, public key encryption (PKE), that is based on KEM, DEM, and
HPKE. Second, the mechanisms and security notions of KEM and DEM are
described and the attack types of these mechanisms are explained. Finally,
we describe the mechanism of HPKE.

Chapter 3 introduces a UC framework that was introduced by Canetti
[13]. This framework is based on interactive turing machines (ITMs) and
solving the difficulty in composability of several protocols. This chapter
describes the main notion of UC, the security theorem, and hybrid theorem.
First, these theorems are considered based on two basic models (or worlds),
one is a real life model (or real world) and the other is an ideal process model
(or ideal world). These two models enable us to consider security from a
real protocol to an ideal function. The real life model consists of three
elements: parties, adversary, and protocol. The ideal process world consists
of three elements: dummy parties, simulator, and ideal functionality. The
party that inputs some messages into the parties, called the environment,
is also an important party. This chapter also explains adversarial models:
non-adaptive adversary, static corruption adversary, and adaptive adversary.
These are important when we consider the security levels of real protocols.
Finally, we describe the UC security. This security is described as hybrid
model of UC. The hybrid model is a specification of the real life model that
is assisted by some ideal functionalities. We consider an unlimited number
of copies of the ideal functionalities.

Chapter 4 introduces the framework for PIOA. This chapter also intro-
duces the task-PIOA. The concept of task-PIOA is simple and essential to
consider the composability regarding PIOA. In particular, it is important
to obtain results considering concurrency, asynchronous schedule, and syn-
chronous schedule for a security model. The UC model is inefficient with
respect to the schedule because it is based on ITMs. Therefore, to obtain
equivalence results among the three channels, we must consider the master
schedule among parties. We explain the basic definitions and theorems or
corollaries of PIOA and task-PIOA in this chapter.

Chapter 5 shows the results of semantic security for KEM and DEM.
Moreover, this chapter presents the definitions of three NMs for KEM and
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shows the proof of equivalence among the three NMs for KEM. We also
show the main theorem for the security of KEM and the proof of equiva-
lence, IND-CCA2 KEM is equivalent to NM-CCA2 KEM. In addition, we
introduce IND and NM for DEM and prove the equivalence between two
notions of DEM from [41, 42] to make the following chapter easier to un-
derstand.

Chapter 6 presents the result for UC KEM and UC DEM. We define the
functionality of KEM in the UC model and show the main theorem for UC
KEM and the proof of equivalence. UC KEM is equivalent to IND-CCA2
KEM (IND-CCA2 KEM is the highest security level for KEM). We also
define the functionality of DEM in the UC model and show the main theo-
rem for UC DEM and the proof of equivalence. UC DEM is equivalent to
IND-P2-C2 DEM (IND-P2-C2 DEM is the highest security level for DEM).

Chapter 7 presents three results. Three cryptographic channels are re-
ducible to each other in the UC framework with task-PIOA. First, we ex-
plain the three basic channels: SC, 2AC, and DIC. Next, we define the task
with respect to task-PIOA. More precisely, we define the codes for the func-
tionalities of the three channels and prove the reductions among the three
cryptographic channels in the UC framework with task-PIOA. Finally, the
reduction proofs are presented in this chapter considering the master sched-
ules of task-PIOA.

Chapter 8 concludes the thesis and summarizes the results obtained
through this research.
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Chapter 2

Hybrid Public Key Encryption

2.1 Preliminaries

Based on standard convention, we use four notations, negligible function,
probabilistic algorithm, experiment and vector as follows whereN is the set
of natural numbers,R is the set of real numbers and⊥ denotes a null string.

1. Negligible function:
Let k be a security parameter. Functionf : N→ R is negligible ink,
if for every constantc> 0, there exists integerkc such thatf (k) < k−c

for all k > kc. Hereafter, we often usef < ϵ(k) to mean thatf is
negligible ink. On the other hand, we usef > µ(k) to mean thatf
is not negligible ink, i.e., function f : N→ R is not negligible ink, if
there exists constantc> 0 such that for every integerkc, there exists
k> kc such thatf (k) > k−c.

2. Probabilistic algorithm:
Let A(x1, x2, · · · ; r) denote the results of executingA that takes as
inputs x1, x2, · · · and coinsr. Let y be the output by executing
A(x1, x2, · · · ; r), that isA(x1, x2, · · · ; r) = y.

3. Experiment:
Let y← A(x1, x2, · · · ) denote the experiment of selectingr at random
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and lettingyequal the output ofA(x1, x2, · · · ; r). If S is a finite set, then
x← S denotes the experiment of assigning tox an element uniformly
chosen fromS. If α is neither an algorithm nor a set, thenx← α
indicates that we assignα to x. WhenA is a probabilistic machine or
algorithm,A(x) denotes the random variable of the output ofA with

regard to inputx. Termy
R← A(x) denotes thaty is randomly selected

from A(x) according to its distribution. WhenA is a set,y
U←A denotes

thaty is uniformly selected fromA. WhenA is a value,y← A denotes
thaty is set asA.

4. Vector:

• We describe vectors in boldface asxxx and denote the number of
components inxxx by |xxx|, and thei-th component byxxx[i] so thatxxx
= (xxx[1], · · · , xxx[|xxx|]).

• We denote a component of a vector asx ∈ xxx or x < xxx, which
respectively means thatx is in or is not in the set{xxx[i] : 1 ≤ i ≤
|xxx|}. From the above, we can simply describexxx← A(yyy) as the
shorthand form of 1≤ i ≤ | yyy | do xxx[i] ← A(yyy[i]).

• Instead of describingR(x1, · · · , xt), we describeR(x, xxx), which
means that the first argument is special and the rest are collec-
tively given as vectorxxx with |xxx| = t−1. Here, we consider re-
lations of amityt wheret is a polynomial in security parameter
k.

2.2 Public Key Encryption

The concept of public key encryption (PKE) is simple and compendious,
but has far-reaching consequences. This encryption method or scheme has
been known since the 1970s. This is called public key (or asymmetric key)
scheme/ encryption because the decryption key is different from the en-
cryption key. Furthermore, it is infeasible to find the decryption key from
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the encryption key and the message from the ciphertext, respectively. This
method is constructed from three algorithmsPKE = (K,E,D) whereK is a
key generation algorithm,E is an encryption algorithm, andD is a decryp-
tion algorithm. Let (PK,S K) be a pair comprising a public key and secret
key generated byK. The algorithmsE and PK are open to us, but it is
computationally infeasible, given random ciphertextc ∈C, to find message
m∈ M such thatE(m) = c. This property implies that given public keyPK
it is difficult to determine the corresponding secret keyS K. The public key
PK is different from secret keyS K in public key encryption while it is the
same key in symmetric key encryption.

2.3 Key Encapsulation Mechanism

A KEM was proposed as an ISO standard by Shoup. A KEM,Σ, is given by
three algorithmsΣ = (G,E,D) where

1. G, the key generation algorithm, is a probabilistic polynomial time
(PPT) algorithm that takes security parameterk ∈ N (provided in
unary) and returns pair (pk, sk) comprising a matching public key and
secret key.

2. E, the key encryption algorithm, is a PPT algorithm that takes as input
public keypk and outputs key/ciphertext pair (K∗,C∗).

3. D, the decryption algorithm, is a deterministic polynomial time algo-
rithm that takes as input secret keyskand ciphertextC∗, and outputs
key K∗ or⊥ (⊥ implies that the ciphertext is invalid).

We require that for all (pk, sk) output by key generation algorithmG and
for all (K∗,C∗) output by key encryption algorithmE(pk), D(sk,C∗) = K∗

holds. Here, the length of the key,|K∗|, is specified byl(k), wherek is the
security parameter.
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2.3.1 KEM Attack Types

The three attack types of KEM are CPA, CCA1 and CCA2, where:

1. CPA, Chosen Plaintext Attack, is an attack type that an adversary is
allowed to access to only encryption oracle but not decryption oracle.

2. CCA1, Chosen Ciphertext Attack, is an attack type that an adversary
is allowed to access to both encryption and decryption oracle. How-
ever the adversary cannot access to decryption oracle after getting
target ciphertext.

3. CCA2, Adaptive Chosen Ciphertext Attack, is an attack type that an
adversary is allowed to access to both encryption and decryption ora-
cle even after the adversary gets target ciphertext.

Note that the adversary cannot decrypt the target ciphertext in the case of
CCA2. Each attack type is defined by considering an adversary that can
access the encryption oracle and decryption oracle. The encryption oracle
takes plaintexts as input and returns ciphertexts that are the encryption of
input plaintexts. On the other hand, the decryption oracle takes ciphertexts
as input and returns plaintexts that are the decryption of input ciphertexts.
Adversaries are able to attack the target ciphertext under the conditions of
the above attack types. However, the adversary cannot access the decryption
oracle with the target ciphertext.

2.3.2 IND for KEM

The indistinguishability (IND) of KEM was defined by Shoup [55]. We use
“IND-ATK-KEM” to describe the security notion of indistinguishability for
KEM against ATK∈ {CPA,CCA1,CCA2}. “IND-KEM” is used to focus on
the indistinguishability of KEM without regard to attack type. If it is clear
from the context that IND-ATK-KEM (and IND-KEM) is used for KEM,
we will call it IND-ATK (and IND) for simplicity.

To clarify the IND of PKE, we may use IND-ATK-PKE and IND-PKE.
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AdvIND-ATK
A,Σ (k) ≡ Pr[ExptIND-ATK

A,Σ (k) = 1]− 1
2

,

whereExptIND-ATK
A,Σ (k):

(pk, sk)
R←G(1k); s

R← AO1
1 (pk);

(K∗,C∗)
R←E(pk); R

U← {0,1}l(k); b
U← {0,1};

X←
K∗, if b= 0

R, if b= 1

g
R← AO2

2 (s,X,C∗); return 1, iff g= b

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 =D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 =D(sk, ·) andO2 =D(sk, ·).

Figure 2.1:Advantage of IND-ATK-KEM

Definition 1. Let Σ beKEM, A= (A1,A2) be an adversary, and k∈ N be a
security parameter. ForATK ∈ {CPA,CCA1,CCA2}, AdvIND-ATK

A,Σ (k) is de-
fined in Fig. 2.1. We say thatΣ is IND-ATK-KEM, if for any adversary
A ∈ P, AdvIND-ATK

A,Σ (k) is negligible in k whereATK ∈ {CPA,CCA1,CCA2}
andP denote a class of polynomial-time bounded machines.

2.4 Data Encapsulation Mechanism

A DEM was also proposed as an ISO standard by Shoup. A DEM,Σ′, is
given by two algorithmsΣ′ = (E′,D′) where

1. E′, the data encryption algorithm, is a PPT algorithm that takes as
input secret keyK (K is shared by KEM) and plaintextM, and outputs
ciphertextC.

2. D′, the data decryption algorithm, is a deterministic polynomial time

11



algorithm that takes as input secret keyK and ciphertextC, and out-
puts plaintextM or⊥ (⊥ implies that the ciphertext is invalid).

It is required that for allC output by data encryption algorithmE′(K,M),
D′(K,C) = M holds (”soundness”). Here, the length of the key,|K|, is spec-
ified by l(k) wherek is the security parameter.

2.4.1 DEM Attack Types

From the standard notion of the attack type, we consider the following nine
DEM attack types: PX-CY (X∈ {0,1,2} and Y∈ {0,1,2}), i.e., P0-C0, P1-C0,
P2-C0, P0-C1, P1-C1, P2-C1, P0-C2, P1-C2, and P2-C2.

1. PX (X∈ {0,1,2}) denotes access to the encryption oracle. P0 means
that the adversary does not have access to the encryption oracle. P1
means “Chosen Plaintext Attacks” where the adversary is allowed to
access the encryption oracle, but cannot access the encryption ora-
cle after obtaining the target ciphertext. P2 means “Adaptive Chosen
Plaintext Attacks” where the adversary is allowed to access the en-
cryption oracle, even after it obtains the target ciphertext.

2. CY (Y∈ {0,1,2}) denotes access to the decryption oracle. C0 means
that the adversary does not have access to the decryption oracle. C1
means “Chosen Ciphertext Attacks” where the adversary is allowed
to access the decryption oracle, but cannot access the decryption ora-
cle after obtaining the target ciphertext. C2 means “Adaptive Chosen
Ciphertext Attacks” where an adversary is allowed to access the de-
cryption oracle after it obtains the target ciphertext, but the adversary
cannot decrypt the target ciphertext in the case of C2 for all PX.

2.5 Hybrid Public-Key Encryption

Using a canonical way to compose KEM and DEM, we obtain a hybrid
public key encryption scheme.

12



First, let Σ = (G,E,D) be KEM and letΣ′ = (E′,D′) be DEM. Let
KEM.KeyLenbe the length of the output key of KEM andDEM.KeyLenbe
the length of the output key of DEM. Second, to compose these two mech-
anisms, we require that they are compatible in the sense thatKEM.KeyLen
= DEM.KeyLen.

We state a hybrid public key encryption schemeH-PKE =

H-PKEKEM,DEM in terms of KEM and DEM as given hereafter.

1. Key generation algorithm
The key generation algorithm inH-PKE is the same as
KEM.KeyGen(). The obtained key, (pk, sk), by KEM.KeyGen() rep-
resents a public key and secret key, respectively.

2. Encryption algorithm
First, the encryption algorithm inH-PKE executesE(pk) to generate
ciphertextC0 and shared keyK. Second, it encrypts messageM to
C1 underK usingE′(K,M). Third, it outputs ciphertextC = C0 ∥C1.
Any of these steps may fail, in which case the encryption algorithm
in H-PKE also fails.

3. Decryption algorithm
First, the decryption algorithm inH-PKE parsesC asC = C0 ∥ C1

using the prefix-freeness property∗ of the ciphertexts. Second, it de-
cryptsC0 to shared keyK underskusingD(sk,C0). Third, it decrypts
C1 to messageM usingD′(K,C1). Any of these steps may fail, in
which case the decryption algorithm inH-PKE also fails.

Shoup defined a hybrid public key encryption scheme as the above
H-PKE for an ISO standard (see [55] for more details).

∗The set of all possible outputs of the encryption algorithm should be a subset of some
easy to recognize prefix-free language — language L is prefix free if for any two x, y∈ L, x
is not a proper prefix of y. The prefix-freeness property is needed so that we can parse byte
strings from left to right, and efficiently strip off a ciphertext. Note that if all ciphertexts
have the same length, then the prefix-freeness property is trivially satisfied.
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Chapter 3

Universal Composability

The notion of UC was formalized by Canetti [13]. Informally, we redescribe
the UC framework.

3.1 Overview

UC framework treats a protocol as a system of Interactive Turing Ma-
chines (ITMs) and assume that all ITMs run in probabilistic polynomial
time (PPT). So, each party runs the program in the ITM system.

In the UC framework, there are input, output, and communication tapes.
The input and output tapes represent the input and output that are received
from and given to other systems (involving some programs) running on the
same machine, respectively. On the other hand, the messages in the commu-
nication tapes are sent to and received from the participants in the system.
In addition, an adversary is also modeled as an ITM. The merits of this
framework are itemized below.

• In the sense of UC security, we can securely achieve (UC-realize) a
Byzantine system by combining some UC secure briefest units.

• In clear and simple terms, we can understand and construct a complex
system.
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The following describes how the Byzantine system is UC-realized from
some small systems/protocols. First, we assume that small systems are UC
secure. By considering “ideal functionality”, we assume the systems can be
treated as functionality. Second, we must say that the constructed (Byzan-
tine) system is UC secure by using small ideal functionality. The UC hy-
brid model assures that the ideal functionalities construct a secure combined
system. Here, we refer to the basic notion of this framework as indicated
hereafter.

3.2 Security Framework

Protocolπ is executed in the following three steps:

1. A real life model (or real world) is formalized to carry out a task of
protocolπ. The adversary or the environment executesπ with some
parties in this real life model.

2. An ideal process model (or ideal world) is formalized to idealize the
executions in the real life model. In this model, the parties communi-
cate with each other through an “ideal functionality.” The ideal func-
tionality is a functionality to achieve the desired functionality of the
task in the real life model and it is essentially an incorruptible trusted
party.

3. The environment is activated to distinguish computationally between
the real life model and ideal process model.

Informally, we say that protocolπ UC-realizes an ideal functionality if the
environment cannot distinguish the execution of the real life process from
the ideal process model. More details regarding the real life world and the
ideal process world are given below.
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3.2.1 Real Life Model

In the real life model, the real world has partiesPi , environmentEnv, and an
adversaryAdvas participants. PartiesPi execute protocolπ in conjunction
with Advand environmentEnvbased on the inputz from Env. All partic-
ipants have security parameterk and they are able to perform the actions
below.

• EitherPi , Env, or Advis activated to executeπ by inputting a message
as their respective input or in their respective inpucoming communi-
cation tapes. The input or input communication tape is modeled as
an ITM as well. From the input tape or incoming communication
tapes the activated participant reads some information, executes its
program, and outputs information on its output tape or outgoing com-
munication tapes. In addition, the environment can read the output
tapes of the partiesPi , and write some information on the input tapes
of the partiesPi .

• Adv is able to read messages on the outgoing communication tapes
and can deliver these messages to the incoming message tapes of the
recipient parties. Note that only messages generated byPi can be
delivered.

• Adv is also able to corrupt partiesPi according to four types of cor-
ruption.

– An adaptive adversary may corrupt the partiesPi while the pro-
tocol is executed.

– A non-adaptive adversary can corrupt partyPi before any party
Pi is activated.

– An active adversary can establish complete control over the be-
havior of the corrupted partiesPi .

– A passive adversary can obtain only the internal information of
the corrupted partiesPi . In the case of a passive adversary, cor-
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rupted partiesPi can continue to follow their prescribed proto-
col.

Formally, the notion of security in the real life model is denoted as fol-
lows. Let Realπ,Adv,Z(k,z, rrr) denote the output of environmentEnv when
interacting with adversaryAdv and partiesP1, . . ., Pn executing proto-
col π on security parameterk, input z and random inputrrr = rEnv, rAdv,
r1 . . . rn be as described above (z and rEnv for Env; rAdv for Adv; r i for
party Pi). Let Realπ,Adv,Env(k,z) denote the random variable describing
Realπ,Adv,Env(k,z, rrr) when rrr is uniformly chosen. LetRealπ,Adv,Env denote
the ensemble{Realπ,Adv,Env(k,z)}k∈NNN,z∈{0,1}∗.

3.2.2 Ideal Functionality Model

In the ideal process model, there is a simulator,S im, and ideal functionality
F . S imandF proceed withEnvand dummy partyPi in the ideal process
world as follows:

• Env is activated with its inputz, and activatesS imandPi .

• S im shall simulate the protocolπ in the real world faithfully. S im
proceeds to deceive environmentEnv that has interaction, real life
world or ideal world. Furthermore,S im simulates protocolπ with
ideal functionality.

• F communicates with some dummy partiesPi andS iminteractively
in the PPT. In other words, onceF is activated, it reads the infor-
mation in its incoming communication tape, and outputs to dummy
partiesPi or sends messages to simulatorS im.

Formally, the notion of security in the ideal process model is denoted
as follows. Let IdealF ,S im,Env(k,z, rrr) denote the output of environment
Env after interacting in the ideal process with adversaryS im and ideal
functionality F , on security parameterk, input z, and random inputrrr
= rEnv, rS im, rF as described above (z and rEnv for Env, rS im for S im;
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rF for F ). Let IdealF ,S im,Env(k,z) denote the random variable describing
IdealF ,S im,Env(k,z, rrr) when rrr is uniformly chosen. LetIdealF ,S im,Env de-
note the ensemble{IdealF ,S im,Env(k,z)}k∈NNN,z∈{0,1}∗.

3.2.3 UC Security

We say that protocolπ UC-realizes ideal functionalityF if for any real life
model adversary,Adv, there exists an ideal process model adversary,S im,
such that no environment,Env, on any input, can tell with non-negligible
probability whether it is interacting withAdv and parties executingPi in
the real life model, or it is interacting withS imandF in the ideal process
model. This means that, from the viewpoint of the environment, execut-
ing protocolπ is just as good as interacting with an ideal process forF .
Formally, Environment Security(ES) is denoted as follows.

Let F be an ideal functionality and letπ be a protocol. We say thatπ
UC-realizesF if for any adversaryAdv there exists an ideal process model
adversary,S im, such that for any environmentEnvwe have :

IdealF ,S im,Env≈ Realπ,Adv,Env.

3.2.4 Non-Adaptive/ Adaptive Adversary

Two adversary attack types are modeled in the UC framework. The first
is a non-adaptive adversary in which adversaryAdv cannot collapse and
withdraw the parties in the running of the real life protocol. Another is an
adaptive adversary that can collapse and withdraw the parties in the execu-
tion of the real life protocol. For parties Init and Rec in protocolπ, there are
four statuses.

Status 1 : No party is corrupted by Adv

All of the parties in protocolπ are safe becauseAdv
collapses no party. That is, this status shows that pro-
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tocolπ is executed securely between Init and Rec be-
causeAdvcan obtain no information except with the
outputs of the parties and the information forwarded
from Env.

Status 2 : Only Init is corrupted by Adv

AdversaryAdvcollapses only Init upon the input by
Env. This status shows that protocolπ may not be
executed securely between Init and Rec becauseAdv
can obtain any information from the corrupted party
Init.

Status 3 : OnlyRecis corrupted by Adv

The adversary collapses only Rec upon the input by
Env. This status shows that protocolπ may not be
executed securely between Init and Rec becauseAdv
can obtain any information from the corrupted party
Rec.

Status 4 : Both parties are corrupted byAdv

The adversary collapses both Init and Rec upon the
input by Env. This status also shows that proto-
col π is not executed securely between Init and Rec
becauseAdv can obtain any information from cor-
rupted parties Init and Rec, and the information for-
warded fromEnv.

• Non-Adaptive Adversary The non-adaptive adversary never tran-
sits from the first status to another status when executing protocol
π. Therefore, the first status, which is fixed byEnvbeforeπ begins,
continues to the end of the protocolπ.

20



• Adaptive Adversary The adaptive adversary can collapse and with-
draw the parties in the execution of the real life protocol although the
non-adaptive adversary cannot.Advcan change from the first status
to another status whenEnvactivatesAdv to collapse or withdraw the
target party. The status may transit to any of the above-mentioned
four statuses anytime.

3.2.5 Hybrid Model

The UC framework formalizes the hybrid model as described hereafter. The
hybrid model is specified as a real life model that is assisted by some ideal
functionality,F (in short, theF -hybrid model). We consider an unlimited
number of copies of ideal functionalityF . The copies ofF are differen-
tiated using their session ID,sid. The parties and the adversary may send
messages to and receive messages from each copy ofF in each activation.
If they send messages to each copy ofF usingsid, they write information
on the incoming communication tape of that copy. On the other hand, ifF
sends outgoing messages, adversaryH delivers the messages but is barred
access to the contents of that message.

Let HybF
π,Adv,Env(k,z) denote a random variable describing the output of

environmentEnvon inputz, afterEnv interacts in theF -hybrid model with
protocolπ and adversaryAdv(We stress that hereπ is a hybrid protocol with
ideal functionalityF ). Let HybF

π,Adv,Env denote the distribution ensemble

{HybF
π,Adv,Env(k,z)}k∈N,z∈{0,1}∗.

3.2.6 UC Hybrid Security

The universal composition theorem is hereafter. LetF andG be ideal func-
tionalities. Letπ be a protocol in theF -hybrid model, and letπρ be a proto-
col that UC-realizesF in theG-hybrid model. Then for any adversaryAdvG
there exists adversaryAdvF such that for any environmentEnvwe have

HybF
π,AdvF ,Env≈ HybG

πρ,AdvG,Env.
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Chapter 4

(Task) Probabilistic I /O Automata

4.1 Introduction

This chapter introduces PIOA and task-PIOA that can model and verify a
security protocol. Task-PIOA enables us to consider the protocols as the
automaton of tasks defined in the task-PIOA settings. We must consider
composable security using the UC framework, but the framework is based
on ITMs. Therefore, we must compensate for the lack of power due to
the ITM construction because ITM is sequencial model not the concurrent
model. More specifically, we need a schedule property when we consider
reducing the SCs, ACs, and DICs. As a result, we focus on the UC with
task-PIOA considering these three cryptographic channels.

4.2 Preliminaries

This section introduces the basic notions of mathematics on task-PIOA from
[15, 16, 17, 18].

Probabilistic measureLet X andµ be a set and a discrete probability
measure, respectively.µ is the discrete probability measure on setX. A σ-
field over setX is setF ⊆ 2X. F contains the empty set andF can be closed.
If F is aσ-field overX, then the pair of (X,F) is a measurable space. Let
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µ be functionF→ [0,∞] andµ be countably additive. The other details are
described in [18].

Support Support of probability measureµ is measurable setC such that
µ(C) = 1. If probability measureµ is a discrete probability measure, we
denote this by supp(µ) where the support of probability measureµ is the set
of elements that have non-zero measure.

Apply Functionapply(µ,ρ) takes discrete probability measureµ on fi-
nite execution fragments (see4.3) and task scheduleρ (see4.5.1), and re-
turns a probability measure on execution fragments. Note that this function
satisfies apply(µ, λ) = λ (λ is the empty sequence).

4.3 Probabilistic I/O Automaton (PIOA)

The PIOA framework was introduced by Segala in [49, 51, 52] to analyze
probabilistic distributed algorithms. The PIOA framework treats the proba-
bilistic and nondeterministic choices in the notion. To analyze the level of
cryptographic security and resolve the problem of concurrency, we essen-
tially need the notion of nondeterminism.

Definition 2. [PIOA:] Let P be PIOA that is a tuple of(Q,q, I ,O,H,D)
[18] as follows:

- Q is a countable set of states.

- q describes a start state and satisfiesq ∈ Q.

- I is a countable set of input actions.

- O is a countable set of output actions.

- H is a countable set of internal actions.

- D is a transition relation satisfying D⊆ Q× (I ∪O∪H)×Disc(Q),
where Disc(Q) is the set of discrete probability measures on Q.

The following sets are also defined:
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- A is I∪O∪H, this represents the set of actions.

- E denotes I∪O, this represents the set of external actions.

- L denotes O∪H, this represents the set of locally controlled actions.

Note that the sets I,O, and H are pairwise disjoint sets, respectively. If
I = ∅, then P is closed.

We say an action a isenabledin state q if(q,a,µ) ∈ D for someµ. We
assume that P satisfies two properties, input enabling and transition de-
terminism. The input enabling means that for every q∈ Q and a∈ I, a is
enabled in q. The transition determinism means that for every q∈ Q and
q ∈ A, there is at most oneµ ∈ Disc(Q) such that(q,a,µ) ∈ D.

Let qi andai for i ∈ {0,1,2, · · · } be states and actions, respectively. We
consider that an execution fragment of PIOAP is the following infinite
or finite sequenceα = q0a1q1a2 . . . . If sequenceα is a finite sequence,
the last state ofα is denoted by lst(α). If α is a finite sequence with
lst(α) = qi+1, for each (qi ,ai+1,qi+1) there exists a transition (qi ,ai+1,µ) ∈ D
with qi+1 ∈ supp(µ), where supp(µ) is a support ofµ. Here, we use the term
of “Frags(P)” (resp., “Frags∗(P)”) to denote the set of all (resp., all fi-
nite) execution fragments ofP. We then use the term of “Execs(P)” (resp.,
“Execs∗(P)”) to denote the set of all (resp., all finite) executions ofP. If
there exists execution fragmentα of P, we denote the input and output (ex-
ternal actions) sequence obtained fromα astrace(α).

4.4 Task-PIOA

The perfect information schedules of PIOA are very powerful in analyz-
ing the security of protocols. The schedule based on the all information
included the local information that parties have. The perfect information
schedules are open to all participants. However, the adversary cannot ac-
cess to the local information in the case of non-corrupted case when we
analize the security of protocols. Therefore, the local information should
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be hided against the perfect information schedules or adversary to execute
tasks nondeterministically.

When an adversary corrupts a party, the secret information that the party
retain in the internal process is reveal to the adversary. For this problem, we
must apply the non-adaptive task schedule mechanism. This mechanism is
defined in task PIOA. In simple terms, the task is used as units of scheduling.

Definition 3. [Task-PIOA:] Task-PIOA T is defined to be pair(P,R) where

- P is a PIOA (Q,q, I ,O,H,D),

- R is an equivalence relation onL =O∪H.

The task is an equivalence class ofR. We say that taskt is enabled in
stateq if somea ∈ t is enabled inq. We require that every task-PIOAT
satisfiesaction determinismproperty. Theaction determinismmeans that
for every stateq ∈ Q and every taskt ∈ R, there is at most one actiona ∈ t
that is enabled inq.

The tasks can be used to resolve all nondeterminisms using action deter-
minism and transition determinism for PIOAs. In other words, subsequent
action is specified with the given state and by specifying a task.

4.5 Schedules

In this thesis, we formally model partiesP1, · · · ,Pn in a protocol using task-
PIOA T1, · · · ,Tn. EachPi executes its task according to the following task
schedule, local schedule, and master schedule.

4.5.1 Task Schedule

We refer to the notion of “task schedule,” which chooses the next task to per-
form. For a closed task-PIOA, i.e., one with no input actions, a task schedule
resolves all nondeterminism due to the next-action determinism property of
task-PIOAs and the next-transition determinism property of general PIOAs.
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Definition 4. [Task Schedule:] Let T = (P,R) be a closed task-PIOA
where P= (Q, q̄, I ,O,H,D). A task schedule for T is defined to be a finite or
infinite sequenceρ = t1t2 . . . of tasks in R.

Here, for a task scheduleρ, we define the trace distributiontdist(ρ). The
trace distribution,tdist(ρ), is the image measure ofapply(δ(q̄),ρ) where
δ(q̄) is the Dirac measure on the start state ¯q. We define the set of trace
distributions ofT, tdists(T), to be{tdist(ρ)|ρ is a task schedule forT}.

4.5.2 Local Schedule

A second schedule is introduced to the local schedule to resolve nondeter-
minisms. The local schedule resolves the nondeterminisms within the sys-
tem components based on local information. This schedule differs from the
task schedule in the point of no action determinism assumption. The local
schedule for task-PIOAT is defined to be as follows.

Definition 5. [Local Schedule:] Let T = (P,R) and s be a closed task-
PIOA for party P and local information, respectively. A local schedule,
ω(s), for T is defined to be a finite or infinite sequence of tasks, t1, t2, · · · ,
i.e.,ω(s) = t1, t2, · · · . ω(s) specifies the execution order of the tasks in R with
s (We often omit from the specification the explicit description ofω(s) in the
specification of a task-PIOA ifω and s where s includesλ, are trivial).

4.5.3 Master Schedule

Definition 6. [Master Schedule:] A master schedule, M, is defined to be
a finite or infinite sequence of party identifiers, i1, i2, · · · , i.e., M= i1, i2, · · · .
M globally specifies the execution order of tasks in a protocol of (P1, · · · ,Pn)
while preserving the local scheduling of all parties.

For example, let ρi of party i be ti1, ti2, · · · (i = 1,2,3), and
M = 1,2,2,2,3,1,1,3. Then the global execution order of tasks is
t11, t21, t22, t23, t31, t12, t13, t32.
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The master schedule is not under the control of an adversary although
the local schedule is under the control of an adversary. In other words, the
adversary cannot intervene on the master schedule, but he can encumber a
local schedule. This construction can be generalized from a single execution
fragmentα to a discrete probability measureϵ on execution fragments. See
[15, 16] for details.

In [15, 16], a master schedule is defined to resolve nondeterminism. The
master schedule controls local schedules in a large system nondeterministi-
cally or deterministically. A local schedule helps the master schedule from
within the system components and uses only local information. One of the
ways to realize the task schedule is using local local schedule and (/or) mas-
ter schedule.

4.5.4 Operations

The other operations for task-PIOAs are defined in [18]. The formal defi-
nitions and theorems are available in that paper. Here, we briefly describe
operations, composition, and hiding operations hereafter.

Definition 7. [Composition Operation:] For two compatible task-PIOAs
T1 = (P1,R1) and T2 = (P2,R2), their composition T1 ∥ T2 is defined to be
task-PIOA(P1 ∥ P2,R1∪R2).

Definition 8. [Hiding Operation:] For task-PIOA T= (P,R) and set S⊆O
of output actions, hide(T,S) is defined to be(hide(P,S),R) where hide(P,S)
yields(Q, q̄, I ,O\S,H∪S,D) for P= (Q, q̄, I ,O,H,D).

Here, we introduce thefull operation as described hereafter. IfT1 =

(P1,R1) andT2 = (P2,R2) are two task-PIOAs, and ifc : (R∗1×R1)→ R∗2,
then we definef ull(c) : R∗1→ R∗2 recursively, as

• f ull(c)(λ) = λ

• f ull(c)(ρT) = f ull(c)(ρ)c(ρ,T).
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4.5.5 Security Definitions

We describe “comparable” and “environment” definitions as follows.

Definition 9. Two task-PIOAs T1 and T2 are comparable if I1 = I2 and
O1 = O2, that is, if they have the same input actions and the same output
actions.

Definition 10. If T and E are task-PIOAs, then E is said to be an environ-
ment for T if T and E are compatible, and T∥ E is closed.

We now introduce implementation, the basic definition of security for
task-PIOA as described in [18].

Definition 11. [Implementation:] Suppose T1 and T2 are two compara-
ble task-PIOAs. We say that T1 ≤0 T2 provided that, for every environment
E for both T1 and T2, tdists(T1||E) ⊆ tdists(T2||E).

We obtain the following theorems.

Theorem 1. Suppose that T1 and T2 are comparable task-PIOAs such that
T1 ≤0 T2, and T3 is a task-PIOA that is compatible with each of T1 and T2.
Then T1 ∥ T3 ≤0 T2 ∥ T3.

Theorem 2. Suppose that T1 and T2 are comparable task-PIOAs such that
T1 ≤0 T2. Suppose that S is a set of output actions of both T1 and T2. Then
hide(T1,S) ≤0 hide(T2,S).

Definition 12. Let T1= (P1,R1) and T2= (P2,R2) be two comparable closed
task-PIOAs. Let R be a relation from Disc(Execs∗(P1)) to Disc(Execs∗(P2))
such that ifϵ1Rϵ2, then tdist(ϵ1) = tdist(ϵ2). Then R is a simulation from T1
to T2 if there exists c: (R∗1×R1)→R∗2 such that the start and step conditions
given below hold.
1. Start condition:δ(q̄1)Rδ(q̄2).
2. Step condition: Ifϵ1Rϵ2, ρ ∈ R∗1, ϵ1 is consistent withρ, ϵ′2 is consistent
with f ull(c)(ρ), and T ∈ R1, then ϵ′1E(R)ϵ′2, whereϵ′1 = apply(ϵ1,T) and
ϵ′2 = apply(ϵ2,c(ρ,T)).
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Theorem 3. Let T1 and T2 be two comparable closed task-PIOAs. If there
is a simulation relation R from T1 to T2, then tdists(T1) ⊆ tdists(T2).

Corollary 1. Let T1 and T2 be two comparable task-PIOAs. Suppose that,
for every environment E for both T1 and T2, there is a simulation relation R
from T1 ∥ E to T2 ∥ E. Then T1 ≤0 T2.

Corollary 2. Let T1 = (P1,R1) and T2 = (P2,R2) be two compara-
ble closed task- PIOAs. Let R be a relation from Disc(Execs∗(P1))
to Disc(Execs∗(P2)), satisfying the following condition: ifϵ1Rϵ2 then
tdist(ϵ1) = tdist(ϵ2). Let c: (R∗1×R1)→ R∗2. Suppose further that the fol-
lowing conditions hold. 1. Start condition:δ(q̄1)Rδ(q̄1).
2. Step condition: Ifϵ1Rϵ2, ρ1 ∈ R∗1, ϵ1 is consistent withρ1, ϵ′2 is consistent
with f ull(c)(ρ1), and T∈ R1, then there exist the following.

- Probability measure p on countable index set I,

- Probability measuresϵ′1, j , j ∈ I on finite executions of P1, and

- Probability measuresϵ′2, j , j ∈ I on finite executions of P2,

such that:

- For each j∈ I, ϵ′1, jRϵ
′
2, j ,

- S igmaj∈I p( j)(ϵ′1, j) = apply(ϵ1,T), and

- S igmaj∈I p( j)(ϵ′2, j) = apply(ϵ2,c(ρ1,T)).

Then R is a simulation relation from T1 to T2 using c.

4.6 Security Definitions

We define the security notion on task-PIOA considering the synchronous
and asynchronous schedule as described hereafter.
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Definition 13. [Perfect Implementation:] Let Env, Realand Ideal be
an environment task-PIOA, a real protocol task-PIOA system and an ideal
functionality task-PIOA system, respectively. Letsch be some (synchronous
or asynchronous) schedule. We say thatReal perfectly implementsIdeal
under some (synchronous or asynchronous) schedule (orReal≤sch.0 Ideal),
if trace(Real||Env)= trace(Ideal||Env) for every environmentEnv under a
synchronous or asynchronous schedule.

Definition 14. [Perfect Hybrid Implementation:] Let Hybrid be a real
protocol task-PIOA system with the hybrid model. We say thatHybrid per-
fectly hybrid-implementsIdealunder some (synchronous or asynchronous)
schedule (or Hyb. ≤sch.0 Ideal}), if trace(Hybrid||Env)= trace(Ideal||Env)
for every environmentEnv under some (synchronous or asynchronous)
schedule.
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Chapter 5

Semantic Securities for KEM and
DEM

This chapter defines the three NMs for KEM and proves equivalence among
the three NMs. In addition, we prove equivalence between IND and NM.
We then provide the IND and NM of DEM and prove equivalence between
IND and NM.

5.1 Three NMs for KEM

The NM of KEM is defined as three NMs: a simulation based NM, compar-
ison based NM, and parallel chosen-ciphertext attack based NM.

5.1.1 Simulation Based NM

KEM Σ is called “SNM-ATK-KEM” in the sense thatΣ is secure insimula-
tion based NM(SNM) for each attack type ATK∈ {CPA,CCA1,CCA2}.

Definition 15. Let Σ be KEM, Rel be a relation, A= (A1,A2) be an
adversary, S= (S1,S2) be an algorithm (the “simulator”), and k∈ N
be the security parameter. ForATK ∈ {CPA,CCA1,CCA2}, we define
AdvSNM-ATK

A,S,Σ (Rel,k) in Fig. 5.1. We say thatΣ is SNM-ATK-KEM, if for any

33



adversary A∈ P and all relations Rel computable inP, there exists simu-
lator S ∈ P such thatAdvSNM-ATK

A,S,Σ (Rel,k) is negligible in k, whereATK ∈
{CPA,CCA1,CCA2} and P denotes a class of polynomial-time bounded
machines.

Note that adversaryA2 is not allowed to pose the challenge ciphertext
C∗ to its decryption oracle in the case of CCA2 and we require thatC∗ <CCC.

In the previous NM definitions [41, 42], the adversary can select the key
space. As mentioned in the Introduction, it is a serious problem that the
definitions are available only for a few types of KEM schemes. Therefore,
the revised point in this paper is to free the key space of the old version
definition inExptSNM-ATK

A,Σ (Rel,k).
In the attack scenario of SNM for PKE (SNM-PKE), the adversary can

decide the message space [10]. Note that such a message space in the sce-
nario is introduced to make SNM-PKE compatible with IND-PKE, i.e., to
make SNM-PKE imply IND-PKE, in the attack scenario in which the ad-
versary can decide a pair of messages (a message space).

In contrast, in the IND-KEM attack scenario, a correct key or a ran-
dom value along with the target ciphertext is given to the adversary. To
make SNM-KEM compatible with IND-KEM, i.e., to make SNM-KEM im-
ply IND-KEM, the SNM-KEM attack scenario herein gives the adversary a
randomly-ordered pair comprising a correct key and a random value.

Here, if KEM Σ is not IND(-ATK), i.e., adversaryA can distinguish
(C∗,K∗) and (C∗,R∗)), Σ is not NM(-ATK). For example,A guessesK∗ from
X, setsRel(K∗,K′) iff lsb(K∗) = lsb(K′), and randomly searches forC′ such

that (K′,C′)
R←E(pk) andlsb(K∗) = lsb(K′)).

Two additional minor differences between SNM-KEM and SNM-PKE
are given hereafter.

1. SimulatorS also obtains access to the decryption oracle when ATK
allows it to do so.

2. RelationR utilizes state informations calculated not byA1 or S1 but
by A2 or S2 in SNM-KEM.
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The difference between the NM-KEM herein and wNM-KEM proposed
by Herrantz et al. [35] is whether or not adversaryA2 can gain key in-
formationX (this includes the order of keyK∗ and a random stringR (or
another random stringR∗)). InformationX in the definition of the SNM-
KEM (PNM-KEM, and CNM-KEM) described herein plays a similar role
to the message space in the NM definitions in [10, 3] for PKE.

5.1.2 Comparison Based NM

KEM Σ is called “CNM-ATK-KEM” in the sense thatΣ is secure incom-
parison based NM(CNM) for each attack type ATK∈ {CPA,CCA1,CCA2}.

Definition 16. Let Σ be KEM, A = (A1,A2) be an adversary, and k∈ N
be the security parameter. ForATK ∈ {CPA,CCA1,CCA2}, we define
AdvCNM-ATK

A,Σ (k) in Fig. 5.2. We say thatΣ is CNM-ATK-KEM, if for

any adversary A∈ P, AdvCNM-ATK
A,Σ (k) is negligible in k, whereATK ∈

{CPA,CCA1,CCA2} and P denotes a class of polynomial-time bounded
machines.

Note that adversaryA2 is not allowed to ask its oracle to decrypt chal-
lenge ciphertextC∗ for CCA2 and we require thatC∗ <CCC.

The revised point is to free the key space of the old version definitions
in ExptCNM-ATK

A,Σ (k) andẼxpt
CNM-ATK
A,Σ (k).

Similar to SNM-KEM, the CNM-KEM’s attack scenario herein gives the
adversary a randomly-ordered pair comprising a correct key and a random
value to make CNM-KEM compatible with IND-KEM.

5.1.3 Parallel Chosen-Ciphertext Attack Based NM

KEM Σ is called “PNM-ATK-KEM” in the sense thatΣ is secure inparal-
lel chosen-ciphertext attack based NM(PNM) for each attack type ATK∈
{CPA,CCA1,CCA2}.

Definition 17. Let Σ be a KEM, A = (A1,A2,A3) be an adversary, and
k ∈ N be the security parameter. ForATK ∈ {CPA,CCA1,CCA2}, we de-
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fine AdvPNM-ATK
A,Σ (k) in Fig. 5.3. We say thatΣ is PNM-ATK-KEM, if for

any adversary A∈ P, AdvPNM-ATK
A,Σ (k) is negligible in k, where k is the se-

curity parameter,ATK ∈ {CPA,CCA1,CCA2}, andP denotes a class of
polynomial-time bounded machines.

Note that adversaryA2 is not allowed to ask its oracle to decrypt chal-
lenge ciphertextC∗ for CCA2 and we require thatC∗ <CCC.

The revised point is to free the key space of the old version definitions
in ExptPNM-ATK

A,Σ (k).
In the PNM definition, the NM property is captured by IND under the

parallel chosen-ciphertext attack such thatA2 outputs a vector of ciphertext
CCC and its decryption resultKKK is given toA3.

5.2 Equivalence among Three NM Definitions

Here, we prove the equivalence of the three NM definitions.

Theorem 1. For anyATK ∈ {CPA,CCA1,CCA2}, if KEM Σ is CNM-ATK-
KEM, thenΣ is SNM-ATK-KEM.

Theorem 2. For anyATK ∈ {CPA,CCA1,CCA2}, if KEM Σ is SNM-ATK-
KEM, thenΣ is PNM-ATK-KEM.

Theorem 3. For anyATK ∈ {CPA,CCA1,CCA2}, if KEM Σ is PNM-ATK-
KEM, thenΣ is CNM-ATK-KEM.

5.2.1 Proof of Theorem1

Proof. We prove that KEMΣ is not CNM-ATK-KEM if Σ is not SNM-
ATK-KEM. More precisely, we show that if adversaryAdvand relationRel
exist such thatAdvSNM-ATK

Adv,S im,Σ(Rel,k) is not negligible ink for any simulator

Sim, then there exists adversaryB such thatAdvCNM-ATK
B,Σ (k) is not negligible

in k, wherek is the security parameter and ATK∈ {CPA,CCA1,CCA2}.
Let A = (A1,A2) be an adversary to SNM-ATK. First, we construct a

CNM-ATK adversary,B= (B1,B2), using SNM-ATK adversaryAdv in Fig.
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5.4. From the construction ofB, we obtain the following equivalence for all
k ∈ N:

Pr[ExptSNM-ATK
Adv,Σ (Rel,k) = 1] = Pr[ExptCNM-ATK

B,Σ (k) = 1]. (5.1)

We then construct SNM-ATK simulator ˆS im= ( ˆS im1, ˆS im2) using
SNM-ATK adversaryAdvas shown in Fig.5.5.

