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Abstract

The goal of this research is to define the non-malleability of a key en-
cryption mechanism (KEM) and prove equivalence between the indistin-
guishability and non-malleability for KEM and the data encryption mech-
anism (DEM), respectively, which are ISO standards. In addition, this the-
sis proves the equivalence (or reducible properties) among three crypto-
graphic channels, a secure channel (SC), an anonymous channel (AC), and
a direction-indeterminable channel (DIC).

These days, we are surrounded by network infrastructures that provide
us with information environments. In these network infrastructures, we
communicate with friends and associates using convenient network systems
such as the Internet, e-mail, and web phones. The issue of security has be-
come increasingly important as the amount of network communications in-
creases, i.e., private and individual information are exposed to many risks.
Therefore, adequate security measures must be established in the current
information society. The contribution of this thesis is to aid in providing se-
curity against many threats and risks facing the current information society.
This thesis comprises three brief compositions: semantic security for KEM
and DEM; universal composability for KEM and DEM; and universal com-
posability for three cryptographic channels with Probabilistic Input Output
Automata (PIOA).

1. Semantic Security for KEM and DEM

First, we study the basic cryptographic security notion, semantic se-
curity, for KEM and DEM. KEM and DEM were introduced by Shoup



to formalize asymmetric encryption specified for key distribution and
symmetric encryption specified for data exchange in ISO standards.
The system consists of KEM and DEM and enables a key delivery
mechanism and message sending mechanism with a high level of se-
curity. Shoup defined “semantic security (IND) against adaptive cho-
sen ciphertext attacks (CCA2)” as a desirable security notion of KEM,
i.e., IND-CCA2 KEM. This thesis defines "non-malleability (NM)”
for KEM, which is a stronger security notion than IND. We provide
three definitions of NM for KEM, and show that these three defini-
tions are equivalent. We then prove that NM-CCA2 KEM is equiv-
alent to IND-CCA2 KEM and that non-malleability against adaptive
chosen plaintextiphertext attack (NM-P2-C2) DEM is equivalent to
IND-P2-C2 DEM, respectively. More specifically, we show that NM

is equivalent to IND for KEM under the CCA2 attack and that NM is
equivalent to IND for DEM under the P2-C2 attack, although NM is
stronger than IND.

. Universally Composable KEM and DEM

Second, we studied the universally composable (UC) framework for
KEM and DEM. One of the essential frameworks for security com-
posability, the UC framework, was introduced by Canetti. The frame-
work investigates the composability of security functions such as pub-
lic key encryption, authentication, and a secure channel. We define
universally composable functions for KEM and DEM, and show that
IND-CCA2 KEM (or NM-CCA2 KEM) is equivalent to UC KEM
and that “IND against adaptive chosen plaintexiphertext attack
(IND-P2-C2)” DEM is equivalent to UC DEM.

. Universally Composable Three Cryptographic Channels with
PIOCA

Third, we studied the relationship among three cryptographic chan-
nels, a SC, AC, and DIC using UC with the precise framework PIOA.
The relationship among the three cryptographic channels was investi-



gated by Okamoto. He showed that the three cryptographic channels
are reducible to each other, but did not thoroughly consider commu-
nication schedules and composable security. This thesis refines the
relationship among the three channels in light of the communication
schedules and composable security. We model parties using the task-
PIOA to treat communication schedules, and adopt the UC frame-
work by Canetti to treat composable security. We show that a class of
anonymous channels, two-anonymous channels (2AC), and DIC are
reducible to each other under some types of schedules and that DIC
and SC are reducible to each other under some types of schedules in
the UC framework using the PIOA model.
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Chapter 1

Introduction

1.1 Background

Security is one of the most important notions in the current information-
based society. These days, individuals take steps to protect personal in-
formation such names, addresses, and card numbers because this type of
information is exposed to risk by strangers in the current network society.
To protect this information and secret data, we must construct a security
system or at least implement some rules. For example, a network system
and application system that implements a high level of security should be
constructed to protect against disingenuous attackers.