From the construction ofB usingAdv, and the construction ofˆS im, we
obtain the following equivalence for allk ∈ N:

Pr[ExptSNM-ATK
ˆS im,Σ

(Rel,k) = 1] = Pr[Ẽxpt
CNM-ATK
B,Σ (k) = 1]. (5.2)

Here, note that, even ifAO2
2 outputsCCC with C∗ ∈ CCC, BO2

2 outputs ci-

phertext vectorCCC and Ẽxpt
CNM-ATK
B,Σ (k) returns 0 becauseC∗ ∈ CCC. ˆS im2

O2

returns⊥ andExptSNM-ATK
ˆS im,Σ

(Rel,k) returns 0 (A problem regarding this note
was investigated in [39]).

The assumption (for contradiction) is that, for anyS im, the advantage
AdvSNM-ATK

Adv,S im,Σ(Rel,k) > µ(k) impliesAdvSNM-ATK
Adv, ˆS im,Σ

(Rel,k) > µ(k) (for a specific
ˆS im). From this inequality and Eqs.(5.1) and (5.2), we obtain

AdvCNM-ATK
B,Σ (k)

= Pr[ExptCNM-ATK
B,Σ (k) = 1]−Pr[Ẽxpt

CNM-ATK
B,Σ (k) = 1]

= Pr[ExptSNM-ATK
Adv,Σ (Rel,k) = 1]−Pr[ExptSNM-ATK

ˆS im,Σ
(Rel,k) = 1]

= AdvSNM-ATK
Adv, ˆS im,Σ

(Rel,k) > µ(k).

�

5.2.2 Proof of Theorem2

Proof. We prove that KEMΣ is not SNM-ATK-KEM if Σ is not PNM-ATK-
KEM. More precisely, we show that if there exists adversaryAdvsuch that
AdvPNM-ATK

Adv,Σ (k) is not negligible ink, then adversaryB and relationRelexist
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for any simulatorS imsuch thatAdvSNM-ATK
B,S im,Σ (Rel,k) is not negligible ink

wherek is a security parameter and ATK∈ {CPA,CCA1,CCA2}.
Let A= (A1,A2,A3) be an adversary for PNM-ATK. First, we construct

SNM-ATK adversaryB= (B1,B2) and relationRelusing PNM-ATK adver-
sary Adv as shown in Fig.5.6. Here, we say eventBad occurs iff Y is
not an element ofX. From the construction ofB, we obtain the following
equivalence for allk ∈ N:

Pr[ExptPNM-ATK
Adv,Σ (k) = 1] = Pr[ExptSNM-ATK

B,Σ (Rel,k) = 1] (5.3)

Using Eq.(5.4), we show that given relationRel, for any simulatorS im, the
success probability ofExptSNM-ATK

S im,Σ (Rel,k) is at most12.

Pr[ExptSNM-ATK
S im,Σ (Rel,k) = 1]

= Pr[g= b∧¬Bad]
= Pr[b= 0∧g= 0∧¬Bad] +Pr[b= 1∧g= 1∧¬Bad]
= Pr[b= 0∧¬Bad] ×Pr[g= 0|b= 0∧¬Bad]
+Pr[b= 1∧¬Bad] ×Pr[g= 1|b= 1∧¬Bad]

≤ 1
2
×Pr[g= 0|b= 0∧¬Bad] + 1

2
×Pr[g= 1|b= 1∧¬Bad]

(hereb andBad are independent ofg)

=
1
2
× (Pr[g= 0]+Pr[g= 1]) =

1
2

(5.4)

By applying Eqs. (5.3), (5.4) and the above-mentioned assumption that
AdvPNM-ATK

Adv,Σ (k) > µ(k), we obtain:

AdvSNM-ATK
B,S im,Σ (Rel,k)

= Pr[ExptSNM-ATK
B,Σ (Rel,k) = 1]−Pr[ExptSNM-ATK

S im,Σ (Rel,k) = 1]

≥ Pr[ExptPNM-ATK
Adv,Σ (k) = 1]− 1

2
= AdvPNM-ATK

Adv,Σ (k) > µ(k).

�
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5.2.3 Proof of Theorem3

Proof. We prove that KEMΣ is not PNM-ATK-KEM if Σ is not CNM-
ATK-KEM. More precisely, we show that if there exists adversaryAdvsuch
thatAdvCNM-ATK

Adv,Σ (k) is not negligible ink, then there exists adversaryB such

thatAdvPNM-ATK
B,Σ (k) is not negligible ink wherek is the security parameter

and ATK∈ {CPA,CCA1,CCA2}.
Let A = (A1,A2) be an adversary for CNM-ATK. We construct PNM-

ATK adversaryB= (B1,B2,B3) using CNM-ATK adversaryAdvas shown
in Fig. 5.7. From the construction ofB, we obtain

Pr[ExptPNM-ATK
B,Σ (k) = 1]

= Pr[b= g]

= Pr[b= 0∧g= 0]+Pr[b= 1∧g= 1]

= Pr[b= 0]×Pr[g= 0|b= 0]+Pr[b= 1]×Pr[g= 1|b= 1]

=
1
2

Pr[ExptCNM-ATK
Adv,Σ (k) = 1]+

1
2

(1−Pr[Ẽxpt
CNM-ATK
Adv,Σ (k) = 1])

=
1
2

(Pr[ExptCNM-ATK
Adv,Σ (k) = 1]−Pr[Ẽxpt

CNM-ATK
Adv,Σ (k) = 1])+

1
2
.

That is, Pr[ExptPNM-ATK
B,Σ (k) = 1]− 1

2

=
1
2

(Pr[ExptCNM-ATK
Adv,Σ (k) = 1]−Pr[Ẽxpt

CNM-ATK
Adv,Σ (k) = 1])

=
1
2
AdvCNM-ATK

Adv,Σ (k). (5.5)

By applying Eq.(5.5) and the above-mentioned assumption that
AdvCNM-ATK

Adv,Σ (k) > µ(k), we obtain

AdvPNM-ATK
B,Σ (k) =

1
2
AdvCNM-ATK

Adv,Σ (k) > µ(k)/2.

�
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5.2.4 Equivalence of the Three NM Definitions

From Theorems1, 2 and3, we immediately obtain the equivalence of the
three NM definitions, SNM-ATK-KEM, CNM-ATK-KEM, and PNM-ATK-
KEM. Hereafter, we use NM-ATK-KEM to refer to the three NM defini-
tions. If it is clear that NM-ATK-KEM is used for KEM, we refer to it
simply as NM-ATK.

5.3 IND-CCA2 KEM is Equivalent to NM-
CCA2 KEM

This section shows that NM is equivalent to IND for KEM against adaptive
chosen ciphertext attacks (CCA2). For PKE, it has already been proven that
NM is equivalent to IND against CCA2 [3].

Theorem 4. KEM Σ is NM-CCA2-KEM, if and only ifΣ is IND-CCA2-
KEM.

Proof. To prove this theorem, it is sufficient to show that PNM-CCA2-KEM
is equivalent to IND-CCA2-KEM. It is trivial from the definition that KEM
Σ is not IND-CCA2-KEM if Σ is not PNM-CCA2-KEM. The opposite di-
rection, i.e.,Σ is not PNM-CCA2-KEM ifΣ is not IND-CCA2-KEM, is also
easy to prove as indicated hereafter. LetA= (A1,A2) be an attacker for IND-
CCA2-KEM. We then construct attackerB= (B1,B2,B3) for PNM-CCA2-
KEM usingAdvsuch thatB1 executesA1, andB2 executesA2 which outputs
g and outputs (s2, CCC) such thats2← g andC∗ <CCC . B3 outputss2(= g) re-
gardless of the value ofKKK. Clearly,B is an attacker of PNM-CCA2-KEM
with the same advantage asAdvfor IND-CCA2-KEM. �

5.4 IND and NM for DEM

This section explains the definition of IND and NM for DEM.
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5.4.1 IND for DEM

The advantage of indistinguishability of DEM (we use “IND-DEM”) fol-
lowing [37] is stated in Fig.5.8. In this thesis, we also use IND-PX-CY-
DEM to describe the security notion of the IND of DEM against{X, Y} ∈
{0, 1, 2}.

Definition 18. Let Σ′ be aDEM over message space M, A= (A1,A2) be
an adversary, and k∈ N be the security parameter. For{X, Y} ∈ {0, 1, 2},
AdvIND-PX-CY

A,Σ′ (k) is defined in Fig.5.8. We say thatΣ′ is IND-PX-CY-DEM,

if for any adversary A∈ P, AdvIND-PX-CY
A,Σ′ (k) is negligible in k where{X, Y}

∈ {0, 1, 2}, andP denotes a class of polynomial-time bounded machines.

Note that, the length ofx0 equals the length ofx1, i.e., |x0| = |x1|. Fur-
thermore, whenY = 2, we insist thatA2 does not ask for the decryption of
challenge ciphertexty.

5.4.2 NM for DEM

We state the formal definition of NM for DEM in Fig.5.9 following
Bellare[10] and Katz[37], which we call NM-DEM. We also use NM-PX-
CY-DEM to describe NM for DEM against several types of attacks where
{X, Y} ∈ {0, 1, 2}.

Definition 19. Let Σ′ = (E′,D′) be a DEM over message space M, A=
(A1,A2) be an adversary, and k∈ N be the security parameter. For{X, Y}
∈ {0, 1, 2}, AdvNM-PX-CY

A,Σ′ (k) is defined in Fig.5.9. We say thatΣ′ is NM-

PX-CY-DEM, if for any adversary A∈ P, AdvNM-PX-CY
A,Σ′ (k) is negligible in k,

where{X, Y} ∈ {0, 1, 2}, andP denotes a class of polynomial-time bounded
machines.

Informally, we describe the secure notion of NM for DEM. In Fig.5.9, Oi

(or Oi
′) =⊥ wherei ∈ {1,2}. This means thatOi (or Oi

′), which takes on any
input, returns the empty string⊥, andR is some relation. We require that|x|
= |x̃| for all x and x̃ in the support ofM. We also require that the vector of
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ciphertexts,yyy, output byA2 should be non-empty andy < yyy. Furthermore,
whenY = 2, we insist thatA2 does not ask for the decryption ofy.

At the first stage of the attack, adversaryA1 outputs distributionM over
messages along with state informations. Two messages,x andx̃ are chosen
at random according toM, andx is encrypted to give ciphertexty. In the
second stage of the attack,y and s are given to adversaryA2. A2 outputs
relationRand a vector of ciphertextsyyy such thaty< yyy (we require that̃y< ỹyy
in Ẽxpt

NM-PX-CY
A,Σ′ (k)).

Σ′ is NM secure in the sense of NM-PX-CY for{X, Y} ∈ {0, 1, 2} if
AdvNM-PX-CY

A,ΠΣ′
(k) is negligible for any PPT adversaryA. That is, we sayΣ′ is

NM secure if for every PPT algorithmA, the probability thatR(x̃, xxx) is true
is at most negligibly different from the probability thatR(x, xxx) is true.

5.5 IND-P2-C2 DEM is Equivalent to NM-P2-
C2 DEM

The two above security notions of DEM yield the following Theorem5.

Theorem 5. Encryption schemeΣ′ is secure in the sense of NM-P2-C2 if
and only ifΣ′ is secure in the sense of IND-P2-C2.

Proof. We prove the equivalence between IND and NM for DEM hereafter.
(”only if” part) Let A be an adversary attackingΣ′ in the sense of IND-

P2-C2-DEM. We construct adversaryB = (B1,B2) attackingΣ′ in the sense
of NM-P2-C2-DEM in Fig.5.10.

It is not difficult to see that Pr[̃Expt
NM-P2-C2
B,Σ′ (k)] = 1

2 so that

AdvNM-P2-C2
B,Σ′ (k) = AdvIND-P2-C2

A,Σ′ (k).

SinceΣ′ is secure in the sense of NM-P2-C2-DEM,AdvIND-P2-C2
A,Σ′ (k) is neg-

ligible and the theorem follows.

(”if” part) This direction is the exact counterpart of [37], and we repeat
essentially the same proof here for completeness. LetA be an adversary
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attackingΣ′ in the sense of NM-P2-C2-DEM. We define adversaryB at-
tackingΣ′ in the sense of IND-P2-C2-DEM in Fig.5.11.

We note that the probability thatB returns 0 given thaty is an encryption
of x0 is exactly Pr[ExptNM-P2-C2

A,Σ′ (k)] while the probability thatB returns 0

given thaty is an encryption ofx1 is exactly Pr[̃Expt
NM-P2-C2
A,Σ′ (k)]. Thus,

AdvIND-P2-C2
B,Σ′ (k) = AdvNM-P2-C2

A,Σ′ (k)

and henceAdvNM-P2-C2
A,Σ′ (k) is negligible. �
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AdvSNM-ATK
A,S,Σ (Rel,k)

≡ Pr[ExptSNM-ATK
A,Σ (Rel,k) = 1]−Pr[ExptSNM-ATK

S,Σ (Rel,k) = 1]

whereExptSNM-ATK
A,Σ (Rel,k) :

(pk, sk)
R←G(1k);s1

R← AO1
1 (pk)

(K∗,C∗)
R←E(pk);R

U← {0,1}l(k)

b
U← {0,1}

X←(r0, r1)where

r0←K∗ and r1←R, if b= 0

r0←R and r1←K∗, if b= 1

(s2,CCC)
R← AO2

2 (X, s1,C∗)
KKK←D(sk,CCC)

return 1, iff Rel(K∗,KKK, s2)

ExptSNM-ATK
S,Σ (Rel,k) :

(pk, sk)
R←G(1k);s1

R← SO1
1 (pk)

R∗
U← {0,1}l(k);R

U← {0,1}l(k)

b
U← {0,1}

X←(r0, r1)where

r0←R∗ and r1←R, if b= 0

r0←R and r1←R∗, if b= 1

(s2,CCC)
R← SO2

2 (X, s1);KKK←D(sk,CCC)
return 1, iff Rel(R∗,KKK, s2)

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 =D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 =D(sk, ·) andO2 =D(sk, ·).

Figure 5.1:Advantage of SNM-ATK-KEM
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AdvCNM-ATK
A,Σ (k) ≡ Pr[ExptCNM-ATK

A,Σ (k) = 1]−Pr[Ẽxpt
CNM-ATK
A,Σ (k) = 1]

whereExptCNM-ATK
A,Σ (k) :

(pk, sk)
R←G(1k);s

R← AO1
1 (pk)

(K∗,C∗)
R←E(pk);R

U← {0,1}l(k)

b
U← {0,1}

X← (r0, r1),where

r0←K∗ and r1←R, if b= 0

r0←R and r1←K∗, if b= 1

(Rel,CCC)
R← AO2

2 (X, s,C∗);KKK←D(sk,CCC)
return 1, iff Rel(K∗,KKK)

Ẽxpt
CNM-ATK
A,Σ (k) :

(pk, sk)
R←G(1k);s

R← AO1
1 (pk)

(K∗,C∗)
R←E(pk);R∗

U← {0,1}l(k)

R
U← {0,1}l(k);b

U← {0,1}

X←(r0, r1),where

r0←R∗ and r1←R, if b= 0

r0←R and r1←R∗, if b= 1

(Rel,CCC)
R← AO2

2 (X, s,C∗);KKK←D(sk,CCC)
return 1, iff Rel(R∗,KKK)

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 =D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 =D(sk, ·) andO2 =D(sk, ·).

Figure 5.2:Advantage of CNM-ATK-KEM
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AdvPNM-ATK
A,Σ (k) ≡ Pr[ExptPNM-ATK

A,Σ (k) = 1]− 1
2

whereExptPNM-ATK
A,Σ (k):

(pk, sk)
R←G(1k);s1

R← AO1
1 (pk)

(K∗,C∗)
R←E(pk);R

U← {0,1}l(k)

b
U← {0,1}

X←
K∗, if b= 0

R, if b= 1

(s2,CCC)
R← AO2

2 (X, s1,C∗)

KKK←D(sk,CCC);g
R← A3(s2,KKK)

return 1, iff g= b

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 =D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 =D(sk, ·) andO2 =D(sk, ·).

Figure 5.3:Advantage of PNM-ATK-KEM

BO1
1 (pk) BO2

2 (X, s,C∗)

t1
R← AO1

1 (pk) (s2,CCC)
R← AO2

2 (X, s,C∗)
s←t1 DefineRel′ by Rel′(a,bbb) = 1,
returns iff Rel(a,bbb, s2) = 1

return (Rel′,CCC)

Figure 5.4:CNM-ATK adversaryB using SNM-ATK adversaryAdv.
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ˆS im
O1
1 (pk) ˆS im

O2
2 (X, s1)

t1
R← AO1

1 (pk) (K∗,C∗)
R←E(pk)

s1←t1 (s2,CCC)
R← AO2

2 (X, s1,C∗)
returns1 If C∗ ∈CCC, then return⊥.

Otherwise, return (s2,CCC).

Figure 5.5:SNM-ATK simulator ˆS imusing SNM-ATK adversaryAdv.

BO1
1 (pk)

t1
R← AO1

1 (pk); s1←t1; return s1

BO2
2 (X, s1,C∗), where s1 = t1 and X = (r0, r1)

(t2,CCC)
R← AO2

2 (r0, t1,C
∗)

Choose random coinsσ for A3.

s2←(t2,σ,X); return (s2,CCC)

Rel(Y,KKK, s2), where s2 = (t2,σ,X)

If Y is not an element ofX, return 0.

If Y= r0, then b= 0. Otherwise, b= 1.

g←A3(t2,KKK;σ); return 1, iff b= g

Figure 5.6:SNM-ATK adversaryB and RelationRelusing PNM-ATK ad-
versaryAdv.
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BO1
1 (pk)

t
R← AO1

1 (pk); s1←t; return s1

BO2
2 (X, s1,C∗), wheres1 = t andX = K∗ or R

R′
U← {0,1}l(k);c

U← {0,1}

X′←
(R′,X), if c= 0

(X,R′), if c= 1

(Rel,CCC)
R← AO2

2 (X′, s1,C
∗)

s2←(Rel,X); return (s2,CCC)

B3(s2,KKK) wheres2 = (Rel,X)

If Rel(X,KKK), then g←0,

otherwiseg←1;return g

Figure 5.7:PNM-ATK adversaryB using CNM-ATK adversaryAdv.
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AdvIND-PX-CY
A,Σ′ (k) ≡ Pr[ExptIND-PX-CY

A,Σ′ (k)] − 1
2

whereExptIND-PX-CY
A,Σ′ (k) :

K
U←{0,1}l(k);(x0, x1, s)

R←A
O1,O′1
1 (1k)

b
U← {0,1};y R←E′(K, xb)

g
R←A

O2,O′2
2 (1k, s,y)

return 1 iff g= b

and
If X = 0, thenO1(·) = ⊥ andO2(·) = ⊥.
If X = 1, thenO1(·) = E′(K, ·) andO2(·) = ⊥.
If X = 2, thenO1(·) = E′(K, ·) andO2(·) = E′(K, ·).
If Y = 0, thenO′1(·) = ⊥ andO′2(·) = ⊥.
If Y = 1, thenO′1(·) =D′(K, ·) andO′2(·) = ⊥.
If Y = 2, thenO′1(·) =D′(K, ·) andO′2(·) =D′(K, ·).

Figure 5.8:Advantage ofIND-PX-CY-DEM
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AdvNM-PX-CY
A,Σ′ (k) ≡ Pr[ExptNM-PX-CY

A,Σ′ (k) = 1]−Pr[Ẽxpt
NM-PX-CY
A,Σ′ (k) = 1]

whereExptNM-PX-CY
A,Σ′ (k)

K←{0,1}k;(M, s)←A
O1,O′1
1 (1k)

x←M;y←E′(K, x)

(R,yyy)←A
O2,O′2
2 (s,y)

xxx←D′(K,yyy)
return 1 iff R(x, xxx)

Ẽxpt
NM-PX-CY
A,Σ′ (k)

K←{0,1}k;(M, s)←A
O1,O′1
1 (1k)

(x, x̃)←M;ỹ←E′(K, x̃)

(R, ỹyy)←A
O2,O′2
2 (s, ỹ)

x̃xx←D′(K, ỹyy)
return 1 iff R(x, x̃xx)

and
If X = 0, thenO1(·) = ⊥ andO2(·) = ⊥.
If X = 1, thenO1(·) = E′(K, ·) andO2(·) = ⊥.
If X = 2, thenO1(·) = E′(K, ·) andO2(·) = E′(K, ·).
If Y = 0, thenO′1(·) = ⊥ andO′2(·) = ⊥.
If Y = 1, thenO′1(·) =D′(K, ·) andO′2(·) = ⊥.
If Y = 2, thenO′1(·) =D′(K, ·) andO′2(·) =D′(K, ·).

Figure 5.9:Advantage ofNM-PX-CY-DEM
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B
O1,O′1
1 (1k) B

O2,O′2
2 (1k, (x0, x1, s),y)

(x0, x1, s)← AO1,O′1(1k) b← AO2,O′2(1k, s,y)
M = {x0, x1} choosex′ and semantic relationR
return (M, (x0, x1, s)) whereR(x, x′) = 1 iff x= xb

y′←E′(K, x′)
return (R,y′)

Figure 5.10:NM-P2-C2-DEM⇒ IND-P2-C2-DEM

B
O1,O′1
1 (1k) B

O2,O′2
2 (1k, (x0, s),y)

(M, s)← A
O1,O′1
1 (1k) (R,y)← A

O2,O′2
2 (1k, s,y)

x0, x1← M x←D′(K,y)
return (x0, x1, (x0, s)) if (⊥ < x∧R(x0, x))

return 0
else return 1

Figure 5.11:IND-P2-C2-DEM⇒ NM-P2-C2-DEM
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Chapter 6

UC KEM and UC DEM

6.1 UC KEM

Let Σ = (G,E,D) be KEM. Hereafter, we define the KEM functionality
FKEM and protocolπΣ that is constructed from KEMΣ and that has the
same interface with the environment asFKEM.

Definition 20. Let FKEM be the KEM functionality shown in Fig.6.1, and
let πΣ be the KEM protocol in Fig.6.2.

Here, note that there is no functionality of data transmission between
parties inFKEM.

6.2 UC KEM Is Equivalent to IND-CCA2 KEM

This section shows that KEMΣ is UC secure if and only ifΣ is IND-CCA2
(or NM-CCA2).

Theorem 6. LetΣ be a KEM scheme, andFKEM andπΣ be as described in
Definition20. ProtocolπΣ UC-realizesFKEM with respect to non-adaptive
adversaries, if and only ifΣ is IND-CCA2-KEM.

Proof.
(“Only if” part) Let Σ = (G,E,D) be a KEM scheme. We prove that ifΣ is
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FunctionalityFKEM

FKEM which runs with adversaryS improceeds as follows:

Key Generation: Upon receiving (KEM.KeyGen, sid) from
some partyD, verify thatsid=(D, sid′) for somesid′. If
not, then ignore the request. Else, hand (KEM.KeyGen,
sid) to adversaryS im. Upon receiving (Algorithms,
sid, e, d) from S im wheree and d are descriptions of
PPT ITMs, output (Encryption Algorithm, sid, e) to
D.

Encryption: Upon receiving (KEM.Encrypt, sid, e′) from
any partyE, perform the following: Ife′ , e, or decryp-
tor D is corrupted, then executee′ and obtain (K∗,C∗).
Let (key,cip) ← (K∗,C∗). Else, obtain (K∗,C∗) by e′

andR
U←{0,1}l(k), then let (key,cip)← (R,C∗) and record

(key,cip). Output (Key and Ciphertext, sid, key, cip)
to E.

Decryption: Upon receiving a value (KEM.Decrypt, sid,
C∗) from D (and D only), perform the following: If
there is recorded entry (K,C∗) for someK then return
(Shared Key, sid, K) to D. Else, return (Shared Key,
sid, d(C∗)) to D (If there is more than oneK recorded
for C∗, then output an error message).

Figure 6.1:KEM FunctionalityFKEM

not IND-CCA2-KEM, thenπΣ does not UC-realizeFKEM . In more detail,
we can construct environmentEnvsuch that, for any ideal process world ad-
versary (simulator)S im, Envcan tell whether it is interacting withAdvand
πΣ or with S imand the ideal protocol forFKEM, by using adversaryG that
breaksΣ in the sense of IND-CCA2-KEM with non-negligible advantage,
i.e.,AdvIND−CCA2

G,Σ (k) > µ(k)).
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Protocol πΣ

πΣ proceeds with partiesE andD as follows:

Key Generation: Upon input (KEM.KeyGen, sid), party
D verifies that sid=(D, sid′) for some sid′. If not,
then ignore the request. Else,D obtains public key
pk and secret keysk by executing algorithmG, and
generatese← E(pk, ·) and d ← D(sk, ·), then outputs
(Encryption Algorithm, sid, e).

Encryption: Upon input (KEM.Encrypt, sid, e), party
E obtains pair (key,cip) ← (K∗,C∗) of a key and
a ciphertext by executing algorithme and outputs
(Key and Ciphertext, sid, key,cip).

Decryption: Upon input (KEM.Decrypt, sid, C∗),
party D (that hasd) obtainsK∗ ← d(C∗) and outputs
(Shared Key, sid, K∗).

Figure 6.2:KEM ProtocolπΣ

Envactivates partiesE andD, and uses adversaryG as follows:

1. Envactivates key decryptorD with (KEM.KeyGen, sid) for sid=(D,0),
obtains encryption algorithme, and handse to G.

2. Env activatesE with (KEM.Encrypt, sid, e), and obtains (key,cip).

Envchoosesb
U← {0,1} andR

U← {0,1}l(k). If b = 0, thenkey′ ← key.
If b= 1, thenkey′← R. Envhands (key′,cip) to G as a target pair of
key and ciphertext in the IND-CCA2 game shown in Fig.2.1.

3. When G asks its decryption oracle to decrypt ciphertextC† , cip,
Env activatesD with input (KEM.Decrypt, sid,C†), obtains keyK†,
and handsK† to G.

4. WhenG outputsg ∈ {0,1}, Envoutputsg⊕b and halts.
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Here note thatEnvcorrupts no party and interacts with no adversary.
WhenEnv interacts withπΣ, the view ofG interacting withEnv is ex-

actly the same as that behaving in the real IND-CCA2 game in Fig.2.1.
Therefore, in this case (sayReal), g= b with probability> 1

2 +µ(k).
In contrast, whenEnv interacts with the ideal process world forFKEM,

the view ofG interacting withEnv is independent ofb, sinceb is inde-
pendent of (key′,cip) generated byEnv in step 2 and is independent of the
decryption resultK† in step 3 (askey′ andK† are random strings indepen-
dent ofb). Hence, in this case (sayIdeal), g= b with probability of exactly
1
2.

Thus,|Pr[Env→ 0 | Real] − |Pr[Env→ 0 | Ideal]| > µ(k).
(“If” part) We show that ifπΣ does not UC-realizeFKEM, thenΣ is

not IND-CCA2-KEM. To do so, we first assume that for any simulator
S im there exists real world adversaryAdv and environmentEnv that dis-
tinguishes with probability> 1

2+µ(k) whether it is interacting withS imand
the ideal process forFKEM or with Adv andπΣ. We then show that there
exists an IND-CCA2 attackerG againstΣ usingEnv.

First we show thatEnvcan distinguish (Adv,πΣ) and (S im,FKEM) only
when no party is corrupted. Since we are dealing with non-adaptive adver-
saries, there are three cases. Case 1: SenderE is corrupted (throughout the
protocol). Case 2: DecryptorD is corrupted (throughout the protocol). Case
3: E andD are uncorrupted.

In Case 1, we can construct simulatorS imsuch that noEnvcan distin-
guish (Adv,πΣ) and (S im,FKEM) as described hereafter.

1. When Env sends (KEM.KeyGen, sid) to D, D forwards it toFKEM.
FKEM sends (KEM.KeyGen, sid) to S im, S imcomputes (pk,sk) by ex-
ecuting algorithmG, and generatese andd, wheree← E(pk, ·) and
d←D(sk, ·). S imreturns (Algorithms, sid, e, d) toFKEM.

2. When Env sends (KEM.Encrypt, sid, e) to corrupted partyE, i.e.,
S im, S imreceives the message and sends it to the simulated copy of
Adv, which replies toS im. S imthen returnsAdv’s reply (which may
be⊥) to Env.
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3. When Env sends (KEM.Decrypt, sid, C∗) to D, D forwards it to
FKEM. FKEM then returns (Shared Key, sid, d(C∗)), sinceE, i.e.,
S im, sends no (KEM.Encrypt, sid, e) toFKEM, which records nothing
as (key,cip). Note that,S imdoes not receive any message in this step.

In this case,Env cannot distinguish (Adv,πΣ) from (S im,FKEM), because
the message returned byS im(usingAdv) asE in the ideal world is the same
as that returned byAdvasE in the real world, and (Shared Key, sid, d(C∗))
returned byFKEM is exactly the same as that returned byD in the real world.

In Case 2, we can also construct simulatorS imsuch that noEnv can
distinguish (Adv,πΣ) and (S im,FKEM) as described hereafter.

1. When Env sends (KEM.KeyGen, sid) to the corrupted partyD, i.e.,
S im, receives the message and sends it to the simulated copy ofAdv,
which returns a reply message (which may be⊥) to S im. S imsends
it to Env.

2. WhenEnvsends (KEM.Encrypt, sid, e) to E, E forwards it toFKEM.
FKEM generates a corresponding pair (K∗, C∗) by executinge, sets
(key,cip) ← (K∗,C∗) and returns (Key and Ciphertext, sid, key,
cip) to E, sinceD, i.e., S im, sends no (KEM.KeyGen, sid) to FKEM,
which records nothing as encryption algorithme.

3. When Env sends (KEM.Decrypt, sid, C∗) to D, i.e., S im, sends
(KEM.Decrypt, sid, C∗) to Adv. Adv returns a reply (which may be
⊥) to S im, which forwardsAdv’s reply toEnv.

In this case,Envcannot distinguish (Adv,πΣ) and (S im,FKEM) because the
message returned byS im (usingAdv) asD in the ideal world is the same
as that returned byAdvasD in the real world, and (Key and Ciphertext,
sid, key, cip) returned byFKEM is exactly the same as that returned byE in
the real world.

Thus, Env cannot distinguish the real/ideal worlds in Cases 1 and 2.
Hereafter, we consider only Case 3:E andD are uncorrupted.
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Referring to the UC framework, three types of messages are sent from
Env to Adv. The first message type is to corrupt either party, the second
message type is to report on message sending, and the third message type
is to deliver some message. InπΣ, considered here, parties do not send
messages to each other over the network. In addition, we consider the case
that no party is corrupted. Therefore, there are no messages fromEnv to
Adv(andS im).

Since there exists at least one environmentEnv that can distinguish the
real life world from the ideal process world for any simulatorS im, we con-
sider the following special simulatorS im.

WhenS imreceives message (KEM.KeyGen, sid) from FKEM, S imexe-
cutes key generation algorithmG and obtains public keypk and secret key
sk. S imsetse← E(pk, ·) andd←D(sk, ·), and returns (Algorithms, sid,
e, d) toFKEM.

We now show that we can construct adversaryG that breaks IND-CCA2-
KEM by using the simulated copy ofEnv, which distinguishes real/ideal
worlds. To do so, we assume that there is environmentEnvsuch that

|IDEALFKEM ,S im,Env(k,z)−REALπΣ,Adv,Env(k,z)| > µ(k).

We then show thatG using Env can correctly guessb in the IND-CCA2
game in Fig.2.1 with a probability of at least12 + µ(k)/2ℓ, whereℓ is the
total number of times the encryption oracle is invoked.

In the IND-CCA2 game, given target public-key (encryption algorithm)
e and target pair (key,cip) from the encryption oracle with private random
bit b, G is allowed to query the decryption oracle, and finally outputsg,
which isG’s guess ofb. G executesEnvwith the following simulated inter-
action as protocolπΣ/FKEM.

G acts as indicated hereafter whereK∗i , C∗i andRi denote thei-th key,
ciphertext and random value of the lengthl(k), respectively.

1. When Env activates some partyD with (KEM.KeyGen, sid), G lets
D output (Encryption Algorithms, sid, e) wheree is the target
public-key (encryption algorithm) forG in the IND-CCA2 game.
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2. For the firsth times thatEnvasks some partyE to generate (key, cip)
with sid, G letsE return (key,cip)← (K∗i ,C

∗
i ) by using algorithme.

3. Theh-th time thatEnvasks to generate (key, cip) with sid, G queries
its encryption oracle in the IND-CCA2 game, and obtains correspond-
ing pair (key,cip)← (K∗h, C∗h) (whenb= 0) or non-corresponding pair

(key,cip) ← (Rh, C∗h) (whenb = 1), whereRh
U← {0,1}l(k). Accord-

ingly, G hands pair (key,cip) to Env.

4. For the remainingℓ−h times thatEnv asksE to generate (key, cip)

with sid, G letsE return (key,cip)← (Ri , C∗i ), whereRi
U← {0,1}l(k).

5. WheneverEnv activates decryptorD with (KEM.Decrypt, sid, C∗),
whereC∗ = C∗i for somei, G letsD return the corresponding keyK∗i
or R∗i for any i. If C∗ is different from allC∗i ’s, G then posesC∗ to its
decryption oracle, obtains valuev, and letsD returnv to Env.

6. WhenEnvhalts,G outputs whateverEnvoutputs and halts.

We use a standard hybrid argument to analyze the success probability of
G in the IND-CCA2 game.

For h ∈ {0, . . . , ℓ}, let Envh be an event that for the firsth times thatEnv
asks some partyE to generate (key, cip) with sid, E returns (key,cip)←
(K∗i ,C

∗
i ) by using algorithme; theh-th time thatEnvasksE to generate (key,

cip) with sid, E returns (key,cip)← (K∗i ,C
∗
i ) or (key,cip)←(Ri , C∗i ) where

Ri
U← {0,1}l(k). For the remainingℓ− h times thatEnv asksE to generate

(key, cip) with sid, E returns (key,cip)←(Ri , C∗i ) whereRi
U← {0,1}l(k). The

replies toEnvfrom decryptorD are the same as those shown in step 5 above.
Let Hh be Pr[Env→ 1|Envh]. We then obtain the following inequality.

ℓ∑
h=1

|Hh−Hh−1| ≥ |Hℓ −H0|. (6.1)

Here, from the construction ofHh it is clear that
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H0 = IDEALFKEM ,S im,Env(k,z), (6.2)

Hℓ = REALπΣ,Adv,Env(k,z). (6.3)

Therefore,

ℓ∑
h=1

|Hh−Hh−1| ≥ |Hℓ −H0|

= |REALπΣ,Adv,Env(k,z)−IDEALFKEM ,S im,Env(k,z)| > µ(k).

Then there exists someh ∈ {1, · · ·ℓ} that satisfies

|Hh−Hh−1| > µ(k)/ℓ. (6.4)

Here, w.l.o.g., letHh−1−Hh > µ(k)/ℓ, since if Hh−Hh−1 > µ(k)/ℓ for
Env, we can obtainHh−1−Hh > µ(k)/ℓ for Env∗, whereEnv∗ outputs the
opposite ofEnv’s output bit.

In step 3 ofG’s construction, ifG obtains the corresponding pair (K∗h,
C∗h) (when b = 0), then the probability thatEnv outputs 1 is identical to
Hh. On the other hand, ifG obtains the non-corresponding pair of (Rh, C∗h)
(whenb= 1), then the probability thatEnvoutputs 1 is identical toHh−1.

SinceG’s output followsEnv’s output,

Hh = Pr[g= 1|b= 0] and (6.5)

Hh−1 = Pr[g= 1|b= 1], (6.6)

whereb is the private random bit of the encryption oracle in the IND-
CCA2 game andg is G’s output (G’s guess ofb).

Since Pr[g= 1|b= 0]+Pr[g= 0|b= 0] = 1, we obtain Pr[g= 0|b= 0] =
1−Pr[g= 1|b= 0].
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Therefore, we obtainG’s success probability,

Pr[ExptIND−CCA2
G,Σ (k) = 1] , as follows:

Pr[ExptIND−CCA2
G,Σ (k) = 1]

= Pr[b= g]

= Pr[b= 0]×Pr[g= 0|b= 0]

+Pr[b= 1]×Pr[g= 1|b= 1]

=
1
2
× (Pr[g= 0|b= 0]+Pr[g= 1|b= 1])

=
1
2
× (1−Pr[g= 1|b= 0]+Pr[g= 1|b= 1])

=
1
2
× (1−Hh+Hh−1) >

1
2
+µ(k)/2ℓ.

That is,AdvIND−CCA2
G,Σ (k) > µ(k)/2ℓ, which is not negligible ink sinceℓ

is polynomially bounded ink. �

6.3 UC DEM

Let Σ′ = (E′,D′) be a DEM scheme and letΣ′′ be aFKEM-hybrid DEM
scheme. Hereafter we define the KEM and DEM functionalityFKEM-DEM

and protocolπΣ′′ that is constructed from DEMΣ′ in theFKEM hybrid model
and that has the same interfaces that environmentEnvuses to communicate
with FKEM-DEM.

Definition 21. LetFKEM-DEM be the KEM and DEM, KEM-DEM, function-
ality shown in Fig.6.3and in Fig.6.4, and letπΣ′′ be the KEM-DEM protocol
in Fig.6.5and Fig.6.6.

Here, note that there is no functionality for the data transmission
between parties inFKEM-DEM, and we consider that algorithme in
KEM.KeyGen ofFKEM-DEM outputs different key ciphertextC∗.
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FunctionalityFKEM-DEM

FKEM-DEM proceeds as follows, and is executed with party
P ∈ {E1, . . . ,En,D} and adversaryS im.

KEM.KeyGen: Upon receiving (KEM.KeyGen, sid) from
key decryptorD, verify that sid=(D, sid′) for some
sid′. If not, then ignore the request. Else, hand
(KEM.KeyGen, sid) to adversaryS im. Upon receiving
(Algorithms, sid, e, d, eDEM, dDEM) from S im, where
e, d, eDEM anddDEM are descriptions of PPT TMs, out-
put (KEM Encryption Algorithm, sid, e) to D.

KEM.Encrypt: Upon receiving (KEM.Encrypt, sid, e′)
from key encryptorEi(i ∈ {1, . . . ,n}), perform the follow-
ing:

• If e′ , e, or key decryptorD is corrupted, then ob-
tain K andC∗ by e′, record (Ei ,K,C∗,0) and send
(KEM.Ciphertext, sid, C∗) to Ei .

• Else, obtainC∗ by e′ and K
U← {0,1}l(k), record

(Ei ,K,C∗,1) and send (KEM.Ciphertext, sid, C∗)
to Ei .

KEM.Decrypt: Upon receiving (KEM.Decrypt, sid, C′)
from key decryptorD (andD only), perform the follow-
ing:

• If C′ is in the memory (Ei ,K,C′,1) for someEi and
K, record (D,K,C′,1) and sendok to D.

• Else, record (D,d(C′),C′,0) and sendok to D.

Figure 6.3:KEM-DEM Functionality (Part I)
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FunctionalityFKEM-DEM

DEM.Encrypt: Upon receiving (DEM.Encrypt, sid, m, C′)
from partyP, proceed as described below.

• If (P,K,C′,1) is recorded in the memory for some
K and P̃ is uncorrupted (̃P denotesD if P is Ei , P̃
denotesEC′

i if P is D, whereEC′
i denotes the party

such that (Ei , *, C′, 1) is recorded), then do as fol-
lows:

1. Generatec by eDEM(K,µ), whereµ is a fixed
message, and record (m, c, C′) in the memory.

2. Send (DEM.Ciphertext, sid, c) to P.

• Else if ((P,K,C′,1) is recorded and̃P is corrupted)
or (P,K,C′,0) is recorded in the memory for some
K, then perform the following:

1. Generatec usingeDEM(K,m).

2. Send (DEM.Ciphertext, sid, c) to P.

• Else, do nothing.

DEM.Decrypt: Upon receiving (DEM.Decrypt, sid, c, C′)
from partyP, proceed as follows:

• If (P,K,C′,1) is recorded in the memory for
some K and (m, c, C′) is recorded, then send
(DEM.Plaintext, sid, m) to P.

• Else if (P,K,C′,∗) is recorded in the memory for
someK, send (DEM.Plaintext, sid, dDEM(K,c)) to
P.

• Else, do nothing.

Figure 6.4:KEM-DEM Functionality (Part II)
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Protocol πΣ′′

πΣ′′ proceeds as follows, and is executed with partyP ∈
{E1, . . . ,En,D} and an ideal functionalityFKEM.

KEM.KeyGen: Upon input (KEM.KeyGen, sid) within key
decryptorD,

1. D sends (KEM.KeyGen, sid′) toFKEM.

2. Upon receiving (KEM Key, sid′, e) from FKEM, D
outputs (KEM Encryption Algorithm, sid, e).

KEM.Encrypt: Upon input (KEM.Encrypt, sid, e′) within
key encryptorEi ,

1. Ei sends (KEM.Encrypt, sid′, e′) toFKEM .

2. Upon receiving (Key and Ciphertext, sid′, K, C∗)
fromFKEM, Ei stores (K,C∗) in it’s memory.

3. Ei outputs (KEM.Ciphertext, sid, C∗).

KEM.Decrypt: Upon input (KEM.Decrypt, sid, C′) within
D,

1. D sends (KEM.Decrypt, sid′, C∗) toFKEM.

2. Upon receiving (Shared Key, sid′, K), D stores
(K,C′) in it’s memory.

3. D outputsok.

Figure 6.5:KEM-DEM Protocol (Part I)

The revised point from the previous definition [41, 42] is to remove
the restriction that the previousFKEM-DEM can have only one key in the
DEM phase. To solve this problem, we made the current functionality ac-
cept the multiple key ciphertexts generated by (DEM.Decrypt,sid,c,C′) in
DEM.Decrypt ofFKEM-DEM wherec is the ciphertext of a message andC′

is the encryption of some key.
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Protocol πΣ′′

DEM.Encrypt: Upon input (DEM.Encrypt, sid, m, C′)
within partyP, proceed as described below.

• If (K,C′) exists inP’s memory,P obtains ciphertext
c= E′(K,m) and outputs (DEM.Ciphertext, sid, c).

• Else, do nothing.

DEM.Decrypt: Upon input (DEM.Decrypt, sid, c, C′)
within partyP, proceed as described below.

• If (K,C′) exists inP’s memory,P obtains message
m=D′(K,c) and outputs (DEM.Plaintext, sid, m).

• Else, do nothing.

Figure 6.6:KEM-DEM Protocol (Part II)

6.4 UC DEM Is Equivalent to IND-P2-C2 DEM

The following theorem implies that UC DEM is equivalent to IND-P2-C2
DEM.

Theorem 7. Protocol πΣ′′ UC-realizesFKEM-DEM with respect to non-
adaptive adversaries in theFKEM-hybrid model, if and only ifπΣ′′ is IND-
P2-C2-DEM.

Proof.
(“only if” part) We prove that ifπΣ′′ is not IND-P2-C2-DEM secure, then
πΣ′′ does not UC-realizeFKEM-DEM. More specifically, we can construct an
environment,Env, such that for any ideal process world adversary (simula-
tor) S im, Envcan tell whether it is interacting withAdvandπΣ′′ in theFKEM

hybrid model or withS imand the ideal protocol forFKEM-DEM by using ad-
versaryF that breaks IND-P2-C2-DEM with non-negligible advantage, i.e.,
AdvIND−P2−C2

F,Σ′′ (k) > µ(k)).
Envactivates partyEi andD, and uses adversaryF as follows:
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1. Envactivates key receiverD with (KEM.KeyGen, sid) for sid= (D,0)
and obtains encryption algorithme.

2. Env activates key encryptorEi with (KEM.Encrypt, sid, e′) and ob-
tainsC∗ from the output (KEM.Ciphertext, sid, C∗).

3. EnvactivatesD with (KEM.Decrypt, sid, C∗) and obtainsok.

4. When F generates two plaintexts (m0,m1), Env choosesb
U← {0,1},

activatesEi with (DEM.Encrypt, sid, mb, C∗), and then obtainsc from
the output (DEM.Ciphertext, sid, c). Envhandsc to F in the IND-
P2-C2-DEM game shown in Fig.5.8.

5. WhenF asks its encryption oracle to encrypt messagem♭ (which may
bem0 or m1), EnvactivatesEi with input (DEM.Encrypt, sid, m♭, C∗),
obtains ciphertextc♭, and handsc♭ to F.