In the theoretical security paradigm, we employed symmetric key en-
cryption until the 1960s and implemented public key encryption to protect
information against network attackers in the 1970s. Symmetric key encryp-
tion has a problematic point when users must exchange the information re-
garding the key. However, public key encryption solves the key delivery
difficulty.

The Key Encapsulation Mechanism (KEM) and Data Encapsulation
Mechanism (DEM) were proposed by Shoup as ISO standards for hybrid-
public-key encryption (H-PKEHF]. The security notion of indistinguisha-
bility (IND) (or semantic security) for KEM and DEM was also defined by
Shoup. On the other hand, a definition of another stronger security notion
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“non-malleability (NM)” was introduced by Katz and Yung for private-key
encryption (or DEM) and they investigated the relations between IND and
NM [B7] (their results included proof that IND-P2-C2 is equivalent to NM-
P2-C2 for private-key encryption).

In this thesis, we investigate two stronger security notions for KEM
and DEM and research the equivalence (or reducible properties) among
three cryptographic channels: secure channels, anonymous channels, and
direction-indeterminable channels. More specifically, one of the two
stronger security notions is a semantic secure NM for KEM and the other is
UC for KEM and DEM.

NM for public-key encryption (PKE) was introduce@d, 3, [IJ as a
stronger security notion than IND and analogous definitions of NM for
KEM were introduced in41, [47]. Since the NM of PKE has been defined
using amessage spacgpecified by an adversary, the existing NM defini-
tions of KEM [ [42] use akey spacespecified by an adversary, which
corresponds to a message space for PKE. These existing NM definitions of
KEM, however, are available only for a few types of KEM schemes, e.g.,
a KEM scheme constructed from a PKE where a random string plaintext
to PKE is a session key output by KEM. This is because an adversary can
specify a very small key space, e.fKp, K1}, but in a general type of KEM
scheme, it may be hard for a polynomial-time machine (an experiment in
NM definitions) to produce a ciphertext along with a key in this specified
small key space as the output of the encryption function. In other words,
the existing NM definitions cannot be used for such a general type of KEM
scheme.

A weaker security notion of NM, wNM, was introduced and investigated
by Herranz et al.[39. The wNM-CCA2 KEM is unlikely to imply IND-
CCA2 KEM. Therefore, wNM is not considered to be a feasible definition
of the NM for KEM, since a feasible definition of NM(-ATK) should imply
IND(-ATK) (ATK € {CPA, CCAl, CCA2) (In fact, the standard definition
of NM(-ATK) of PKE implies IND(-ATK)).

This thesis provides NM definitions that satisfy the following feasible
requirements:



1. The NM definitions are available for any type of KEM scheme, in
which no key space is used.

2. The NM definitions are stronger than IND, i.e., NM(-ATK) implies
IND(-ATK)). For more detailed description on this matter, see Section
B.Idand Theorerd).

3. The NM definitions capture the naive NM property that the adversary
is given challenge cipherte@* and he should not be able to derive
another ciphertext such that its decapsulated kKyis non-trivially
related to challenge key*. Here, we introduce three NM definitions
of KEM, and show that the three definitions are equivalent.

It is easily obtained from one of the definitions of NM that NM-CCA2
KEM is equivalent to IND-CCA2 KEM. That is, we can now recognize
that Shoup’s definition, IND-CCAZ2, for KEM is as feasible as NM-CCAZ2,
whereas NM itself is stronger than IND in the definition.

In addition, this thesis investigates other stronger definitions, i.e., the UC
security for KEM and DEM. The UC framework was introduced by Canetti
13 and it guarantees very strong security, i.e., preserves stand-alone secu-
rity in any type of composition with other primitives and protocols.

Although the UC security for KEM and DEM, as the ideal functionali-
ties of KEM and KEM-DEM, has been defined and investigate@ihi{2],
this thesis modifies the definition, security proof, and description as de-
scribed hereatfter.

1. In the previous definition of the functionality of KEM-DEM, only
a single shared key was available in the DEM phase. This thesis
modifies the functionality of KEM-DEM to remove this restriction so
that a single copy of the functionality of KEM-DEM accepts multiple
shared keys in the DEM phase.

2. Another problem in[{1, (47 is the proof that UC KEM equals NM-
CCA2, i.e., IND-CCA2), KEM. The proof was based on a previous
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definition of NM which is, as mentioned above, only available for
a few types of KEM schemes. This thesis corrects the proof of the
equality between UC KEM and IND-CCA2 KEM, in which it is di-
rectly proven without using any NM definition (it is equivalent to the
proof through the new NM definition).

3. This thesis follows the new framework of UC that was totally revised
by Canetti in 200513], while [4]] and [4Z] are based on the original
one in 2001. The equivalence between UC DEM and IND-P2-C2
DEM is also proven (through no NM) in this thesis.

Finally, we studied the relationship among three cryptographic chan-
nels, SC, AC, and DIC using UC with the trendy framework probabilis-
tic inpuyoutput automata (PIOA). The SC was based on combining KEM
and DEM. The relationship of the three cryptographic channels was inves-
tigated by Okamoto4g]. He showed that the three cryptographic channels
are reducible to each other, but did not consider communication schedules
clearly as well as composable security. This thesis refines the relationship
of the three channels in light of communication schedules and composable
security. We model parties using the task-PIOA to treat communication
schedules, and adopt the UC framework by Canetti to treat composable
security. We show that a class of anonymous channels, two-anonymous
channels (2AC), and DIC are reducible to each other under some types of
schedules and that DIC and SC are reducible to each other under some types
of schedules in the UC framework with the PIOA model.

1.2 Structure of the Thesis

This thesis comprises eight chapters including this chapter as the introduc-
tion.

Chapter 2 introduces KEM and DEM as ISO standards. A protocol that
combines KEM and DEM, called hybrid public key encryption (HPKE), is
also introduced in this chapter. First, we introduce the basic cryptographic
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protocol, public key encryption (PKE), that is based on KEM, DEM, and
HPKE. Second, the mechanisms and security notions of KEM and DEM are
described and the attack types of these mechanisms are explained. Finally,
we describe the mechanism of HPKE.

Chapter 3 introduces a UC framework that was introduced by Canetti
[13. This framework is based on interactive turing machines (ITMs) and
solving the dificulty in composability of several protocols. This chapter
describes the main notion of UC, the security theorem, and hybrid theorem.
First, these theorems are considered based on two basic models (or worlds),
one is areal life model (or real world) and the other is an ideal process model
(or ideal world). These two models enable us to consider security from a
real protocol to an ideal function. The real life model consists of three
elements: parties, adversary, and protocol. The ideal process world consists
of three elements: dummy parties, simulator, and ideal functionality. The
party that inputs some messages into the parties, called the environment,
is also an important party. This chapter also explains adversarial models:
non-adaptive adversary, static corruption adversary, and adaptive adversary.
These are important when we consider the security levels of real protocols.
Finally, we describe the UC security. This security is described as hybrid
model of UC. The hybrid model is a specification of the real life model that
is assisted by some ideal functionalities. We consider an unlimited number
of copies of the ideal functionalities.

Chapter 4 introduces the framework for PIOA. This chapter also intro-
duces the task-PIOA. The concept of task-PIOA is simple and essential to
consider the composability regarding PIOA. In particular, it is important
to obtain results considering concurrency, asynchronous schedule, and syn-
chronous schedule for a security model. The UC model ifigient with
respect to the schedule because it is based on ITMs. Therefore, to obtain
equivalence results among the three channels, we must consider the master
schedule among parties. We explain the basic definitions and theorems or
corollaries of PIOA and task-PIOA in this chapter.