6. WhenF asks its decryption oracle to decrypt ciphertextc† , c, Env
activatesD with input (DEM.Decrypt, sid, c†, C∗), obtains message
m†, and handsm† to F.

7. WhenF outputsg ∈ {0,1}, Envoutputsg⊕b and halts.

Here note thatEnvcorrupts no party and interacts with no adversary.
When Env interacts withπΣ′′, the view of F interacting withEnv is

exactly the same as that behaving in the real IND-P2-C2 game in Fig.5.8.
Therefore, in this case (sayReal), g= b with probability> 1

2 +µ(k).
In contrast, whenEnv interacts with the ideal process world for

FKEM-DEM, the view ofF interacting withEnv is independent ofb, since
b is independent of (m0,m1,c, µ) in step 4, and is independent of the en-
cryption and decryption resultc♭ and m† in steps 5 and 6 (sincec♭, m0,
m1 andm† are random strings independent ofb). Hence, in this case (say
Ideal), g= b with probability of exactly1

2.
Thus,|Pr[Env→ 0 | Real] − |Pr[Env→ 0 | Ideal]| > µ(k).
(“if” part) We show that ifπΣ′′ does not UC-realizeFKEM-DEM in the

FKEM-hybrid model, thenπΣ′′ is not IND-P2-C2-DEM. To do so, we first
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assume that for any simulatorS imthere is adversaryAdvand environment
Env that distinguishes with probability> 1

2 +µ(k) whether it interacts with
S imandFKEM-DEM or with Adv andπΣ′′. We then show that there exists
an IND-P2-C2-DEM attackerF againstΣ′′ usingEnv in theFKEM-hybrid
model.

First we show thatEnv can distinguish (Adv,πΣ′′) in theFKEM-hybrid
model and (S im,FKEM-DEM) only when no party is corrupted. Since we are
dealing with non-adaptive adversaries, there are three cases. Case 1: Sender
Ei is corrupted (throughout the protocol). Case 2: DecryptorD is corrupted
(throughout the protocol). Case 3:Ei andD are uncorrupted.

These cases are dealt with using theFKEM-hybrid model, soEnv can-
not tell whetherEnv interacts with protocolπΣ′′ or idealFKEM-DEM in the
KEM= (G,E,D) phase. The KEM phase in all cases is performed as de-
scribed hereafter.

1. When Env sends (KEM.KeyGen, sid) to D, FKEM-DEM sends
(KEM.KeyGen, sid) to S im, S im computes (pk,sk) by executing al-
gorithmG, and generatese, d, eDEM anddDEM wheree← E(pk, ·),
d←D(sk, ·), eDEM←E′ anddDEM←D′. S imreturns (Algorithms,
sid, e, d, eDEM, dDEM) to FKEM-DEM and FKEM-DEM forwards
(KEM Encryption Algorithm, sid,e) to D.

2. WhenEnvsends (KEM.Encrypt, sid, e) to corrupted partyEi , Ei re-
ceives output (KEM.Ciphertext, sid, C∗).

3. WhenEnvsends (KEM.Decrypt, sid, C∗) to D, D receives outputok.

We assume thatEnvcannot distinguish the ideal/real world in the KEM
phase of all cases (hereafter, we discuss all cases after the KEM phase is
finished).

In Case 1, we can construct simulatorS imsuch that noEnv can dis-
tinguish (Adv,πΣ′′) in theFKEM-hybrid model and (S im,FKEM-DEM) as de-
scribed hereafter.
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1. When Env sends (DEM.Encrypt, sid, m, C∗) to corrupted partyEi ,
i.e.,S im, S imreceives the message and sends it to the simulated copy
of Adv, which replies toS im. S im then returnsAdv’s reply (which
may be⊥) to Env.

2. When Env sends (DEM.Decrypt, sid, c, C∗) to D, D forwards
it to FKEM-DEM. FKEM-DEM then returns (DEM.Plaintext, sid,
dDEM(K,c)) sinceE, i.e., S im, sends no (DEM.Encrypt, sid, m, C′)
to FKEM-DEM, which records nothing as (m, c, C′). Note that,S im
does not receive any message in this step.

In this case,Envcannot distinguish (Adv,πΣ′′) and (S im,FKEM) because the
message returned byS imasEi in the ideal world is the same as that returned
by Adv asEi in the real world, and (DEM.Plaintext, sid, dDEM(K,c)) re-
turned byFKEM-DEM is exactly the same as that returned byD in the real
world.

In Case 2, we can also construct simulatorS imsuch that noEnv can
distinguish (Adv,πΣ′′) and (S im,FKEM-DEM) as described hereafter.

1. When Env sends (DEM.Encrypt, sid, m, C∗) to Ei , Ei forwards it
to FKEM-DEM. FKEM-DEM generatesc usingeDEM(K,m) and returns
(DEM.Ciphertext, sid, c) to P to Ei , sinceD, i.e.,S im, is corrupted
by Adv, which records nothing as ciphertextc.

2. WhenEnvsends (DEM.Decrypt, sid, c, C∗) to D, i.e.,S im, S imsends
it to Adv. Adv returns a reply (which may be⊥) to S im, which for-
wardsAdv’s reply toEnv.

In this case,Env cannot distinguish (Adv,πΣ′′) from (S im,FKEM-DEM)
because the message returned byS im(usingAdv) asD in the ideal world is
the same as that returned byAdvasD in the real world, and (DEM.Decrypt,
sid, c, C∗) returned byFKEM-DEM is exactly the same as that returned byEi

in the real world.
Thus, Env cannot distinguish the real/ideal worlds in Cases 1 and 2.

Hereafter, we consider only Case 3:Ei andD are uncorrupted.
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Referring to the UC framework, three types of messages are sent from
Env to Adv. The first message type is to corrupt either party, the second
message type is to report on message sending, and the third message type
is to deliver some message. In protocolπΣ′′ considered here, parties do not
send messages to each other over the network. In addition, we consider the
case that no party is corrupted. Therefore, there are no messages fromEnv
to Adv(andS im).

Since there exists at least one environmentEnv that can distinguish the
real life world from the ideal process world for any simulatorS im, we con-
sider the following special simulatorS im.

• Receiving (KEM.KeyGen, sid) from FKEM-DEM, S imobtains (pk, sk)
by executingF and sets KEM encryption algorithme←E(pk), the
KEM decryption algorithm, andd←D(sk, ·). S imthen chooses DEM
encryption algorithmeDEM ← E′ and DEM decryption algorithm
dDEM ← D′ and sends (Algorithms, sid, e, d, eDEM, dDEM) to
FKEM-DEM.

We now show that we can construct adversaryF that breaks IND-P2-
C2-DEM by using the simulated copy ofEnvwhich distinguishes real/ideal
worlds in theFKEM-hybrid model. To do so, we assume that there is an
environmentEnvsuch that

|IDEALFKEM-DEM,S im,Env(k,z)−REALπΣ′′ ,Adv,Env(k,z)| > µ(k),

whenEnvcommunicates with the message sending partyEi ∈ {E1, · · · ,En}
and the message receiving partyD.

We then show thatF usingEnvcan correctly guessb in the IND-P2-C2
game in Fig.5.8with the probability of at least12 +µ(k)/2nℓ, whereℓ is the
total number of times the encryption oracle is invoked andn is the number
of all message sending partiesEi (i ∈ {1, · · · ,n}).

In the IND-P2-C2 game,F chooses a target message pair (x0, x1) with

|x0| = |x1|. Given ciphertexty with private random bitb
U← {0,1} selected by

the encryption oracle,F is allowed to query the encryption and decryption
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oracles, and finally outputsg, which is F’s guess ofb. F executesEnv
with the following simulated interaction as protocolπΣ′′ /FKEM-DEM in the
FKEM-hybrid model.

F performs as described hereafter wherek, ℓ, mj , c j , Ki , Ci , Katk and
Catk denote the security parameter, the total number of encrypting messages
that Envactivates some partyEi with DEM.Encrypt, thej-th message, the
j-th ciphertext, the key ofF’ choosing for message sending partyEi , the
ciphertext of key forEi , the shared key gained by usingFKEM between the
message sending partyEatk and the message receiving partyD, and the key
ciphertext ofKatk, respectively. For someh ∈ {0, · · · , ℓ},

1. F randomly selects one partyEatk.

2. For the first h times that Env activates some partyEi with
(DEM.Encrypt, sid, mj , Ci) to encrypt some messagemj , if Ei , Eatk,

F letsEi returnc j
R← eDEM(Ki ,mj), whereKi

U← {0,1}l(k) is F’s chosen
key for partyEi . Else, i.e.,Ei = Eatk, andF lets Eatk returnc j after
askingF’s encryption oracle regardingmj .

3. Theh-th time thatEnvactivatesEi with (DEM.Encrypt, sid, mh, Catk),
if Ei , Eatk, F halts. Else, i.e.,Ei = Eatk, thenF queries its encryp-
tion oracle regarding (x0, x1)← (mh,µ) in the IND-P2-C2 game, and
obtains corresponding ciphertextch← eDEM(Katk,mh) (whenb = 0)
or non-corresponding ciphertextch← eDEM(Katk,µ) (whenb= 1). F
letsEatk returnch to Env.

4. For the remainingℓ−h times thatEnv activates some partyEi with
(DEM.Encrypt, sid, mj , Ci) to encrypt some messagemj , if Ei , Eatk,

F letsEi returnc j
R← eDEM(Ki ,µ), whereµ is the fixed message. Else,

i.e., Ei = Eatk, thenF lets Eatk returnc j after askingF’s encryption
oracle regardingµ.

5. WheneverEnvactivatesD with (DEM.Decrypt, sid, c, Ci) wherec =
c j for somej, F letsD return the corresponding messagemj . Here, if
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c is not allc j , thenF generates the decryption message ofc j with the
key Ki for Ci and letsD return it toEnv. Here, ifCi = Catk, thenF
asks to its decryption oracle regardingc j , obtains valuev, and letsD
returnv to Env.

6. WhenEnvhalts,F outputs whateverEnvoutputs and halts.

Here, we also use a standard hybrid argument to analyze success proba-
bility of F in the IND-P2-C2 game.

For h ∈ {0, . . . , ℓ}, let Envh be an event that for the firsth times thatEnv
asks some partyEi (which may beEatk) to generate ciphertextc j with sid,
Ei returnsmj ’s encryptionc j according to the above mentioned ways. For
theh-th time thatEnvasksEi (which may beEatk) to generate ciphertextc j

with sid, Ei returnsmj ’s encryption orµ’s encryption and for the remaining
ℓ−h times thatEnvasksEi (which may beEatk) to generatec j with sid, Ei

returnsµ’s encryptionc j . The replies toEnvfrom decryptorD are the same
as those shown in step 5 above.

Let Hh be Pr[Env→ 1|Envh]. We then obtain the following inequality.

ℓ∑
h=1

|Hh−Hh−1| ≥ |Hℓ −H0|. (6.7)

Here, from the construction ofHh it is clear that

H0 = IDEALFKEM-DEM,S im,Env(k,z) and (6.8)

Hℓ = REALπΣ′′ ,Adv,Env(k,z). (6.9)

Therefore,
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ℓ∑
h=1

|Hh−Hh−1| ≥ |Hℓ −H0|

= |REALπΣ′′ ,Adv,Env(k,z)−IDEALFKEM-DEM,S im,Env(k,z)|
> µ(k).

(6.10)

Then there exists someh ∈ {1, · · ·ℓ} that satisfies

|Hh−Hh−1| > µ(k)/ℓ. (6.11)

Here, w.l.o.g., letHh−1−Hh > µ(k)/ℓ, since if Hh−Hh−1 > µ(k)/ℓ for
Env, we can obtainHh−1−Hh > µ(k)/ℓ for Env∗, whereEnv∗ outputs the
opposite ofEnv’s output bit.

In step 3 ofF’s construction,F can continue the IND-P2-C2-DEM
game, when theh-th time activation occurs on justEatk. The probability
thatEnvactivatesEatk from all partiesEi ∈ {E0, · · · ,En} is 1/n. If F obtains
the corresponding pair of (mh, ch) (whenb = 0), then the probability that
Envoutputs 1 is identical toHh/n. On the other hand, ifF obtains the non-
corresponding ciphertext of (µ, c j) (whenb = 1), then the probability that
Envoutputs 1 is identical toHh−1/n.

SinceF’s output followsEnv’s output,

Pr[g= 1|b= 0] = Hh/n and (6.12)

Pr[g= 1|b= 1] = Hh−1/n, (6.13)

whereb is the private random bit of the encryption oracle in the IND-
P2-C2 game andg is F’s output (F’s guess ofb).

Since Pr[g= 1|b= 0]+Pr[g= 0|b= 0] = 1, we obtain Pr[g= 0|b= 0] =
1−Pr[g= 1|b= 0].

Therefore, from the above equalities, we obtainF’s success probability,
Pr[ExptIND−P2−C2

F,Σ′′ (k) = 1], as follows:
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Pr[ExptIND−P2−C2
F,Σ′′ (k) = 1] = Pr[b= g]

= Pr[b= 0]×Pr[g= 0|b= 0]

+Pr[b= 1]×Pr[g= 1|b= 1]

=
1
2
× (Pr[g= 0|b= 0]+Pr[g= 1|b= 1])

=
1
2
× (1−Pr[g= 1|b= 0]+Pr[g= 1|b= 1])

=
1
2
× (1− Hh

n
+

Hh−1

n
) >

1
2
+µ(k)/2nℓ.

That is,AdvIND−P2−C2
F,Σ′′ (k) > µ(k)/2nℓ, which is not negligible ink since

n andℓ are polynomially bounded ink.
Finally, we conclude that ifπΣ′′ does not UC-realizeFKEM-DEM in the

FKEM-hybrid model, thenπΣ′′ is not IND-P2-C2-DEM. �

Here, we define protocolπΣ′ and obtain Theorem8.

Theorem 8. LetΣ′ = (E′,D′) be a DEM scheme. LetΣ′′ be aFKEM-hybrid
Σ′. ProtocolπΣ′′ is IND-P2-C2-DEM if and only ifπΣ′ is IND-P2-C2-DEM
(or Σ′ is IND-P2-C2 DEM).

Proof. (“only if” part) We show that ifπΣ′ is not IND-P2-C2-DEM then
πΣ′′ is not IND-P2-C2-DEM. From the definition ofπΣ′′ and the fact that
πΣ′′ is in theFKEM-hybrid model, this is trivial.

(“if” part) We show that ifπΣ′′ is not IND-P2-C2-DEM thenπΣ′ is not
IND-P2-C2-DEM. This is also trivial from the definition ofπΣ′ . �

Theorem 9. Protocol πΣ′′ UC-realizesFKEM-DEM with respect to non-
adaptive adversaries in theFKEM-hybrid model, if and only ifΣ′ is IND-
P2-C2 DEM.

Proof. This is also trivial from Theorem7 and Theorem8. �

From Theorems7, 8, and9, we obtain that UC DEM is equivalent to
IND-P2-C2 DEM.
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Chapter 7

Three Cryptographic Channels

7.1 Three Cryptographic Channels

In this section, we introduce three cryptographic channels: the SC, 2AC,
and DIC.

7.1.1 SC

A SC is a channel such that the initiator (message sender) and the receiver
(message receiver) can safely transmit messages to each other without the
content being retrieved by a third party or adversary. This SC consists of
three sessions: the establish session, data sending session, and expire ses-
sion. 1. In the establish session a session is created between the initiator
and the receiver to prepare for sending the message. 2. In the data sending
session a message is safely sent to the message receiver. 3. In the expire
session the existing session is terminated.

Definition 22. The SC functionality,FSC, is defined in Fig. 7.1 and the
code for SC functionality,FSC, is defined in Fig.7.2 and Fig.7.3. (X̄ (X ∈
{Init,Rec}) means that if X= Init, thenX̄ = Rec, else if X= Rec thenX̄ =
Init).
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7.1.2 2AC

An AC is one of the three cryptographic channels and is used to send some
messages to the receiver from unknown senders (”anonymously”). The ad-
versary can identify the receiver and read the message content, but cannot
identify who sent the message to the receiver. When two senders and a re-
ceiver anonymously communicate using this channel, we say the channel is
a 2AC. That is, one of the two senders sends a message to the receiver. Note
that the 2AC can also be used when the receiver and one of the senders is
the same process.

Definition 23. The 2AC functionality,F2AC, is defined in Fig.7.4 and the
code for the 2AC functionality,F2AC, is defined in Fig.7.5. and Fig.7.6.

7.1.3 DIC

A DIC is one of the three cryptographic channels. A DIC can be used
to send some messages from the initiator to the receiver in a direction-
indeterminable manner. An adversary can read the transmitted messages,
but cannot identify the sender (and the receiver), i.e., the direction of the
message transmission is indeterminable.

Definition 24. The DIC functionality,FDIC, is defined in Fig.7.7 and the
code for DIC functionality,FDIC, is defined in Fig.7.8and Fig.7.9.
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FunctionalityFSC

FSC proceeds as follows, running with partiesP ∈ {Init,Rec}
and an adversary.

Establish Session:
Upon receiving (EstablishSC, sidSC) from some party
Init, verifies thatsidSC = (Init,Rec,sidSC′) for Rec, then
sends (SID,sidSC) to the adversary, and waits to receive
(EstablishSC, sidSC) from Rec. Upon receiving this
value, sets a boolean variable as active.

Data Sending Session:
Upon receiving (Send, sidSC,m) from some partyP, and
if active is set, sends (Send,sidSC, |m|) to the adversary.
Upon receiving (Response,sidSC,ok) from the adver-
sary, sends (Receive,sidSC,m) to the other partȳP.

Expire Session:
Upon receiving (ExpireSC, sidSC) from either party, un-
sets the variable active.

Figure 7.1:Secure Channel FunctionalityFSC
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Code for Secure Channel Functionality, FSC, whereX ∈ {Init,Rec}

Signature:

sidSC = (Init,Rec,sid′SC)
Input: Output:
receive(EstablishSC,sidSC)X send(SID,sidSC)Adv

receive(Send,sidSC,m)X send(Send,sidSC, |m|)Adv

receive(Response,sidSC,ok)Adv send(Receive,sidSC,mes)X
receive(ExpireSC,sidSC)X send(ExpireSC,sidSC)Adv

State:
estcondX ∈ {⊥,⊤}, initially ⊥ active∈ {⊥,⊤}, initially ⊥
okcondAdv ∈ {⊥,⊤}, initially ⊥ mes∈ ({0,1})∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{send(SID,sidSC)Adv, send(Send,sidSC, |m|)Adv,

send(Receive,sidSC,mes)X, send(ExpireSC,sidSC)Adv}

Figure 7.2:Code for Secure Channel FunctionalityFSC, FSC (Part I)
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Code for Secure Channel Functionality, FSC, whereX ∈ {Init,Rec}

Transitions:

Establish Session:

ESS1.receive(EstablishSC,sidSC)X

pre: active,ntask= ⊥
eff: estcondX B ⊤
If estcondX = ⊤ for all X thenactiveB ⊤ andntaskB ESS2.
Else do nothing.

ESS2.send(SID,sidSC)Adv

pre:active= ⊤ andntask= ESS2
eff:ntaskB ⊥

Data Sending Session:

DSS1.receive(Send,sidSC,m)X

pre:active= ⊤ andmes,ntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.send(Send,sidSC, |m|)Adv

pre: okcondAdv = ⊥, mBmesandntask= DSS2
eff: ntaskB DSS3

DSS3.receive(Response,sidSC,ok)Adv

pre:ntask= DSS3
eff: okcondAdv B ⊤ andntaskB DSS4

DSS4.send(Receive,sidSC,mes)X
pre: ntask= DSS4
eff: mes, okcondAdv, andntaskB ⊥

Expire Session:

EXS1. receive(ExpireSC,sidSC)X

pre: active, ⊥ andmes= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireSC,sidSC)Adv

pre: ntask= EXS2
eff: active,ntaskandestcondX B ⊥ for all X

Figure 7.3:Code for Secure Channel FunctionalityFSC, FSC (Part II)
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FunctionalityF2AC

F2AC proceeds as follows, running with partyP ∈ {Init i ,Rec}
(i ∈ {1,2}) and an adversary. Here, Init1 and Init2 are the mes-
sage sending party and Rec is the message receiving party.

Establish Session:
Upon receiving (Establish2AC, sid2AC) from message
sending party Initi (i ∈ {1,2}), verifies thatsid2AC =
({Init1, Init2},Rec,sid2AC′), sends (SID,sid2AC) to the
adversary, and waits to receive (Establish2AC, sid2AC)
from other party Init̄i . If message from all party received,
sets a boolean value as active.

Data Sending Session:
Upon receiving (Send, sid2AC, m) from message send-
ing party Initi , and if active is set, sends (Send,sid2AC,
m) to the adversary. Upon receiving the message
(Response,sid2AC,ok), sends (Receive, sid2AC, m) to
the receiver Rec.

Expire Session:
Upon receiving (Expire2AC, sid2AC) from some party,
un-sets the variable active.

Figure 7.4:Two Anonymous Channel FunctionalityF2AC
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Code for Two Anonymous Channel Functionality, F2AC,
where forX ∈ {Init1, Init2,Rec}

Signature:

sid2AC = ({Init1, Init2},Rec,sid′2AC)
Input: Output:
receive(Establish2AC,sid2AC)X send(SID,sid2AC)Adv

receive(Send,sid2AC,m)Init i send(Send,sid2AC,mes)Adv

receive(Expire2AC,sid2AC)X send(Receive,sid2AC,mes)Rec

receive(Response,sid2AC,ok)Adv send(Expire2AC,sid2AC)Adv

State:
estcondX ∈ {⊥,⊤}, initially ⊥ okcondAdv ∈ {⊥,⊤}, initially ⊥
mes∈ ({0,1})∪{⊥}, initially ⊥ active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks: {send(SID,sid2AC)Adv, send(Receive,sid2AC,mes)Rec,
send(Send,sid2AC,mes)Adv, send(Expire2AC,sid2AC)Adv}

Figure 7.5:Code for Two Anonymous Channel FunctionalityF2AC, F2AC

(Part I)
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Code for Two Anonymous Channel Functionality, F2AC,
where forX ∈ {Init1, Init2,Rec}

Transitions:

Establish Session:

ESS1.receive(Establish2AC,sid2AC)X

pre: active= ⊥ andntask= ⊥
eff: estcondX B ⊤
If estcondX for all X thenactiveB ⊤ andntaskB ESS2
Else do nothing.

ESS2.send(SID,sid2AC)Adv

pre: active= ⊤ andntask= ESS2
eff: ntaskB ⊥

Data Sending Session:

DSS1.receive(Send,sid2AC,m)Init i (i ∈ {1,2})
pre: active= ⊤, mes= ⊥ andntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.send(Send,sid2AC,mes)Adv

pre: okcondAdv = ⊥, mesBmandntask= DSS2
eff: ntaskB DSS3

DSS3.receive(Response,sid2AC,ok)Adv

pre: ntask= DSS3
eff: okcondAdv B ⊤ andntaskB DSS4

DSS4.send(Receive,sid2AC,mes)Rec

pre: ntask= DSS4
eff: okcondAdv, mesandntaskB ⊥

Expire Session:

EXS1. receive(Expire2AC,sid2AC)X

pre: active= ⊤, mesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(Expire2AC,sid2AC)Adv

pre: ntask= EXS2
eff: active,estcondX andntaskB ⊥ for all X

Figure 7.6:Code for Two Anonymous Channel FunctionalityF2AC, F2AC
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FunctionalityFDIC

FDIC proceeds as follows, running with partiesP ∈ {Init,Rec}
and an adversary.

Establish Session:
Upon receiving (EstablishDIC, sidDIC) from some
party Init, verifies thatsidDIC = ({Init,Rec},sidDIC′) for
Rec, sends (SID,sidDIC) to the adversary, and waits to
receive (EstablishDIC, sidDIC) from Rec. Upon receiv-
ing this message, sets a boolean variable as active.

Data Sending Session:
Upon receiving (Send, sidDIC, m) from P ∈ {Init,Rec},
and if active is set, sends (Send,sidDIC,m) to the ad-
versary. Upon receiving (Response,sidDIC,ok), sends
(Receive, sidDIC, m) to the other partȳP.

Expire Session:
Upon receiving (ExpireDIC, sidDIC) from either party,
un-sets the variable active.

Figure 7.7:Direction-Indeterminable Channel FunctionalityFDIC
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Code for Direction-Indeterminable Channel Functionality, FDIC,
whereX ∈ {Init,Rec}

Signature:

sidDIC = ({Init,Rec},sid′DIC)
Input: Output:
receive(EstablishDIC,sidDIC)X send(SID,sidDIC)Adv

receive(Send,sidDIC,m)X send(Send,sidDIC,m)Adv

receive(Response,sidDIC,ok)Adv send(Send,sidDIC,mes)X
receive(ExpireDIC,sidDIC)X send(ExpireDIC,sidDIC)Adv

State:
estcondX ∈ {⊥,⊤}, initially ⊥ mes∈ ({0,1})∪{⊥}, initially ⊥
okcondAdv ∈ {⊥,⊤}, initially ⊥ active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{send(SID,sidDIC)Adv, send(Send,sidDIC,m)Adv,

send(Send,sidDIC,mes)X, send(ExpireDIC,sidDIC)Adv}

Figure 7.8:Code for Direction-Indeterminable Channel FunctionalityFDIC,
FDIC(Part I)
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Code for Direction-Indeterminable Channel Functionality, FDIC,
whereX ∈ {Init,Rec}

Transitions:

Establish Session:

ESS1.receive(EstablishDIC,sidDIC)X

pre: active= ⊥ andntask= ⊥
eff: estcondX B ⊤.
If estcondX = ⊤ for all X thenactiveB ⊤ andntaskB ESS2.
Else do nothing.

ESS2.send(SID,sidDIC)Adv

pre: active= ⊤ andntask= ESS2
eff: ntaskB ⊥

Data Sending Session:

DSS1.receive(Send,sidDIC,m)X

pre: active= ⊤, mesandntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.send(Send,sidDIC,m)Adv

pre: okcondAdv = ⊥, mBmesandntask= DSS2
eff: ntaskB DSS3

DSS3.receive(Response,sidDIC,ok)Adv

pre: ntask= DSS3
eff: okcondAdv B ⊤ andntaskB DSS4

DSS4.send(Receive,sidDIC,mes)X
pre: ntask= DSS4
eff: okcondAdv, mesandntaskB ⊥

Expire Session:

EXS1. receive(ExpireDIC,sidDIC)X

pre: active= ⊤, mes= ⊥ andntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)Adv

pre: ntask= EXS2
eff: active, estcondX andntaskB ⊥ for all X

Figure 7.9:Code for Direction-Indeterminable Channel FunctionalityFDIC,
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7.2 Equivalence Between DIC and 2AC

In this section, we prove that the DIC is equivalent to the 2AC under some
types of schedules. To prove this, we show two reductions, DIC to 2AC and
2AC to DIC. Here, we consider the exchange of a one bit message, i.e., the
message length|m| = 1. Informally, the reduction of DIC to 2AC is proven
as described hereafter. The direction-indeterminable property is generated
using two 2AC functionalities, FI2AC and FR2AC. Here, the two senders of
FI2AC are Init and Rec, and the receiver of FI2AC is Init. The two senders of
FR2AC are Init and Rec, and the receiver of FR2AC is Rec. When Init sends
a message to receiver Rec, Init sends the message using FI

2AC and FR2AC.
More specifically, FI2AC forwards the message to Init and FR2AC forwards
the message to Rec. The execution order of FX

2AC is selected at random by
the message sender. An adversary cannot detect the direction the message
was sent because Init and Rec receive the same message,m, transferred by
the two 2ACs. The other reduction, 2AC to DIC, is proven as described
hereafter. First, the message sending party (Init1 or Init2) sends messagem
to the other party using a DIC. Init1 and Init2 then sendm to receiver Rec
directly under some type of master schedule. An adversary cannot detect
which is the sender because the direction the message was sent between
senders Init1 and Init2 is indeterminable.

7.2.1 Reduction of DIC to 2AC

Let πDIC be a protocol of the DIC. We assume thatMπDIC , the master sched-
ule of πDIC, is any schedule. Let InitDIC and RecDIC be the initiator code
and receiver code for a real system, see Fig.7.10, Fig.7.11, and Fig.7.12,
and Fig.7.13and Fig.7.14, respectively. LetInitDIC andRecDIC be the ini-
tiator code and receiver code for an ideal system, see Fig.7.17and Fig.7.18,
and Fig.7.19and Fig.7.20, respectively. Finally, let AdvDIC and SimDIC be
the adversary code and the simulator code in Fig.7.15 and Fig.7.16, and
Fig.7.21, and Fig.7.22, respectively. Let RealDIC and IdealDIC be a DIC
protocol system and a DIC functionality system, respectively. These are
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defined below.

RealDIC B hide(InitDIC||RecDIC||AdvDIC||FI2AC||F
R
2AC, {rand(*)}),

IdealDIC B InitDIC||RecDIC||SimDIC||FDIC.

TasksInitDIC andRecDIC relay the input messages from the environment
to the ideal functionality task and relay the received messages from the ideal
functionality task to the environment as interface parties in the ideal system.

Theorem 4. DIC protocol systemRealDIC perfectly hybrid-implements DIC
functionality systemIdealDIC with respect to an adaptive adversary under
any master schedule (DIC is reducible to 2AC with respect to an adaptive
adversary under any master schedule).

Let ϵR and ϵI be discrete probability measures on finite executions of
RealDIC||Env and IdealDIC||Env, respectively. We prove Theorem4 by
showing thatϵR and ϵI satisfy the trace distribution property,tdist(ϵR) =
tdist(ϵI). Here, we define correspondence relationR between the states in
RealDIC||Env and the states in IdealDIC||Env. We say (ϵR, ϵI) ∈ R if and only
if for every s∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI), all of the state correspon-
dences in Tables7.1, 7.2 and7.3 hold. We then proveR is a simulation
relation in Lemma1.

Lemma 1. Relation R defined above is a simulation relation from
RealDIC||Env to IdealDIC||Envunder master schedule MπDIC.

Proof. We prove thatR is a simulation relation from RealDIC||Env to
IdealDIC||Env using the mapping corrtasks,R∗RealDIC||Env× RRealDIC||Env →
R∗IdealDIC||Env, which is defined below (hereafterT =corr. T′ is used as an al-
ternative way to write corrtask (ρ,T) = T′).

The task sequence of system RealDIC||Env perfectly corresponds to that
of system IdealDIC||Env under scheduleMπDIC. Formally, to prove thatR is
a simulation relation from RealDIC||Env to IdealDIC||Env, we must show that
Rsatisfies the start condition and step condition.
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• Start condition
It is true that the respective start states ofs andu in RealDIC||Env and
IdealDIC||Env are on the Dirac measures. That is, the start states ofs
andu satisfy relationRbecause the start states ofsandu are all⊥ for
each task on master scheduleMπDIC. Therefore, the trace distribution
property holds.

• Step condition
If (ϵR, ϵI) ∈ R, ρ ∈ R∗RealDIC||Env, ϵR is consistent withρ, ϵI is consistent
with f ull(corrtasks)(ρ), andT ∈ RealDIC||Env. Then there exist the
following.

– Probability measurep on countable index setI ,

– Probability measuresϵ′R, j , j ∈ I , on finite executions of
RealDIC||Env, and

– Probability measuresϵ′I, j , j ∈ I , on finite executions of
IdealDIC||Env,

such that

– For eachj ∈ I , ϵ′R, j R ϵ′I, j ,

– Σ j∈I p( j)(ϵ′R, j) = apply(ϵR,T), and

– Σ j∈I p( j)(ϵ′I, j) = apply(ϵI ,corrtask(ρ,T)).

Task Correspondence

For any (ρ,T) ∈ (R∗RealDIC||Env×RRealDIC||Env), the following task correspon-
dences, which are also summarized in Table7.4, hold.

1. Establish Session

(a) InitDIC.send(Establish2AC,sidI2AC)FI2AC

· InitDIC.send(Establish2AC,sidR2AC)FR2AC

=corr. InitDIC.send(EstablishDIC,sidDIC)FDIC
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Let TXREAL andTIDEAL besend(Establish2AC,sidX2AC)FX2AC
where

X ∈ {I,R} and send(EstablishDIC,sidDIC)FDIC , respectively.
We assume that for each start state ins ∈ supp.lst(ϵR) andu ∈
supp.lst(ϵI) are fixed. The preconditions forTXREAL andTIDEAL
are the same asntask= ESS2.TXREAL (resp.,TIDEAL) is enabled
(or disabled) ins (resp.,u) if and only if s.InitDIC.ntask= ESS2
(resp.u.InitDIC.ntask=ESS2). From (i) and (j) in Table7.1, the
state correspondences imply thatTXREAL andTIDEAL are uniformly
enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI) for X ∈ {I,R}.
Note that in the establish session, the order of FX

2AC is fixed with
FI2AC and FR2AC in this order.

i. Disable Case:
Let I and p be the set that has a single element and Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R and ϵ′I,1 = ϵ

′
I .

We have the fact thatϵ′R = ϵR and ϵ′I = ϵI . Here, we ob-
tain ϵ′R,1Rϵ′I,1 from relation ϵRRϵI. The trace distribution
equivalence property,tdist(ϵ′R) = tdist(ϵ′I ), also holds since
tdist(ϵR) = tdist(ϵI) underMπDIC.

ii. Enable Case:
Let q denote the state of preconditionntask= ESS2. Let
TXREAL andTIDEAL be actions enabled.
Let I andp be a set that has a single element and the Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R and ϵ′I,1 = ϵ

′
I .

Here, we establish the property ofR for ϵ′R andϵ′I to show
that (ϵ′R, ϵ

′
I ) ∈ R. To establish the property, consider any

states′ ∈ supp.lst(ϵ′R) and u′ ∈ supp.lst(ϵ′I ). Let s be any
state in supp.lst(ϵR) such thats′ ∈ supp(µs) where (s, ζ,µs) ∈
RealDIC||Env. Let u be any state in supp.lst(ϵI) such that
u′ ∈ supp(µu) where (u,corrtask(ρ,ζ),µu) ∈ IdealDIC||Env.
It is true thatTXREAL updates Init.activeto⊤ and InitDIC.ntask
to ⊥ from the definition of the effect of TXREAL for X ∈
{Init,Rec}. Similarly, TIDEAL updatesInitDIC.active to ⊤
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and InitDIC.ntask to ⊥ from the definition of the effect
of TIDEAL. From the state equivalences of (i) and (j) in
Table 7.1, we haveu.InitDIC.active= s.InitDIC.active and
u.InitDIC.ntask= s.InitDIC.ntask. By the definitions of
InitDIC andInitDIC, TXREAL (resp.,TIDEAL) is a unique action
that updates the state ofactiveof RealDIC (resp., IdealDIC).
We then obtain thatu′.InitDIC.active= s′.InitDIC.activeand
u′.InitDIC.ntask= s′.InitDIC.ntask. Therefore, we obtain the
trace distribution propertytrace(ϵ′R) = trace(ϵ′I ).

(b) RecDIC.send(Establish2AC,sidI2AC)FI2AC

·RecDIC.send(Establish2AC,sidR2AC)FR2AC

=corr. RecDIC.send(EstablishDIC,sidDIC)FDIC

This is analogous to the case of1a. The states of precondition
and effect for both expressions are the same. More specifically,
the precondition and effect of the real task are the same as those
for the ideal task based on pre:(n), and eff:(n) and (m) in Table
7.1. So, these tasks correspond (Hereafter, the descriptions of
precondition and effect are referred to as pre: and eff:, respec-
tively).

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have
the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step
conditions of simulation relationR hold based on each task
definition and the state correspondence pre:(n). Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pre:(n), and state
correspondences eff:(m) and (n), we haveϵ′R = ϵR andϵ′I =
ϵI. Here, the start and step conditions of simulation relation
Rhold. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).
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(c) FI2AC.send(SID,sidI2AC)Adv ·FR2AC.send(SID,sidR2AC)Adv

=corr. FDIC.send(SID,sidDIC)Adv

The precondition and effect of the real tasks are identical to those
for the ideal tasks. The preconditions for each of the tasks on
the left side of the equation areactive= ⊤ andntask= ESS2,
respectively. The task for the expression on the right side of
the equation also has the same preconditions. The effects of the
tasks on the left side of the equation arentaskB ⊥. This effect
is also the same for the task on the right.

Let TXREAL be FX2AC.send(SID,sid2AC)Adv for X ∈ {Init,Rec}. Let
TIDEAL be FDIC.send(SID,sidDIC)Adv. We show thatTXREAL
andTIDEAL are uniformly enabled or disabled in supp.lst(ϵR)∪
supp.lst(ϵI). We consider that for each state ins∈ supp.lst(ϵR)
and u ∈ supp.lst(ϵI) are fixed. Then,TXREAL is enabled (or dis-
abled) ins if and only if s.TXREAL.active= ⊤ ands.TXREAL.ntask=
ESS2. The pre:(d) and (f ) in Table7.1 imply thatTIDEAL is uni-
formly enabled or disabled. The rest of this proof is similar to
the case of1a.

2. Data Sending Session

Here, we consider the case that Env sends the data sending message
in InitDIC. The case that Env sends a data sending message in InitDIC

is analogous to the case for RecDIC. The task sequence in each world
is shown in Table7.5 and Table7.6. The task sequence of the Real
Execution corresponds to that of the Ideal Execution. Note that the
order of the FX2AC for sending the message is not fixed so that the
message direction cannot be distinguished. To fix the order of FX

2AC,
we use FSRC.

The flow of the states in each task is shown in Tables7.7and7.8 for
each world. From the initial values and final values in Tables7.7and
7.8, we obtain the result of the state equivalence in7.1. That is, if
the state equivalences in7.1hold before the task sequence is enabled
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(or disabled), the state equivalences in7.1 after the task sequence is
completed also hold.

(a) Disable Case: This is a trivial case because all the states of the
parties are⊥. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
the parties. LetϵR and ϵI be discrete probability measures in
the real world and ideal world, respectively. We have the fact
that ϵ′R = ϵR andϵ′I = ϵI. Here, the start and step conditions of
simulation relationR hold from the task definition and the state
correspondence. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

(b) Enable Case: LetϵR andϵI be discrete probability measures in
the real world and ideal world, respectively. From each task
definition and the follow flow of states in Tables7.7 and 7.8,
it is oblivious that the initial state is the same as the final state
for each task of each world. In addition, the states of the real
task are also the same as the states of the ideal world after the
data sending session is executed. That is, (a) ∼ (n) in Table7.1
hold. Therefore, we have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start
and step conditions of simulation relationRhold. Therefore, we
obtaintrace(ϵ′R) = trace(ϵ′I ).

3. Expire Session

(a) InitDIC.send(Expire2AC,sidI2AC)FI2AC

· InitDIC.send(Expire2AC,sidR2AC)FR2AC

=corr. InitDIC.send(ExpireDIC,sidDIC)FDIC

The states of precondition and effect for the task on the left,
send(Expire2AC,sidX2AC)FX2AC

, are the same as those for the task
on the right,send(ExpireDIC,sidDIC)FDIC, wherentask=EXS2.
That is, if (i) and (j) in Table7.1 hold, then these tasks are en-
abled (or disabled) in every state in supp.lst(ϵR)∪ supp.lst(ϵI).
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Note that the order of the FX2AC is fixed with FI2AC and FR2AC in
this order.

The precondition of both tasks isntask= EXS2. More specifi-
cally, the precondition and effect of the real tasks are the same
as the ideal task from pre:(j), and eff:(i) and (j), respectively.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationRhold from each task definition
and the state correspondence pre: (j). Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pre: (j), and the
state correspondences eff: (i) and (j), we have thatϵ′R = ϵR
andϵ′I = ϵI . Here, the start and step conditions of simulation
relationRhold. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

(b) RecDIC.send(Expire2AC,sidI2AC)FI2AC

·RecDIC.send(Expire2AC,sidR2AC)FR2AC

=corr. RecDIC.send(ExpireDIC,sidDIC)FDIC

This is similar to the case of3a. The precondition states of both
expressions are the same asntask= EXS2. More specifically,
the precondition and effect of the real task are the same as those
for the ideal task based on pre: (n), and eff:(m) and (n), respec-
tively. So, these tasks correspond. Note that the order of FX

2AC is
fixed with FI2AC and FR2AC in this order.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationRhold from each task definition
and the state correspondence pre: (n). Therefore, we obtain
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trace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pre: (n), and the
state correspondences eff: (m) and (n), we have thatϵ′R = ϵR
andϵ′I = ϵI . Here, the start and step conditions of simulation
relationRhold. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

(c) FI2AC.send(Expire2AC,sidI2AC)Adv

·FR2AC.send(Expire2AC,sidR2AC)Adv

=corr. FDIC.send(ExpireDIC,sidDIC)Adv

The precondition and effect of the real task are the same as
those for the ideal task. The precondition is onlyntask= EXS2
and the effect is activeB ⊥, estcondX B ⊥ for all X (and
estcondInit i ,estcondRecB ⊥ for all i in FX2AC) and ntaskB ⊥.
From (f ) in Table7.1, these tasks are enabled (or disabled) in
every state in supp.lst(ϵR)∪supp.lst(ϵI). The rest of this proof is
analogous to the case of3a.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have
the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step
conditions of the simulation relationR hold from each task
definition and the state correspondence pre: (f ). Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pre: (f ), and the
state correspondences eff: (a), (b), (d), and (f ), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).
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Environment Env

From the task definitions and state correspondence (o) in Table7.1, the prov-
ability measures of both tasks are uniformly enabled or disabled in every
state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 1 The state of Env remains static in all states in supp.lst(ϵR)∪
supp.lst(ϵI). Let qe denote this state of Env. This follows from state
correspondence (o).

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI) (simultaneously). Further-
more, if T is enabled in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There exists unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There exists a unique transition of Env fromqe with actiona.
Let tre= (qe,a,µe) be this transition.

By considering Claim7.2.1, task T of Env is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR and ϵ′I,1 = ϵI, and the result isϵ′R,1Rϵ′I,1 since
we haveϵRRϵI. If T is enabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI),
Claim 7.2.1 implies that there exists unique actiona in every state in
supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontre of Env from qe enabled with
actiona wheretre= (qe,a,µe).

Non Corrupted Case:

1. a is an input/ output action of Init. We assume thata is an input
action such asin(EstablishDIC,sidDIC)Init , in(Send,sidDIC,m)Init

and in(ExpireDIC,sidDIC)Init , and an output action such as
out(Receive,sidDIC, r)Init .

Let sbe any state such thats′ ∈ supp(µs) where (s,a,µs) ∈DRealDIC||Env.
Let u be any state such thatu′ ∈ supp(µu) where (u,a,µu) ∈
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DIdealDIC||Env. For eacha, we check that the state correspondence for
s f and u′ holds if that for s and u holds. If eacha is input from
Env, then the precondition and effect are exactly the same between
the real task and ideal task. For example, if the input message is
in(EstablishDIC,sidDIC)Init , then the precondition isactive,ntask=
⊥ and the effect is ntaskB ESS2. The real task state correspond
to those for the ideal task. So, in the case of the enabled (or dis-
abled), it is hold that the state correspondences of (o), (i) and (j) for
s′ andu′, if those for s andu hold. Therefore, we obtain the trace
distribution property,trace(ϵ′R) = trace(ϵ′I ). This result also works
well in the case ofin(Send,sidDIC,m)Init , in(ExpireDIC,sidDIC)Init

andout(Receive,sidDIC, r)Init .

2. a is an input/ output action of Rec. We assume thata is an input
action such asin(EstablishDIC,sidDIC)Rec, in(Send,sidDIC,m)Rec,
in(ExpireDIC,sidDIC)Rec, and out(Receive,sidDIC, r)Rec. This is
analogous to the case of1.

3. a is an input/ output action of Adv. This means thata= input(g)Adv

for some fixedg. For example,g is a corrupt message for some
party ∈ {Init,Rec}. From the fact that the state correspondences
(A) ∼ (T) for s andu holds, we obtain that the state corresponces for
s′ andu′ holds. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an internal or an output action of Env. Taska in the real world
is identical to that in the ideal world. From the fact that state corre-
spondence (o) for s andu holds, we obtain that state correspondence
(o) for s′ and u′ holds. Therefore, we obtain the trace distribution
property,trace(ϵ′R, j) = trace(ϵ′I, j).

Corrupted Case:

1. a is an input action of Adv andparty ∈ {Init,Rec} Here, the party
is included in the case of Init∧Rec. LetqAdv be the state of Adv
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or Sim, which is the same in all supp.lst(ϵR) ∪ supp.lst(ϵI). Let
trAdv = (qAdv,a,µAdv) be a transition of Adv with actiona from qAdv.
From Claim7.2.1, trAdv is a unique transition. Here, we suppose that
supp((µe×µAdv)) is the pair set{(q1, j ,q2, j) : j ∈ I }, whereI is a count-
able set. Letp be the probability measures such that for eachj, p( j) =
(µe× µAdv)(q1, j ,q2, j). For eachj, let ϵ′R, j be ϵ′1, j(α) = ϵ1(α′), where
α ∈ supp(ϵ′1) such thatlst(α).Env= q1, j andlst(α).Adv = q2, j . The
ϵ′2, j is analogously constructed fromϵ′2.