Chapter 5 shows the results of semantic security for KEM and DEM.
Moreover, this chapter presents the definitions of three NMs for KEM and
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shows the proof of equivalence among the three NMs for KEM. We also
show the main theorem for the security of KEM and the proof of equiva-
lence, IND-CCA2 KEM is equivalent to NM-CCA2 KEM. In addition, we
introduce IND and NM for DEM and prove the equivalence between two
notions of DEM from [, 42] to make the following chapter easier to un-
derstand.

Chapter 6 presents the result for UC KEM and UC DEM. We define the
functionality of KEM in the UC model and show the main theorem for UC
KEM and the proof of equivalence. UC KEM is equivalent to IND-CCA2
KEM (IND-CCA2 KEM is the highest security level for KEM). We also
define the functionality of DEM in the UC model and show the main theo-
rem for UC DEM and the proof of equivalence. UC DEM is equivalent to
IND-P2-C2 DEM (IND-P2-C2 DEM is the highest security level for DEM).

Chapter 7 presents three results. Three cryptographic channels are re-
ducible to each other in the UC framework with task-PIOA. First, we ex-
plain the three basic channels: SC, 2AC, and DIC. Next, we define the task
with respect to task-PIOA. More precisely, we define the codes for the func-
tionalities of the three channels and prove the reductions among the three
cryptographic channels in the UC framework with task-PIOA. Finally, the
reduction proofs are presented in this chapter considering the master sched-
ules of task-PIOA.

Chapter 8 concludes the thesis and summarizes the results obtained
through this research.



Chapter 2

Hybrid Public Key Encryption

2.1 Preliminaries

Based on standard convention, we use four notations, negligible function,
probabilistic algorithm, experiment and vector as follows wheigthe set
of natural numbersR is the set of real numbers anddenotes a null string.

1. Negligible function:

Let k be a security parameter. Functibn N — R is negligible ink,
if for every constant > 0, there exists integég such thatf (k) < k™
for all k > k.. Hereafter, we often usé < (k) to mean thatf is
negligible ink. On the other hand, we ude> u(k) to mean thatf
is not negligible ink, i.e., functionf : N — R is not negligible ink, if
there exists constawt> 0 such that for every integdg, there exists
k > k; such thatf (k) > k™°.

2. Probabilistic algorithm:
Let A(xg,X2,---;r) denote the results of executiny that takes as
inputs x1,X2,--- and coinsr. Let y be the output by executing
A(X1,X2,--- 1), that iISA(X1, X2,--- ;) =Y.

3. Experiment:
Lety « A(X1,Xo,---) denote the experiment of selectingt random
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and lettingy equal the output of\(x1, X2, - -+ ;r). If Sis afinite set, then
X « S denotes the experiment of assigningtan element uniformly
chosen fromS. If « is neither an algorithm nor a set, then— «
indicates that we assignto x. WhenA is a probabilistic machine or
algorithm, A(x) denotes the random variable of the outputtoivith

regard to inpuk. Termy & A(X) denotes thay is randomly selected

from A(X) according to its distribution. Whehis a sety<E Adenotes
thaty is uniformly selected from\. WhenA s a valuey « A denotes
thaty is set asA.

4. \ector:

e \We describe vectors in boldface rs&nd denote the number of
components irx by |x|, and tha-th component by(i] so thatx

= (X[1], -+, X[Ix1).

¢ We denote a component of a vector»as X or x ¢ X, which
respectively means thatis in or is not in the sefx[i]: 1 <i <
[X]}. From the above, we can simply describe— A(y) as the
shorthand form of X i <|y|do X[i] « A(Y[i]).

e Instead of describindr(xy,---, %), we describeR(x, X), which
means that the first argument is special and the rest are collec-
tively given as vectox with [x] = t—1. Here, we consider re-
lations of amityt wheret is a polynomial in security parameter
K.

2.2 Public Key Encryption

The concept of public key encryptio®KE) is simple and compendious,

but has far-reaching consequences. This encryption method or scheme has
been known since the 1970s. This is called public key (or asymmetric key)
scheme/ encryption because the decryption key iffetient from the en-
cryption key. Furthermore, it is infeasible to find the decryption key from
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the encryption key and the message from the ciphertext, respectively. This
method is constructed from three algorithRISE = (K, E, D) whereK is a

key generation algorithntk is an encryption algorithm, anid is a decryp-

tion algorithm. Let PK,SK) be a pair comprising a public key and secret
key generated b¥K. The algorithmsE and PK are open to us, but it is
computationally infeasible, given random ciphertextC, to find message

me M such thate(m) = c. This property implies that given public ké3K

it is difficult to determine the corresponding secret 8¢ The public key

PK is different from secret ke K in public key encryption while it is the
same key in symmetric key encryption.

2.3 Key Encapsulation Mechanism

A KEM was proposed as an ISO standard by Shoup. A KEMs given by
three algorithm& = (G, &, D) where

1. G, the key generation algorithm, is a probabilistic polynomial time
(PPT) algorithm that takes security parameites N (provided in
unary) and returns paipk, skl comprising a matching public key and
secret key.

2. &, the key encryption algorithm, is a PPT algorithm that takes as input
public keypk and outputs kelgiphertext pair K*,C*).

3. D, the decryption algorithm, is a deterministic polynomial time algo-
rithm that takes as input secret kelyand ciphertexC*, and outputs
key K* or L (L implies that the ciphertext is invalid).

We require that for alljfk, sk) output by key generation algorithéhrand
for all (K*,C*) output by key encryption algorithi&(pk), D(sk C*) = K*
holds. Here, the length of the k¥ *|, is specified by(k), wherek is the
security parameter.



2.3.1 KEM Attack Types
The three attack types of KEM are CPA, CCA1 and CCA2, where:

1. CPA, Chosen Plaintext Attack, is an attack type that an adversary is
allowed to access to only encryption oracle but not decryption oracle.

2. CCA1, Chosen Ciphertext Attack, is an attack type that an adversary
is allowed to access to both encryption and decryption oracle. How-
ever the adversary cannot access to decryption oracle after getting
target ciphertext.

3. CCA2, Adaptive Chosen Ciphertext Attack, is an attack type that an
adversary is allowed to access to both encryption and decryption ora-
cle even after the adversary gets target ciphertext.

Note that the adversary cannot decrypt the target ciphertext in the case of
CCA2. Each attack type is defined by considering an adversary that can
access the encryption oracle and decryption oracle. The encryption oracle
takes plaintexts as input and returns ciphertexts that are the encryption of
input plaintexts. On the other hand, the decryption oracle takes ciphertexts
as input and returns plaintexts that are the decryption of input ciphertexts.
Adversaries are able to attack the target ciphertext under the conditions of
the above attack types. However, the adversary cannot access the decryption
oracle with the target ciphertext.

2.3.2 IND for KEM

The indistinguishability (IND) of KEM was defined by Sholff. We use
“IND-ATK-KEM” to describe the security notion of indistinguishability for
KEM against ATKe {CPA CCAL1 CCA2}. “IND-KEM” is used to focus on
the indistinguishability of KEM without regard to attack type. If it is clear
from the context that IND-ATK-KEM (and IND-KEM) is used for KEM,
we will call it IND-ATK (and IND) for simplicity.

To clarify the IND of PKE, we may use IND-ATK-PKE and IND-PKE.
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i i 1
AVAR () = PIEXptAR T (k) = 1] - 5,

whereExpt {2 AT (Kk):
(pk.SK < G(1; s & A2 (pK);
(k*.c*) & &(pk; R (0,1'®; b < {0,1);
K*,if b=0
Rif b=1
g & A% (s X.C*yretumn 1, ff g=b

and

If ATK = CPA, thenO1 = L andO, = 1.

If ATK = CCA1, thenO1 = D(sk-) andO, = 1.

If ATK = CCAZ2, thenO1 = D(sk -) andOs = D(sk -).