The rest of this proof is the same as that for case1 by consider-
ing the state correspondence in each caseparty ∈ {Init,Rec, Init ∧
Rec}. Finally, we obtain the trace distribution property,trace(ϵ′R, j) =
trace(ϵ′I, j).

Adversary Adv

From the task definitions and the state correspondences, (A) ∼ (T), in Table
7.2, the provability measures of both tasks are uniformly enabled or disabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 3 The state of Adv or Sim is the same in all states in
supp.lst(ϵR)∪supp.lst(ϵI). Let qAdv denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI). Furthermore, if T is enabled
in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There is unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There is a unique transition of Adv fromqAdv with actiona and
let trAdv = (qAdv,a,µAdv) be this transition.

By considering Claim.7.2.1, task T of Adv is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
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I = 1, we obtainϵ′R,1 = ϵR andϵ′I,1 = ϵI , and the result isϵ′R,1Rϵ′I,1 since we
haveϵRRϵI. If T is enabled, T is enabled in every state in supp.lst(ϵR)∪
supp.lst(ϵI). Claim7.2.1implies that there is unique actiona in every state
in supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontr of Adv from qe enabled with
action a where trAdv = (qAdv,a,µAdv). The following cases for the “Non
Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. a is an input action of Env. From the fact that the state correspon-
dences, (A) ∼ (T), for s andu holds, we obtain that the state corre-
spondences fors′ andu′ holds. Therefore, we obtain the trace distri-
bution property:trace(ϵ′R) = trace(ϵ′I ).

2. a is an input or output action of functionality. This case concerns
the messagesreceive(SID,sidX2AC)FX2AC

, receive(Send,sidX2AC,m)FX2AC
,

andsend(Response,sidDIC,ok)FDIC. The rest of this proof is analo-
gous to the case of1. From the fact that the state correspondences,
(A) ∼ (T), for s andu holds, we obtain that the state correspondences
for s′ andu′ holds. Therefore, we obtain the trace distribution prop-
erty, trace(ϵ′R) = trace(ϵ′I ).

3. a is either an output action of Adv that is not an input action of
Env, Init,Rec, or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous to
the case of1. From the fact that the state correspondences, (A) ∼ (T),
for s and u holds, we obtain that the state correspondences fors′

and u′ holds. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an output action ofout(∗)adv. This case also works well al-
though this action may affect Env. However, the transition of Env
tre= (qe,a,µe) is unique from Claim7.2.1. Claim7.2.1also says that
the state of Env remains static in all states in supp.lst(ϵR)∪supp.lst(ϵI).
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This follows from state correspondenceo. Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupts

party∈ {Init,Rec}.

1. a is input or output actionin(∗)party or out(∗)party of corrupted party,
party∈ {Init,Rec}, respectively. This case also works well from the
Claim 7.2.1and state correspondence in Table7.1∼ 7.3.

Perfect Simulation

Another task of SimDIC is the simulation(∗) task. By usingsimulation(∗)
effectively, the simulation of SimDIC perfectly mimics the establish session,
the data sending session, and the expire session with respect to no corrup-
tion, static corruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessionFirst, in the establish session, environ-
ment Env sends establish messagein(EstablishDIC,sidDIC)Init

and messagein(EstablishDIC,sidDIC)Rec to initiator InitDIC

and receiverRecDIC, respectively. They send establish ses-
sion messagessend(EstablishDIC,sidDIC)FDIC to FDIC. The
functionality sendssend(SID,sidDIC)Adv to simulator SimDIC.
After SimDIC receives send(SID,sidDIC)Adv, SimDIC starts
simulation(Establish2AC,sidX2AC) in his simulation world un-
der the following policy.

Simulation Policy

i. After receivingreceive(SID,sidDIC)FDIC , SimDIC executes
the following simulation.
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A. prepares dummy parties Init, Rec, and Adv and ideal
functionality task F2AC.

B. SimDIC inputs messagesin(Establish2AC,sid2AC)Init

and in(Establish2AC,sid2AC)Rec to Init and Rec, re-
spectively.

C. SimDIC makes Init (resp., Rec) send message
send(Establish2AC,sidX2AC)FX2AC

to FX2AC for eachX ∈
{I,R} in this order(I then R), respectively.

D. SimDIC makes FX2AC sendsend(SID,sidX2AC)Adv to Adv.

Task Correspondence of Simulation

i. InitDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. SimDIC.InitDIC.send(Establish2AC,sidX2AC)FX2AC

pre: ntask= ESS2 ; (L);

eff: activeB ⊤ andntaskB ⊥ ; (M), (L);

ii. RecDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. SimDIC.RecDIC.send(Establish2AC,sidX2AC)FX2AC

pre: ntask= ESS2 ; (Q);

eff: active= ⊤ andntaskB ⊥ ; (P), (Q);

iii. FX2AC.send(SID,sid2AC)AdvDIC

=corr. SimDIC.FX2AC.send(SID,sid2AC)AdvDIC

pre: ntask= ESS2 ; (I );

eff: active, estcondX andntaskB ⊥ for all X ; (D) ∼ (G),
(I );

The simulation of the establish session is perfectly executed by
simulation(∗) of SimDIC. Finally, the parties establish two 2ACs
in the simulation world.

(b) Data Sending SessionNext, in the data sending session, Env
sends messagein(Send,sidDIC,m)Init (or in(Send,sidDIC,m)Rec)

to InitDIC (or RecDIC). InitDIC sendssend(Send,sidDIC,m)FDIC
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to FDIC. FDIC then sendssend(Send,sidDIC,m)Adv to SimDIC.
After SimDIC receivessend(Send,sidDIC,m)Adv, SimDIC exe-
cutes tasksimulation(Send,sidDIC,m) in his simulation world
under the following policy.

Simulation Policy

i. After receiving receive(Send,sidDIC,m)FDIC, SimDIC exe-
cutes the following simulation.

A. SimDIC executesrandom(∗) and selects message input
party party∈ {Init,Rec} (The following discussion as-
sumesparty= Init. The case ofparty= Rec is analo-
gous).

B. SimDIC inputsin(Send,sid2AC,m)Init to Init.

C. SimDIC makes Init generate random values∈ {0,1}.
• If s = 0, SimDIC makes Init send messages

send(Send,sidI2AC,m)FI2AC
andsend(Send,sidR2AC,

m)FR2AC
to FI2AC and FR2AC in this order, respectively.

• Else (s = 1), SimDIC makes Init send message
send(Send,sidR2AC,m)FR2AC

andsend(Send,sidI2AC,

m)FI2AC
to FR2AC and FI2AC in this order, respectively.

D. SimDIC makes FX2AC receivereceive(Send,sidX2AC,mes
)Init and makes FX2AC sendsend(Send,sidX2AC,mes)Adv.

E. If send(Response,sidX2AC,ok)FX2AC
to FX2AC is received

from Adv, SimDIC continues the following.

F. SimDIC makes FX2AC receivereceive(Response,sid2AC,
ok)Adv and makes FX2AC sendsend(Receive,sid2AC,
mes)Init andsend(Receive,sid2AC,mes)Rec to Init and
Rec, respectively.

G. SimDIC makes Init and Rec receivereceive(Receive,
sidR2AC,m)FI2AC

and receive(Receive,sidR2AC,m)FR2AC
,

respectively.

H. SimDIC makes Rec outputout(Receive,sid2AC, r)Rec.
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ii. SimDIC executessend(Response,sidDIC,ok)FSC.

Task Correspondence of Simulation

Init i. (in(Send,sidDIC,m)Init ; pre: active= ⊤, smesand
ntask = ⊥:(J),(L),(M) ; eff:smesB m, ntaskB
DSS2:(J), (M))

ii. (rand(∗); pre: ; eff: ntask B ⊥:(M)) (This
task is used to select the order of the next
task send(Send,sidX2AC,m)FX2AC

. If rand(∗) outputs

0 then Init executessend(Send,sidX2AC,m)FI2AC
and

send(Send,sidX2AC,m)FR2AC
in this order. Else, Init ex-

ecutessend(Send,sidX2AC,m)FR2AC
first).

iii. (send(Send,sidX2AC,m)FX2AC
; pre:mB smesandntask=

DSS2: (M); eff: ntaskB ⊥:(M))

FX2AC i. (receive(Send,sid2AC,m)Init ; pre:active= ⊤, mes= ⊥
andntask= ⊥: (G), (H), (I ); eff:mesBm andntaskB
DSS2:(H),(I ) )

ii. (send(Send,sid2AC,mes)Adv; pre:okcondAdv =⊥, mesB
m andntask= DSS2:(F), (H), (I ); eff:ntaskB DSS3:
(I ))

Adv i. (receive(Send,sidX2AC,mes)FX2AC
; pre: active = ⊤,

ntask= ⊥ : (R), (S); eff:smesX B mesand ntaskB
DSS2: (S),(T))

ii. (send(Response,sidX2AC,ok)FX2AC
; pre: ntask= DSS2:

(S) ; eff: ntaskB ⊥: (S))

FX2AC i. (receive(Response,sid2AC,ok)Adv, pre:ntask=DSS3:(I );
eff:okcondAdv B ⊤ andntaskB DSS4:(F),(I ))

ii. (send(Receive,sid2AC,mes)Rec; pre:ntask=DSS4:(I );
eff:okcondAdv, mesandntaskB ⊥:(F),(H),(I ))

Init i. (receive(Receive,sidI2AC,m)FI2AC
; pre: active = ⊤,

rmes and ntask= ⊥:(K),(L),(M) ;eff:smesB ⊥ and
ntaskB ⊥ :(J),(M))
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Rec i. (receive(Receive,sidR2AC,m)FR2AC
; pre: active = ⊤,

rmes and ntask= ⊥:(O),(P),(Q) ;eff:rmesB m and
ntaskB DSS4 :(O),(Q))

ii. (out(Receive,sidDIC, r)Rec; pre:r B rmesandntask=
DSS4 :(Q) ;eff:rmesandntaskB ⊥ :(O),(Q))

Simulator SimDIC executes the above-mentioned process to
mimic the real world under the simulation policy. The state cor-
respondences in Table.7.2and7.3work well. The key point of
this simulation is as follows. To mimic the real world, the simu-
lator activates the parties that execute the tasks of the real world.
Moreover, in order not to distinguish the output trace, the sim-
ulator simulates the real world in his simulation world by using
task codes. In the real world, Init uses two 2ACs without allow-
ing an adversary to identify the direction in which the message
was sent. In the simulation world, SimDIC can mimic the output
that AdvDIC outputs in the real world. That is, the trace distribu-
tions of each world, the real world and the ideal world, are in-
distinguishable. In other words, since each task correspondence
and the state correspondence work well, the following property
works well: trace(ϵ′R) = trace(ϵ′I ).

(c) Expire SessionFinally, in the expire session, Env sends mes-
sage in(ExpireDIC,sidDIC)Init and in(ExpireDIC,sidDIC)Rec

to InitDIC and RecDIC, respectively. They relay mes-
sage send(ExpireDIC,sidDIC)FDIC to FDIC. After receiving
receive(ExpireDIC,sidDIC)FDIC from FDIC, SimDIC executes
tasksimulation(Establish2AC,sidX2AC) in his simulation world
under the following policy.

Simulation Policy

i. After receivingreceive(ExpireDIC,sidDIC)FDIC , SimDIC ex-
ecutes the following simulation.

A. SimDIC inputs messagesin(ExpireDIC,sidDIC)Init and
in(ExpireDIC,sidDIC)Rec to Init and Rec, respectively.
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B. SimDIC makes Init (resp., Rec) sendsend(Expire2AC,
sidI2AC)FI2AC

and send(Expire2AC,sidR2AC)FR2AC
to FI2AC

and FR2AC in this order, respectively.

C. SimDIC makes FX2AC sendsend(ExpireDIC,sidDIC)Adv

to Adv.

Task Correspondence of Simulation

i. InitDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. SimDIC.InitDIC.send(Establish2AC,sidX2AC)FX2AC

pre: ntask= EXS2 ; (M);

eff: activeandntaskB ⊥ ; (L), (M);

ii. RecDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. SimDIC.RecDIC.send(Establish2AC,sidX2AC)FX2AC

pre: ntask= EXS2 ; (Q);

eff: activeandntaskB ⊥ ; (R), (Q);

iii. FX2AC.send(Expire2AC,sid2AC)AdvDIC

=corr. SimDIC.FX2AC.send(Expire2AC,sid2AC)AdvDIC

pre: ntask= EXS2 ; (I );

eff: active, estcondX andntaskB ⊥ for all X ; (D) ∼ (G),
(I );

We assume that the state correspondences in Table7.2 and7.3 hold.
From 3a, 3b and 3c, the state correspondences also holds after the
simulation by SimDIC. That is,trace(ϵ′R) = trace(ϵ′I ).

2. Static Corruption This type of corruption is divided into the follow-
ing three cases: only Init is corrupted by Adv, only Rec is corrupted
by Adv and both parties are corrupted by Adv. Note that these cases
occur before the protocol starts. The adversary does not corrupt any
of the parties once Env starts the protocol.

(a) Only Init is corrupted by Adv. This case means that AdvDIC

corrupts only Init before the protocol starts. So, the remaining
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steps are identical to those for the above-mentioned No Corrup-
tion Case without the message input party selection.

i. After receiving the corrupt message from Env, SimDIC pre-
pares a situation in which only Init is corrupted and adds the
following policy before1(a)iB. SimDIC makes Adv corrupt
Init.

ii. After receiving receive(Send,sidDIC,m)FDIC in party ∈
{Init,Rec}, SimDIC executes the following simulation.

A. If the message is input to corrupted party Init, SimDIC

inputs in(Send,sidDIC,m)Init to Init in his simulation
world.

B. Else the message is input to Rec, and SimDIC inputs
in(Send,sidDIC,m)Rec to Rec.

C. The remaining steps are the same as those in the simu-
lation of the No Corrupted Case.

iii. After receivingreceive(Send,sidDIC,m)FDIC in Init, SimDIC

executesout(Receive,sidDIC,m)Init .

In this case, the AdvDIC and SimDIC can identify the direction
that the message is sent from Init to Rec or from Rec to Init.
However, the simulation is perfectly executed. If the protocol
executed the establish session, data sending session, and expire
session, in any case, the simulator can simulate the real world
and the movement of Adv. That is, the simulation is perfectly
executed by SimDIC. From the Task Correspondence in7.2.1,
the state correspondences in7.1, 7.2, and7.3 hold in this case.
That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(b) Only Rec is corrupted by Adv. This case is analogous to the
case of2a. This case means that AdvDIC corrupts only the party
Rec before the protocol starts. So, the remaining steps are identi-
cal to those in the above-mentioned No Corruption Case without
the message input party selection.
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i. After receiving the corrupt message from Env, SimDIC pre-
pares a situation where only Rec is corrupted adding the
following policy before1(a)iB. SimDIC makes Adv corrupt
Rec.

ii. After receiving receive(Send,sidDIC,m)FDIC from FDIC,
SimDIC executes the following simulation.

A. If the message is input to corrupted party Rec, SimDIC

inputsin(Send,sidDIC,m)Rec to Rec.

B. Else the message is input to Init, and SimDIC inputs
in(Send,sidDIC,m)Init to Init.

C. The remaining steps are the same as those in the simu-
lation of the No Corrupted Case.

iii. After receivingreceive(Send,sidDIC,m)FDIC in Rec, SimDIC

executesout(Receive,sidDIC,m)Rec.

AdvDIC and SimDIC identify the direction that the message is
sent, i.e., from Init to Rec or from Rec to Init. However, the
simulation is perfectly executed. If the protocol executes the
establish session, data sending session, and expire session, in
any case, the simulator emulates the real world and the move-
ment of Adv. That is, the simulation is perfectly executed by
SimDIC. From the Task Correspondence in7.2.1, the state cor-
respondences in7.1, 7.2, and 7.3 hold in this case. That is,
trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Both parties are corrupted by Adv. This case is also analo-
gous to case 1. This case means that AdvDIC corrupts both Init
and Rec before the protocol starts. So, the remaining steps are
identical to those in the above-mentioned No Corruption Case
without the message input party selection.

i. After receiving the corrupt message from Env, SimDIC pre-
pares a situation in which Init and Rec are corrupted and
adds the following policy before1(a)iB. SimDIC makes Adv
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corrupt Init and Rec.

ii. If the data sending message is input toparty∈ {Init,Rec},
SimDIC inputsin(Send,sidDIC,m)party to party.

iii. After receivingreceive(Send,sidDIC,m)FDIC in party in his
simulation, SimDIC executesout(Receive,sidDIC,m)party.

iv. The remaining steps are the same as those in the simulation
of the No Corrupted Case.

In this case, AdvDIC and SimDIC can identify the direction that
the message is sent, i.e., from Init to Rec or from Rec to Init.
However, the simulation is perfectly executed. If the protocol
runs the establish session, data sending session, and expire ses-
sion, in any case, the simulator can simulate the real world and
the movement of the Adv. That is, the simulation is perfectly
executed by SimDIC. From the Task Correspondence in7.2.1,
the state correspondences in7.1, 7.2, and7.3 hold in this case.
That is,trace(ϵ′R) = trace(ϵ′I ) holds.

3. Adaptive Corruption In this case, an adversary corrupts some par-
ties when he wants to do so at any time. We assume that the adversary
corrupts the parties. However, this case is also simulated by the sim-
ulator SimDIC, so the simulation is perfectly executed. This case is
separated into the following instances.

(a) Establish Session

Instance 1: Before Init and Rec are activated.
This case is analogous to case2 because there is no se-
cret information in this time. The adversary can corrupt
Init, Rec, or both, but the simulator can also corrupt the
corresponding parties. This case is perfectly simulated by
SimDIC.

Instance 2: After Init is activated and before Rec is acti-
vated.
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This case is analogous to case2 because there is no secret
information. The adversary can corrupt Init, Rec, or both,
but the simulator can also corrupt the corresponding parties.
This case is perfectly simulated by SimDIC.

Instance 3: After Rec is activated and before Init is acti-
vated.
This case is analogous to the case2 because there is no se-
cret information. The adversary can corrupt Init or Rec, or
both, but the simulator can also corrupts the corresponding
parties. This case is also perfectly simulated by SimDIC.

Instance 4: After Init and Rec are activated.
This case is analogous to the case2 because there is no se-
cret information. The adversary can corrupt Init or Rec, or
both, but the simulator can also corrupt the corresponding
parties. This case is perfectly simulated by SimDIC.

(b) Data Sending Session

Instance 1: Before or after Init or Rec is activated by
receivingin(Send,sidDIC,m)Init or in(Send,sidDIC,m)Rec,
respectively, from the Env.
The adversary can corrupt Init, or Rec, or both, but the sim-
ulator can also corrupt the corresponding parties. This case
is also perfectly simulated by SimDIC.
Env can execute only the message sending indication and
the corrupt indication. So, this case represents only the case
in which the adversary corrupts one party. This case is also
simulated by SimDIC because there is no secret information
in this session. The task correspondence works well and
there exists a simulation relation between the real world and
ideal world. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Expire Session

Instance 1: After Init or Rec is activated with the expire
message.
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Once the expire message is sent to Init or Rec by Env, This
session terminates in the real world and ideal world. So
the adversary can corrupt the parties. That is, this case is
identical to case2.

Simulation Policy

SimDIC executes a simulation in his simulation world as described
hereafter.

(a) After receiving the “corrupt Init” message from Env,

• SimDIC corrupts InitDIC and checks whetherparty ∈
{Init,Rec} has already sent the data sending message to the
other parties. If the message was already sent, SimDIC does
the following. Else, SimDIC makes Adv corrupt Init.

• If party= Init,

– If SimDIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
SimDIC simulates that Adv corrupts Init, immediately.

– Else, SimDIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
SimDIC simulates that Adv corrupts Rec.

• Else,party= Rec,

– If SimDIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
SimDIC simulates that Adv corrupts Rec, immediately.

– Else, SimDIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
SimDIC simulates that Adv corrupts Init, immediately.

• If more data sending messages are input toparty from Env
after SimDIC corrupts Init, SimDIC can also simulate. If
the message is input to corrupted Init, SimDIC inputs the
sending message to corruptedparty in his simulation. Else,
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the message is input to Rec, and SimDIC inputs the sending
message to the non-corruptedparty in his simulation.

• After receivingreceive(Send,sidDIC,m)FDIC in Init, SimDIC

executesout(Receive,sidDIC,m)Init .

(b) After receiving the “corrupt Rec” message from Env,

• SimDIC corrupts InitDIC and checks whetherparty ∈
{Init,Rec} has already sent the data sending message to the
other party. If the message was already sent, SimDIC does
the following. Else, SimDIC makes Adv corrupt Rec.

• If party= Init,

– If SimDIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
SimDIC simulates that Adv corrupts Rec.

– Else, SimDIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
SimDIC simulates that Adv corrupts Init.

• Else,party= Rec,

– If SimDIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
SimDIC simulates that Adv corrupts Init, immediately.

– Else, SimDIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
SimDIC simulates that Adv corrupts Rec, immediately.

• If more data sending messages are input inparty from Env
after SimDIC corrupts Rec, SimDIC can also simulate the real
world execution. If the message is input to corrupted Init,
SimDIC inputs the sending message in the non-corrupted
party in his simulation. Else, the message is input to Rec,
and SimDIC inputs the sending message in corruptedparty
in his simulation.
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• After receivingreceive(Send,sidDIC,m)FDIC in Rec, SimDIC

executesout(Receive,sidDIC,m)Rec.

(c) After receiving the “corrupt Init and Rec” message from Env,

• SimDIC corruptsInitDIC and RecDIC and checks whether
party ∈ {Init,Rec} has already sent the data sending mes-
sage to the other party. If the message was already sent,
SimDIC makes Adv corrupt Init and Rec and does the fol-
lowing. Else, SimDIC makes Adv corrupt Init and Rec.

– If the party to which SimDIC has already sent a request
message is equal to the party that Env sent the message,
SimDIC inputs more data sending requests to the party.

– Else, the input party in the simulation world is not same
as the input party in the ideal world, SimDIC regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

• After receivingreceive(Send,sidDIC,m)FDIC in party in his
simulation, SimDIC executesout(Receive,sidDIC,m)party.

Whenever AdvDIC corrupts some party, SimDIC corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of AdvDIC. Conversely, SimDIC

may obtain information from the simulated world based on the cor-
ruptions. Additionally, in this protocol the party has no secret infor-
mation because FX2AC is securely executed. In all cases, since SimDIC

can simulate AdvDIC using his simulated world, Env cannot distin-
guish the real world from the ideal world. That is, simulating party
corruption is perfectly executed.

Finally, relationR is a simulation relation from the task and state corre-
spondence with respect to the adaptive adversary. We obtain Lemma1. �
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Next, Theorem4 is obtained from Lemma1 immediately.

Proof. From Lemma1 and Theorem3, Theorem4 is proved. That is, the
trace distribution property,tdist(ϵR) = tdist(ϵI) holds with respect to an
adaptive adversary. As a result, the simulation is perfectly executed be-
cause SimDIC can simulate the real world from the information message of
AdvDIC. The tasks of the real world perfectly correspond to the the tasks of
the ideal world. That is,

RealDIC||Env Hyb. ≤MπDIC
0 IdealDIC||Env.

�
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Functionality

(a) u.FDIC.estcondInit = s.FX2AC.estcondInit i

(b) u.FDIC.estcondRec= s.FX2AC.estcondRec

(c) u.FDIC.okcondAdv = s.FX2AC.okcondAdv

(d) u.FDIC.active= s.FX2AC.active

(e) u.FDIC.mes= s.FX2AC.mes

(f) u.FDIC.ntask= s.FX2AC.ntask

Initiator

(g) u.InitDIC.smes= s.InitDIC.smes

(h) u.InitDIC.rmes= s.InitDIC.rmes

(i) u.InitDIC.active= s.InitDIC.active

(j) u.InitDIC.ntask= s.InitDIC.ntask

Receiver

(k) u.RecDIC.smes= s.RecDIC.smes

(l) u.RecDIC.rmes= s.RecDIC.rmes

(m) u.RecDIC.active= s.RecDIC.active

(n) u.RecDIC.ntask= s.RecDIC.ntask

Environment

(o) u.Env= s.Env

Table 7.1:State Correspondence for RealDIC and IdealDIC (Part I)
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Simulator (or Adversary)

(A) u.SimDIC.active= s.AdvDIC.active

(B) u.SimDIC.ntask= s.AdvDIC.ntask

(C) u.SimDIC.smesX = s.AdvDIC.smesX

(D) u.SimDIC.FX2AC.estcondInit i = s.FX2AC.estcondInit i

(E) u.SimDIC.FX2AC.estcondRec= s.FX2AC.estcondRec

(F) u.SimDIC.FX2AC.okcondAdv = s.FX2AC.okcondAdv

(G) u.SimDIC.FX2AC.active= s.FX2AC.active

(H) u.SimDIC.FX2AC.mes= s.FX2AC.mes

(I) u.SimDIC.FX2AC.ntask= s.FX2AC.ntask

(J) u.SimDIC.InitDIC.smes= s.InitDIC.smes

(K) u.SimDIC.InitDIC.rmes= s.InitDIC.rmes

(L) u.SimDIC.InitDIC.active= s.InitDIC.active

(M) u.SimDIC.InitDIC.ntask= s.InitDIC.ntask

Table 7.2:State Correspondence for RealDIC and IdealDIC (Part II)
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Simulator (or Adversary)

(N) u.SimDIC.RecDIC.smes= s.RecDIC.smes

(O) u.SimDIC.RecDIC.rmes= s.RecDIC.rmes

(P) u.SimDIC.RecDIC.active= s.RecDIC.active

(Q) u.SimDIC.RecDIC.ntask= s.RecDIC.ntask

(R) u.SimDIC.AdvDIC.active= s.AdvDIC.active

(S) u.SimDIC.AdvDIC.ntask= s.AdvDIC.ntask

(T) u.SimDIC.AdvDIC.smesX = s.AdvDIC.smesX

Table 7.3:State Correspondence for RealDIC and IdealDIC (Part III)
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1. Establish Session

(a) InitDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. InitDIC.send(EstablishDIC,sidDIC)FDIC

(b) RecDIC.send(Establish2AC,sidX2AC)FX2AC

=corr. RecDIC.send(EstablishDIC,sidDIC)FDIC

(c) FX2AC.send(SID,sid2AC)Adv =corr. FDIC.send(SID,sidDIC)Adv

2. Expire Session

(a) InitDIC.send(Expire2AC,sidX2AC)FX2AC

=corr. InitDIC.send(ExpireDIC,sidDIC)FDIC

(b) RecDIC.send(Expire2AC,sidX2AC)FX2AC

=corr. RecDIC.send(ExpireDIC,sidDIC)FDIC

(c) FX2AC.send(Expire2AC,sid2AC)Adv =corr. FDIC.send(ExpireDIC,sidDIC)Adv

3. Environment

(a) All tasks of environment Env in RealDIC correspond with the tasks of envi-
ronment in IdealDIC.

Table 7.4:Corresponding Tasks for RealDIC and IdealDIC
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Code for Initiator of Direction-Indeterminable Channel, InitDIC,
whereX ∈ {Init,Rec}

Signature:
sidDIC = ({Init,Rec},sid′DIC)
sidI2AC = ({Init,Rec}, Init,sid′I2AC)
sidR2AC = ({Init,Rec},Rec,sid′R2AC)

Input: Output:
in(EstablishDIC,sidDIC)Init send(Establish2AC,sidX2AC)FX2AC

in(Send,sidDIC,m)Init send(Send,sidX2AC,m)FX2AC

receive(Receive,sidI2AC,m)FI2AC
out(Receive,sidDIC, r)Init

in(ExpireDIC,sidDIC)Init send(Expire2AC,sidX2AC)FX2AC

State:
smes, rmes∈ {0,1}∗∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(Establish2AC,sidX2AC)FX2AC

, send(Send,sidX2AC,m)FX2AC
,

out(Receive,sidDIC, r)Init , send(Expire2AC,sidX2AC)FX2AC
}

Figure 7.10:Code for Initiator of Direction-Indeterminable Channel, InitDIC

(Part I)
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Code for Initiator of Direction-Indeterminable Channel, InitDIC,
whereX ∈ {Init,Rec}

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Init

pre: active,ntask= ⊥
eff: ntaskB ESS2

ESS2.send(Establish2AC,sidX2AC)FX2AC
pre: ntask= ESS2
eff: after all X ∈ {Init,Rec} finished, thenactiveB ⊤ and

ntaskB ⊥
Data Sending Session:

DSS1.in(Send,sidDIC,m)Init

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidX2AC,m)FX2AC
pre: mB smesandntask= DSS2
eff: after allX ∈ {Init,Rec} finished, thenntaskB ⊥

DSS3.receive(Receive,sidI2AC,m)FI2AC
pre: active= ⊤, rmesandntask= ⊥
eff: If smes= ⊥, thenrmesBm andntaskB DSS4.
ElsesmesB ⊥ andntaskB ⊥.

DSS4.out(Receive,sidDIC, r)Init

pre: r B rmesandntask= DSS4
eff: rmesandntaskB ⊥

Figure 7.11:Code for Initiator of Direction-Indeterminable Channel, InitDIC

(Part II)
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Code for Initiator of Direction-Indeterminable Channel, InitDIC,
whereX ∈ {Init,Rec}

Transitions:

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Init

pre: active= ⊤ andntask= ⊥
eff: ntaskB EXS2

EXS2. send(Expire2AC,sidX2AC)FX2AC
pre: ntask= EXS2
eff: after allX ∈ {Init,Rec} finished, thenactiveandntaskB⊥

Figure 7.12:Code for Initiator of Direction-Indeterminable Channel, InitDIC

(Part III)
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Code for Receiver of Direction-Indeterminable Channel, RecDIC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
sidI2AC = ({Init,Rec}, Init,sid′I2AC)
sidR2AC = ({Init,Rec},Rec,sid′R2AC)

Input: Output:
in(EstablishDIC,sidDIC)Rec send(Establish2AC,sidX2AC)FX2AC

in(Send,sidDIC,m)Rec send(Send,sidX2AC,m)FX2AC

receive(Receive,sidR2AC,m)FR2AC
out(Receive,sidDIC, r)Rec

in(ExpireDIC,sidDIC)Rec send(Expire2AC,sidX2AC)FX2AC

State:
smes, rmes∈ {0,1}∗∪{⊥}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(Establish2AC,sidX2AC)FX2AC

, send(Send,sidX2AC,m)FX2AC
,

out(Receive,sidDIC, r)Rec, send(Expire2AC,sidX2AC)FX2AC
}

Figure 7.13: Code for Receiver of Direction-Indeterminable Channel,
RecDIC (Part I)
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Code for Receiver of Direction-Indeterminable Channel, RecDIC

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Rec

pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(Establish2AC,sidX2AC)FX2AC
pre: ntask= ESS2
eff: after all X ∈ {Init,Rec} finished, thenactiveB ⊤ and

ntaskB ⊥
Data Sending Session:

DSS1.in(Send,sidDIC,m)Rec

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidX2AC,m)FX2AC
pre: mB smesandntask= DSS2
eff: after allX ∈ {Init,Rec} finished, thenntaskB ⊥

DSS3.receive(Receive,sidR2AC,m)FR2AC
pre: active= ⊤, rmesandntask= ⊥
eff: If smes= ⊥, thenrmesBm andntaskB DSS4
ElsesmesB ⊥ andntaskB ⊥

DSS4.out(Receive,sidDIC, r)Rec

pre: r B rmesandntask= DSS4
eff: rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Rec

pre: active= ⊤ andntask= ⊥
eff: ntaskB EXS2

EXS2. send(Expire2AC,sidX2AC)FX2AC
pre: ntask= EXS2
eff: after allX ∈ {Init,Rec} finished, thenactiveandntaskB⊥

Figure 7.14: Code for Receiver of Direction-Indeterminable Channel,
RecDIC (Part II)
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Code fot Adversary for Direction Indeterminable Channel, AdvDIC,
whereX ∈ {Init,Rec}

Signature:
sidI2AC = ({Init1, Init2}, Init1,sid

′
2AC)

sidR2AC = ({Init1, Init2}, Init2,sid
′
2AC)

Input:
receive(SID,sidX2AC)FX2AC

receive(Send,sidX2AC,m)FX2AC

receive(Expire2AC,sidX2AC)FX2AC

Output:
send(Response,sidX2AC,ok)FX2AC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
smesX ∈ ({0,1})∪{⊥}, initially ⊥

Tasks:
{send(Response,sidX2AC,ok)FX2AC

, other arbitrary tasks}

Figure 7.15: Code fot Adversary for Direction Indeterminable Channel,
AdvDIC (Part I)
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Code fot Adversary for Direction Indeterminable Channel, AdvDIC,
whereX ∈ {Init,Rec}

Transitions:

Establish Session:

ESS1.receive(SID,sidX2AC)FX2AC
pre: active= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1. receive(Send,sidX2AC,m)FX2AC
pre: active= ⊤ andntask= ⊥
eff: smesX Bm andntaskB DSS2

DSS2. send(Response,sidX2AC,ok)FX2AC
pre: ntask= DSS2
eff: smesX,ntaskB ⊥

Expire Session:

EXS1. receive(Expire2AC,sidX2AC)FX2AC
pre: active= ⊤
eff: activeB ⊥

Other tasks:
This adversary makes other arbitary tasks.

Figure 7.16: Code fot Adversary for Direction Indeterminable Channel,
AdvDIC (Part II)
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Code for ideal Initiator of Direction-Indeterminable Channel,InitDIC

Signature:
sidDIC = ({Init,Rec},sid′DIC)

Input: Output:
in(EstablishDIC,sidDIC)Init send(EstablishDIC,sidDIC)FDIC

in(Send,sidDIC,m)Init send(Send,sidDIC,m)FDIC

receive(Send,sidDIC,mes)FDIC out(Receive,sidDIC,mes)Init
in(ExpireDIC,sidDIC)Init send(ExpireDIC,sidDIC)FDIC

State:
smes, rmes∈ {0,1}∗∪{⊥}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishDIC,sidDIC)FDIC , send(Send,sidDIC,m)FDIC ,

out(Receive,sidDIC,mes)Init , send(ExpireDIC,sidDIC)FDIC}

Figure 7.17:Code for Initiator of Direction-Indeterminable Channel,InitDIC

(Part I)
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Code for ideal Initiator of Direction-Indeterminable Channel,InitDIC

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Init
pre: active,ntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidDIC,m)Init
pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidDIC,m)FDIC

pre: mB smesandntask= DSS2
eff: smesandntaskB ⊥

DSS3.receive(Send,sidDIC,m)FDIC

pre: active= ⊤, rmesandntask= ⊥
eff: rmesBmandntaskB DSS4

DSS4.out(Receive,sidDIC,m)Init
pre: mB rmesandntask= DSS4
eff: rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Init
pre: active= ⊤ andntask= ⊥
eff:ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)FDIC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.18:Code for Initiator of Direction-Indeterminable Channel,InitDIC

(Part II)
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Code for ideal Receiver of Direction-Indeterminable Channel,RecDIC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
Input: Output:
in(EstablishDIC,sidDIC)Rec send(EstablishDIC,sidDIC)FDIC

in(Send,sidDIC,m)Rec send(Send,sidDIC,m)FDIC

receive(Send,sidDIC,mes)FDIC out(Receive,sidDIC,mes)Rec
in(ExpireDIC,sidDIC)Rec send(ExpireDIC,sidDIC)FDIC

State:
smes, rmes∈ {0,1}∗∪{⊥}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishDIC,sidDIC)FDIC , send(Send,sidDIC,m)FDIC ,

out(Receive,sidDIC,mes)Rec, send(ExpireDIC,sidDIC)FDIC}

Figure 7.19:Code for ideal Receiver of Direction-Indeterminable Channel,
RecDIC (Part I)
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Code for ideal Receiver of Direction-Indeterminable Channel,RecDIC

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Rec
pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidDIC,m)Rec
pre:active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidDIC,m)FDIC

pre: mB smesandntask= DSS2
eff: smesandntaskB ⊥

DSS3.receive(Send,sidDIC,m)FDIC

pre: rmes= ⊥ andntask= ⊥
eff: rmesBmandntaskB DSS4

DSS4.out(Receive,sidDIC,m)Rec
pre: mB rmesandntask= DSS4
eff: rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Rec
pre: active= ⊤, smes, rmesandntask= ⊥
eff:ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)FDIC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.20:Code for ideal Receiver of Direction-Indeterminable Channel,
RecDIC (Part II)
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Code for Simulator for Direction Indeterminable Channel, SimDIC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
Input:
receive(SID,sidDIC)FDIC

receive(Send,sidDIC,m)FDIC

receive(ExpireDIC,sidDIC)FDIC

Output:
send(Response,sidDIC,ok)FDIC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥ smes∈ {0,1}∗∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Other arbitrary variables; call ”new” variables.

Tasks:
{send(Response,sidDIC,ok)FDIC }

Figure 7.21: Code fot Simulator for Direction Indeterminable Channel,
SimDIC (PartI)
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Code for Simulator for Direction Indeterminable Channel, SimDIC

Transitions:

Establish Session:

ESS1.receive(SID,sidDIC)FDIC

pre: activeandntask= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1.receive(Send,sidDIC,m)FDIC

pre: active= ⊤ andntask= ⊥
eff: smesBm andntaskB DSS2

DSS2.send(Response,sidDIC,ok)FDIC

pre: ntask= DSS2
eff: smesX,ntaskB ⊥

Expire Session:

EXS1. receive(ExpireDIC,sidDIC)FDIC

pre: active= ⊤
eff: activeB ⊥

Other tasks:
This simulator makes arbitrary tasks to simulate the real world
protocol system RealDIC. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary of the simiulat-
ing world to the environment.

Figure 7.22: Code fot Simulator for Direction Indeterminable Channel,
SimDIC (PartII)
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7.2.2 Reduction of 2AC to DIC

Let Init2ACi (i ∈ {1,2}) and Rec2AC be the initiator code and receiver code
for a real system, see Fig.7.23and Fig.7.24, and Fig.7.25and Fig.7.26, re-
spectively. LetInit2ACi andRec2AC be the initiator code and receiver code
for an ideal system, see Fig.7.29and Fig.7.30, and Fig.7.31and Fig.7.32,
respectively. Finally, let Adv2AC and Sim2AC be the adversary code and
the simulator code in Fig.7.27and Fig.7.28, and Fig.7.33and Fig.7.34, re-
spectively. Let Real2AC and Ideal2AC be a 2AC protocol system and a 2AC
functionality system, respectively, defined as described hereafter.

Real2ACB Init2ACi ||Rec2AC||Adv2AC||FDIC,
Ideal2ACB Init2ACi ||Rec2AC||Sim2AC||F2AC.

TasksInit2ACi andRec2AC relay the input messages from the environ-
ment to the ideal functionality task and relay the messages received from
the ideal functionality task to the environment as interface parties in the
ideal system.

Master Schedule

Let n be the number of parties. LetMpsync(t∗1, · · · , t
∗
n) be master schedules

wheret∗i is a task in partyPi .

Definition 25. [Mpsync(t∗1, · · · , t
∗
n)] Let t∗i be a task in party Pi . Let

ptask(t∗i ) be the task just before t∗i in local scheduleρi . For example, let
ρi = ti1, ti2, ti3 for party Pi . Then ptask(ti3) is task ti2.

1. Alignment property: After master schedule M activates ptask(t∗i ), M
does not activate Pi until all of ptask(t∗1), · · · , ptask(t∗n) are scheduled.
This situation indicates that M satisfies the alignment property for
specified tasks t∗1, . . . , t

∗
n.

2. Random execution property: The master schedule, M, globally exe-
cutes specified tasks, t∗1, . . . , t

∗
n in a random order. Note that the other

tasks are not scheduled until all of the specified tasks, t∗
1, . . . , t

∗
n, are

executed.
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Mpsync(t∗1, · · · , t
∗
n) is defined to be a master schedule such that a master

scheduleM satisfies the two above-mentioned properties for specified tasks
t∗1, . . . , t

∗
n. Let Mπ2AC beMpsync(Init1

2AC.send(Send,sid2AC, s)Rec2AC,

Init2
2AC.send(Send,sid2AC, s)Rec2AC) for π2AC.

Theorem 5. 2AC protocol systemReal2AC perfectly hybrid-implements 2AC
functionality systemIdeal2AC with respect to an adaptive adversary under
Mπ2AC (2AC is reducible to DIC with respect to an adaptive adversary under
Mπ2AC).

Let ϵR and ϵI be discrete probability measures on finite executions of
Real2AC||Env and Ideal2AC||Env, respectively. We prove Theorem5 by
showing thatϵR and ϵI satisfy the trace distribution property,tdist(ϵR) =
tdist(ϵI). Here, we define correspondenceR between the states in
Real2AC||Env and the states in Ideal2AC||Env. We say (ϵR, ϵI) ∈R if and only
if for every s∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI), all of the state correspon-
dences in Tables7.9, 7.10and7.11hold. We then proveR is a simulation
relation in Lemma2.

Lemma 2. Relation R defined above is a simulation relation from
Real2AC||Env to Ideal2AC||Envunder master schedule Mπ2AC.

Proof. We prove that R is a simulation relation from Real2AC||Env
to Ideal2AC||Env using mapping corrtasksR∗Real2AC||Env × RReal2AC||Env →
R∗Ideal2AC||Env.

The task sequence of system Real2AC||Env perfectly corresponds to that
of system Ideal2AC||Env under scheduleMπ2AC. Formally, to prove thatR
is a simulation relation from Real2AC||Env to Ideal2AC||Env, we show thatR
satisfies the start condition and step condition.

• Start condition
It is true that the start states ofs and u in Real2AC||Env and
Ideal2AC||Env, respectively, are on the Dirac measures. That is, the
start states ofs andu satisfy relationR because the start states ofs
andu are all⊥ for each task on master scheduleMπDIC. Therefore, the
trace distribution property holds.
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• Step condition
Let ϵ′R = apply(ϵR,T) andϵ′I = apply(ϵI ,corrtasks(ρ,T)). If (ϵR, ϵI) ∈
R, ρ ∈ R∗Real2AC||Env, ϵR is consistent withρ, thenϵI is consistent with
f ull(corrtasks)(ρ), andT ∈ Real2AC||Env. Then there exist the fol-
lowing.

– Probability measurep on countable index setI ,

– Probability measuresϵ′R, j , j ∈ I , on finite executions of
Real2AC||Env, and

– Probability measuresϵ′I, j , j ∈ I , on finite executions of
Ideal2AC||Env,

such that:

– For eachj ∈ I , ϵ′R, j R ϵ′I, j ,

– Σ j∈I p( j)(ϵ′R, j) = apply(ϵR,T), and

– Σ j∈I p( j)(ϵ′I, j) = apply(ϵI ,corrtask(ρ,T)).

Task Correspondence

For any (ρ,T) ∈ (R∗Real2AC||Env×RReal2AC||Env), the following task correspon-
dence, which is also summarized in Table7.12, holds.

1. Establish Session

(a) Init2ACi .send(EstablishDIC,sidDIC)F(1,2)
DIC

=corr. Init2ACi .send(Establish2AC,sid2AC)F2AC for eachi ∈ {1,2}

Let TREAL and TIDEAL be send(EstablishDIC,sidDIC)F(1,2)
DIC

and

send(Establish2AC,sid2AC)F2AC, respectively. Here, we must
consider the cases of Init1

2AC and Init22AC, but these cases follow
the same discussion. (Note that we describe that Init1

2AC means
Init2AC1 and that Init22AC means Init2AC2 for the sake of clarity).
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So, we consider the case of Init1
2AC. We assume that for each

state ins∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI) are fixed. The pre-
conditions ofTREAL andTIDEAL arentask=ESS2 from each code.
TREAL (resp.,TIDEAL) is enabled (or disabled) ins (resp.,u) if and

only if s.Init1
2AC.ntask= ESS2 (resp.u.Init1

2AC.ntask= ESS2).

From (i) in Table 7.9, u.Init1
2AC.ntaskand s.Init1

2AC.ntask im-
ply that TREAL andTIDEAL are uniformly enabled or disabled in
supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case:
Let I and p be the set that has a single element and Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R and ϵ′I,1 = ϵ

′
I .

We have the fact thatϵ′R = ϵR and ϵ′I = ϵI . Here, we ob-
tain ϵ′R,1Rϵ′I,1 from relation ϵRRϵI. The trace distribution
equivalence property,tdist(ϵ′R) = tdist(ϵ′I ), also holds since
tdist(ϵR) = tdist(ϵI) underMπ2AC.

ii. Enable Case:
Let q denote the state of precondition :ntask= ESS2. Let
TREAL andTIDEAL be the actions enabled inq in each world.
We show that each ofTREAL andTIDEAL is a unique action
that is enabled inq. From the definition ofTREAL andTIDEAL,
the precondition is onlyntask= ESS2. Then, there are two
unique effects that update theactiveandntaskto be⊤ and
⊥, respectively. From the precondition and the effect of
TREAL, and the state equivalence of (h) and (i), we obtain
thatTREAL (andTIDEAL) is also a unique action that is enabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI).
Let I andp be the set that has a single element and the Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R andϵ′I,1 = ϵ

′
I . Here,

we establish the property ofR for ϵ′R and ϵ′I to show that
(ϵ′R, ϵ

′
I ) ∈ R. Then we show trace distribution equivalence

for ϵ′R andϵ′I . To establish this property, we consider any
states′ ∈ supp.lst(ϵ′R) and u′ ∈ supp.lst(ϵ′I ). Let s be any
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state in supp.lst(ϵR) such thats′ ∈ supp(µs), where (s, ζ,µs) ∈
Real2AC||Env. Let u be any state in supp.lst(ϵI) such that
u′ ∈ supp(µu) where (u,corrtask(ρ,ζ),µu) ∈ Ideal2AC||Env.
It is true that TREAL updates Init12AC.active to ⊤ and
Init1

2AC.ntask to ⊥ from the definition of the effect of

TREAL. Similarly, TIDEAL updates Init1
2AC.active to ⊤

and Init1
2AC.ntask to ⊥ from the definition of the effect

of TIDEAL. From the state equivalences of (h) and (i)

in Table 7.9, we haveu.Init1
2AC.active= s.Init1

2AC.active

and u.Init1
2AC.ntask= s.Init1

2AC.ntask. We obtain that

u′.Init1
2AC.active= s′.Init1

2AC.active and u′.Init1
2AC.ntask=

s′.Init1
2AC.ntask. By the definition of Init12AC and Init1

2AC,
TREAL (resp.,TIDEAL) is a unique action that updates the state
of activeof Real2AC (resp., Ideal2AC). Therefore, we obtain
trace distribution propertytrace(ϵ′R) = trace(ϵ′I ).

The case of Init22AC (andInit2
2AC) follows the same discus-

sion as that above.

(b) FDIC.send(SID,sidDIC)Adv =corr. F2AC.send(SID,sid2AC)Adv

The precondition and effect of these tasks are identical to each
other. The preconditions for the task on the left side of the
equation isactive= ⊤ and ntask= ESS2. This is equivalent
to those for the task on the right. The effect of task on the left
is ntaskB ⊥. This effect is also the same as that for the task on
the right. LetTREAL be FDIC.send(SID,sidDIC)Adv. LetTIDEAL be
F2AC.send(SID,sid2AC)Adv. We show thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). We
assume that for each state ins∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI)
are fixed. Then,TREAL is enabled (or disabled) ins if and only if
s.TREAL.active=⊤ ands.TREAL.ntask= ESS2. The preconditions
of TIDEAL, (d) and (f ) in Table7.9, imply thatTIDEAL is uniformly
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enabled or disabled. The rest of this proof is similar to the task
of send(EstablishDIC,sidDIC)F(1,2)

DIC
of the initiator.

More specifically, the pre:(d) and (f ) and eff:( f ) of the real task
are the same as those for the ideal task. So, these tasks corre-
spond.

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (d) and (f ).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definitions, the state correspondences of
pre: (d) and (f ), and state correspondence of eff: ( f ), we
have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step con-
ditions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

2. Data Sending Session

Here, we consider the case that Env sends the data sending message in
Init1

2AC. The case that Env sends the data sending message in Init2
2AC

is analogous to the case of Init1
2AC. The task sequence in each world

is shown in Table7.13. The task sequence for Real Execution are
corresponds to that for Ideal Execution.

The flow of the states for each task is shown in Tables7.14, 7.15, and
7.16in each world. From the initial values and final values in Tables
7.14, 7.15and7.16, we obtain the results of state equivalence in7.9.
That is, if the state equivalence in7.9holds before Real2AC is enabled
(or disabled), the state equivalence in7.9 also holds after Real2AC is
enabled/disabled. Thedummystate does not use in the ideal world’s
tasks, but Sim′DIC can simulate the real world in his simulation world.
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Thedummystate is not used in the tasks in the ideal world, but Sim′
DIC

can simulate the real world in his simulation world. So, the trace
distribution property holds.

(a) Disable Case: This is a trivial case because all the states of the
parties are⊥. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
the parties. LetϵR and ϵI be discrete probability measures in
the real world and ideal world, respectively. We have the fact
that ϵ′R = ϵR andϵ′I = ϵI. Here, the start and step conditions of
simulation relationR hold from the task definition and the state
correspondence. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

(b) Enable Case: LetϵR andϵI be discrete probability measures in
the real world and ideal world, respectively. From each task
definition and according to the states in Tables7.14, 7.15, and
7.16, it is clear that the initial state is the same as the final state
for each task of each world. In addition, the states of the real
task are the same as the states of the ideal world after the data
sending session is executed. That is, (a) ∼ (l) in Table7.9hold.
Therefore,ϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of the simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

3. Expire Session

(a) Init2ACi .send(ExpireDIC,sidDIC)F(1,2)
DIC

=corr. Init2ACi .send(Expire2AC,sid2AC)F2AC

The states of precondition and effect forsend(ExpireDIC,sidDIC
)F(1,2)

DIC
are the same as those forsend(Expire2AC,sid2AC)F2AC

where pre:ntask= EXS2. That is, if (i) in Table 7.9 holds,
then these tasks are enabled (or disabled) in every state in
supp.lst(ϵR) ∪ supp.lst(ϵI). More specifically, the pre:(i) and
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eff:(h) and (i) of the real task are the same as those for the ideal
task. So, these tasks correspond.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step
conditions of simulation relationRhold from each task def-
inition and the state correspondence of pre: (i). Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondences of pre: (i)
and (l), and state correspondences of eff: (h) and (i), we
have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step con-
ditions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(b) FDIC.send(ExpireDIC,sidDIC)Adv

=corr. F2AC.send(Expire2AC,sid2AC)Adv

The precondition and effect for the real task are the same as those
for the ideal task. The precondition is onlyntask=EXS2 and the
effects areactiveB⊥ andestcondXB⊥ for all X andntaskB⊥.
From (f ) in Table7.9 these tasks are enabled (or disabled) in
every state in supp.lst(ϵR)∪ supp.lst(ϵI). More specifically, the
pre:(f ) and eff:(a), (b), and (f ) for the real task are the same as
those for the ideal task. So, these tasks correspond.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step
conditions of simulation relationRhold from each task def-
inition and the state correspondence of pre: (f ). Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
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each task definition, the state correspondence of pre: (f ),
and state correspondences of eff: (a), (b) and (f ), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

Environment Env

From the task definitions and state correspondence (o) in Table7.9, the prov-
ability measures for both tasks are uniformly enabled or disabled in every
state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 1 The state of Env remains static in all states in supp.lst(ϵR)∪
supp.lst(ϵI). Let qe denote this state of Env. This follows from state
correspondenceo.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI) (simultaneously). Further-
more, if T is enabled in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There exists unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There exists a unique transition of Env fromqe with actiona.
Let tre= (qe,a,µe) be this transition.

By considering Claim7.2.2, task T of Env is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR and ϵ′I,1 = ϵI, and the result isϵ′R,1Rϵ′I,1 since
we haveϵRRϵI. If T is enabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI),
Claim 7.2.2 implies that there exists unique actiona in every state in
supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontre of Env from qe enabled with
actiona wheretre= (qe,a,µe).

Non Corrupted Case:
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1. a is an input action of Initi . We assume thata is an input ac-
tion such asin(Establish2AC,sid2AC)Init i in(Send,sid2AC,m)Init i and
in(Expire2AC,sid2AC)Init i .

Let sbe any state such thats′ ∈ supp(µs) where (s,a,µs) ∈DReal2AC||Env.
Let u be any state such thatu′ ∈ supp(µu) where (u,a,µu) ∈
DIdeal2AC||Env. For eacha, we check that the state correspondences
for s′ and u′ holds if that for s and u holds. If eacha is input
from Env, then the precondition and effect for the real task are ex-
actly the same as those for the ideal task. For example, if the in-
put message isin(Establish2AC,sid2AC)Init i , then the precondition
is active,ntask= ⊥ and the effect is ntaskB ESS2. The states for
the real task correspond to those for the ideal task. That is, the state
correspondences of (m), (h), and (i) for s′ and u′ hold, if the state
correspondences fors andu hold. Therefore, we obtain the trace dis-
tribution property,trace(ϵ′R)= trace(ϵ′I ). This result also works well in
the case ofin(Send,sid2AC,m)Init i and in(Expire2AC,sid2AC)Init i for
eachi ∈ {1,2} .

2. a is an input / output action of Rec. We assume that
a is an input action such asin(Establish2AC,sid2AC)Rec and
out(Receive,sid2AC,m)Rec . This is analogous to case1.

3. a is an input action of Adv. This means thata = input(g)Adv for
some fixedg. For example,g is a corrupt message for someparty∈
{Init i ,Rec}. From the fact that the state correspondences for (A) ∼ (R)
for s and u hold, we obtain that the state correspondences fors′

and u′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an internal or an output action of Env. Taska in the real world
is identical to that in the ideal world. From the fact that the state
correspondence to (m) for s andu holds, we obtain that the state cor-
respondence of (m) for s′ andu′ holds. Therefore, we obtain the trace
distribution property,trace(ϵ′R, j) = trace(ϵ′I, j).
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Corrupted Case:

1. a is an input action of Adv andparty∈ {Init i ,Rec} for eachi ∈ {1,2}
Here, the party is included in the case of Init1∧Rec, Init2∧Rec and
Init1∧ Init2. Let qAdv be the state of Adv or Sim, which is the same
for all supp.lst(ϵR)∪supp.lst(ϵI). Let trAdv = (qAdv,a,µAdv) be a tran-
sition of Adv with actiona from qAdv. From Claim7.2.2, trAdv is a
unique transition. Here, we suppose that supp((µe×µAdv)) is the pair
set{(q1, j ,q2, j) : j ∈ I } whereI is a countable set. Letp be the prob-
ability measures such that for eachj, p( j) = (µe× µAdv)(q1, j ,q2, j).
For eachj, let ϵ′R, j be ϵ′1, j(α) = ϵ1(α′) whereα ∈ supp(ϵ′1) such that
lst(α).Env= q1, j andlst(α).Adv= q2, j . Theϵ′2, j is analogously con-
structed fromϵ′2.

The rest of this proof is the same as that for case1 by consider-
ing the state correspondence in each case ofparty∈ {Init i ,Rec, Init i ∧
Rec}. Finally, we obtain the trace distribution property,trace(ϵ′R, j) =
trace(ϵ′I, j).

Adversary Adv

From the task definitions and the state correspondences for (A) ∼ (R) in
Table7.10, the provability measures for both tasks are uniformly enabled or
disabled in every state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 3 The state of Adv or Sim is the same in all states in
supp.lst(ϵR)∪supp.lst(ϵI). Let qAdv denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI). Furthermore, if T is enabled
in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There is unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).
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2. There is a unique transition of Adv fromqAdv with actiona and
let trAdv = (qAdv,a,µAdv) be this transition.

By considering Claim7.2.2, task T of Adv is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR andϵ′I,1 = ϵI , and the result isϵ′R,1Rϵ′I,1 since we
haveϵRRϵI. If T is enabled, T is enabled in every state in supp.lst(ϵR)∪
supp.lst(ϵI). Claim7.2.2implies that there is unique actiona in every state
in supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontr of Adv from qe enabled with
actiona wheretrAdv = (qAdv,a,µAdv). The following cases of “Non Cor-
rupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. a is an input action of Env. From the fact that the state correspon-
dences (A) ∼ (R) for s andu hold, we obtain that the state correspon-
dences fors′ andu′ hold. Therefore, we obtain the trace distribution
property,trace(ϵ′R) = trace(ϵ′I ).

2. a is an input or output action of functionality task. This case concerns
messagesreceive(SID,sidDIC)FDIC, receive(Send,sidDIC,m)FDIC ,
receive(ExpireDIC,sidDIC)FDIC, andsend(Response,sidDIC,ok)FDIC.
The rest of this proof is analogous to case1. From the fact that the
state correspondences (A) ∼ (R) for s andu hold, we obtain that the
state correspondences fors′ andu′ hold. Therefore, we obtain the
trace distribution property:trace(ϵ′R) = trace(ϵ′I ).

3. a is either an output action of Adv that is not an input action of
Env, Init i , Rec or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous
to case1. From the fact that the state correspondences (A) ∼ (R)
for s and u hold, we obtain that the state correspondences fors′

and u′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).
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4. a is an output action ofout(∗)adv. This case is also works well al-
though this action may effect Env. However, the transition of Env
tre= (qe,a,µe) is unique from Claim7.2.2. Claim7.2.2also says that
the state of Env remains static in all states in supp.lst(ϵR)∪supp.lst(ϵI).
This follows from state correspondenceo. Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

a is an output action of Initi . This case concerns message
send(Send,sidDIC, s)Rec for eachi. The rest of this proof is analogous to
case1. From the fact that the state correspondences forsandu hold, we ob-
tain that the state correspondences fors′ andu′ hold. Therefore, we obtain
the trace distribution property,trace(ϵ′R) = trace(ϵ′I ).

a is an input action of Rec. This case concerns messagereceive(Response,
sid2AC,m)Init i . The rest of this proof is analogous to case1. From the fact
that the state correspondences fors andu hold, we obtain that the state cor-
respondences fors′ andu′ hold. Therefore, we obtain the trace distribution
property,trace(ϵ′R) = trace(ϵ′I ).

Corrupted Case:
This is the case in which the static and adaptive adversary, Adv, corrupts

party∈ {Init i ,Rec}.

1. a is an input/output actionin(∗)party, out(∗)party of corrupted party,
party∈ {Init i ,Rec}. This case also works well based on Claim7.2.2
and the state correspondences in Table7.9∼ 7.11.

Perfect Simulation

Another task of Sim2AC is the simulation(∗) task. By usingsimulation(∗)
effectively, the simulation of Sim2AC is perfectly executed for the establish
session, data sending session and expire session with respect to no corrup-
tion, static corruption, and adaptive corruption by an adversary.

1. No Corruption
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(a) Establish SessionFirst, in the establish session, Env sends
in(Establish2AC,sid2AC)Init i

andin(Establish2AC,sid2AC)Rec)

to initiator Init2ACi and receiverRec2AC, respectively. Init1
2AC

and Init2
2AC send send(Establish2AC,sid2AC)F2AC to F2AC.

F2AC sendssend(SID,sid2AC)Adv to Sim2AC. After Sim2AC re-
ceives the message, Sim2AC generates parties Init1

2AC, Init22AC
and Rec in his simulation world generate the real world situation
in which they exchange messages using FDIC. For Sim2AC to es-
tablish the session, he inputsin(Establish2AC,sid2AC)Init i and
in(Establish2AC,sid2AC)Rec to Init2ACi and Rec, respectively.
Finally, the parties establish two DICs in the simulation world.
After the message is received by each party in the simulation
world, they sendsend(EstablishDIC,sidDIC)F(1,2)

DIC
to the FDIC.

The states of each party becomes pre:ntask= ESS2 from (L) in
Table 7.10 and eff: activeB ⊤ and ntaskB ⊥ from (K) and
(L) in Table. 7.10. When FDIC receives the messages,activeof
the functionality becomes⊤ from pre:(D), (E) and (G) in Table.
7.10. FDIC then sendssend(SID,sidDIC)Adv to the adversary in
the simulation world (that may be Sim2AC). The statentaskof
FDIC becomes⊥ from (I ). If the adversary obtains the message,
activebecomes⊤ from (P) in Table. 7.11. The simulation in
the establish session of the real world is perfectly executed by
Sim2AC. Finally, the parties establish a DIC between Init1

2AC
and Init22AC in the simulation world.

Simulation Policy

i. After receivingreceive(SID,sid2AC)F2AC, Sim2AC executes
the following simulation.

A. Sim2AC prepares the dummy parties, Init2ACi , Rec2AC,
and Adv, and ideal functionality task FDIC.

B. Sim2AC inputs messagesin(EstablishDIC,sidDIC)Init2ACi

for each i and in(EstablishDIC,sidDIC)Rec2AC to
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Init2ACi and Rec2AC.

C. Sim2AC makes Init12AC and Init22AC rach send message
send(EstablishDIC,sidDIC)FDIC , respectively.

D. Sim2AC makes FDIC sendsend(SID,sidDIC)Adv to Adv.

Task Correspondence of Simulation

i. Init1
2AC.send(Establish2AC,sid2AC)FDIC

=corr. Sim2AC.Init1
2AC.send(Establish2AC,sid2AC)FDIC

pre: ntask= ESS2 ; (L);

eff: activeB ⊤ andntaskB ⊥ ; (K), (L);

ii. Init2
2AC.send(Establish2AC,sid2AC)FDIC

=corr. Sim2AC.Init2
2AC.send(Establish2AC,sid2AC)FDIC

pre: ntask= ESS2 ; (L);

eff: activeB ⊤ andntaskB ⊥ ; (K), (L);

iii. FDIC.send(SID,sidDIC)Sim2AC

=corr. Sim2AC.FDIC.send(SID,sidDIC)Sim2AC

pre: ntask= ESS2 ; (I );

eff: ntaskB ⊥ ; (I );

The simulation of the establish session is perfectly executed by
simulation(∗) of Sim2AC. Finally, the parties establish a DIC in
the simulation world.

(b) Data Sending SessionNext, in the data sending session, Env
sends messagein(Send,sid2AC,m)Init i

to Init2ACi for some i.

Here, we consider that Env sends the message to Init1
2AC.

The case of Init22AC is the same as that for Init1
2AC. Init2ACi

sends send(Send,sid2AC,m)F2AC to F2AC. F2AC then sends
send(Send,sid2AC,mes)Adv to Sim2AC. After receiving the mes-
sage, Sim2AC executessimulation(Send,sid2AC,mes) to mimic
the data sending session in the real world. That is, he in-
puts in(Send,sid2AC,m)Init to Init12AC in the simulation world.
The parties, Init12AC and Init22AC, exchange the message using
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a DIC. Moreover, Init12AC sendssend(Send,sidDIC, s)F(1,2)
DIC

to

FDIC. FDIC sendssend(Send,sidDIC,m)Adv to Sim2AC. Af-
ter receivingreceive(Response,sidDIC,ok)Adv from Sim2AC,
the functionality sendssend(Receive,sidDIC,mes)X to the
other sender Init2

2AC. Here, Init12AC and Init22AC exchange
the same sending message. Next, both senders send
send(Send,sidDIC, s)Rec to receiver Rec. Rec receives mes-
sagereceive(Response,sid2AC,m)Init i from both senders. Fi-
nally, Rec outputsout(Receive,sid2AC,m)Rec. This is the
basic simulation of Sim2AC. He can simulate every case
of the executions in the real world. After Sim2AC re-
ceives send(Send,sid2AC,m)Adv, Sim2AC executes the task
simulation(Send,sid2AC,m) in his simulation world under the
policy described hereafter.

Simulation Policy

i. After receivingreceive(Send,sid2AC,m)F2AC, Sim2AC exe-
cutes the following simulation.

A. Sim2AC executesrandom(∗) and selects message input
party,party∈ {Init1

2AC, Init2
2AC}. (The following discus-

sion is party= Init1
2AC. The case ofparty= Init2

2AC is
analogous.)

B. Sim2AC inputsin(Send,sidDIC,m)Init12AC
to Init12AC.

C. Sim2AC makes Init12AC sendsend(Send,sidDIC)FDIC to
FDIC.

D. Sim2AC makes FDIC receivereceive(Send,sidDIC,mes
)Init12AC

and makes FDIC sendsend(Send,sidDIC,mes)Adv.

E. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, Sim2AC continues the following.

F. Sim2AC makes FDIC receivereceive(Response,sidDIC,
ok)Adv and makes FDIC sendsend(Receive,sidDIC,me
s)Init22AC

to Init22AC.
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G. Sim2AC makes Init22AC receivereceive(Receive,sidDIC,
m)FDIC , respectively.

H. Sim2AC makes Init12AC and Init22AC each sendsend(Send,
sidDIC, s)Rec according toMπ2AC.

I. Sim2AC makes Rec2AC receivereceive(Response,
sidDIC,m)Init2ACi

and makes Rec2AC output message
out(Receive,sid2AC,m)Rec2AC.

ii. Sim2AC executessend(Response,sid2AC,ok)F2AC.

The state changes and task correspondences are given hereafter.

Task Correspondence of Simulation

Init1
2AC i. (in(Send,sid2AC,m)Init i ; pre: active= ⊤, mes and

ntask= ⊥:(J),(K),(L) ; eff:mesB m and ntaskB
DSS2:(J), (L))

ii. (send(Send,sidDIC, s)F(1,2)
DIC

; pre: sB mesandntask=

DSS2: (L); eff: ntaskB DSS4:(L))

FDIC i. (receive(Send,sidDIC,m)X; pre:active= ⊤, mes and
ntask= ⊥: (G), (H), (I ); eff:mesB m and ntaskB
DSS2:(H),(I ) )

ii. (send(Send,sidDIC,m)Adv; pre:okcondAdv = ⊥, mesB
m andntask= DSS2:(F), (H), (I ); eff:ntaskB DSS3:
(I ))

Adv i. (receive(Send,sidDIC,m)FDIC; pre: active= ⊤, ntask=
⊥ : (P), (Q); eff:smesBm, ntaskB DSS2: (Q),(R))

ii. (send(Response,sidDIC,ok)FDIC ; pre: ntask= DSS2:
(Q) ; eff: ntaskB ⊥: (Q))

FDIC i. (receive(Response,sidDIC,ok)Adv, pre:ntask= DSS3:
(I ); eff:okcondAdv B ⊤ andntaskB DSS4:(F),(I ))

ii. (send(Receive,sidDIC,mes)X; pre:ntask=DSS4: (I );
eff: okcondAdv, mesandntaskB ⊥:(F),(H),(I ))

Init1
2AC i. (send(Send,sid2AC, s)Rec; pre:s B mes and ntask=

DSS4:(L) ; eff:mesandntaskB ⊥ :(J),(L))

150



Init2
2AC i. (receive(Receive,sidDIC, r)F(1,2)

DIC
; pre: active= ⊤,mes

andntask=⊥:(J),(K) and (L) ; eff:mesB r andntaskB
DSS4 :(J),(L))

ii. (send(Send,sid2AC, s)Rec; pre:s B mes and ntask=
DSS4:(L) ; eff:mesandntaskB ⊥ :(J),(L))

Rec i. (receive(Send,sid2AC,m)Init i (i ∈ {1,2}); pre:active=⊤
andntask= ⊥ :(O),(P) ;eff: If mes= ⊥, thenmesBm.
Else, ifmes=m, thenntaskB DSS2 :(M),(O))

ii. (out(Receive,sid2AC,m)Rec; pre:mBmesandntaskB
DSS2 :(M) and (O) ;eff:mesandntaskB ⊥ :(M),(O))

Simulator Sim2AC executes the above-mentioned process to
mimic the real world. The states correspondences in Table7.10
and7.11work well. The key point of this simulation is as fol-
lows. To mimic the ideal world, the simulator executes the par-
ties that execute the tasks in the real world. Moreover, not to dis-
tinguish the output trace, the simulator simulates the real world
in his simulation world by using task codes. In the real world,
Init2ACi uses a DIC without the adversary being able to identify
the direction of the sent message. Then Init2ACi sends the shared
message to Rec2AC. In the simulation world, Sim2AC obtains the
same output that Adv2AC outputs in the real world by his simula-
tion. That is, the trace distributions of each world, the real world
and the ideal world, are indistinguishable. In other words, since
each task and state correspondences work well, the following
property works well:trace(ϵ′R) = trace(ϵ′I ).

(c) Expire SessionFinally, in the expire session, Env sends mes-
sage in(Expire2AC,sid2AC)Init i

and in(Expire2AC,sid2AC)Rec

to Init2ACi and Rec2AC, respectively. Init2ACi relays mes-
sage send(Expire2AC,sid2AC)F2AC to F2AC. After receiving
receive(Expire2AC,sid2AC)X from F2AC, Sim2AC terminates the
session in the simulation world. That is, he inputs mes-
sagesin(Expire2AC,sid2AC)Init i and in(Expire2AC,sid2AC)Rec
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to Init2ACi and Rec2AC in the simulation world.

Simulation Policy

i. After receiving receive(Expire2AC,sid2AC)F2AC, Sim2AC

executes the following simulation.

A. Sim2AC inputs messagesin(Expire2AC,sid2AC)Init12AC

andin(Expire2AC,sid2AC)Init22AC
to Init12AC and Init22AC,

respectively.

B. Sim2AC makes Init12AC (resp., Init22AC) send message
send(ExpireDIC,sidDIC)FDIC to FDIC.

C. Sim2AC makes FDIC sendsend(ExpireDIC,sidDIC)Adv

to Adv.

We assume that the state correspondences in Table7.10and7.11
hold. From3aand3b, the state correspondences also hold after
the simulation by Sim2AC. That is,trace(ϵ′R) = trace(ϵ′I ).

Task Correspondence of Simulation

i. Init1
2AC.send(Expire2AC,sid2AC)FSC

=corr. Sim2AC.Init1
2AC.send(Expire2AC,sid2AC)FSC

pre: ntask= EXS2 ; (L);

eff: activeandntaskB ⊥ ; (K), (L);

ii. Init2
2AC.send(Expire2AC,sid2AC)FSC

=corr. Sim2AC.Init2
2AC.send(Expire2AC,sid2AC)FSC

pre: ntask= EXS2 ; (L);

eff: activeandntaskB ⊥ ; (K), (L);

iii. FDIC.send(ExpireDIC,sidDIC)Adv2AC

=corr. Sim2AC.FDIC.send(ExpireDIC,sidDIC)Adv2AC

pre: ntask= EXS2 ; (I );

eff: active, estcondX andntaskB ⊥ for all X ; (D) ∼ (F),
(I );

2. Static Corruption
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This type of corruption is divided into the following three cases: only
Init2ACi is corrupted by Adv, only Rec2AC is corrupted by Adv, and
both parties are corrupted by Adv.

(a) Only Init2ACi for some or bothi is corrupted by Adv This case
means that Adv2AC corrupts only Initi before the protocol starts.
So, the remaining steps are identical to the above-mentioned No
Corruption Case.

i. After receiving the corrupt message from Env, Sim2AC pre-
pares a situation in which only Init2ACi for somei is cor-
rupted and adds the following policy before1(a)iB: Sim2AC

makes Adv corrupt Init2ACi for somei.

ii. After receivingreceive(Send,sid2AC,mes)F2AC from F2AC,
Sim2AC executes the following simulation.

A. If messagereceive(Send,sid2AC,mes)F2AC is input to
corrupted party Initi , Sim2AC inputsin(Send,sid2AC,m
es)Init i to Initi .

B. Else messagereceive(Send,sid2AC,mes)F2AC is in-
put to non-corrupted partyInitī , and Sim2AC inputs
in(Send,sid2AC,mes)Init ī to Initī .

C. The remaining asteps are the same as the simulation for
No Corrupted Case.

iii. After receiving receive(Send,sid2AC,m)F2AC in Init2ACi ,
Sim2AC executesout(Receive,sid2AC,m)Init2ACi

.

Adv2AC and Sim2AC identify who sends the sending message,
that is, Init1 or Init2. However, the simulation is perfectly exe-
cuted. If the protocol executes the establish session, data sending
session, and expire session, in any case, the simulator emulates
the real world and the movement of Adv. That is, the simulation
is perfectly executed by Sim2AC. From the Task Correspondence
in 7.2.2, the state correspondences in7.9, 7.10, and7.11hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.
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(b) Only Rec2AC is corrupted by Adv

This case means that Adv2AC corrupts only Rec2AC before the
protocol starts. Adv2AC and Sim2AC do not identify who sends
the sending message.

i. After receiving the corrupt message from Env, Sim2AC pre-
pares a situation in which only Rec2AC is corrupted and adds
the following policy before1(a)iB: Sim2AC makes Adv cor-
rupt Rec2AC.

ii. The remaining simulation is the same as the simulation for
the No Corrupted Case.

iii. After receiving receive(Send,sid2AC,m)F2AC in Rec2AC,
Sim2AC executesout(Receive,sid2AC,m)Rec2AC

.

Additionally, Rec2AC has no secret information. So, the simu-
lation after the corruption is perfectly executed. If the protocol
executes the establish session, data sending session, and expire
session, in any case, the simulator emulates the real world and
the movement of Adv. That is, the simulation is perfectly exe-
cuted by Sim2AC. From the Task Correspondence in7.2.2, the
state correspondences in7.9, 7.10, and7.11hold in this case.

(c) Both parties are corrupted by Adv

This case means that Adv2AC corrupts both Init2ACi for both i
(Init1

2AC and Init22AC) and Rec2AC before the protocol starts.

i. After receiving the corrupt message from Env, SimDIC pre-
pares a situation in which only Init and Rec are corrupted
adding the following policy before1(a)iB: Sim2AC makes
Adv corrupt Init12AC, Init22AC, and Rec2AC.

ii. If the data sending message is input toparty∈ {Init,Rec},
Sim2AC inputsin(Send,sid2AC,m)party to party.

iii. The remaining is the same as the simulation for the No Cor-
rupted Case.
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iv. After receivingreceive(Send,sid2AC,m)F2AC in party in his
simulation, Sim2AC executesout(Receive,sid2AC,m)party.

In this case, Adv2AC and Sim2AC can identify who sends the
sending message. However, the simulation is perfectly executed.
If the protocol executes the establish session, data sending ses-
sion, and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sim2AC. From the Task Correspondence
in 7.2.2, the state correspondences in7.9, 7.10, and7.11hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

3. Adaptive Corruption

In this case, the adversary corrupts some parties when he wants to
do so. This case is also simulated by the simulator, but the direction
that the message is sent cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by
simulator Sim2AC, so the simulation is perfectly executed. This case
is separated into the following instances.

(a) Establish Session

Instance 1: Before Init2ACi and Rec2AC are activated.

Instance 2: After Init1
2AC is activated but before Init2

2AC and
Rec2AC are activated.

Instance 3:After Init2
2AC activated and before Init1

2AC and Rec2AC

are activated.

Instance 4: After Rec2AC is activated but before Init2ACi is acti-
vated

Instance 5: After Init2ACi is activated but before Rec2AC is acti-
vates.

Instance 6: After Init1
2AC and Rec2AC are activated but before

Init2
2AC is activated.

Instance 7: After Init2
2AC and Rec2AC are activated but before

Init1
2AC is activates.
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Instance 8: After Init2ACi and Rec2AC are activated.

These case are analogous to case2 because there is no secret in-
formation. The adversary can corrupt Init1

2AC, Init22AC or Rec2AC,
or any combination, but the simulator can also corrupt the cor-
responding parties. These cases are also perfectly simulated by
Sim2AC.

(b) Data Sending Session

Instance 1: Before or after Init12AC or Rec2AC is activated
by receivingin(Send,sid2AC,m)Init i from the Env.
Env can execute only the message sending indication and
the corrupt indication. So, this case is only the case that the
adversary corrupts the party. This case is also simulated by
Sim2AC, because there is no secret information in this ses-
sion. The task correspondence works well and there exists a
simulation relation between the real world and ideal world.
That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Expire Session

Instance 1: After Init1
2AC, Init22AC, or Rec2AC is activated

with the expire message.
Once Env sends the expire message to Init2ACi or Rec2AC,
this session terminates in the real and ideal world. So the
adversary can corrupt the parties. This is identical to case
2.

Simulation Policy

Sim2AC simulates in his simulation world the following.

(a) After receiving “corrupt Init12AC” message from Env,

• Sim2AC corrupts Init1
2AC and checks whetherparty ∈

{Init1
2AC, Init2

2AC} has already sent the data sending message
to the other party. If the message was already sent, Sim2AC
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performs the following. Else, Sim2AC makes Adv corrupt
Init1

2AC.

• If party= Init1
2AC,

– If Sim2AC has already input message sending request
in(Send,sid2AC,m)Init12AC

to Init12AC in his simulation,

then Sim2AC simulates that Adv corrupts Init1
2AC, im-

mediately.

– Else, Sim2AC has already input message sending re-
questin(Send,sid2AC,m)Init22AC

to Init22AC in his simula-

tion, then Sim2AC simulates that Adv corrupts Init2
2AC,

immediately.

• Else,party= Init2
2AC,

– If Sim2AC has already input message sending request
in(Send,sid2AC,m)Init12AC

to Init12AC in his simulation,

then Sim2AC simulates that Adv corrupts Init2
2AC, im-

mediately.

– Else, Sim2AC has already input message sending re-
questin(Send,sid2AC,m)Init22AC

to Init22AC in his simula-

tion, then Sim2AC simulates that Adv corrupts Init1
2AC,

immediately.

• If more data sending messages are input toparty from
Env after Sim2AC corruptsparty, Sim2AC can also simulate
the situation. If the message is input to corrupted Init1

2AC,
Sim2AC inputs the sending message to the corruptedparty
in his simulation. Else, the message is input to Init2

2AC and
Sim2AC inputs the sending message to non-corruptedparty
in his simulation.

• After receiving receive(Send,sid2AC,m)F2AC in Init1
2AC,

Sim2AC executesout(Receive,sid2AC,m)
Init12AC

.

(b) After receiving “corrupt Init22AC” message from Env,
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• Sim2AC corrupts Init2
2AC and checks whetherparty ∈

{Init1
2AC, Init2

2AC} has already sent the data sending message
to the other party. If the message was already sent, Sim2AC

performs the following. Else, Sim2AC makes Adv corrupt
Init2

2AC.

• If party= Init1
2AC,

– If Sim2AC has already input message sending request
in(Send,sid2AC,m)Init12AC

to Init12AC in his simulation,

then Sim2AC simulates that Adv corrupts Init2
2AC, im-

mediately.

– Else, Sim2AC has already input message sending re-
questin(Send,sid2AC,m)Init22AC

to Init22AC in his simula-

tion, then Sim2AC simulates that Adv corrupts Init1
2AC,

immediately.

• Else,party= Init2
2AC,

– If Sim2AC has already input message sending request
in(Send,sid2AC,m)Init12AC

to Init12AC in his simulation,

then Sim2AC simulates that Adv corrupts Init1
2AC, im-

mediately.

– Else, Sim2AC has already input message sending re-
questin(Send,sid2AC,m)Init22AC

to Init22AC in his simula-

tion, then Sim2AC simulates that Adv corrupts Init2
2AC,

immediately.

• If more data sending messages are input toparty from Env
after Sim2AC corruptedparty, Sim2AC can also simulate
the situation. If the message is input to corrupted Init2

2AC,
Sim2AC inputs the sending message to the corruptedparty
in his simulation. Else, if the message is input to Init1

2AC,
Sim2AC inputs the sending message to non-corruptedparty
in his simulation.

• Receivingreceive(Send,sid2AC,m)F2AC in Init2
2AC, Sim2AC
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executesout(Receive,sid2AC,m)
Init22AC

.

(c) After receiving “corrupt Rec2AC” message from Env,

• Sim2AC corruptsRec2AC and makes Adv corrupt Rec2AC in
the simulation world, immediately.

• After receiving receive(Send,sid2AC,m)F2AC in Rec2AC,
Sim2AC executesout(Receive,sid2AC,m)Rec2AC

.

(d) After receiving “corrupt Init12AC and Init22AC” message from Env,

• Sim2AC corrupts Init1
2AC and Init2

2AC and checks which
party∈ {Init1, Init2} sent the message to the other party. If
in(Send,sid2AC,m)party was already sent, Sim2AC makes
Adv corrupt Init and Rec and does the following. Else,
Sim2AC makes Adv corrupt Init and Rec.

– If the party that Sim2AC has already input the message
sending request is equal to the party to which Env input
a message, Sim2AC inputs more data sending requests
to the party.

– Else, the input party in the simulation world is not same
as the input party in the ideal world, Sim2AC regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

• After receiving receive(Send,sid2AC,m)F2AC in Init2ACi ,
Sim2AC executesout(Receive,sid2AC,m)Init2ACi

.

(e) After receiving “corrupt Init12AC and Rec2AC” message from Env,

• Sim2AC corruptsInit1
2AC andRec2AC, and makes Adv cor-

rupt Rec2AC and Initi according to case3a.
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(f) After receiving “corrupt Init22AC and Rec2AC” message from Env,

• Sim2AC corruptsInit2
2AC andRec2AC, and makes Adv cor-

rupt Rec2AC and Initi according to case3b.

(g) After receiving “corrupt Init12AC, Init22AC and Rec2AC” message
from Env,

• Sim2AC corruptsInit1
2AC, Init2

2AC and Rec2AC, and makes
Adv corrupt Rec2AC and Initi for eachi according to case
3d.

Whenever Adv2AC corrupts some party, Sim2AC corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Adv2AC. If Adv2AC corrupts
party Init2ACi or Rec2AC then Sim2AC corruptsInitDIC or (and)RecDIC

in the ideal world, and provides the simulated copy of Adv2AC in the
simulation world with the state information of the corrupted party.
Conversely, SimDIC may obtain information from the simulated world
with the corruptions. Additionally, in this protocol party has no secret
information because FDIC is securely performed. In all cases, since
Sim2AC can simulate Adv2AC using his simulated world, Env cannot
distinguish the real world from the ideal world. That is, simulating
party corruption is perfectly executed.

Finally, relationR is a simulation relation based on the task and state corre-
spondences with respect to the adaptive adversary. We obtain Lemma2.

�

Next, Theorem5 is obtained from Lemma2 immediately.

Proof. From Lemma2 and Theorem3, Theorem5 is proved. That is, the
trace distribution property,tdist(ϵR) = tdist(ϵI) holds with respect to adap-
tive adversary underMπ2AC. As a result, the simulation is perfectly executed
because Sim2AC can simulate the real world from the information message
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through Adv2AC. The tasks of the real world perfectly correspond to the the
tasks in the ideal world. That is,

Real2AC||Env Hyb. ≤Mπ2AC
0 Ideal2AC||Env.

�
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Functionality

(a) u.F2AC.estcondInit1 = s.FDIC.estcondInit

(b) u.F2AC.estcondInit2 = s.FDIC.estcondRec

(c) u.F2AC.okcondAdv = s.FDIC.okcondAdv

(d) u.F2AC.active= s.FDIC.active

(e) u.F2AC.mes= s.FDIC.mes

(f) u.F2AC.ntask= s.FDIC.ntask

Initiator

(g) u.Init2ACi .mes= s.Init2ACi .mes

(h) u.Init2ACi .active= s.Init2ACi .active

(i) u.Init2ACi .ntask= s.Init2ACi .ntask

Receiver

(j) u.Rec2AC.mes= s.Rec2AC.mes

(k) u.Rec2AC.active= s.Rec2AC.active

(l) u.Rec2AC.ntask= s.Rec2AC.ntask

Environment

(m) u.Env= s.Env

Table 7.9:State Correspondence for Real2AC and Ideal2AC (Part I)
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Simulator (or Adversary)

(A) u.Sim2AC.active= s.Adv2AC.active

(B) u.Sim2AC.ntask= s.Adv2AC.ntask

(C) u.Sim2AC.smes= s.Adv2AC.smes

(D) u.Sim2AC.FDIC.estcondInit1 = s.FDIC.estcondInit1

(E) u.Sim2AC.FDIC.estcondInit2 = s.FDIC.estcondInit2

(F) u.Sim2AC.FDIC.okcondAdv = s.FDIC.okcondAdv

(G) u.Sim2AC.FDIC.active= s.FDIC.active

(H) u.Sim2AC.FDIC.mes= s.FDIC.mes

(I) u.Sim2AC.FDIC.ntask= s.FDIC.ntask

(J) u.Sim2AC.Init2ACi .mes= s.Init2ACi .mes

(K) u.Sim2AC.Init2ACi .active= s.Init2ACi .active

(L) u.Sim2AC.Init2ACi .ntask= s.Init2ACi .ntask

Table 7.10:State Correspondence for Real2AC and Ideal2AC (Part II)
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Simulator (or Adversary)

(M) u.Sim2AC.Rec2AC.mes= s.Rec2AC.mes

(N) u.Sim2AC.Rec2AC.active= s.Rec2AC.active

(O) u.Sim2AC.Rec2AC.ntask= s.Rec2AC.ntask

(P) u.Sim2AC.Adv2AC.active= s.Adv2AC.active

(Q) u.Sim2AC.Adv2AC.ntask= s.Adv2AC.ntask

(R) u.Sim2AC.Adv2AC.smes= s.Adv2AC.smes

Table 7.11:State Correspondence for Real2AC and Ideal2AC (Part III)
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1. Establish Session

(a) Init2ACi .send(EstablishDIC,sidDIC)F(1,2)
DIC

=corr. Init2ACi .send(Establish2AC,sid2AC)F2AC

(b) FDIC.send(SID,sidDIC)Adv =corr. F2AC.send(SID,sid2AC)Adv

2. Expire Session

(a) Init2ACi .send(ExpireDIC,sidDIC)F(1,2)
DIC

=corr. Init2ACi .send(Expire2AC,sid2AC)F2AC

(b) FDIC.send(ExpireDIC,sidDIC)Adv =corr. F2AC.send(Expire2AC,sid2AC)Adv

3. Environment

(a) All tasks of environment Env in Real2AC correspond to the tasks of environ-
ment in Ideal2AC.

Table 7.12:Corresponding Tasks for Real2AC and Ideal2AC
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No. Real Execution

1 Init1
2AC.in(Send,sid2AC,m)Init i

2 Init1
2AC.send(Send,sidDIC, s)F(1,2)

DIC

3 FDIC.receive(Send,sidDIC,m)X

4 FDIC.send(Send,sidDIC,m)Adv

5 Adv2AC.receive(Send,sidDIC,m)FDIC

6 Adv2AC.send(Response,sidDIC,ok)FDIC

7 FDIC.receive(Response,sidDIC,ok)Adv

8 FDIC.send(Send,sidDIC,mes)X
9 Init2

2AC.receive(Receive,sidDIC,m)F(1,2)
DIC

10 {Init1
2AC.send(Send,sidDIC, s)Rec,Init22AC.send(Send,sidDIC, s)Rec}

11 Rec2AC.receive(Response,sid2AC,m)Init i
12 Rec2AC.receive(Response,sid2AC,m)Init i
13 Rec2AC.out(Receive,sid2AC,m)Rec

No. Ideal Execution

1 Init1
2AC.in(Send,sid2AC,m)Init i

2 Init1
2AC.send(Send,sid2AC,m)F2AC

3 F2AC.receive(Send,sid2AC,m)Init i
4 F2AC.send(Send,sid2AC,mes)Adv

5 Sim2AC.receive(Send,sid2AC,mes)F2AC

6 Sim2AC.send(Response,sid2AC,ok)F2AC

7 F2AC.receive(Response,sid2AC,ok)Adv

8 F2AC.send(Send,sid2AC,mes)Rec

9 Rec2AC.receive(Response,sid2AC,mes)F2AC

10 Rec2AC.out(Receive,sid2AC,m)Rec

Table 7.13: Corresponding Task Sequence of Data Sending Session for
Real2AC and Ideal2AC underMπ2AC
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Code for Initiator Initi(i ∈ {1,2}) of Two Anonymous Channel, Init2ACi

Signature:
sid2AC = ({Init1, Init2},Rec,sid′2AC)
sidDIC = ({Init1, Init2},sidDIC′)
Input: Output:
in(Establish2AC,sid2AC)Init i send(EstablishDIC,sidDIC)F(1,2)

DIC

in(Send,sid2AC,m)Init i send(Send,sidDIC, s)F(1,2)
DIC

receive(Receive,sidDIC,m)F(1,2)
DIC

send(Send,sidDIC, s)Rec

in(Expire2AC,sid2AC)Init i send(ExpireDIC,sidDIC)F(1,2)
DIC

State:
active∈ {⊥,⊤}, initially ⊥ mes∈ ({0,1}∗)∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{send(EstablishDIC,sidDIC)F(1,2)

DIC
, send(Send,sidDIC, s)F(1,2)

DIC
,

send(Send,sid2AC, s)Rec, send(ExpireDIC,sidDIC)F(1,2)
DIC
}

Figure 7.23:Code for Initiator of Two Anonymous Channel, Init2AC (Part
I)
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Code for Initiator Initi(i ∈ {1,2}) of Two Anonymous Channel, Init2ACi

Transitions:

Establish Session:

ESS1.in(Establish2AC,sid2AC)Init i

pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishDIC,sidDIC)F(1,2)
DIC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sid2AC,m)Init i

pre: active= ⊤, mesandntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.send(Send,sidDIC, s)F(1,2)
DIC

pre: sBmesandntask= DSS2
eff: ntaskB DSS4

DSS3.receive(Receive,sidDIC, r)F(1,2)
DIC

pre: active= ⊤,mesandntask= ⊥
eff: mesB r andntaskB DSS4

DSS4.send(Send,sid2AC, s)Rec

pre: sBmesandntask= DSS4
eff: mesandntaskB ⊥

Expire Session:

EXS1. in(Establish2AC,sid2AC)Init i

pre: active= ⊤ andntask= ⊥
eff: ntaskB EXS2

EXS2. send(EstablishDIC,sidDIC)F(1,2)
DIC

pre: ntask= EXS2
eff: activeB ⊥ andntaskB ⊥

Figure 7.24:Code for Initiator of Two Anonymous Channel, Init2AC (Part
II)
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Code for Receiver Rec of Two Anonymous Channel, Rec2AC

Signature:
sid2AC = ({Init1, Init2},Rec,sid′2AC)

Input: Output:
in(Establish2AC,sid2AC)Rec

receive(Response,sid2AC,m)Init i out(Receive,sid2AC,m)Rec

in(Expire2AC,sid2AC)Rec

State:
active∈ {⊥,⊤}, initially ⊥ mes∈ ({0,1}∗)∪{⊥}
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{out(Receive,sid2AC,m)Rec}

Figure 7.25:Code for Receiver of Two Anonymous Channel, Rec2AC (Part
I)
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Code for Receiver Rec of Two Anonymous Channel, Rec2AC

Transitions:

Establish Session:

ESS1.in(Establish2AC,sid2AC)Rec

pre: activeandntask= ⊥
eff: activeB ⊤

Data Sending Session:

DSS1.receive(Send,sid2AC,m)Init i (i ∈ {1,2})
pre: active= ⊤ andntask= ⊥
eff: If mes= ⊥ thenmesBm.
Else ifmes=m thenntaskB DSS2.
ElsemesB ⊥

DSS2.out(Receive,sid2AC,m)Rec

pre: mBmesandntaskB DSS2
eff: mesandntaskB ⊥

Expire Session:

EXS1. in(Expire2AC,sid2AC)Rec

pre: active= ⊤, mesandntask= ⊥
eff: activeandntaskB ⊥

Figure 7.26:Code for Receiver of Two Anonymous Channel, Rec2AC (Part
II)
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Code for Adversary for Annonymous Channel, Adv2AC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
Input:
receive(SID,sidDIC)FDIC

receive(Send,sidDIC,m)FDIC

receive(ExpireDIC,sidDIC)FDIC

Output:
send(Response,sidDIC,ok)FDIC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message,send(m)party, receive(m)party,out(∗),
whereparty∈ {Init1, Init2,Rec}.

State:
active∈ {⊥,⊤}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
smes∈ ({0,1})∪{⊥}, initially ⊥

Tasks:
{send(Response,sidDIC,ok)FDIC}

Figure 7.27:Code for Adversary for two Annonymous Channel, Adv2AC

(Part I)
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Code for Adversary for Annonymous Channel, Adv2AC

Transitions:

Establish Session:

ESS1.receive(SID,sidDIC)FDIC

pre: active= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1. receive(Send,sidDIC,m)FDIC

pre: active= ⊤, ntask= ⊥
eff: smesBm, ntaskB DSS2

DSS2. send(Response,sidDIC,ok)FDIC

pre: ntask= DSS2
eff: ntaskB ⊥

Expire Session:

EXS1. receive(ExpireDIC,sidDIC)FDIC

pre: active= ⊤
eff: activeB ⊥

Other tasks:
This adversary makes other arbitary tasks.

Figure 7.28:Code for Adversary for two Annonymous Channel, Adv2AC

(Part II)

175



Code for ideal InitiatorInit i(i ∈ {1,2}) of Two Anonymous Channel,Init2ACi

Signature:
sid2AC = ({Init1, Init2},Rec,sid′2AC)

Input: Output:
in(Establish2AC,sid2AC)Init i

send(Establish2AC,sid2AC)F2AC

in(Send,sid2AC,m)Init i
send(Send,sid2AC,m)F2AC

in(Expire2AC,sid2AC)Init i
send(Expire2AC,sid2AC)F2AC

State:
mes∈ {⊥,⊤}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(Establish2AC,sid2AC)F2AC, send(Send,sid2AC,m)F2AC,

send(Expire2AC,sid2AC)F2AC}∗

Figure 7.29:Code for ideal Initiator of Two Anonymous Channel,Init2AC

(Part I)
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Code for ideal InitiatorInit i(i ∈ {1,2}) of Two Anonymous Channel,Init2ACi

Transitions:

Establish Session:

ESS1.in(Establish2AC,sid2AC)Init i

pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(Establish2AC,sid2AC)F2AC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sid2AC,m)Init i

pre: active= ⊤, mes= ⊥ andntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.send(Send,sid2AC,m)F2AC

pre: mBmesandntask= DSS2
eff: mesB ⊥ andntaskB ⊥

Expire Session:

EXS1. in(Expire2AC,sid2AC)Init i

pre: active= ⊤ andntask= ⊥
eff: ntaskB EXS2

EXS2. send(Expire2AC,sid2AC)F2AC

pre: ntask= EXS2
eff: active,mesandntaskB ⊥

Figure 7.30:Code for ideal Initiator of Two Anonymous Channel,Init2AC

(Part II)
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Code for ideal ReceiverRec of Two Anonymous Channel,Rec2AC

Signature:
sid2AC = ({Init1, Init2},Rec,sid′2AC)

Input: Output:
in(Establish2AC,sid2AC)Rec
receive(Response,sid2AC,mes)F2AC out(Receive,sid2AC,m)Rec
in(Expire2AC,sid2AC)Rec

State:
mes∈ ({0,1}∗)∪{⊥} ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{out(Receive,sid2AC,m)Rec}

Figure 7.31:Code for ideal Receiver of Two Anonymous Channel,Rec2AC

(Part I)
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Code for ideal ReceiverRec of Two Anonymous Channel,Rec2AC

Transitions:

Establish Session:

ESS1.in(Establish2AC,sid2AC)Rec
pre: activeandntask= ⊥
eff: activeB

Data Sending Session:

DSS1.receive(Response,sid2AC,m)F2AC

pre: active= ⊤, mesandntask= ⊥
eff: mesBmandntaskB DSS2

DSS2.out(Receive,sid2AC,m)Rec
pre: ntask= DSS2
eff: mesandntaskB ⊥

Expire Session:

EXS1. in(Expire2AC,sid2AC)Rec
pre: active= ⊤, mesandntask= ⊥
eff: ntaskB EXS2

Figure 7.32:Code for ideal Receiver of Two Anonymous Channel,Rec2AC

(Part II)
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Code for Simulator for Anonymous Channel, Sim2AC

Signature:
sid2AC = ({Init1, Init2},Rec,sid′2AC)
Input:
receive(SID,sid2AC)F2AC

receive(Send,sid2AC,mes)F2AC

receive(Expire2AC,sidX2AC)FX2AC

Output:
send(Response,sid2AC,ok)F2AC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initialy ⊥ smes∈ {0,1}∗∪{⊥}, initialy ⊥
ntask∈ ({0,1}∗)∪{⊥}, initialy ⊥

Other arbitrary variables; cal ”new” variables.

Tasks:
{send(Response,sid2AC,ok)F2AC}

Figure 7.33: Code fot Simulator for Anonymous Channel, Sim2AC (Part I)
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Code for Simulator for Anonymous Channel, Sim2AC

Transitions:

Establish Session:

ESS1.receive(SID,sid2AC)F2AC

pre: active= ⊥, ntask= ⊥
eff: activeB ⊤

Data Sending Session:

DSS1.receive(Send,sid2AC,mes)F2AC

pre: active= ⊤ andntask= ⊥
eff: smesBmesandntaskB DSS2

DSS2.send(Response,sid2AC,ok)F2AC

pre: ntask= DSS2
eff: ntaskB ⊥

Expire Session:

EXS1. receive(Expire2AC,sidX2AC)FX2AC
pre: active= ⊤ eff: activeB ⊥

Other tasks:
This simulator makes arbitrary tasks to simulate the real world
protocol system Real2AC. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary of the simiulat-
ing world to the environment.

Figure 7.34:Code fot Simulator for Anonymous Channel, Sim2AC (Part II)
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7.3 Equivalence Between DIC and SC

In this section, we prove that the DIC is equivalent to the SC under a spe-
cific type of schedule. To prove this, we show two reductions, SC to DIC
and DIC to SC. Here, we consider a one bit message exchange, i.e.,|m| = 1.
Informally, the reduction of SC to DIC is proven as described hereafter. To
make the channel between Init and Rec secure, the parties exchange a ran-
dom bit (as a secret shared key) using the DIC. The message encrypted using
the shared key is exchanged using a public channel. Communications are
conducted not using the DIC but by a public channel. When the next mes-
sage is sent, the parties restart from the key exchange stage. Here, the key
exchange takes place under the master schedule. After the key exchange, the
cipher text generated by the secret key is sent. The other reduction of DIC to
SC is proven as described hereafter. Parties Init and Rec exchange two mes-
sages using the SC. One message ism, the message that the sender wants
to send. The other message is a dummy message to conceal the message
direction. More specifically, sender Init sends messagem and the receiver
sends dummy messages under a specific type of scheduleM. We gener-
ate random messages using FSRC. Note that, the adversary cannot identify
the direction of the message because the messages are exchanged under a
specific type of schedule. In this section, we must consider the schedules
(key exchange schedule and message exchange schedule) to avoid exposing
information to an adversary. In the UC framework, all schedules are under
control of an adversary. So, we use the task PIOA framework.

7.3.1 Reduction of DIC to SC

Let π′DIC be a protocol of DIC. Let Mπ′DIC
be master schedule

Mpsync(Init′DIC.send(Send,sidSC,m)FSC,Rec′DIC.send(Send,sidSC,m)FSC) for
π′DIC.

Let Init′DIC and Rec′DIC be the initiator code and receiver code for a real
system, see Fig.7.35, Fig.7.36and Fig.7.37, and Fig.7.38and Fig.7.40, re-
spectively. LetInit′DIC andRec′DIC be the initiator code identical toInitDIC
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and receiver code identical toRecDIC for an ideal system, respectively.
Finally, let Adv′DIC and Sim′DIC be the adversary code and the simulator
code in Fig.7.41and Fig.7.42, and Fig.7.43and Fig.7.44, respectively. Let
Real′DIC and Ideal′DIC be a DIC protocol system and a DIC functionality
system defined, respectively, as follows:

Real′DIC B hide(Init′DIC||Rec′DIC||Adv′DIC||FSRC||FSC, {rand(∗)}),
Ideal′DIC B Init′DIC||Rec′DIC||Sim′DIC||FDIC.

TasksInit′DIC andRec′DIC relay the input messages from the environment
to the ideal functionality task and relay the received messages from the ideal
functionality task to the environment, respectively, as interface parties in the
ideal system.

Theorem 6. DIC protocol systemReal′DIC perfectly hybrid-implements DIC
functionality systemIdeal′DIC with respect to an adaptive adversary under
master schedule Mpsync(send(Send,sidSC,m)FSC, send(Send,sidSC,m)FSC).
( DIC is reducible to SC with respect to an adaptive adversary under master
schedule Mpsync(send(Send,sidSC,m)FSC, send(Send,sidSC,m)FSC)).

Let ϵR and ϵI be discrete probability measures on finite executions of
Real′DIC||Env and Ideal′DIC||Env, respectively. We prove Theorem6 by show-
ing thatϵR andϵI satisfy the trace distribution property,tdist(ϵR) = tdist(ϵI).
Here, we define correspondenceR between the states in Real′

DIC||Env and
the states in Ideal′DIC||Env. We say (ϵR, ϵI) ∈ R if and only if for every
s∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI), all of the state correspondences in Ta-
bles7.17, 7.18, and7.19hold. We then proveR is a simulation relation in
Lemma3.

Lemma 3. Relation R defined above is a simulation relation from
Real′DIC||Env to Ideal′DIC||Envunder master schedule Mπ′DIC

.

Proof. We prove that R is a simulation relation from Real′DIC||Env
to Ideal′DIC||Env using mapping corrtaskR∗Real′DIC||Env × RReal′DIC||Env →
R∗Ideal′DIC||Env, which is defined hereafter.
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For any (ρ,T) ∈ (R∗Real′DIC||Env×RReal′DIC||Env), the state correspondences in

7.17and7.18hold.
The task sequence of system Real′

DIC||Env are perfectly corresponds to
that for system Ideal′DIC||Env under the scheduleMπ′DIC

. Formally, to prove
thatR is a simulation relation from Real′DIC||Env to Ideal′DIC||Env, we show
thatRsatisfies the start condition and step condition.

• Start condition
It is true that the start states ofs and u in Real′DIC||Env and
Ideal′DIC||Env, respectively, are on the Dirac measures. That is, the
start states ofs andu satisfy relationR because the start states ofs
andu are all⊥ for each task on master scheduleMπ′DIC

. Therefore, the
trace distribution property holds.

• Step condition
Let ϵ′R = apply(ϵR,T) andϵ′I = apply(ϵI ,corrtasks(ρ,T)). If (ϵR, ϵI) ∈
R, ρ ∈ R∗Real′DIC||Env and ϵR is consistent withρ, thenϵI is consistent

with f ull(corrtasks)(ρ) andT ∈ Real′DIC||Env. Then there exist the
following.

– Probability measurep on countable index setI ,

– Probability measuresϵ′R, j , j ∈ I , on finite executions of
Real′DIC||Env, and

– Probability measuresϵ′I, j , j ∈ I , on finite executions of
Ideal′DIC||Env,

such that:

– For eachj ∈ I , ϵ′R, j R ϵ′I, j ,

– Σ j∈I p( j)(ϵ′R, j) = apply(ϵR,T), and

– Σ j∈I p( j)(ϵ′I, j) = apply(ϵI ,corrtask(ρ,T)).
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Task Correspondence

For any (ρ,T) ∈ (R∗Real′DIC||Env×RReal′DIC||Env), the following task correspon-

dence that is also summarized in Table7.20holds.

1. Establish Session

(a) Init′DIC.send(EstablishSC,sidSC)FSC

=corr. Init′DIC.send(EstablishDIC,sidDIC)FDIC

Let TREAL and TIDEAL be send(EstablishSC,sidSC)FSC and
send(EstablishDIC,sidDIC)FDIC , respectively. We assume that
for each state,s∈ supp.lst(ϵR) andu∈ supp.lst(ϵI) are fixed. The
precondition ofTREAL and TIDEAL is ntask= ESS2 from each
code. TREAL (resp.,TIDEAL) is enabled (or disabled) ins (resp.,
u) if and only if s.Init′DIC.ntask= ESS2 (resp.u.Init′DIC.ntask=
ESS2). From (j) in Table 7.17, the state correspondence im-
plies thatTREAL andTIDEAL are uniformly enabled or disabled in
supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case:
Let I and p be the set that has a single element and Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R and ϵ′I,1 = ϵ

′
I .

We have the fact thatϵ′R = ϵR and ϵ′I = ϵI . Here, we ob-
tain ϵ′R,1Rϵ′I,1 from relation ϵRRϵI. The trace distribution
equivalence property,tdist(ϵ′R) = tdist(ϵ′I ), also holds since
tdist(ϵR) = tdist(ϵI) underMπ′DIC

.

ii. Enable Case:
Let q denote the state of preconditionsntask= ESS2. Let
TREAL andTIDEAL be the action enabled inq for each world.
We show that each ofTREAL and TIDEAL is a unique ac-
tion that is enabled inq. From the definition ofTREAL
and TIDEAL, the precondition is onlyntask= ESS2, and
is unique in all tasks in Init′DIC and Init′DIC, respectively.
Then, there are two unique effects that update theactive
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andntask to be⊤ and⊥, respectively. From the precon-
dition and the effect ofTREAL, and the state equivalence of
(i) and (j), we obtain that the subsequent ofTREAL (and
TIDEAL) is also a unique action that is enabled in every state
in supp.lst(ϵR)∪supp.lst(ϵI).
Let I and p be the set that has a single element and the
Dirac measure onI , respectively. Letϵ′R,1 = ϵ

′
R andϵ′I,1 = ϵ

′
I .

Here, we establish the property ofR for ϵ′R andϵ′I to show
that (ϵ′R, ϵ

′
I ) ∈ R. Then we show trace distribution equiv-

alence forϵ′R and ϵ′I . To establish this property, consider
any states′ ∈ supp.lst(ϵ′R) andu′ ∈ supp.lst(ϵ′I ). Let sbe any
state in supp.lst(ϵR) such thats′ ∈ supp(µs), where (s, ζ,µs) ∈
Real′DIC||Env. Let u be any state in supp.lst(ϵI) such that
u′ ∈ supp(µu), where (u,corrtask(ρ,ζ),µu) ∈ Ideal′DIC||Env.
It is true that TREAL updates Init.active to ⊤ and
Init′DIC.ntask to ⊥ from the definition of the effect of

TREAL. Similarly, TIDEAL updatesInit′DIC.active to ⊤ and

Init′DIC.ntask to ⊥ from the definition of the effect of
TIDEAL. From the states equivalences of (i) and (j)
in Table 7.17, we haveu.Init′DIC.active= s.Init′DIC.active

and u.Init′DIC.ntask= s.Init′DIC.ntask. We obtain that

u′.Init′DIC.active= s′.Init′DIC.active and u′.Init′DIC.ntask=

s′.Init′DIC.ntask. By the definition of Init′DIC and Init′DIC,
TREAL (resp.,TIDEAL) is a unique action that updates the state
of activeof Real′DIC (resp., Ideal′DIC). Therefore, we obtain
that the trace distribution propertytrace(ϵ′R) = trace(ϵ′I ).

(b) Rec′DIC.send(EstablishSC,sidSC)FSC

=corr. Rec′DIC, send(EstablishDIC,sidDIC)FDIC

This case is analogous to the case of1a. The state correspon-
dences are (m) and (n). This case is also uniformly enabled or
disabled in supp.lst(ϵR)∪supp.lst(ϵI).

(c) FSC.send(SID,sidSC)Adv =corr. FDIC.send(SID,sidDIC)Adv
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The precondition and effect of these tasks are identical to each
other. The preconditions of the task on the left side of the equa-
tion areactive= ⊤ andntask= ESS2. This is equivalent to the
precondition for the task on the right side. The effect of the task
on the left isntaskB ⊥. This effect is also the same as that
for the task on the right. LetTREAL be FSC.send(SID,sidSC)Adv.
Let TIDEAL be FDIC.send(SID,sidDIC)Adv. We show thatTREAL
andTIDEAL are uniformly enabled or disabled in supp.lst(ϵR)∪
supp.lst(ϵI). We consider that for each state ins∈ supp.lst(ϵR)
andu ∈ supp.lst(ϵI) are fixed. Then,TREAL enables (or disables)
in s if and only if s.TREAL.active= ⊤ ands.TREAL.ntask= ESS2.
The precondition ofTIDEAL, ( f ) in Table7.17, implies thatTIDEAL
is uniformly enabled or disabled. The rest of this proof is similar
to that for the task of1a.

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step
conditions of simulation relationRhold from each task def-
inition and the state correspondence of pre: (f ). Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of pre:
( f ), and state correspondences of eff: (d) and (f ), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

2. Data Sending Session

Here, we consider two cases for this session. One is that Env inputs
in(Send,sidDIC,m)Init′ to Init′DIC and message receiver Rec′DIC out-
puts messageout(Receive,sidDIC, plain)Rec′ . The other is that Env
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inputsin(Send,sidDIC,m)Rec′ to Rec′DIC and message receiver Init′DIC
outputs messageout(Receive,sidDIC, plain)Init′. The two cases are
given the same consideration, so we hereafter consider the first case.
The basic task sequences are in Table7.21. Note that the simulation
is also shown as the same sequences for Real Execution in Table7.21.
The task sequences for the Real Execution are correspond to those for
the Ideal Execution.

The flow of the states in each task is shown in Tables7.22, 7.23, and
7.24for each world. From the initial and final values in Table7.22,
7.23, and7.24, we obtain the result of state equivalence in7.17. That
is, if the state equivalence in7.17holds before Real′DIC is enabled (or
disabled), the state equivalence in7.17after Real′DIC is finished also
holds.

(a) Disable Case: This is a trivial case because all the states of the
parties are⊥. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
any party. LetϵR andϵI be discrete probability measures in the
real world and ideal world, respectively. We have the fact that
ϵ′R = ϵR andϵ′I = ϵI. Here, the start and step conditions of simu-
lation relationR hold from the task task definition and the state
correspondences. Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

(b) Enable Case: LetϵR andϵI be discrete probability measures in
the real world and ideal world, respectively. From each task def-
inition and the state flows in Tables7.22, 7.23, and7.24, it is
clear that the initial state is the same as the final state for each
task in each world. In addition, the states of the real task are also
the same as those for the ideal world after the data sending ses-
sion is executed. That is, (a) ∼ (l) in Table7.25hold. Therefore,
we have thatϵ′R = ϵR andϵ′I = ϵI . Here, the start and step con-
ditions of the simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).
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3. Expire Session

(a) Init′DIC.send(ExpireSC,sidSC)FSC

=corr. Init′DIC.send(ExpireDIC,sidDIC)FDIC

The states of precondition and effect forsend(ExpireSC,sidSC)FSC

are the same as those forsend(ExpireDIC,sidDIC)FDIC) where
ntask= EXS2. That is, if (j) in Table 7.17 holds, then these
tasks are enabled (or disabled) in every state in supp.lst(ϵR)∪
supp.lst(ϵI).

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationRhold from each task definition
and the state correspondence of pre: (j). Therefore, we ob-
tain trace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and ideal world, respectively. From
each task definition, the state correspondence of pre: (j),
and state correspondences of eff: (i) and (j), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(b) Rec′DIC.send(ExpireSC,sidSC)FSC

=corr. Rec′DIC, send(ExpireDIC,sidDIC)FDIC

The precondition and effect for the real task are the same as
those for the ideal task. The precondition is onlyntask= EXS2
and the effects areactiveB ⊥ and ntaskB ⊥Ḟrom (n) in Ta-
ble 7.17, these tasks are enabled (or disabled) in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have the

189



fact thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationRhold from each task definition
and the state correspondence of pre: (n). Therefore, we ob-
tain trace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and ideal world, respectively. From
each task definition, the state correspondence of pre: (n),
and state correspondences of eff: (m) and (n), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(c) FSC.send(ExpireSC,sidSC)Adv

=corr. FDIC.send(ExpireDIC,sidDIC)Adv

The precondition and effect for the real task are the same as
those for the ideal task. The precondition is onlyntask= EXS2
and the effects areactiveB ⊥ andestcondX B ⊥ for all X (and
estcondInitandestcondRecB ⊥ in FSC) andntaskB ⊥. From (f )
in Table7.17, these tasks are enabled (or disabled) in every state
in supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationRhold from each task definition
and the state correspondence of pre: (f ). Therefore, we
obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence of pre: (f ), and
state correspondences of eff: (a),(b),(d) and (f ), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).
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Environment Env

From the task definitions and state correspondence (o) in Table7.17, the
provability measures of both tasks are uniformly enabled or disabled in ev-
ery state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 1 The state of Env remains static in all states in supp.lst(ϵR)∪
supp.lst(ϵI). Let qe denote this state of Env. This follows from state
correspondenceo.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI) (simultaneously). Further-
more, if T is enabled in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There exists unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There exists a unique transition of Env fromqe with actiona.
Let tre= (qe,a,µe) be this transition.

By considering Claim7.3.1, task T of Env is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR and ϵ′I,1 = ϵI, and the result isϵ′R,1Rϵ′I,1 since
we haveϵRRϵI. If T is enabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI),
Claim 7.3.1 implies that there exists unique actiona in every state in
supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontre of Env from qe enabled with
actiona, wheretre= (qe,a,µe).

Non Corrupted Case:

1. a is an input/ output action of Init. We assume thata is an input
action such asin(EstablishDIC,sidDIC)Init′ in(Send,sidDIC,m)Init′ ,
in(ExpireDIC,sidDIC)Init′ , andout(Receive,sidDIC, plain)Init′.

Let s be any state such thats′ ∈ supp(µs), where (s,a,µs) ∈
DReal′DIC||Env. Let u be any state such thatu′ ∈ supp(µu), where
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(u,a,µu) ∈ DIdeal′DIC||Env. For eacha, we check that the state corre-
spondences fors′ and u′ hold if those fors and u hold. If each
a is input from Env, then the precondition and effect for the real
task are exactly the same as those for the ideal task. For example,
if ,the input message isin(EstablishDIC,sidDIC)Init′ , then the pre-
condition isactive,ntask= ⊥ and the effect isntaskB ESS2. These
states for the real task correspond to those for the ideal task. So,
in the case of the enabled (or disabled), it is hold that tate corre-
spondences (o), (i), and (j) hold for s′ and u′, if the correspon-
dences fors and u hold. Therefore, we obtain the trace distribu-
tion property,trace(ϵ′R) = trace(ϵ′I ). This result also works well for
in(Send,sidDIC,m)Init′ andin(ExpireDIC,sidDIC)Init′ .

2. a is an input/ output action of Rec. We assume thata is an input
action such asin(EstablishDIC,sidDIC)Rec′ , in(Send,sidDIC,m)Rec′ ,
in(ExpireDIC,sidDIC)Rec′ andout(Receive,sidDIC, plain)Rec′. This
is analogous to1.

3. a is an input action of Adv. This means thata = input(g)Adv for
some fixedg. For example,g is a corrupt message for someparty∈
{Init,Rec}. From the fact that the state correspondences (A) ∼ (U)
for s and u hold, we obtain that the state correspondences fors′

and u′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an internal or an output action of Env. Taska in the real world
is identical to that in the ideal world. From the fact that state corre-
spondence (o) for s andu holds, we obtain that state correspondence
(o) for s′ and u′ holds. Therefore, we obtain the trace distribution
property,trace(ϵ′R, j) = trace(ϵ′I, j).

Corrupted Case:

1. a is an input action of Adv andparty ∈ {Init,Rec} Here, the party
is included in the case of Init∧Rec. LetqAdv be the state of Adv
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or Sim, which is the same in all supp.lst(ϵR) ∪ supp.lst(ϵI). Let
trAdv = (qAdv,a,µAdv) be a transition of Adv with actiona from qAdv.
From Claim7.3.1, trAdv is a unique transition. Here, we suppose that
supp((µe×µAdv)) is the pair set{(q1, j ,q2, j) : j ∈ I }, whereI is a count-
able set. Letp be the probability measures such that for eachj, p( j) =
(µe× µAdv)(q1, j ,q2, j). For eachj, let ϵ′R, j be ϵ′1, j(α) = ϵ1(α′), where
α ∈ supp(ϵ′1) such thatlst(α).Env= q1, j andlst(α).Adv = q2, j . The
ϵ′2, j is analogously constructed fromϵ′2.

The rest of this proof is the same as that for1 by the state correspon-
dences for each caseparty∈ {Init,Rec, Init ∧Rec}. Finally, we obtain
the trace distribution property,trace(ϵ′R, j) = trace(ϵ′I, j).

Adversary Adv

From the task definitions and state correspondences (A) ∼ (U) in Table7.18,
the provability measures for both tasks are uniformly enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 3 The state for Adv or Sim is the same in all states in
supp.lst(ϵR)∪supp.lst(ϵI). Let qAdv denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI). Furthermore, if T is enabled
in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There is unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There is a unique transition of Adv fromqAdv with actiona, and
let trAdv = (qAdv,a,µAdv) be this transition.

By considering Claim.7.3.1, task T of Adv is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR and ϵ′I,1 = ϵI, and this results in thatϵ′R,1Rϵ′I,1
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since we haveϵRRϵI . If T is enabled, T is enabled in every state in
supp.lst(ϵR)∪ supp.lst(ϵI). Claim 7.3.1 implies that there is unique action
a in every state in supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontr of Adv from
qe enabled with actiona, wheretrAdv = (qAdv,a,µAdv). The following cases
for the “Non Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. a is an input action of Env. From the fact that state correspondences
(A) ∼ (U) for s andu hold, we obtain that the state correspondences
for s′ andu′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

2. a is an input or output action of functionality task. This case con-
cerns messagereceive(SID,sidSC)FSC, receive(Send,sidSC, |m|)FSC,
receive(ExpireSC,sidSC)FSC andsend(Response,sidSC,ok)FSC. The
rest of this proof is analogous to case1. From the fact that state corre-
spondences (A) ∼ (U) for sandu hold, we obtain that state correspon-
dences fors′ andu′ hold. Therefore, we obtain the trace distribution
property,trace(ϵ′R) = trace(ϵ′I ).

3. a is either an output action of Adv that is not an input action of
Env, Init, Rec or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous
to case1. From the fact that the state correspondences (A) ∼ (U)
for s and u hold, we obtain that the state correspondences fors′

and u′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an output action ofout(∗)adv. This case is also works well al-
though this action may affect Env. However, the transition of Env
tre= (qe,a,µe) is unique from Claim7.3.1. Claim7.3.1also says that
the state of Env remains static in all states in supp.lst(ϵR)∪supp.lst(ϵI).
This follows from state correspondenceo. Similarly, from the def-

194



inition and some claims, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupts

party∈ {Init,Rec}.

1. a is input/output actionin(∗)party andout(∗)party of corrupted party,
party∈ {Init,Rec}. This case is also works well from Claim7.3.1and
state correspondence in Table7.17∼ 7.19.

Perfect Simulation

The simulation of Sim′DIC is perfectly executed for the establish session,
data sending session and expire session with respect to no corruption, static
corruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessionFirst, in the establish session, environment
Env sends establish messagein(EstablishDIC,sidDIC)Init′ and

messagein(EstablishDIC,sidDIC)Recto initiatorInit′DIC and re-

ceiverRec′DIC, respectively. They send establish session mes-
sagessend(EstablishDIC,sidDIC)FDIC to FDIC. The function-
ality sendssend(SID,sidDIC)Adv to Sim′DIC. After Sim′DIC re-
ceives the message , Sim′DIC generates the parties Init and Rec
in his simulation world to generate the real world situation in
which Init and Rec exchange messages using FSC. Sim′DIC
then generates the establish session in the simulation world.
That is, he inputs messages,in(EstablishSC,sidSC)Init and
in(EstablishSC,sidSC)Rec, to Init and Rec, respectively. Fi-
nally, the parties establish SC in the simulation world.

Simulation Policy
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i. After receivingreceive(SID,sidDIC)FDIC , Sim′DIC executes
the following simulation.

A. Sim′DIC prepares dummy parties, Init′DIC, Rec′DIC, and
Adv and ideal functionality task FSC.

B. Sim′DIC inputs messages,in(EstablishSC,sidSC)Init′DIC

and in(EstablishSC,sidSC)Rec′DIC
, to Init′DIC and

Rec′DIC, respectively.

C. Sim′DIC makes Init′DIC (resp., Rec′DIC) send message
send(EstablishSC,sidSC)FSC to FSC.

D. Sim′DIC makes FSC sendsend(SID,sidSC)Adv to Adv.

Task Correspondence of Simulation

i. Init′DIC.send(EstablishSC,sidSC)FSC

=corr. Sim′DIC.Init′DIC.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2 ; (L);

eff: activeB ⊤ andntaskB ⊥ ; (K), (L);

ii. Rec′DIC.send(EstablishSC,sidSC)FSC

=corr. Sim′DIC.Rec′DIC.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2 ; (Q);

eff: active= ⊤ andntaskB ⊥ ; (P), (Q);

iii. FSC.send(SID,sidSC)Adv′DIC

=corr. Sim′DIC.FSC.send(SID,sidSC)Adv′DIC

pre: active= ⊤ andntask= ESS2 ; (F), (H);

eff: ntaskB ⊥ ; (H);

The stateactiveof Init andrecbecomes⊤, then state correspon-
dences (P) and (K) hold. If the adversary obtains the message
receive(SID,sidSC)FSC in the simulation world,activebecomes
⊤ from (S) in Table7.19. The simulation in the establish session
of the real world is perfectly executed by Sim′DIC. Finally, the
parties establish SC in the simulation world.
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(b) Data Sending SessionNext, in the data sending session, Env
sends messagein(Send,sidDIC,m)

Init′ (or in(Send,sidDIC,m)Rec)

to Init′DIC (or Rec′DIC). Init′DIC sendssend(Send,sidDIC,m)FDIC

to FDIC. FDIC then sends send(Send,sidDIC,m)Adv to
Sim′DIC. After receiving the message, Sim′DIC executes
simulation(Send,sidDIC,mes) to mimic the data sending ses-
sion in the real world. That is, he inputs message
in(Send,sidSC,m)Init (or in(Send,sidSC,m)Rec) to Init (or Rec)
in the simulation world. This is executed as follows. First, if
the message sender is Init, then the receiver generates a random
message withrand(t)tval. Next, both parties, that is, Init and Rec,
send messages to each other. Init sendssend(Send,sidSC,m)FSC

to Rec and Rec sendssend(Send,sidSC, t)FSC to Init. This is ex-
ecuted under master scheduleMπ′DIC

. If the master schedule does
not work, then the random message exchange is not occurred. If
so, the adversary can identify the directions that the messages
were sent.

The policy of Sim′DIC is described hereafter.

Simulation Policy

i. After receiving receive(Send,sidDIC,m)FDIC, Sim′DIC exe-
cutes the following simulation.

A. Sim′DIC executesrandom(∗) and selects dummy mes-
saget where|t| = 1.

B. Sim′DIC generates random bito ∈ {0,1} by executing
random(∗).

C. If o = 0, then Sim′DIC sendsin(Send,sidSC,m)Init′DIC

to Init′DIC and in(Send,sidSC, t)Init′DIC
to Rec′DIC. Else,

Sim′DIC performs the opposite actions.

D. Sim′DIC makes Init′DIC send send(Send,sidSC,m)FSC

and makes Rec′DIC sendsend(Send,sidSC, t)FSC at the
same moment according toMπ′DIC

.
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E. Sim′DIC makes FSC receivereceive(Send,sidSC,m)Init′DIC

and makes FSC sendsend(Send,sidSC,m)Adv to Adv.

F. Sim′DIC makes FSC receivereceive(Send,sidSC, t)Rec′DIC

and makes FSC sendsend(Send,sidSC, t)Adv to Adv.

G. If FSC receives send(Response,sidSC,ok)FSC from
Adv twice, Sim′DIC continues the following.

H. Sim′DIC makes FSC receivereceive(Response,sidSC,
ok)Adv and makes FSCsendsend(Receive,sidSC, t)Init′DIC

and send(Receive,sidSC,mes)Rec′DIC
to Init′DIC and

Rec′DIC, respectively.

I. Sim′DIC makes Init′DIC and Rec′DIC receive message
receive(Receive,sidSC, t)FSC and receive the message
receive(Receive,sidSC,m)FSC, respectively.

J. Sim′DIC makes Rec′DIC outputout(Receive,sidSC,m)Rec′DIC
.

ii. Sim′DIC executessend(Response,sidDIC,ok)FDIC .

The details of this task sequence are shown in Table7.21. This
task sequence is also simulated by Sim′DIC. So, state correspon-
dences (A) ∼ (L) and (N) ∼ (T) hold. That is, simulator Sim′DIC
executes the above-mentioned process to mimic the real world.
The state correspondence in Tables7.18 and 7.19 work well.
The key point of this simulation is as follows. To mimic the real
world, the simulator executes the parties that execute the tasks in
the real world. Moreover, not to distinguish the output trace, the
simulator simulates the real world in his simulation world using
task codes. In the real world, Init′DIC and Rec′DIC use SC with-
outan adversary identifying the direction in which the message
was sent under master scheduleMπ′DIC

. In the simulation world,
Sim′DIC obtains the same output which Adv′DIC outputs in the real
world by his simulation. That is, the trace distributions in each
world are indistinguishable by Env. In other words, since each
task correspondence and the state correspondence work well, the
following property works well,trace(ϵ′R) = trace(ϵ′I ).
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Task Correspondence of Simulation

i. Init′DIC.send(Send,sidSC,m)FSC

=corr. Sim′DIC.Init′DIC.send(Send,sidSC,m)FSC

pre: mB smesandntask= DSS2 ; (L);

eff: smesB ⊥ andntaskB DSS4 ; (I ), (L);

ii. Rec′DIC.rand(t)tvalFSRC =corr. Sim′DIC.Rec′DIC.rand(t)tvalFSRC

pre: ntask= ⊥ ; (Q);

eff: dummyB ⊤, smesB t andntaskB DSS2 ; (O), (Q);

iii. Rec′DIC.send(Send,sidSC,m)FSC

=corr. Sim′DIC.Rec′DIC.send(Send,sidSC,m)FSC

pre: mB smesandntask= DSS2 ; (Q);

eff: smesB ⊥ andntaskB DSS4 ; (N), (Q);

iv. FSC.send(Send,sidSC, |m|)Adv

=corr. Sim′DIC.FSC.send(Send,sidSC, |m|)Adv

pre: active= ⊤, mes, ⊥, okcondAdv = ⊥, mB mesand
ntask= DSS2 ; (E) ∼ (G), (H);

eff: ntaskB DSS3 ; (H);

v. Adv′DIC.send(Response,sidSC,ok)FSC

=corr. SimSC.Adv′DIC.send(Response,sidSC,ok)FSC

pre: ntask= DSS2; (T);

eff: ntaskB ⊥ ; (T);

vi. FSC.send(Receive,sidSC,mes)Rec′DIC

=corr. SimSC.FSC.send(Receive,sidDIC,mes)Rec′DIC

pre: active,mes= ⊤, okcondAdv , ⊥ and ntask= DSS4 ;
(E), (F), (H);

eff: mesandokcondAdv,ntaskB ⊥ ; (E), (G), (H);

vii. FSC.send(Receive,sidSC,mes)Init′DIC

=corr. SimSC.FSC.send(Receive,sidDIC,mes)Init′DIC

pre: active,mes= ⊤, okcondAdv , ⊥ and ntask= DSS4 ;
(E), (F), (H);
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eff: mesandokcondAdv,ntaskB ⊥ ; (E), (G), (H);

viii. Rec′DIC.out(Receive,sidSC, plain)Rec′DIC

=corr. SimSC.Rec′DIC.out(Receive,sidSC, plain)Rec′DIC

pre: plainB rmesandntask= DSS5 ; (O), (Q);

eff: dummy, rmesandntaskB ⊥ ; (O), (R), (Q);

(c) Expire SessionFinally, in the expire session, Env sends mes-
sage in(ExpireDIC,sidDIC)Init′ and in(ExpireDIC,sidDIC)Rec

to Init′DIC and Rec′DIC, respectively. They relay mes-
sage send(ExpireDIC,sidDIC)FDIC to FDIC. After receiving
send(ExpireDIC,sidDIC)Adv from FDIC, Sim′DIC terminates the
session in the simulation world.

Simulation Policy

i. After receivingreceive(ExpireDIC,sidDIC)FDIC , Sim′DIC ex-
ecutes the following simulation.

A. Sim′DIC inputs messages,in(ExpireDIC,sidDIC)Init and
in(ExpireDIC,sidDIC)Rec, to Init′DIC and Rec′DIC, re-
spectively.

B. Sim′DIC makes Init′DIC (resp., Rec′DIC) send message
send(ExpireSC,sidSC)FSC to FSC.

C. Sim′DIC makes FSC sendsend(ExpireSC,sidSC)Adv to
Adv.

D. Sim′DIC finishes the simulation of the expire session.

That is, Sim′DIC inputs messagesin(ExpireSC,sidSC)Init and
in(ExpireSC,sidSC)Rec to Init and Rec in the simulation world.
We assume that the state correspondences in Table7.18and7.19
hold. From3a, 3b and3c, the state correspondences also hold
after the simulation by Sim′DIC. That is,trace(ϵ′R) = trace(ϵ′I ).

Task Correspondence of Simulation

i. Init′DIC.send(ExpireSC,sidSC)FSC

=corr. Sim′DIC.Init′DIC.send(ExpireSC,sidSC)FSC
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pre: ntask= EXS2 ; (L);

eff: activeandntaskB ⊥ ; (K), (L);

ii. Rec′DIC.send(ExpireSC,sidSC)FSC

=corr. Sim′DIC.Rec′DIC.send(ExpireSC,sidSC)FSC

pre: ntask= EXS2 ; (Q);

eff: activeandntaskB ⊥ ; (P), (Q);

iii. FSC.send(ExpireSC,sidSC)Adv

=corr. Sim′DIC.FSC.send(ExpireSC,sidSC)Adv

pre: ntask= EXS2 ; (I );

eff: active, estcondX andntaskB ⊥ for all X ; (C) ∼ (F),
(H);

2. Static Corruption

This type of corruption is divided into the following three cases: only
Init is corrupted by Adv, only Rec is corrupted by Adv, and both par-
ties are corrupted by Adv. Once the corruption occurs, the adversary
can identify the direction. However, the simulator can simulate all the
cases, so Env can not distinguish the real world from the ideal world.

(a) Only Init is corrupted by Adv

This case means that Adv′DIC corrupts only Init before the pro-
tocol starts. Adv′DIC and Sim′DIC identify the direction that the
message was sent from Init to Rec and from Rec to Init, respec-
tively. So, the simulation is perfectly executed.

i. After receiving the corrupt message from Env, Sim′DIC pre-
pares the situation in which only Init′DIC is corrupted and
adds the following policy before1(a)iB. Sim′DIC makes Adv
corrupt Init′DIC.

ii. After receiving receive(Send,sidDIC,m)FDIC in party ∈
{Init,Rec}, Sim′DIC executes the following simulation.
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A. If the message is input to corrupted party Init, Sim′DIC
inputsin(Send,sidDIC,m)Init to Init.

B. Else the message is input to Rec and Sim′
DIC inputs

in(Send,sidDIC,m)Rec to Rec.

C. The remaining steps are the same as the simulation for
the No Corrupted Case.

iii. After receiving receive(Send,sidDIC,m)FDIC in Init′DIC,
Sim′DIC executesout(Receive,sidDIC,m)Init′DIC

.

If the protocol executes the establish session, data sending ses-
sion, and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sim′DIC. From the Task Correspondence
in 7.3.1, the state correspondence7.17, 7.18, and7.19hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(b) Only Rec is corrupted by Adv

This case is analogous to case??. This case means that Adv′DIC
corrupts only Rec before the protocol starts. Adv′

DIC and Sim′DIC
identify the direction that the message was sent from Init to Rec
and from Rec to Init, respectively. So, the simulation is perfectly
executed.

i. After receiving the corrupt message from Env, Sim′DIC pre-
pares a situation in which only Rec′DIC is corrupted and adds
the following policy before1(a)iB. Sim′DIC makes Adv cor-
rupt Rec′DIC.

ii. After receiving receive(Send,sidDIC,m)FDIC from FDIC,
Sim′DIC executes the following simulation.

A. If the message is input to corrupted party Rec, Sim′
DIC

inputsin(Send,sidDIC,m)Rec to Rec.

B. Else the message is input to Init and Sim′DIC inputs
in(Send,sidDIC,m)Init to Init.
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C. The remaining steps are the same as the simulation for
the No Corrupted Case.

iii. After receiving receive(Send,sidDIC,m)FDIC in Rec′DIC,
Sim′DIC executesout(Receive,sidDIC,m)Rec′DIC

.

If the protocol executes the establish session, data sending ses-
sion and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sim′DIC. From the Task Correspondence
in 7.3.1, the state correspondences in7.17, 7.18, and7.19hold
in this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Both parties are corrupted by Adv

This case is also analogous to case??. This case means that
Adv′DIC corrupts both Init and Rec before the protocol starts.
Adv′DIC and Sim′DIC identify the direction that the message was
sent from Init to Rec and from Rec to Init, respectively. So, the
simulation is perfectly executed.

i. After receiving the corrupt message from Env, Sim′DIC pre-
pares the situation in which only Init′DIC and Rec′DIC are cor-
rupted and adds the following policy before1(a)iB. Sim′DIC
makes Adv corrupt Init′DIC and Rec′DIC.

ii. If the data sending message is input toparty∈ {Init,Rec},
Sim′DIC inputsin(Send,sidDIC,m)party to party.

iii. The remaining is the same as the simulation for the No Cor-
rupted Case.

iv. After receiving receive(Send,sidDIC,m)FDIC in party,
Sim′DIC executesout(Receive,sidDIC,m)party.

If the protocol executes the establish session, data sending ses-
sion and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sim′DIC. From the Task Correspondence
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in 7.3.1, the state correspondences7.17, 7.18, and7.19hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

3. Adaptive Corruption

In this case, the adversary corrupts some parties when he wants to
do so at any time. We assume that the adversary corrupts the parties.
This case is also simulated by the simulator, but the direction that
the message was sent cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by
simulator Sim′DIC, so the simulation is perfectly executed. This case
is separated into the following cases.

(a) Establish Session

Instance 1: Before Init′DIC and Rec′DIC are activated.
This case is analogous to case2 because there is no secret
information. The adversary can corrupt Init′

DIC, Rec′DIC, or
both, but the simulator can also corrupt the corresponding
parties. This case is also perfectly simulated by Sim′

DIC.

Instance 2: After Init′DIC is activated but before Rec′DIC is
activated.
This case is analogous to case2 because there is no secret
information. The adversary can corrupt Init′

DIC, Rec′DIC, or
both, but the simulator can also corrupt the corresponding
parties. This case is perfectly simulated by Sim′DIC.

Instance 3: After Rec′DIC is activated but before Init′DIC is
activated.
This case is analogous to case2 because there is no secret
information. The adversary can corrupt Init′

DIC, Rec′DIC, or
both, but the simulator can also corrupt the corresponding
parties. This case is also perfectly simulated by Sim′

DIC.

Instance 4: After Init′DIC and Rec′DIC are activated.
This case is analogous to case2 because there is no secret
information. The adversary can corrupt Init′

DIC, Rec′DIC, or
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both, but the simulator can also corrupt the corresponding
parties. These case are also perfectly simulated by Sim′

DIC.

(b) Data Sending Session

Instance 1: Before or after activating Init′DIC or Rec′DIC by
receivingin(Send,sidDIC,m)Init′DIC

or in(Send,sidDIC,m
)Rec′DIC

, respectively, from the Env.
Env can execute only the message sending indication and
the corrupt indication. So, in this case only the adversary
corrupts the party. This case is also simulated by Sim′

DIC,
because there is no secret information. So, the task cor-
responding works well and there exists a simulation re-
lation between the real world and ideal world. That is,
trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Expire Session

Instance 1:After Init′DIC or Rec′DIC is activated with expire
message.
Once the expire message is sent to Init′

DIC or Rec′DIC by Env,
this session terminates in the real world and ideal world. So
the adversary can corrupt the parties. That is, this case is
identical to case2.

Simulation Policy

Sim′DIC simulates in his simulation world as follows:

(a) After receiving “corrupt Init′DIC” message from Env,

• Sim′DIC corrupts Init′DIC and checks whetherparty ∈
{Init,Rec} has already sent the data sending message to the
other party. If the message was already sent, Sim′

DIC does
the following. Else, Sim′DIC makes Adv corrupt Init.

• If party= Init,

205



– If Sim′DIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
Sim′DIC simulates that Adv corrupts Init, immediately.

– Else, Sim′DIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
Sim′DIC simulates that Adv corrupts Rec, immediately.

• Else,party= Rec,

– If Sim′DIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
Sim′DIC simulates that Adv corrupts Rec, immediately.

– Else, Sim′DIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
Sim′DIC simulates that Adv corrupts Init, immediately.

• If more data sending messages are input toparty from Env
after Sim′DIC corruptsparty, Sim′DIC can also simulate the
situation. If the message is input to corrupted Init, Sim′DIC
inputs the sending message to corruptedparty in his simu-
lation. Else, the message is input to Rec and Sim′

DIC inputs
the sending message to non-corruptedparty in his simula-
tion.

• After receiving receive(Send,sidDIC,m)FDIC in Init′DIC,
Sim′DIC executesout(Receive,sidDIC,m)Init′DIC

.

(b) After receiving the “corrupt Rec′DIC” message from Env,

• Sim′DIC corrupts Rec′DIC and checks whetherparty ∈
{Init,Rec} has already sent the data sending message to the
other party. If the message was already sent, do as follows.
Else, makes Adv corrupt Rec.

• If party= Init,

– If Sim′DIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
Sim′DIC simulates that Adv corrupts Rec, immediately.
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– Else, Sim′DIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
Sim′DIC simulates that Adv corrupts Init.

• Else,party= Rec,

– If Sim′DIC has already input message sending request
in(Send,sidDIC,m)Init to Init in his simulation, then
Sim′DIC simulates that Adv corrupts Init.

– Else, Sim′DIC has already input message sending request
in(Send,sidDIC,m)Rec to Rec in his simulation, then
Sim′DIC simulates that Adv corrupts Rec.

• If more data sending messages are input inparty from Env
after Sim′DIC corruptsparty, Sim′DIC can also simulate the
situation. If the message is input to corrupted Init, Sim′DIC
inputs the sending message in non-corruptedparty in his
simulation. Else, the message is input to Rec and Sim′

DIC
inputs the sending message to corruptedparty in his simu-
lation.

• After receiving receive(Send,sidDIC,m)FDIC in Rec′DIC,
Sim′DIC executesout(Receive,sidDIC,m)Rec′DIC

.

(c) After receiving the “corrupt Init′DIC and Rec′DIC” message from
Env,

• Sim′DIC corruptsInit′DIC and Rec′DIC and checks whether
party ∈ {Init,Rec} has already sent the data sending mes-
sage to the other party.
If the message was already sent, Sim′DIC makes Adv corrupt
Init and Rec and does the following. Else, Sim′DIC makes
Adv corrupt Init and Rec.

– If Sim′DIC has already input message sending request
in(Send,sidDIC,m)party to party in his simulation, then
Sim′DIC simulates that Sim′DIC inputs more data sending
requests to the correspondingparty. That is, if the party
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that Sim′DIC has already sent a request message is equal
to the party that received a message from Env, Sim′

DIC
inputs more data sending requested to the party.

– Else, the input party in the simulation world is not same
as the input party in the ideal world, Sim′DIC regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

• After receiving receive(Send,sidDIC,m)FDIC in party,
Sim′DIC executesout(Receive,sidDIC,m)party.

Whenever Adv′DIC corrupts some party, Sim′DIC corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Adv′DIC. If Adv ′DIC corrupts
party Init′DIC or Rec′DIC then Sim′DIC corruptsInitDIC or RecDIC in the
ideal world, and provides a simulated copy of Adv′

DIC in the simula-
tion world with the states of the corrupted party. Conversely, Sim′

DIC
may obtain information from the simulated world with the corrup-
tion. Additionally, in this protocol party there is no secret information
because FSC is securely executed. In all cases, since Sim′

DIC can sim-
ulate Adv′DIC by using his simulated world, Env cannot distinguish
real world from ideal world. That is, simulating party corruption is
perfectly executed.

Finally, relationR is a simulation relation from the task and state correspon-
dence. We obtain Lemma3. �

Next, Theorem6 is obtained from Lemma3 immediately.

Proof. From Lemma3 and Theorem3, Theorem6 is proved. That is, the
trace distribution property,tdist(ϵR) = tdist(ϵI) holds with respect to adap-
tive adversary.
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As a result, the simulation is perfectly executed because Sim′
DIC can

simulate the real world from the information message through Adv′
DIC. The

tasks of the real world perfectly correspond with the tasks of the ideal world.
That is,

Real′DIC||Env Hyb. ≤
Mπ′DIC
0 Ideal′DIC||Env.

�
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Functionality

(a) u.FDIC.estcondInit = s.FSC.estcondInit

(b) u.FDIC.estcondRec= s.FSC.estcondRec

(c) u.FDIC.okcondAdv′ = s.FSC.okcondAdv′

(d) u.FDIC.active= s.FSC.active

(e) u.FDIC.mes= s.FSC.mes

(f) u.FDIC.ntask= s.FSC.ntask

Initiator

(g) u.Init′DIC.smes= s.Init′DIC.smes

(h) u.Init′DIC.rmes= s.Init′DIC.rmes

(i) u.Init′DIC.active= s.Init′DIC.active

(j) u.Init′DIC.ntask= s.Init′DIC.ntask

Receiver

(k) u.Rec′DIC.smes= s.Rec′DIC.smes

(l) u.Rec′DIC.rmes= s.Rec′DIC.rmes

(m) u.Rec′DIC.active= s.Rec′DIC.active

(n) u.Rec′DIC.ntask= s.Rec′DIC.ntask

Environment

(o) u.Env= s.Env

Table 7.17:State Correspondence for Real′
DIC and Ideal′DIC (Part I)
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Simulator (or Adversary)

(A) u.Sim′DIC.active= s.Adv′DIC.active

(B) u.Sim′DIC.ntask= s.Adv′DIC.ntask

(C) u.Sim′DIC.FSC.estcondInit = s.FSC.estcondInit

(D) u.Sim′DIC.FSC.estcondRec= s.FSC.estcondRec

(E) u.Sim′DIC.FSC.okcondAdv′ = s.FSC.okcondAdv′

(F) u.Sim′DIC.FSC.active= s.FSC.active

(G) u.Sim′DIC.FSC.mes= s.FSC.mes

(H) u.Sim′DIC.FSC.ntask= s.FSC.ntask

(I) u.Sim′DIC.Init′DIC.smes= s.Init′DIC.smes

(J) u.Sim′DIC.Init′DIC.rmes= s.Init′DIC.rmes

(K) u.Sim′DIC.Init′DIC.active= s.Init′DIC.active

(L) u.Sim′DIC.Init′DIC.ntask= s.Init′DIC.ntask

(M) u.Sim′DIC.Init′DIC.dummy= s.Init′DIC.dummy

Table 7.18:State Correspondence for Real′
DIC and Ideal′DIC (Part II)
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Simulator (or Adversary)

(N) u.Sim′DIC.Rec′DIC.smes= s.Rec′DIC.smes

(O) u.Sim′DIC.Rec′DIC.rmes= s.Rec′DIC.rmes

(P) u.Sim′DIC.Rec′DIC.active= s.Rec′DIC.active

(Q) u.Sim′DIC.Rec′DIC.ntask= s.Rec′DIC.ntask

(R) u.Sim′DIC.Rec′DIC.dummy= s.Rec′DIC.dummy

(S) u.Sim′DIC.Adv′DIC.active= s.Adv′DIC.active

(T) u.Sim′DIC.Adv′DIC.ntask= s.Adv′DIC.ntask

(U) u.Sim′DIC.Adv′DIC.length= s.Adv′DIC.length

Table 7.19:State Correspondence for Real′
DIC and Ideal′DIC (Part III)
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1. Establish Session

(a) Init′DIC.send(EstablishSC,sidSC)FSC

=corr. Init′DIC.send(EstablishDIC,sidDIC)FDIC

(b) Rec′DIC.send(EstablishSC,sidSC)FSC

=corr. Rec′DIC, send(EstablishDIC,sidDIC)FDIC

(c) FSC.send(SID,sidSC)Adv =corr. FDIC.send(SID,sidDIC)Adv

2. Expire Session

(a) Init′DIC.send(ExpireSC,sidSC)FSC

=corr. Init′DIC.send(ExpireDIC,sidDIC)FDIC

(b) Rec′DIC.send(ExpireSC,sidSC)FSC

=corr. Rec′DIC, send(ExpireDIC,sidDIC)FDIC

(c) FSC.send(ExpireSC,sidSC)Adv

=corr. FDIC.send(ExpireDIC,sidDIC)Adv

3. Environment

(a) All tasks of environment Env in Real′DIC correspond to the tasks of
environment in Ideal′DIC.

Table 7.20:Corresponding Tasks for Real′DIC and Ideal′DIC
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Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

Signature:
sidDIC = ({Init′,Rec′},sid′DIC)
sidSC = (Init′,Rec′,sid′SC)

Input: Output:
in(EstablishDIC,sidDIC)Init′ send(EstablishSC,sidSC)FSC

in(Send,sidDIC,m)Init′ send(Send,sidSC,m)FSC

receive(Receive,sidSC,m)FSC out(Receive,sidDIC, plain)Init′

rand(s)sval

in(ExpireDIC,sidDIC)Init′ send(ExpireSC,sidSC)FSC

State:
smes, rmes∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
dummy∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishSC,sidSC)FSC, send(Send,sidSC,m)FSC,

out(Receive,sidDIC, plain)Init′ , send(ExpireSC,sidSC)FSC}

Figure 7.35:Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

(Part I)
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Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Init′

pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidDIC,m)Init′

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidSC,m)FSC

pre: mB smesandntask= DSS2
eff: smesB ⊥ andntaskB DSS4

DSS3.rand(s)sval

pre: ntask= ⊥
eff: dummyB ⊤, smesB s andntaskB DSS2

DSS4.receive(Receive,sidSC,m)FSC

pre: active= ⊤ andntask= DSS4
eff: If dummy= ⊤ thenrmesBmandntaskB DSS5.
ElsermesandntaskB ⊥.

DSS5.out(Receive,sidDIC, plain)Init′

pre: plainB rmesandntask= DSS5
eff: dummy, rmesandntaskB ⊥

Figure 7.36:Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

(Part II)
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Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

Transitions:

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Init′

pre: active= ⊤ andsmes, rmesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireSC,sidSC)FSC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.37:Code for Initiator of Direction-Indeterminable Channel, Init′
DIC

(Part III)
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Code for Receiver of Direction-Indeterminable Channel, Rec′
DIC

Signature:
sidDIC = ({Init′,Rec′},sid′DIC) sidSC = (Init′,Rec′,sid′SC)

Input: Output:
in(EstablishDIC,sidDIC)Rec′ send(EstablishSC,sidSC)FSC

in(Send,sidDIC,m)Rec′ send(Send,sidSC,m)FSC

receive(Receive,sidSC,m)FSC out(Receive,sidDIC, plain)Rec′

rand(t)tval

in(ExpireDIC,sidDIC)Rec′ send(ExpireSC,sidSC)FSC

State:

smes, rmes∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
dummy∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishSC,sidSC)FSC, send(Send,sidSC,m)FSC,

out(Receive,sidDIC, plain)Rec′ , send(ExpireSC,sidSC)FSC}

Figure 7.38: Code for Receiver of Direction Indeterminable Channel,
Rec′DIC (Part I)
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Code for Receiver of Direction-Indeterminable Channel, Rec′
DIC

Transitions:

Establish Session:

ESS1.in(EstablishDIC,sidDIC)Rec′

pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidDIC,m)Rec′

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidSC,m)FSC

pre: mB smesandntask= DSS2
eff: smesB ⊥ andntaskB DSS4

DSS3.rand(t)tval

pre: ntask= ⊥
eff: dummyB ⊤, smesB t andntaskB DSS2

DSS4.receive(Receive,sidSC,m)FSC

pre: active= ⊤ andntask= DSS4
eff: if dummy= ⊤ thenrmesBmandntaskB DSS5
elsermesB ⊥ andntaskB ⊥

DSS5.out(Receive,sidDIC, plain)Rec′

pre: plainB rmesandntask= DSS5
eff: dummy, rmesandntaskB ⊥

Figure 7.39: Code for Receiver of Direction Indeterminable Channel,
Rec′DIC (Part II)
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Code for Receiver of Direction-Indeterminable Channel, Rec′
DIC

Transitions:

Expire Session:

EXS1. in(ExpireDIC,sidDIC)Rec′

pre: active= ⊤ andsmes, rmesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireSC,sidSC)FSC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.40: Code for Receiver of Direction Indeterminable Channel,
Rec′DIC (Part III)
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Code for Adversary for Secure Channel, Adv′
DIC

Signature:
sidSC = (Init,Rec,sid′SC)

Input:
receive(SID,sidSC)FSC

receive(Send,sidSC, |m|)FSC

receive(ExpireSC,sidSC)FSC

Output:
send(Response,sidSC,ok)FSC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
length∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{send(Response,sidSC,ok)FSC, other arbitrary tasks}

Figure 7.41:Code for Adversary for Secure Channel, Adv′
DIC (Part I)
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Code for Adversary for Secure Channel, Adv′
DIC

Transitions:

Establish Session:

ESS1.receive(SID,sidSC)FSC

pre: active= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1. receive(Send,sidSC, |m|)FSC

pre: active= ⊤ andntask= ⊥
eff: lengthB |m| andntaskB DSS2

DSS2. send(Response,sidSC,ok)FSC

pre: ntask= DSS2
eff: lengthB ⊥ andntaskB ⊥

Expire Session:

EXS1. receive(ExpireSC,sidSC)FSC

pre: active= ⊤
eff: activeB ⊥

Other tasks:
This adversary makes other arbitary tasks.

Figure 7.42:Code for Adversary for Secure Channel, Adv′
DIC (Part II)
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Code for Simulator for Direction Indeterminable Channel, Sim′
DIC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
Input:
receive(SID,sidDIC)FDIC

receive(Send,sidDIC,m)FDIC

Output:
send(Response,sidDIC,ok)FDIC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥ mes∈ {0,1}∗∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Other arbitrary variables; call ”new” variables.

Tasks:
{send(Response,sidDIC,ok)FDIC }

Figure 7.43: Code for Simulator for Direction Indeterminable Channel,
Sim′DIC (Part I)
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Code for Simulator for Direction Indeterminable Channel, Sim′
DIC

Transitions:

Establish Session:

ESS1.receive(SID,sidDIC)FDIC

pre: activeandntask= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1.receive(Send,sidDIC,m)FDIC

pre: active= ⊤ andntask= ⊥
eff: mesBm andntaskB DSS2

DSS2.send(Response,sidDIC,ok)FDIC

pre: ntask= DSS2
eff: mesB ⊥ andntaskB ⊥

Expire Session:

EXS1. receive(ExpireDIC,sidDIC)FDIC

pre: active= ⊤ eff: activeB ⊥
Other tasks:

This simulator makes arbitrary tasks to simulate the real world
protocol system Real′DIC. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary in the simiulat-
ing world to the environment.

Figure 7.44: Code for Simulator for Direction Indeterminable Channel,
Sim′DIC (Part II)
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7.3.2 Reduction of SC to DIC

Let n be the number of parties andMrasync(t∗1, · · · , t
∗
n) be master schedules

wheret∗i is a task in partyPi .

Definition 26. [Mrasync(t∗1, · · · , t
∗
n,k)] Let k be a integer. Let t∗i be a task

specified byρi for party Pi . Let ci be the number of times t∗i is scheduled by
M. M schedules the task activations of t∗

1, · · · , t
∗
n so that|ci − c j | ≤ k for all

i, j in a random order.

Note that we must consider a property similar to the Chernov bound
property if we employ this master schedule to use the key exchange among
parties for safe exchange.

Let πSC be a protocol of SC. LetMπSC andM′πSC
beMpsync(InitSC.send(

Send,sidDIC, s)FDIC ,RecSC.send(Send,sidDIC, t)FDIC) andMrasync(InitSC.se
nd(Send,sidDIC, s)FDIC ,RecSC.send(Send,sidDIC, t)FDIC ,k), respectively.

MπSC andM′πSC
are accepted for the master schedule, hereafter, we ex-

plain by usingMπSC.
Let InitSC and RecSC be the initiator code and receiver code for a real

system, see Fig.7.45, Fig.7.46and Fig.7.47, Fig.7.48, Fig.7.49and Fig.7.50,
respectively. LetInitDIC andRecDIC be the initiator code and receiver code
for an ideal system, see Fig.7.53and Fig.7.54, and Fig.7.55and Fig.7.56,
respectively. Finally, let AdvSC, SimSC, and FSRC be the adversary code,
the simulator code, and the random bit generator code in Fig.7.51 and
Fig.7.52, and Fig.7.57and Fig.7.58, and Fig.7.59, respectively. Let RealSC

and IdealSC be a SC protocol system and a SC functionality system, respec-
tively, defined as follows:

RealSCB hide(InitSC||RecSC||AdvSC||FSRC||FDIC, {rand(∗)}),
IdealSCB hide(InitSC||RecSC||SimSC||FSC, {rand(∗)}).

TasksInitSC andRecSC relay input messages from the environment to
the ideal functionality task and relay received messages from the ideal func-
tionality task to the environment, respectively, as interface parties in the
ideal system.
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Theorem 7. SC protocol systemRealSC perfectly hybrid-implements SC
functionality systemIdealSC with respect to an adaptive adversary under
master schedule Mpsync(send(Send,sidDIC, s)FDIC , send(Send,sidDIC, t)FDIC)
(SC is reducible to DIC with respect to an adaptive adversary under master
schedule Mpsync(send(Send,sidDICs)FDIC , send(Send,sidDIC, t)FDIC)).

The proof of theorem7 is described similarly to other theorems. The
master schedule can beMrasync instead ofMpsync.

Let ϵR and ϵI be discrete probability measures on finite executions of
RealSC||Env and IdealSC||Env, respectively. We prove Theorem7 by show-
ing thatϵR andϵI satisfy the trace distribution property,tdist(ϵR) = tdist(ϵI).
Here, we define correspondenceR between the states in RealSC||Env and
the states in IdealSC||Env. We say (ϵR, ϵI) ∈ R if and only if for every
s∈ supp.lst(ϵR) andu∈ supp.lst(ϵI), all state correspondences in Tables7.25,
7.26and7.27hold. We then proveR is a simulation relation in Lemma4.

Lemma 4. Relation R defined above is a simulation relation from
RealSC||Env to IdealSC||Envunder master schedule MπSC.

Proof. We prove thatR is a simulation relation from RealSC|Env to
IdealSC||Env using mapping corrtaskR∗RealSC|Env×RRealSC|Env→ R∗IdealSC||Env,
which is defined as follows.

The task sequence of system RealSC||Env are perfectly correspond to the
task sequence of system IdealSC||Env under scheduleMπSC. Formally, to
prove thatR is a simulation relation from RealSC||Env to IdealSC||Env, we
show thatRsatisfies the start condition and step condition.

• Start condition
It is true that the start states ofsandu in RealSC||Env and IdealSC||Env,
respectively, are on the Dirac measures. That is, the start states ofs
andu satisfy relationRbecause the start states ofsandu are all⊥ for
each task on master scheduleMπSC. Therefore, the trace distribution
property holds.

• Step condition
Let ϵ′R = apply(ϵR,T) andϵ′I = apply(ϵI ,corrtasks(ρ,T)). If (ϵR, ϵI) ∈
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R, ρ ∈ R∗RealSC||Env, ϵR is consistent withρ, thenϵI is consistent with
f ull(corrtasks)(ρ), andT ∈ RealSC||Env. Then there exist the follow-
ing.

– Probability measurep on countable index setI ,

– Probability measuresϵ′R, j , j ∈ I , on finite executions of
RealSC||Env, and

– Probability measuresϵ′I, j , j ∈ I , on finite executions of
IdealSC||Env,

such that:

– For eachj ∈ I , ϵ′R, j R ϵ′I, j ,

– Σ j∈I p( j)(ϵ′R, j) = apply(ϵR,T), and

– Σ j∈I p( j)(ϵ′I, j) = apply(ϵI ,corrtask(ρ,T)).

Task Correspondence

For any (ρ,T) ∈ (R∗RealSC||Env×RRealSC||Env), the following task Correspon-
dence, which is also summarized in Table7.28, holds.

1. Establish Session

(a) InitSC.send(EstablishDIC,sidDIC)FDIC

=corr. InitSC.send(EstablishSC,sidSC)FSC

Let TREAL and TIDEAL be send(EstablishDIC,sidDIC)FDIC and
send(EstablishSC,sidSC)FSC, respectively. Here, we must con-
sider the cases of InitSCandInitSC, but these follow the same dis-
cussion. So, we consider the case ofInitSC. We assume that for
each state,s∈ supp.lst(ϵR) andu∈ supp.lst(ϵI) are fixed. The pre-
condition ofTREAL andTIDEAL is ntask= ESS2 from each codes.
TREAL (resp.,TIDEAL) is enabled (or disabled) ins (resp.,u) if
and only ifs.InitSC.ntask= ESS2 (resp.u.InitSC.ntask= ESS2).
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From (j) in Table 7.25, u.InitSC.ntask and s.InitSC.ntask im-
ply that TREAL andTIDEAL are uniformly enabled or disabled in
supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case:
Let I and p be the set that has a single element and Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R and ϵ′I,1 = ϵ

′
I .

We have the fact thatϵ′R = ϵR and ϵ′I = ϵI . Here, we ob-
tain ϵ′R,1Rϵ′I,1 from relation ϵRRϵI. The trace distribution
equivalence property,tdist(ϵ′R) = tdist(ϵ′I ), also holds since
tdist(ϵR) = tdist(ϵI) underMπSC.

ii. Enable Case:
Let q denote the state of precondition :ntask= ESS2. Let
TREAL andTIDEAL be the action enabled inq in each world.
We show that each ofTREAL andTIDEAL is a unique action
that is enabled inq. From the definition ofTREAL andTIDEAL,
the precondition is onlyntask= ESS2, and is unique in all
tasks in InitSC andInitSC. Then, there are two unique effects
that update theactiveandntaskto be⊤ and⊥, respectively.
From the precondition and the effect ofTREAL, and the state
equivalence of (i) and (j), we obtain that the subsequent
action ofTREAL (andTIDEAL) is also a unique action that is
enabled in every state in supp.lst(ϵR)∪supp.lst(ϵI).
Let I andp be the set that has a single element and the Dirac
measure onI , respectively. Letϵ′R,1 = ϵ

′
R andϵ′I,1 = ϵ

′
I . Here,

we establish the property ofR for ϵ′R and ϵ′I to show that
(ϵ′R, ϵ

′
I ) ∈ R. Then we show trace distribution equivalence

for ϵ′R andϵ′I . To establish this property, we consider any
states′ ∈ supp.lst(ϵ′R) and u′ ∈ supp.lst(ϵ′I ). Let s be any
state in supp.lst(ϵR) such thats′ ∈ supp(µs) where (s, ζ,µs) ∈
RealSC||Env. Letu be any state in supp.lst(ϵI) such thatu′ ∈
supp(µu) where (u,corrtask(ρ,ζ),µu) ∈ IdealSC||Env.
It is true that TREAL updates Init.active to ⊤ and
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InitSC.ntask to ⊥ from the definition of the effect of
TREAL. Similarly, TIDEAL updates InitSC.active to ⊤
and InitSC.ntask to ⊥ from the definition of the effect
of TIDEAL. From the state equivalence of (i) and (j)
in Table 7.25, we haveu.InitSC.active= s.InitSC.active
and u.InitSC.ntask = s.InitSC.ntask. We obtain that
u′.InitSC.active = s′.InitSC.active and u′.InitSC.ntask =
s′.InitSC.ntask. By the definition of InitSC andInitSC, TREAL
(resp.,TIDEAL) is a unique action that updates the state of
activeof RealSC (resp., IdealSC). Therefore, we obtain the
trace distribution property,trace(ϵ′R) = trace(ϵ′I ).

(b) RecSC.send(EstablishDIC,sidDIC)FDIC

=corr. RecSC.send(EstablishDIC,sidSC)FSC

This is similar to case1a. The precondition and effect of
these tasks are identical to each other. The preconditions
of the task on the left side of the equation areactive= ⊤
and ntask= ESS2. This is equivalent to those on the right
side of the equation. The effect of the task on left side is
ntaskB ⊥. This effect is also the same as that on the right
side. LetTREAL be FDIC.send(SID,sidDIC)Adv. Let TIDEAL be
FSC.send(SID,sid2AC)Adv. We show thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). We
consider that for each states∈ supp.lst(ϵR) andu ∈ supp.lst(ϵI)
are fixed. Then,TREAL is enabled (or disabled) ins if and only if
s.TREAL.active= ⊤ ands.TREAL.ntask= ESS2. The precondition
of TIDEAL, (n) in the Table7.25, implies thatTIDEAL is uniformly
enabled or disabled. The rest of this proof is similar to that for
the task of the initiator.

More specifically, the precondition and effect of the real task are
the same as those for the ideal task from (n), and (m) and (n),
respectively. So, these tasks correspond.

i. Disable Case: LetϵR and ϵI be discrete probability mea-
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sures in the real world and ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definitions and the state correspondence of pre: (n). There-
fore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of pre:
(n), and state correspondences of eff: (m) and (n), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(c) FDIC.send(SID,sidDIC)Adv =corr. FSC.send(SID,sidSC)Adv

The precondition and effect of these tasks are identical to
each other. The preconditions of the task on the left side
of the equation areactive= ⊤ and ntask= ESS2. These
are equivalent to those for the right side of the equation .
The effect of the task on the left side of the equation is
ntaskB ⊥. This effect is also the same as that for the right
side. LetTREAL be FDIC.send(SID,sidDIC)Adv. Let TIDEAL be
FSC.send(SID,sidSC)Adv. We show thatTREAL and TIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). We
consider that for each state ins∈ supp.lst(ϵR) andu∈ supp.lst(ϵI)
are fixed. Then,TREAL is enabled (or disabled) ins if and only if
s.TREAL.active=⊤ ands.TREAL.ntask= ESS2. The preconditions
of TIDEAL, (d) and (f ) in Table7.25, implies thatTIDEAL is uni-
formly enabled or disabled. The rest of this proof is similar to
that for the task of the Initiator.

2. Data Sending Session

Here, we can consider the following two cases in this session. One
is that Env inputsin(Send,sidSC,m)Init to InitSC and message re-
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ceiver RecSC outputs messageout(Receive,sidSC, plain)Rec. The
other is that Env inputsin(Send,sidSC,m)Rec to RecSC and message
receiver InitSC outputs messageout(Receive,sidSC, plain)Init . These
two cases are considered to be the same, so hereafter we consider the
first case. The basic task sequences are given in Table7.29. Note that
the simulation has the same sequences as those for the Real Execution
in Table7.29.

The key exchange phase is simulated by SimSC, and more details are
given in 1. Hereafter, we explain that the message sending is safely
executed after the key exchange.

(a) InitSC.send(Send,sidDIC,cipher)FDIC

=corr. InitSC.send(Send,sidSC,m)FSC

The precondition and effect of these tasks are identical to each
other. LetTREAL andTIDEAL be send(Send,sidDIC,cipher)FDIC

andsend(Send,sidSC,m)FSC. We show thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). We
consider that for each state ins∈ supp.lst(ϵR) andu∈ supp.lst(ϵI)
are fixed. TREAL (resp.,TIDEAL) is enabled (or disabled) if and
only if s.InitSC.ntask=DSS2 (resp.,u.InitSC.ntask=DSS2). (g)
and (j) in Table7.25imply thatTREAL andTIDEAL are uniformly
enabled or disabled in supp.lst(ϵR)∪supp.lst(ϵI). So, these tasks
are activated under the same conditions.

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (g) and (j).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondences of pre: (g)
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and (j), and state correspondences of eff: (g) and (j), we
have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of the simulation relationRhold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(b) RecSC.send(Send,sidDIC,cipher)FDIC

=corr. RecSC.send(Send,sidSC,m)FSC

This is identical to case2a. The states of precondition and effect
of both expression are same. The rest of this proof is similar to
2a.

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (k) and (n).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
each task definitions, the state correspondences of pre: (k)
and (n), and state correspondences of eff: (k) and (n), we
have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step con-
ditions of simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(c) FDIC.send(Send,sidDIC,m)Adv

=corr. FSC.send(Send,sidSC, |m|)Adv

The precondition and effect of these tasks are identical to each
other. LetTREAL and TIDEAL be send(Send,sidDIC,m)Adv and
send(Send,sidSC, |m|)Adv. We show thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). We
consider that for each state ins∈ supp.lst(ϵR) andu∈ supp.lst(ϵI)
are fixed. TREAL (resp.,TIDEAL) is enabled (or disabled) if and
only if s.TREAL.ntask= DSS2 (resp.,u.TIDEAL.ntask= DSS2).
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(c), (d) and (f ) in Table7.25 imply that TREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). So,
these tasks are activated under the same conditions.

(d) AdvSC.send(Response,sidDIC,ok)FDIC

=corr. SimSC.send(Response,sidSC,ok)FSC

The precondition and effect for the real task and are the same
as those for the ideal task. The precondition is onlyntask=
DSS2 and the effect isntaskB⊥. From (C) in Table7.26, these
tasks are enabled (or disabled) in every state in supp.lst(ϵR)∪
supp.lst(ϵI).

(e) FDIC.send(Receive,sidDIC,mes)X
=corr. FSC.send(Receive,sidSC,mes)X

The precondition of the task on the left side of the equation ,
ntask= DSS4, is that for the task on the right side. The effects
of the task on the left,okcondAdv,mesandntaskB ⊥, are also
identical to those for the task on the right side. The rest of this
proof is analogous to case2a.

(f) InitSC.out(Receive,sidSC, plain)Init

=corr. InitSC.out(Receive,sidSC,mes)Init

The states of precondition areplainB rmesandntask= DSS4.
Then, the effects of these tasks are the same. So, if (h) and (j)
in Table7.25hold, then these tasks are enabled (or disabled) in
every state in supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (h) and (j).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
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each task definition, the state correspondences of pre: (h)
and (j), and state correspondences of eff: (h) and (j), we
have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step condi-
tions of the simulation relationRhold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(g) RecSC.out(Receive,sidSC, plain)Rec

=corr. RecSC.out(Receive,sidSC,m)Rec

This is identical to case2f. The states of precondition and effect
of both expressions are the same.

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (l) and (n).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and ideal world, respectively. From each
task definitions, the state correspondences of pre: (l) and
(n), and state correspondences of eff: (l) and (n), we have
that ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step condi-
tions of the simulation relationRhold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

3. Expire Session

(a) InitSC.send(ExpireDIC,sidDIC)FDIC

=corr. InitSC.send(ExpireSC,sidSC)FSC

The states of precondition and effect orsend(ExpireDIC,sidDIC)FDIC

are the same as those forsend(ExpireSC,sidSC)FSC) where
ntask= EXS2. That is, if (j) in Table 7.25 holds, then these
tasks are enabled (or disabled) in every state in supp.lst(ϵR)∪
supp.lst(ϵI).

237



i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (i) and (j).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondence of pre: (j),
and state correspondences of eff: (i) and (j), we have that
ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step conditions
of the simulation relationR hold. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

(b) RecSC.send(ExpireDIC,sidDIC)FDIC

=corr. RecSC.send(ExpireDIC,sidSC)FSC

This case is analogous to the above case3a. The precondition
and effect for the real task are the same as those for the ideal
task. The precondition is onlyntask= EXS2 and the effects are
activeB⊥ andntaskB ⊥Ḟrom (n) in Table7.25these tasks are
enabled (or disabled) in every state in supp.lst(ϵR)∪supp.lst(ϵI).

i. Disable Case: LetϵR and ϵI be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact thatϵ′R = ϵR and ϵ′I = ϵI. Here, the start and
step conditions of simulation relationRhold from each task
definition and the state correspondences of pre: (m) and (n).
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. Enable Case: LetϵR andϵI be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondence of pre: (n),
and state correspondences of eff: (m) and (n), we have that
ϵ′R = ϵR and ϵ′I = ϵI. Here, the start and step conditions
of the simulation relationR hold. Therefore, we obtain
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trace(ϵ′R) = trace(ϵ′I ).

(c) FDIC.send(ExpireDIC,sidDIC)Adv

=corr. FSC.send(ExpireSC,sidSC)Adv

The precondition and effect for the real task are the same as
those for the ideal task. The precondition is onlyntask= EXS2
and the effects areactiveB ⊥ andestcondX B ⊥ for all X (and
estcondInit ,estcondRecB ⊥ in FSC) andntaskB ⊥. From (a),
(b), (d), and (f ) in Table7.25 these tasks are enabled (or dis-
abled) in every state in supp.lst(ϵR)∪ supp.lst(ϵI). The rest of
this proof is analogous to (a) in the establish session.

Environment Env

From the task definitions and state correspondence (o) in Table7.25, the
provability measures for both tasks are uniformly enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 1 The state of Env remains static in all states in supp.lst(ϵR)∪
supp.lst(ϵI). Let qe denote this state of Env. This follows from state
correspondenceo.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supp.lst(ϵR)∪supp.lst(ϵI) (simultaneously). Further-
more, if T is enabled in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There exists unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There exists a unique transition of Env fromqe with actiona.
Let tre= (qe,a,µe) be this transition.

By considering Claim7.3.2, task T of Env is uniformly enabled or dis-
abled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, letI = 1,
we obtainϵ′R,1 = ϵR andϵ′I,1 = ϵI , and this results in thatϵ′R,1Rϵ′I,1 since we
haveϵRRϵI. If T is enabled in in every state in supp.lst(ϵR)∪ supp.lst(ϵI),

239



Claim 7.3.2 implies that there exists unique actiona in every state in
supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontre of Env from qe enabled with
actiona, wheretre= (qe,a,µe).

Non Corrupted Case:

1. a is an input / output action of Init. We assume thata is an in-
put action such asin(EstablishSC,sidSC)Init , in(Send,sidSC,m)Init

, in(ExpireSC,sidSC)Init , andout(Receive,sidSC, plain)Init .

Let sbe any state such thats′ ∈ supp(µs), where (s,a,µs) ∈DRealSC||Env.
Let u be any state such thatu′ ∈ supp(µu), where (u,a,µu) ∈
DIdealSC||Env. For eacha, we check that the state correspondences
for s′ andu′ hold if those fors andu hold. If eacha is input from
Env, then the precondition and effect for the real task are exactly the
same as those for the ideal task. For example, if the input message is
in(EstablishSC,sidSC)Init , then the precondition isactive,ntask=⊥
and the effect is ntaskB ESS2. These states for the real task cor-
respond to those for the ideal task. So, in the case that the task is
enabled (or disabled), the state correspondences of (o), (i), and (j) for
s′ andu′ hold, if the state correspondencs fors andu hold. There-
fore, we obtain the trace distribution property,trace(ϵ′R) = trace(ϵ′I ).
This result also works well in the case ofin(Send,sidSC,m)Init and
in(ExpireSC,sidSC)Init .

2. a is an input/ output action of Rec. We assume thata is an in-
put action such asin(EstablishSC,sidSC)Rec, in(Send,sidSC,m)Rec,
in(ExpireSC,sidSC)Rec and out(Receive,sidSC, plain)Rec. This is
analogous to1.

3. a is an input action of Adv. This means thata = input(g)Adv for
some fixedg. For example,g is a corrupt message for someparty∈
{Init,Rec}. From the fact that the state correspondences (A) ∼ (V)
for s and u hold, we obtain that the state correspondences fors′
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and u′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

4. a is an internal or an output action of Env. Taska for the real world
is identical to that for the ideal world. From the fact that the state
correspondence of (o) for s andu hold, we obtain that the state cor-
respondence of (o) for s′ andu′ hold. Therefore, we obtain the trace
distribution property,trace(ϵ′R, j) = trace(ϵ′I, j).

Corrupted Case:

1. a is an input action of Adv andparty ∈ {Init,Rec} Here, the party
is included in the case of Init∧ Rec. Let qAdv be the state of
Adv or Sim that is the same in all supp.lst(ϵR) ∪ supp.lst(ϵI). Let
trAdv = (qAdv,a,µAdv) be a transition of Adv with actiona from qAdv.
From Claim7.3.2, trAdv is a unique transition. Here, we suppose that
supp((µe×µAdv)) is the pair set{(q1, j ,q2, j) : j ∈ I }, whereI is a count-
able set. Letp be the probability measures such that for eachj, p( j) =
(µe× µAdv)(q1, j ,q2, j). For eachj, let ϵ′R, j be ϵ′1, j(α) = ϵ1(α′) where
α ∈ supp(ϵ′1) such thatlst(α).Env= q1, j andlst(α).Adv = q2, j . The
ϵ′2, j is analogously constructed fromϵ′2.

The rest of this proof is he same as that for1 by considering state
correspondence in each caseparty ∈ {Init,Rec, Init ∧Rec}. Finally,
we obtain the trace distribution property,trace(ϵ′R, j) = trace(ϵ′I, j).

Adversary Adv

From the task definitions and state correspondences (A) ∼ (V) in Table7.26,
the provability measures for both tasks are uniformly enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI).

Claim 3 The state of Adv or Sim is the same in all states in
supp.lst(ϵR)∪supp.lst(ϵI). Let qAdv denote this state of Adv and Sim.
This follows from state correspondence of Sim.
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Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in supp.lst(ϵR)∪supp.lst(ϵI). Furthermore, if T is enabled
in all states in supp.lst(ϵR)∪supp.lst(ϵI), then:

1. There is unique actiona ∈ T that is enabled in every state in
supp.lst(ϵR)∪supp.lst(ϵI).

2. There is a unique transition of Adv fromqAdv with actiona, and
let trAdv = (qAdv,a,µAdv) be this transition.

By considering Claim.7.3.2, task T of Adv is uniformly enabled or
disabled in every state in supp.lst(ϵR)∪ supp.lst(ϵI). If T is disabled, let
I = 1, we obtainϵ′R,1 = ϵR andϵ′I,1 = ϵI , and the result isϵ′R,1Rϵ′I,1 since we
haveϵRRϵI. If T is enabled, T is enabled in every state in supp.lst(ϵR)∪
supp.lst(ϵI). Claim7.3.2implies that there is unique actiona in every state
in supp.lst(ϵR)∪ supp.lst(ϵI) and transitiontr of Adv from qe enabled with
actiona, wheretrAdv = (qAdv,a,µAdv). The following cases for the “Non
Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. a is an input action of Env. From the fact that state correspondences
(A) ∼ (V) for s andu hold, we obtain that state correspondences for
s′ andu′ hold. Therefore, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

2. a is an input or output action of functionality task. This case concerns
the messagereceive(SID,sidDIC)FDIC, receive(Send,sidDIC,m)FDIC ,
receive(ExpireDIC,sidDIC)FDIC andsend(Response,sidDIC,ok)FDIC.

. The rest of this proof is analogous to1. From the fact that state
correspondences (A) ∼ (V) for s andu hold, we obtain that state cor-
respondences fors′ andu′ hold. Therefore, we obtain the trace distri-
bution property,trace(ϵ′R) = trace(ϵ′I ).

3. a is either an output action of Adv that is not an input action of
Env, Init, Rec, functionality task, or is an internal action of Adv. This
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case concerns “new” tasks. The rest of this proof is analogous to1.
From the fact that state correspondences (A) ∼ (V) for s andu hold,
we obtain that the state correspondences fors′ andu′ hold. Therefore,
we obtain the trace distribution property,trace(ϵ′R) = trace(ϵ′I ).

4. a is an output action ofout(∗)adv. This case is also works well al-
though this action may effect Env. However, the transition of Env
tre= (qe,a,µe) is unique from Claim7.3.2. Claim7.3.2also says that
the state of Env remains static in all states in supp.lst(ϵR)∪supp.lst(ϵI).
This follows from state correspondenceo. Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(ϵ′R) = trace(ϵ′I ).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupt

party∈ {Init,Rec}.

1. a is an input/output actionin(∗)party, out(∗)party of corrupted party,
party∈ {Init,Rec}. This case is also works well from Claim7.3.2and
state correspondences in Table7.25∼ 7.27.

Perfect Simulation

The simulation of SimSC is perfectly executed for establish session, data
sending session, and expire session with respect to no corruption, static cor-
ruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessionFirst, in the establish session, environment
Env sends establish messagein(EstablishSC,sidSC)Init and

messagein(EstablishSC,sidSC)Rec to initiator InitSC and re-
ceiver RecSC, respectively. They send establish session mes-
sagessend(EstablishSC,sidSC)FSC to FSC. The functionality
sendssend(SID,sidSC)Adv to SimSC. After SimSC receives the
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message, SimSC generates parties Init and Rec in his simula-
tion world to generate the real world situation in Init and Rec
exchange messages using FDIC. SimSC then generates the estab-
lish session in the simulation world. That is, he inputs messages
in(EstablishSC,sidSC)Init and in(EstablishSC,sidSC)Rec to
InitSC and RecSC, respectively. Finally, the parties establish DIC
in the simulation world.

Simulation Policy

i. After receivingreceive(SID,sidSC)FSC, SimSC executes the
following simulation.

A. SimSC prepares dummy parties, InitSC, RecSC, and Adv
and the ideal functionality task FDIC.

B. SimSC inputs messagesin(EstablishDIC,sidDIC)InitSC

and in(EstablishDIC,sidDIC)RecSC to InitSC and
RecSC, respectively.

C. SimSC makes InitSC (resp., RecSC) send message
send(EstablishDIC,sidDIC)FDIC to FDIC.

D. SimSC makes FDIC sendsend(SID,sidDIC)Adv to Adv.

Task Correspondence of Simulation

i. InitSC.send(EstablishDIC,sidDIC)FDIC

=corr. SimSC.InitSC.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2 ; (M);

eff: activeB ⊤ andntaskB ⊥ ; (L), (M);

ii. RecSC.send(EstablishDIC,sidDIC)FDIC

=corr. SimSC.RecSC.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2 ; (Q);

eff: active= ⊤ andntaskB ⊥ ; (P), (Q);

iii. FDIC.send(SID,sidSC)Adv

=corr. SimSC.FDIC.send(SID,sidSC)Adv

pre: active= ⊤ andntask= ESS2 ; (G), (I );
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eff: ntaskB ⊥ ; (I );

The stateactiveof InitSC and RecSC becomes⊤, then state cor-
respondences (L) and (P) hold. If the adversary obtains the mes-
sagereceive(SID,sidDIC)FDIC in the simulation world,activebe-
comes⊤ from (R) in Table7.27. The simulation in the establish
session of the real world is perfectly executed by SimSC. Finally,
the parties establish a DIC in the simulation world.

(b) Data Sending SessionNext, in the data sending session, SimSC

simulates the key exchange.

Key Exchange

First, the key exchange is executed, that is, the simula-
tor inputs send(Send,sidDIC, s)FDIC in Init after a random
message is generated usingrand(s)sval. The receiver is
also receivesreceive(Receive,sidDIC, s)FDIC . The receiver
generates a random message usingrand(t)tval and sends
send(Send,sidDIC, t)FDIC to Init. This key exchange is under
master scheduleMπSC. If the master schedule does not be sched-
uled, then the key exchange does not occurre safely. If so, the ad-
versary can identify the direction in which the random message
was sent. That is, he may obtain the key information. There-
fore, we need the master schedule. The following describe the
corresponding tasks in the key exchange.

Simulation Policy

i. the key exchange is executed as described hereafter.

A. SimSC executesrandom(∗) and selects key bits, t,
where|s| = |t| = 1.

B. SimSC makes InitSC sendsend(Send,sidDIC, s)FDIC and
makes RecSC sendsend(Send,sidDIC, t)FDIC in random
order according toMπSC.

C. SimSCmakes FDIC receivereceive(Send,sidDIC, s)InitSC

and makes FDIC sendsend(Send,sidDIC, s)Adv to Adv.
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D. SimSCmakes FDIC receivereceive(Send,sidDIC, t)RecSC

and makes FDIC sendsend(Send,sidDIC, t)Adv to Adv.

E. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv twice, SimSC continues the following.

F. SimSC makes FDIC receivereceive(Response,sidDIC,
ok)Adv and makes FDIC sendsend(Receive,sidDIC, t
)InitSC and send(Receive,sidDIC, s)RecSC to InitSC and
RecSC, respectively.

G. SimSCmakes InitSCand RecSC receivereceive(Receive,
sidDIC, t)FDIC and receivereceive(Receive,sidDIC, s)FDIC .

H. SimSCmakes InitSCand RecSCexecutekeycalc(sval, tval
)kval, respectively.

I. In keycalc(sval, tval)kval, if s, t then SimSC continuew
next step. Else, SimSC executes1(b)iA ∼ 1(b)iH until
s, t.

Task Correspondence of Simulation

i. InitSC.send(Send,sidDIC, s)FDIC

=corr. SimSC.InitSC.send(Send,sidDIC, s)FDIC

The precondition and effect of these tasks are identical to
each other. LetTREAL andTIDEAL besend(Send,sidDIC, s)FDIC

and keycalc(sval, tval)kval. We show thatTREAL and
TIDEAL are uniformly enabled or disabled in supp.lst(ϵR)∪
supp.lst(ϵI). We consider that for each state ins ∈
supp.lst(ϵR) and u ∈ supp.lst(ϵI) are fixed. TREAL

(resp., TIDEAL) is enabled (or disabled) if and only if
s.InitSC.ntask= DSS2 (resp.,u.InitSC.ntask= DSS2). (J)
in Table7.26 implies thatTREAL andTIDEAL are uniformly
enabled or disabled in supp.lst(ϵR)∪ supp.lst(ϵI). So, these
tasks are activated under the same conditions.

A. Disable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact thatϵ′R = ϵR andϵ′I = ϵI . Here,
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the start and step conditions of simulation relationR
hold from each task definition and the state correspon-
dence of pre: (J) in Table7.26. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

B. Enable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and ideal world, respectively.
From each task definitions, the state correspondence of
pre: (J), and state correspondence of eff: (J) in Ta-
ble 7.26, we have thatϵ′R = ϵR and ϵ′I = ϵI . Here, the
start and step conditions of simulation relationR hold.
Therefore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

ii. RecSC.send(Send,sidDIC, t)FDIC

=corr. SimSC.RecSC.send(Send,sidDIC, t)FDIC

This is identical to1(b)i. The state of precondition and ef-
fect of both expression are same. . The rest of this proof is
similar to1(b)i.

A. Disable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact thatϵ′R = ϵR andϵ′I = ϵI . Here,
the start and step conditions of simulation relationR
hold from each task definition and the state correspon-
dence of pre: (N) in Table7.27. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

B. Enable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definitions, the state correspondence of
pre: (N) in Table7.27, and state correspondence of eff:
(N), we have thatϵ′R= ϵR andϵ′I = ϵI . Here, the start and
step conditions of simulation relationR hold. There-
fore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

iii. InitSC.keycalc(sval, tval)kval

=corr. SimSC.InitSC.keycalc(sval, tval)kval
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These preconditions and effects are identical to each
other. LetTREAL andTIDEAL be InitSC.keycalc(sval, tval)kval

and SimSC.InitSC.keycalc(sval, tval)kval. We show that
TREAL and TIDEAL are uniformly enabled or disabled in
supp.lst(ϵR) ∪ supp.lst(ϵI). We consider that for each
state in s ∈ supp.lst(ϵR) and u ∈ supp.lst(ϵI) are fixed.
TREAL (resp.,TIDEAL) is enabled (or disabled) if and only
if s.InitSC.ntask= DSSc (resp.,u.SimSC.InitSC.ntask=
DSSc). (M) in Table7.26implies thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪supp.lst(ϵI).
So, these tasks are activated under the same conditions.

A. Disable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact thatϵ′R = ϵR andϵ′I = ϵI . Here,
the start and step conditions of simulation relationR
hold from each task definition and the state correspon-
dence of pre: (M) in Table7.26. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

B. Enable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and ideal world, respectively.
From each task definition, the state correspondence of
pre: (M), and state correspondences of eff: (M) and
(U), we have thatϵ′R= ϵR andϵ′I = ϵI. Here, the start and
step conditions of simulation relationR hold. There-
fore, we obtaintrace(ϵ′R) = trace(ϵ′I ).

iv. RecSC.keycalc(sval, tval)kval

=corr. SimSC.RecSC.keycalc(sval, tval)kval

The precondition and effect of these tasks are identical to
each other. LetTREAL andTIDEAL be InitSC.keycalc(sval, tval
)kval and SimSC.InitSC.keycalc(sval, tval)kval. We show
that TREAL and TIDEAL are uniformly enabled or disabled
in supp.lst(ϵR) ∪ supp.lst(ϵI). We consider that for each
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state in s ∈ supp.lst(ϵR) and u ∈ supp.lst(ϵI) are fixed.
TREAL (resp.,TIDEAL) is enabled (or disabled) if and only
if s.RecSC.ntask= DSSc (resp.,u.SimSC.RecSC.ntask=
DSSc). (Q) in Table7.27implies thatTREAL andTIDEAL are
uniformly enabled or disabled in supp.lst(ϵR)∪supp.lst(ϵI).
So, these tasks are activated under the same conditions.

A. Disable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact thatϵ′R = ϵR andϵ′I = ϵI . Here,
the start and step conditions of simulation relationR
hold from each task definition and the state correspon-
dence of pre: (Q) in Table7.27. Therefore, we obtain
trace(ϵ′R) = trace(ϵ′I ).

B. Enable Case: LetϵR andϵI be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of
pre: (Q), and state correspondences of eff: (Q) and (V),
we have thatϵ′R = ϵR andϵ′I = ϵI. Here, the start and step
conditions of the simulation relationRhold. Therefore,
we obtaintrace(ϵ′R) = trace(ϵ′I ).

If the key exchange is completed safety, the message exchange
proceeds. InitSC sendssend(Send,sidDIC,cipher)FDIC to RecSC.
Here, the key exchange is executed under master schedule
MπSC. If the master schedule does not work, then the key ex-
change is not safe. If so, the adversary can identify the di-
rection of the random bit although we use FDIC. The details
of this task sequence are shown in Table7.29. This task se-
quences are also simulated by SimSC. So, the state correspon-
dences in Tables7.26, and7.27 hold. More specifically, Env
sends messagein(Send,sidSC,m)Init (or in(Send,sidSC,m)Rec)

to InitSC (or RecSC). InitSC sendssend(Send,sidSC,m)FSC to
FSC. FSC sendssend(Send,sidSC, |m|)Adv to SimSC. After re-
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ceiving the message, SimSC executes a simulation to mimic the
data sending session in the real world. That is, he inputs mes-
sagein(Send,sidSC,m)Init for random message from FSRC (or
in(Send,sidSC,m)Rec) to Init (and Rec) in the simulation world.
The state correspondences in Table7.26 and 7.27 work well.
The key point of this simulation is as follows. To mimic the real
world, the simulator executes the parties that execute the tasks
of key exchange (and message sending) in the real world. More-
over, not to distinguish the output trace, the simulator simulates
the real world in his simulation world by using task codes. In
the real world, InitSC and RecSC use a DIC without an adversary
being able to identify the direction of the key exchange under
master scheduleMSC. In the simulation world, SimSC obtains
the same output which AdvSC outputs in the real world by his
simulation. That is, the trace distributions of each world are
indistinguishable by Env. In other words, since each task corre-
spondence and state correspondence works well, the following
property works well,trace(ϵ′R) = trace(ϵ′I ).

Simulation Policy

i. After receiving receive(Send,sidSC, |m|)FSC, SimSC exe-
cutes the following. simulation.

A. SimSC generates random bitx (|x| = 1) by executing
random(∗) for using as a message in the simulation.

B. SimSC inputsin(Send,sidDIC, x)InitSC to InitSC.

C. SimSCmakes InitSCsendsend(Send,sidDIC,cipher)FDIC

to FDIC, wherecipherB x⊕kval.

D. SimSCmakes FDIC receivereceive(Send,sidDIC,cipher
)InitSC and makes FDIC sendsend(Send,sidDIC,cipher)Adv

to Adv.

E. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, SimSC continues the following.

F. SimSCmakes FDIC receivereceive(Response,sidDIC,ok
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)Adv and makes FDIC sendsend(Receive,sidDIC,cipher
)RecSC to RecSC.

G. SimSCmakes RecSC receive the messagereceive(Receive,
sidDIC,cipher)FDIC.

H. SimSCmakes RecSCoutputout(Receive,sidDIC,m)RecSC.

ii. SimSC executessend(Response,sidSC,ok)FSC.

Task Correspondence of Simulation

i. InitSC.send(Send,sidDIC,cipher)FDIC

=corr. SimSC.InitSC.send(Send,sidDIC,cipher)FDIC

pre: active= ⊤, smesandntask= ⊥ ; (J), (L), (M);

eff: smesBm andntaskB DSS2 ; (J), (M);

ii. FDIC.send(Send,sidDIC,m)AdvSC

=corr. SimSC.FDIC.send(Send,sidDIC,m)AdvSC

pre: okcondAdv = ⊥, mesB m and ntask = DSS2 ;
(F), (H), (I );

eff: ntaskB DSS3 ; (I );

iii. AdvSC.send(Response,sidDIC,ok)FDIC

=corr. SimSC.AdvSC.send(Response,sidDIC,ok)FDIC

pre: ntask= DSS2; (T);

eff: ntaskB ⊥ ; (T);

iv. FDIC.send(Receive,sidDIC,mes)RecSC

=corr. SimSC.FDIC.send(Receive,sidDIC,mes)RecSC

pre: ntask= DSS4 ; (I );

eff: okcondAdv, mesandntaskB ⊥ ; (F), (H), (I );

v. RecSC.out(Receive,sidSC, plain)RecSC

=corr. SimSC.RecSC.out(Receive,sidSC, plain)RecSC

pre: plainB rmesandntask= DSS4 ; (O), (Q);

eff: kval, rmesandntaskB ⊥ ; (O), (P), (V);
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(c) Expire Session Finally, in the expire session, Env sends
messagein(ExpireSC,sidSC)Init and in(ExpireSC,sidSC)Rec

to InitSC and RecSC, respectively. They relay mes-
sage send(ExpireSC,sidSC)FSC to FSC. After receiving
send(ExpireDIC,sidSC)Adv from FSC, SimSC expires the ses-
sion in the simulation world. That is, he inputs messages
in(ExpireSC,sidSC)Init and in(ExpireSC,sidSC)Rec to Init and
Rec in the simulation world.

Simulation Policy

i. After receiving receive(ExpireSC,sidSC)FSC, SimSC exe-
cutes the following simulation.

A. SimSC inputs messages,in(ExpireDIC,sidDIC)InitSC

and in(ExpireDIC,sidDIC)InitSC, to InitSC and RecSC,
respectively.

B. SimSCmakes InitSC (resp., RecSC) sendsend(ExpireDIC,
sidDIC)FDIC to FDIC.

C. SimSCmakes FDIC sendsend(ExpireDIC,sidDIC)Adv to
Adv.

Task Correspondence of Simulation

i. InitSC.send(ExpireDIC,sidDIC)FDIC

=corr. SimSC.InitSC.send(ExpireDIC,sidDIC)FDIC

pre: ntask= EXS2 ; (L);

eff: activeandntaskB ⊥ ; (L), (M);

ii. RecSC.send(ExpireDIC,sidDIC)FDIC

=corr. SimSC.RecSC.send(ExpireDIC,sidDIC)FDIC

pre: ntask= EXS2 ; (Q);

eff: activeandntaskB ⊥ ; (P), (Q);

iii. FDIC.send(ExpireDIC,sidDIC)Adv

=corr. SimSC.FDIC.send(ExpireDIC,sidDIC)Adv

pre: ntask= EXS2 ; (I );
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eff: active, estcondX andntaskB ⊥ for all X ; (D) ∼ (G),
(I );

We assume that the state correspondences in Table7.26and7.27hold.
From 3a, 3b, and3c, the state correspondences also hold after the
simulation by SimSC. That is,trace(ϵ′R) = trace(ϵ′I ).

2. Static Corruption

This type of corruption is divided into the following three cases: only
Init is corrupted by Adv, only Rec is corrupted by Adv, and both par-
ties are corrupted by Adv. Once the corruption occurs, the adversary
can identify the direction. However, the simulator can simulate all the
cases, so Env can not distinguish the real world from the ideal world.

(a) Only Init is corrupted by Adv

This case means that AdvSC corrupts only Init before the pro-
tocol starts. So, the remaining steps are identical to the above-
mentioned No Corruption Case without the data sending session.
In the data sending session, AdvSC and SimSC identify the input
message.

After receiving the corrupt message from Env, SimSC corrupts
InitSC and prepares a simulation world in which only InitSC

is corrupted. That is, receiving “corrupt message” from Env,
SimSC corruptsInitSC and reflects the information in his simu-
lation world immediately. The establish and expire sessions are
the same as those in1aand1c. The simulation of the data send-
ing session is as follows.

The simulation policy of the key exchange is same above-
mentioned. The simulation policy for the remaining messages
sending in the data sending session is as follows:

Case 1: The message is input to the corrupted partyInitSC.

i. After receiving receive(Send,sidSC, |m|)FSC, SimSC exe-
cutes the following. simulation.
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A. SimSC prepares messagem to input to corrupted party
InitSC with in(Send,sidSC,m)Init from Env and reflects
m in his simulation world hereafter.

B. SimSC inputsin(Send,sidDIC,m)InitSC to InitSC.

C. SimSCmakes InitSCsendsend(Send,sidDIC,cipher)FDIC

to FDIC, wherecipherBm⊕kval.

D. SimSCmakes FDIC receivereceive(Send,sidDIC,cipher
)InitSC and makes FDIC sendsend(Send,sidDIC,cipher
)Adv to Adv.

E. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, SimSC continues the following.

F. SimSCmakes FDIC receivereceive(Response,sidDIC,ok
)Adv and makes FDIC sendsend(Receive,sidDIC,cipher
)RecSC to RecSC.

G. SimSC makes RecSC receivereceive(Receive,sidDIC,
cipher)FDIC.

H. SimSCmakes RecSCoutputout(Receive,sidDIC,m)RecSC.

ii. After receivingout(Receive,sidDIC,m)RecSC from RecSC,
SimSC executessend(Response,sidSC,ok)FSC.

Case 2: The message is input to the non-corrupted party
RecSC.

i. After receiving receive(Send,sidSC, |m|)FSC, SimSC exe-
cutessend(Response,sidSC,ok)FSC.

ii. After receiving receive(Receive,sidSC,m)FSC in InitSC,
SimSC executes the following simulation.

A. SimSC inputsin(Send,sidDIC,m)InitSC to RecSC.

B. SimSCmakes RecSCsendsend(Send,sidDIC,cipher)FDIC

to FDIC, wherecipherBm⊕kval.

C. SimSCmakes FDIC receivereceive(Send,sidDIC,cipher
)RecSC and makes FDIC sendsend(Send,sidDIC,cipher)Adv

to Adv.
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D. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, SimSC continues the following.

E. SimSCmakes FDIC receivereceive(Response,sidDIC,ok
)Adv and makes FDIC sendsend(Receive,sidDIC,cipher
)InitSC to InitSC.

F. SimSC makes InitSC receivereceive(Receive,sidDIC,
cipher)FDIC.

G. SimSCmakes InitSCoutputout(Receive,sidDIC,m)InitSC.

iii. After receivingout(Receive,sidDIC,m)InitSC from InitSC in
his simulation world, SimSCexecutesout(Receive,sidSC,m
)InitSC

.

iv. After receivingreceive(Send,sidSC,m)FSC in InitSC, SimSC

executesout(Receive,sidSC,m)InitSC
.

If the message is input to Init or Rec, the simulator emulates
the real world and movement of Adv. That is, the simulation is
perfectly executed by SimSC. From the Task Correspondence in
7.3.2, the state correspondences in7.25, 7.26, and7.27hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(b) Only Rec is corrupted by Adv

This case is analogous to the case of a. This case means that
AdvSC corrupts only Rec before the protocol starts. So, the re-
maining steps are identical to the above-mentioned case where
only Init is corrupted. AdvSC and SimSC can identify the input
message. So, the simulation is perfectly executed.

After receiving the corrupt message from Env, SimSC corrupts
RecSC and prepares a simulation world in which only RecSC

is corrupted. That is, receiving “corrupt message” from Env,
SimSC corruptsRecSC and reflects the information into his sim-
ulation world immediately. The establish and expire sessions
are the same as those in1a and1c. The simulation of the data
sending session is as follows.
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The simulation policy of the key exchange is the same as that
mentioned above. The simulation policy of the left in the data
sending session is as follows.

Case 1: The message is input toInitSC.

i. After receiving receive(Send,sidSC, |m|)FSC, SimSC exe-
cutessend(Response,sidSC,ok)FSC.

ii. After receiving receive(Receive,sidSC,m)FSC in the cor-
ruptedInitSC, SimSC executes the following simulation.

A. SimSC inputsin(Send,sidDIC,m)InitSC to InitSC.

B. SimSCmakes InitSCsendsend(Send,sidDIC,cipher)FDIC

to FDIC, wherecipherBm⊕kval.

C. SimSCmakes FDIC receivereceive(Send,sidDIC,cipher
)InitSC and makes FDIC sendsend(Send,sidDIC,cipher)Adv

to Adv.

D. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, SimSC continues the following.

E. SimSCmakes FDIC receivereceive(Response,sidDIC,ok
)Adv and makes FDIC sendsend(Receive,sidDIC,cipher
)InitSC to InitSC.

F. SimSC makes InitSC receivereceive(Receive,sidDIC,
cipher)FDIC.

G. SimSCmakes InitSCoutputout(Receive,sidDIC,m)RecSC.

iii. After receivingout(Receive,sidDIC,m)InitSC from InitSC in
his simulation world, executesout(Receive,sidSC,m)InitSC

.

iv. After receivingreceive(Send,sidSC,m)FSC in RecSC, SimSC

executesout(Receive,sidSC,m)RecSC
.

Case 2: The message is input to corruptedRecSC.

i. After receiving receive(Send,sidSC, |m|)FSC, SimSC exe-
cutes the following. simulation.
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A. SimSC prepares messagem to input to corrupted party
RecSC with in(Send,sidSC,m)Rec from Env and reflects
m in his simulation world hereafter.

B. SimSC inputsin(Send,sidDIC,m)InitSC to InitSC.

C. SimSC makes InitSC sendsend(Send,sidDIC,cipher
)FDIC to FDIC, wherecipherBm⊕kval.

D. SimSCmakes FDIC receivereceive(Send,sidDIC,cipher
)InitSC and makes FDIC sendsend(Send,sidDIC,cipher)Adv

to Adv.

E. If FDIC receivessend(Response,sidDIC,ok)FDIC from
Adv, SimSC continues the following.

F. SimSCmakes FDIC receivereceive(Response,sidDIC,ok
)Adv and makes FDIC sendsend(Receive,sidDIC,cipher
)InitSC to InitSC.

G. SimSC makes InitSC receivereceive(Receive,sidDIC,
cipher)FDIC.

H. SimSCmakes InitSCoutputout(Receive,sidDIC,m)InitSC.

ii. After receivingout(Receive,sidDIC,m)InitSC from InitSC,
SimSC executessend(Response,sidSC,ok)FSC.

If the message is input to Init or Rec, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by SimSC. From the Task Correspondence in
7.3.2, the state correspondences in7.25, 7.26, and7.27hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Both parties are corrupted by Adv

This case is also analogous to case 1 of a. This case means
that AdvSC corrupts both Init and Rec before the protocol starts.
After receiving the corrupt message from Env, SimSC corrupts
InitSC and RecSC and prepares a simulation world in which
InitSC andRecSC are corrupted. That is, after receiving the “cor-
rupt message” from Env, SimSC corruptsInitSC andRecSC and
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reflects the information in his simulation world, immediately.
The establish and expire sessions are same as1a and1c. The
simulation of the data sending session is as follows:

The simulation policy of the key exchange is the same as that
mentioned above. The simulation policy for the remaining mes-
sages in the data sending session is as follows:

Case 1: The message is input to corruptedInitSC.

This case is identical to Case 1 of a.

Case 2: The message is input to corruptedRecSC.

This case is identical to Case 2 of b.

SimSC executes the following in the above mentioned cases:

• After receiving receive(Send,sidSC,m)FSC in party ∈
{InitSC,RecSC}, SimSCexecutesout(Receive,sidSC,m)party.

If the message is input to Init or Rec, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by SimSC. From the Task Correspondence in
7.3.2, the state correspondences in7.25, 7.26, and7.27hold in
this case. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

3. Adaptive Corruption In this case, the adversary corrupts some par-
ties when he wants to do so. This case is also simulated by the sim-
ulator, but the message cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by sim-
ulator SimSC, so the simulation is perfectly executed.

(a) Establish Session

Instance 1: Before InitSC and RecSC are activated.

Instance 2:After InitSC is activated but before RecSC is activated.

Instance 3:After RecSC is activated but before InitSC is activated.

Instance 4: After InitSC and RecSC are activated.
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Because there is no secret information, SimSC can emulate the
situations in his simulation. So, there is no advantage for Env.
The adversary can corrupt InitSC, RecSC, or both, but the simu-
lator can also corrupt the corresponding dummy parties. These
cases are also perfectly simulated by SimSC.

(b) Data Sending Session

Instance 1:Before or after activating InitSC or RecSC by re-
ceiving in(Send,sidSC,m)InitSC or in(Send,sidSC,m)RecSC,
respectively, from Env.
Env can execute only the message sending indication or the
corrupt indication at a time. This case is also simulated
by SimSC as the data sending session of Static Corruption
without the corruption timing. If the corruption message is
received from Env, Adv and Sim corrupt the party, and then
they continue the protocol. Note that all information with-
out activeare cleared after the message is sent. So, there is
no secret information. The corresponding tasks work well
and there exists a simulation relation between the real world
and the ideal world. That is,trace(ϵ′R) = trace(ϵ′I ) holds.

(c) Expire Session

Instance 1: After InitSC or RecSC is activated with the ex-
pire message.
Once the expire message is sent to InitSC or RecSC by Env,
this session terminates in the real world and the ideal world.
So the adversary can corrupt the parties. The simulation is
also executed.

Simulation Policy

SimSC simulates as follows:

(a) After receiving the “corrupt InitSC” message from Env,
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i. SimSC corruptsInitSC and makes Adv corrupt InitSC in the
simulation world, immediately.

(b) After receiving the “corrupt RecSC” message from Env,

i. SimSC corruptsRecSC and makes Adv corrupt RecSC in the
simulation world, immediately.

(c) After receiving the “corrupt InitSC and RecSC” message from
Env,

i. SimSC corruptsInitSC andRecSC, and makes Adv corrupt
InitSC and RecSC in the simulation world, immediately.

(d) After receivingsend(Send,sidSC, |m|)Adv from FSC.

i. SimSC inputs messagein(Send,sidSC,m)party to message
input partyparty in his simulation.

ii. The remaining steps are the same as the simulation of the
No Corrupted Case.

(e) After receivingreceive(Send,sidSC,m)FSC in party, SimSC exe-
cutesout(Receive,sidSC,m)party.

Whenever AdvSC corrupts some party, SimSC corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of AdvSC. If AdvSCcorrupts a party
InitSC or RecSC then SimSC corruptsInitSC or (and)RecSC in the ideal
world, and provides the simulated copy of AdvSC in the simulation
world with the state information of the corrupted party. Conversely,
SimSC may obtain information from the simulated world with the cor-
ruption. Additionally, in this protocol, the party has no secret infor-
mation because FDIC is securely executed. In all cases, since SimSC

can simulate AdvSCusing his simulated world, Env cannot distinguish
real world from the ideal world. That is, simulating party corruption
is perfectly executed.

RelationR is a simulation relation from task and state correspondence.
We obtain Lemma4.
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�

Next, Theorem7 is obtained from Lemma4 immediately.

Proof. From Lemma4, we proved that relationR is a simulation relation
from RealSC||Env to IdealSC||Env.

Theorem7 is also proven from Theorem3, that is, we obtain thatϵR and
ϵI satisfy the trace distribution property,tdist(ϵR) = tdist(ϵI).

As a result, the simulation is perfectly executed because simulator SimSC

can simulate the real world from the information message through AdvSC.
The tasks of the real world perfectly correspond to the tasks of the ideal
world. That is,

RealSC||Env Hyb. ≤MπSC
0 IdealSC||Env.

�
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Functionality

(a) u.FSC.estcondInit = s.FDIC.estcondInit

(b) u.FSC.estcondRec= s.FDIC.estcondRec

(c) u.FSC.okcondAdv = s.FDIC.okcondAdv

(d) u.FSC.active= s.FDIC.active

(e) u.FSC.mes= s.FDIC.mes

(f) u.FSC.ntask= s.FDIC.ntask

Initiator

(g) u.InitSC.smes= s.InitSC.smes

(h) u.InitSC.rmes= s.InitSC.rmes

(i) u.InitSC.active= s.InitSC.active

(j) u.InitSC.ntask= s.InitSC.ntask

Receiver

(k) u.RecSC.smes= s.RecSC.smes

(l) u.RecSC.rmes= s.RecSC.rmes

(m) u.RecSC.active= s.RecSC.active

(n) u.RecSC.ntask= s.RecSC.ntask

Environment

(o) u.Env= s.Env

Table 7.25:State Correspondence for RealSC and IdealSC (Part I)
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Simulator (or Adversary)

(A) u.SimSC.active= s.AdvSC.active

(B) u.SimSC.smes= s.AdvSC.smes

(C) u.SimSC.ntask= s.AdvSC.ntask

(D) u.SimSC.FDIC.estcondInit = s.FDIC.estcondInit

(E) u.SimSC.FDIC.estcondRec= s.FDIC.estcondRec

(F) u.SimSC.FDIC.okcondadv= s.FDIC.okcondadv

(G) u.SimSC.FDIC.active= s.FDIC.active

(H) u.SimSC.FDIC.mes= s.FDIC.mes

(I) u.SimSC.FDIC.ntask= s.FDIC.ntask

(J) u.SimSC.InitSC.smes= s.InitSC.smes

(K) u.SimSC.InitSC.rmes= s.InitSC.rmes

(L) u.SimSC.InitSC.active= s.InitSC.active

(M) u.SimSC.InitSC.ntask= s.InitSC.ntask

Table 7.26:State Correspondence for RealSC and IdealSC (Part II)
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Simulator (or Adversary)

(N) u.SimSC.RecSC.smes= s.RecSC.smes

(O) u.SimSC.RecSC.rmes= s.RecSC.rmes

(P) u.SimSC.RecSC.active= s.RecSC.active

(Q) u.SimSC.RecSC.ntask= s.RecSC.ntask

(R) u.SimSC.AdvSC.active=s.AdvSC.active

(S) u.SimSC.AdvSC.smes= s.AdvSC.smes

(T) u.SimSC.AdvSC.ntask= s.AdvSC.ntask

(U) u.SimSC.InitSC.kval= s.InitSC.kval

(V) u.SimSC.RecSC.kval= s.RecSC.kval

Table 7.27:State Correspondence for RealSC and IdealSC (Part III)
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1. Establish Session

(a) InitSC.send(EstablishDIC,sidDIC)FDIC

=corr. InitSC.send(EstablishSC,sidSC)FSC

(b) RecSC.send(EstablishDIC,sidDIC)FDIC

=corr. RecSC.send(EstablishDIC,sidSC)FSC

(c) FDIC.send(SID,sidDIC)Adv =corr. FSC.send(SID,sidSC)Adv

2. Expire Session

(a) InitSC.send(ExpireDIC,sidDIC)FDIC

=corr. InitSC.send(ExpireSC,sidSC)FSC

(b) RecSC.send(ExpireDIC,sidDIC)FDIC

=corr. RecSC.send(ExpireDIC,sidSC)FSC

(c) FDIC.send(ExpireDIC,sidDIC)Adv

=corr. FSC.send(ExpireSC,sidSC)Adv

3. Environment

(a) All tasks of environment Env in RealSC are correspond with the tasks of en-
vironment in IdealSC.

Table 7.28:Corresponding Tasks for RealSC and IdealSC
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Code for Initiator of Secure Channel, InitSC

Signature:
sidSC = (Init,Rec,sid′SC)
sidDIC = ({Init,Rec},sid′DIC)
Input:
in(EstablishSC,sidSC)Init

in(Send,sidSC,m)Init

rand(s)Init
sval

receive(Receive,sidDIC, t)FDIC

receive(Receive,sidDIC,cipher)FDIC

in(ExpireSC,sidSC)Init

Output:
send(EstablishDIC,sidDIC)FDIC

send(Send,sidDIC, s)FDIC

send(Send,sidDIC,cipher)FDIC

out(Receive,sidSC, plain)Init

send(ExpireDIC,sidDIC)FDIC

Internal:
keycalc(sval, tval)kval

State:
smes, rmes∈ {0,1}∪ {⊥}, initially ⊥ kval∈ {0,1}∗∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥ sval∈ {0,1}∪ {⊥}, initially ⊥
tval ∈ {0,1}∪ {⊥}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥

Tasks:
{send(EstablishDIC,sidDIC)FDIC , send(Send,sidDIC, s)FDIC ,

send(Send,sidDIC,cipher)FDIC ,out(Receive,sidSC, plain)Init ,

send(ExpireDIC,sidDIC)FDIC ,keycalc(sval, tval)kval}

Figure 7.45:Code for Initiator of Secure Channel, InitSC (Part I)
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Code for Initiator of Secure Channel, InitSC

Transitions:

Establish Session:

ESS1.in(EstablishSC,sidSC)Init

pre: active,ntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidSC,m)Init

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.rand(s)Init
sval

pre: active= ⊤, sval,kval andntask= ⊥
eff: svalB s andntaskB DSSa

DSS3.send(Send,sidDIC, s)FDIC

pre: sB svalandntask= DSSa
eff: ntaskB DSSb

DSS4.receive(Receive,sidDIC, t)FDIC

pre: tval= ⊥ andntask= DSSb
eff: tvalB t andntaskB DSSc

Figure 7.46:Code for Initiator of Secure Channel, InitSC (Part II)
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Code for Initiator of Secure Channel, InitSC

Transitions:

Data Sending Session:

DSS5.keycalc(sval, tval)kval

pre: ntask= DSSc
eff:
If sval, tval thenkvalB sval, andsval, tval andntaskB ⊥.
Else all values withoutactiveset initial value⊥.

DSS6.send(Send,sidDIC,cipher)FDIC

pre: kval, ⊥, cipherB smes⊕kval andntask= DSS2
eff: smes,cipherandntaskB ⊥

DSS7.receive(Receive,sidDIC,cipher)FDIC

pre: active, kval, ⊥, rmesandntask= ⊥
eff: rmesB cipher⊕kvalandntaskB DSS4

DSS8.out(Receive,sidSC, plain)Init

pre: plainB rmesandntask= DSS4
eff: kval, rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireSC,sidSC)Init

pre: active= ⊤, mesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)FDIC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.47:Code for Initiator of Secure Channel, InitSC (Part III)
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Code for Receiver of Secure Channel, RecSC

Signature:

sidSC = (Init,Rec,sid′SC)
sidDIC = ({Init,Rec},sid′DIC)
Input:
in(EstablishSC,sidSC)Rec

in(Send,sidSC,m)Rec

receive(Receive,sidDIC, s)FDIC

receive(Receive,sidDIC,cipher)FDIC

rand(t)Rec
tval

in(ExpireSC,sidSC)Rec

Output:
send(EstablishDIC,sidDIC)FDIC

send(Send,sidDIC, t)FDIC

send(Send,sidDIC,cipher)FDIC

out(Receive,sidSC, plain)Rec

send(ExpireDIC,sidDIC)FDIC

Internal:
keycalc(sval, tval)kval

State:
smes, rmes∈ ({0,1}∗)∪{⊥}, initially ⊥ kval∈ {0,1}∗∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
sval∈ {0,1}∪ {⊥}, initially ⊥ tval ∈ {0,1}∪ {⊥}, initially ⊥

Tasks:
{send(EstablishDIC,sidDIC)FDIC , send(Send,sidDIC, t)FDIC ,

send(Send,sidDIC,cipher)FDIC ,out(Receive,sidSC, plain)Rec,

send(ExpireDIC,sidDIC)FDIC ,keycalc(sval, tval)kval}

Figure 7.48:Code for Receiver of Secure Channel, RecSC (Part I)
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Code for Receiver of Secure Channel, RecSC

Transitions:

Establish Session:

ESS1.in(EstablishSC,sidSC)Rec

pre: active,ntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishDIC,sidDIC)FDIC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidSC,m)Rec

pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.rand(t)Rec
tval

pre: active= ⊤, tval,kval andntask= ⊥
eff: tvalB t andntaskB DSSa

DSS3.send(Send,sidDIC, t)FDIC

pre: tB tval andntask= DSSa
eff: ntaskB DSSb

DSS4.receive(Receive,sidDIC, s)FDIC

pre: sval= ⊥ andntask= DSSb
eff: svalB s andntaskB DSSc

Expire Session:

EXS1. in(ExpireSC,sidSC)Rec

pre: active= ⊤, smes, rmesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)FDIC

pre:ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.49:Code for Receiver of Secure Channel, RecSC (Part II)
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Code for Receiver of Secure Channel, RecSC

Transitions:

Data Sending Session:

DSS5.keycalc(sval, tval)kval

pre: ntask= DSSc
eff: If sval, tval thenkvalB sval, andsval, tval andntaskB
⊥

Else all values withoutactiveset initial value⊥.

DSS6.send(Send,sidDIC,cipher)FDIC

pre: kval, ⊥, cipherB smes⊕kval andntask= DSS2
eff: smes,cipherB ⊥ andntaskB ⊥

DSS7.receive(Receive,sidDIC,cipher)FDIC

pre: active, kval, ⊥, rmesandntask= ⊥
eff: rmesB cipher⊕kvalandntaskB DSS4

DSS8.out(Receive,sidSC, plain)Rec

pre: plainB rmesandntask= DSS4
eff: kval, rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireSC,sidSC)Rec

pre: active= ⊤, smes, rmesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireDIC,sidDIC)FDIC

pre:ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.50:Code for Receiver of Secure Channel, RecSC (Part III)
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Code for Adversary for Secure Channel, AdvSC

Signature:
sidDIC = ({Init,Rec},sid′DIC)
Input:
receive(SID,sidDIC)FDIC

receive(Send,sidDIC,m)FDIC

receive(ExpireDIC,sidDIC)FDIC

Output:
send(Response,sidDIC,ok)FDIC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
smes∈ ({0,1})∪{⊥}, initially ⊥

Tasks:
{send(Response,sidDIC,ok)FDIC, other arbitrary tasks}

Figure 7.51:Code for Adversary for Secure Channel, AdvSC (Part I)
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Code for Adversary for Secure Channel, AdvSC

Transitions:

Establish Session:

ESS1. receive(SID,sidDIC)FDIC

pre: active= ⊥
eff:activeB ⊤

Data Sending Session:

DSS1. receive(Send,sidDIC,m)
pre: active= ⊤ andntask= ⊥
eff: smesBm andntaskB DSS2

DSS2. send(Response,sidDIC,ok)FDIC

pre: ntask= DSS2
eff: smes,ntaskB ⊥

Expire Session:

EXS1. receive(ExpireDIC,sidDIC)FDIC

pre: active= ⊤
eff: activeB ⊥

Other tasks:
This adversary makes other arbitary tasks.

Figure 7.52:Code for Adversary for Secure Channel, AdvSC (Part II)
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Code for ideal Initiator of Secure Channel,InitSC

Signature:
sidSC = (Init,Rec,sid′SC)

Input: Output:
in(EstablishSC,sidSC)Init send(EstablishSC,sidSC)FSC

in(Send,sidSC,m)Init send(Send,sidSC,m)FSC

receive(Receive,sidSC,mes)FSC out(Receive,sidSC,mes)Init
in(ExpireSC,sidSC)Init send(ExpireSC,sidSC)FSC

State:

smes, rmes∈ ({0,1}∗)∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishSC,sidSC)FSC, send(Send,sidSC,m)FSC,

send(ExpireSC,sidSC)FSC,out(Receive,sidSC,mes)Init}

Figure 7.53:Code for ideal Initiator of Secure Channel,InitSC (Part I)
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Code for ideal Initiator of Secure Channel,InitSC

Transitions:

Establish Session:

ESS1.in(EstablishSC,sidSC)Init
pre: active,ntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidSC,m)Init
pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidSC,m)FSC

pre: mB smesandntask= DSS2
eff: smesB ⊥ andntaskB ⊥

DSS3.receive(Receive,sidSC,m)FSC

pre: rmesandntask= ⊥
eff: rmesBmandntaskB DSS4

DSS4.out(Receive,sidSC,m)Init
pre: mB rmesandntask= DSS4
eff: rmesandntaskB ⊥

Expire Session:

EXS1. in(ExpireSC,sidSC)Init
pre: active= ⊤, smes, rmesandntask= ⊥
eff: B ⊥ andntaskB EXS2

EXS2. send(ExpireSC,sidSC)FSC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.54:Code for ideal Initiator of Secure Channel,InitSC (Part II)
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Code for ideal Receiver of Secure Channel,RecSC

Signature:
sidSC = (Init,Rec,sid′SC)

Input: Output:
in(EstablishSC,sidSC)Rec send(EstablishDIC,sidSC)FSC

in(Send,sidSC,m)Rec send(Send,sidSC,m)FSC

receive(Receive,sidSC,m)FSC out(Receive,sidSC,m)Rec
in(ExpireSC,sidSC)Rec send(ExpireDIC,sidSC)FSC

State:
smes, rmes∈ ({0,1}∗)∪{⊥}, initially ⊥ ntask∈ ({0,1}∗)∪{⊥}, initially ⊥
active∈ {⊥,⊤}, initially ⊥

Tasks:
{send(EstablishDIC,sidSC)FSC, send(Send,sidSC,m)FSC,

out(Receive,sidSC,m)Rec, send(ExpireDIC,sidSC)FSC}

Figure 7.55:Code for ideal Receiver of Secure Channel,RecSC (Part I)
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Code for ideal Receiver of Secure Channel,RecSC

Transitions:

Establish Session:

ESS1.in(EstablishSC,sidSC)Rec
pre: activeandntask= ⊥
eff: ntaskB ESS2

ESS2.send(EstablishSC,sidSC)FSC

pre: ntask= ESS2
eff: activeB ⊤ andntaskB ⊥

Data Sending Session:

DSS1.in(Send,sidSC,m)Rec
pre: active= ⊤, smesandntask= ⊥
eff: smesBmandntaskB DSS2

DSS2.send(Send,sidSC,m)FSC

pre: ntask= DSS2
eff: mB smesandntaskB ⊥

DSS3.receive(Receive,sidSC,m)FSC

pre:rmesandntask= ⊥
eff: rmesBmandntaskB DSS4

DSS4.out(Receive,sidSC,m)Rec
pre: ntask= DSS4
eff: rmesBmandntaskB ⊥

Expire Session:

EXS1. in(ExpireSC,sidSC)Rec
pre: active= ⊤, smes, rmesandntask= ⊥
eff: ntaskB EXS2

EXS2. send(ExpireDIC,sidSC)FSC

pre: ntask= EXS2
eff: activeandntaskB ⊥

Figure 7.56:Code for ideal Receiver of Secure Channel,RecSC (Part II)
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Code for Simulator for Secure Channel, SimSC

Signature:
sidSC = (Init,Rec,sid′SC)

Input:
receive(SID,sidSC)FSC

receive(Send,sidSC, |m|)FSC

receive(ExpireSC,sidSC)FSC

Output:
send(Response,sidSC,ok)FSC

Other:
*Other arbitrary tasks are included the basic input/internal/output
tasks such as corrupt message ,chooserand, rand(∗) andout(∗).

State:
active∈ {⊥,⊤}, initially ⊥ smes∈ {0,1}∗∪{⊥}, initially ⊥
ntask∈ ({0,1}∗)∪{⊥}, initially ⊥ length∈ ({0,1}∗)∪{⊥}, initially

Other arbitrary variables; call ”new” variables.

Tasks:
{send(Response,sidSC,ok)FSC }

Figure 7.57:Code fot Simulator for Secure Channel, SimSC (Part I)
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Code for Simulator for Secure Channel, SimSC

Transitions:

Establish Session:

ESS1.receive(SID,sidSC)FSC

pre: active,ntask= ⊥
eff: activeB ⊤.

Data Sending Session:

DSS1.receive(Send,sidSC, |m|)FSC

pre: active= ⊤, ntask= ⊥
eff: lengthB |m| andntaskB DSS2

DSS2.send(Response,sidSC,ok)FSC

pre: ntask= DSS2
eff: length,ntaskB ⊥

Expire Session:

EXS1. receive(ExpireSC,sidSC)FSC

pre: active= ⊤
eff: activeB ⊥

Other tasks:
This simulator makes arbitrary tasks to simulate the real world
protocol system RealSC. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary of the simiulat-
ing world to the environment.

Figure 7.58:Code fot Simulator for Secure Channel, SimSC (Part II)
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Code for Random SourceS rc(D,µ), FSRC,
parameterized by probability distribution (D,µ),

whereµ is the uniform distribution over distributionD from [17].

Signature:
Input: none
Output:rand(d),d ∈ D
Internal:chooserand

State:
chosenval∈ D∪{⊥}, initially ⊥

Transitions:

chooserand
pre: chosenval= ⊥
eff: chosenvalB choose-random(D,µ)

rand(d)
pre: d = chosenval
eff: none

Tasks:
{chooserand, rand(∗)}

Figure 7.59:Code forS rc(D,µ), FSRC
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7.4 Equivalence of Three Cryptographic Chan-
nels

From the four above-mentioned theorems, we can immediately obtain the
following main theorem.

Theorem 8. The three channels, SC, 2AC, and DIC are reducible to each
other under some specific types of schedules.
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Chapter 8

Conclusion

This thesis focused on the security of KEM and DEM for ISO, and Univer-
sal Composability for SC, 2AC, and DIC with task PIOA. The results are
itemized hereafter.

1. We introduced three appropriate definitions of NM for KEM, SNM,
CNM and PNM.

2. The NMs are equivalent to each other for three attack types; CPA,
CCA1, and CCA2.

3. The definition of IND is equivalent to that of the NM for KEM under
CCA2.

4. A protocol of KEM, Σ, UC-realizesFKEM if and only if Σ is IND-
CCA2 KEM.

5. A protocol of DEM,Σ′, UC-realizesFKEM-DEM in theFKEM hybrid
model if and only ifΣ′ is IND-P2-C2 DEM.

6. The three cryptographic channels, SC, 2AC, and DIC, are reducible
to each other. More specifically, we showed that 2AC and DIC are
reducible to each other under some types of schedule and that DIC
and SC are reducible to each other under some types of schedules in
the UC framework with PIOA model.
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