Figure 2.1:Advantage of IND-ATK-KEM

Definition 1. LetX be KEM, A= (A1,A2) be an adversary, and &N be a
security parameter. FOATK € {CPA CCAL CCA2), Adva YT (k) is de-
fined in Fig. 21 We say thak is IND-ATK-KEM, if for any adversary
A€ P, Adva DT (k) is negligible in k whereATK e {CPA CCAL CCA2)
and® denote a class of polynomial-time bounded machines.

2.4 Data Encapsulation Mechanism

A DEM was also proposed as an ISO standard by Shoup. A DEMs
given by two algorithm&’ = (&', D’) where

1. &, the data encryption algorithm, is a PPT algorithm that takes as
input secret keK (K is shared by KEM) and plaintext, and outputs
ciphertextC.

2. 70, the data decryption algorithm, is a deterministic polynomial time
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algorithm that takes as input secret keyand ciphertexC, and out-
puts plaintextM or L (L implies that the ciphertext is invalid).

Itis required that for alC output by data encryption algorith&i(K, M),
P'(K,C) = M holds ("soundness”). Here, the length of the K&y, is spec-
ified by (k) wherek is the security parameter.

2.4.1 DEM Attack Types

From the standard notion of the attack type, we consider the following nine
DEM attack types: PX-CY (X{0,1,2} and Ye {0, 1, 2}), i.e., PO-CO, P1-CO,
P2-C0, PO-C1, P1-C1, P2-C1, PO-C2, P1-C2, and P2-C2.

1. PX (Xe {0,1,2}) denotes access to the encryption oracle. PO means
that the adversary does not have access to the encryption oracle. P1
means “Chosen Plaintext Attacks” where the adversary is allowed to
access the encryption oracle, but cannot access the encryption ora-
cle after obtaining the target ciphertext. P2 means “Adaptive Chosen
Plaintext Attacks” where the adversary is allowed to access the en-
cryption oracle, even after it obtains the target ciphertext.

2. CY (Ye{0,1,2}) denotes access to the decryption oracle. CO means
that the adversary does not have access to the decryption oracle. C1
means “Chosen Ciphertext Attacks” where the adversary is allowed
to access the decryption oracle, but cannot access the decryption ora-
cle after obtaining the target ciphertext. C2 means “Adaptive Chosen
Ciphertext Attacks” where an adversary is allowed to access the de-
cryption oracle after it obtains the target ciphertext, but the adversary
cannot decrypt the target ciphertext in the case of C2 for all PX.

2.5 Hybrid Public-Key Encryption

Using a canonical way to compose KEM and DEM, we obtain a hybrid
public key encryption scheme.

12



First, letX = (G,6,D) be KEM and letY = (&,9’) be DEM. Let
KEM.KeyLenbe the length of the output key of KEM aitE M.KeyLenbe
the length of the output key of DEM. Second, to compose these two mech-
anisms, we require that they are compatible in the sens&taM.KeyLen
= DEM.KeyLen

We state a hybrid public key encryption schenmt¢PKE =
H-PKEkem.pem in terms of KEM and DEM as given hereafter.

1. Key generation algorithm
The key generation algorithm inH-PKE is the same as
KEM.KeyGen(). The obtained keypk, sk), by KEM.KeyGen() rep-
resents a public key and secret key, respectively.

2. Encryption algorithm
First, the encryption algorithm iH-PKE executesS(pk) to generate
ciphertextCp and shared keX. Second, it encrypts messalyeto
C1 underK using&’ (K, M). Third, it outputs ciphertext = Co || Cj.
Any of these steps may fail, in which case the encryption algorithm
in H-PKE also fails.

3. Decryption algorithm
First, the decryption algorithm ifl-PKE parsesC asC = Cy || C1
using the prefix-freeness propefypf the ciphertexts. Second, it de-
cryptsCo to shared ke underskusing®D(sk Cop). Third, it decrypts
C1 to messageM using 2’(K,C1). Any of these steps may fail, in
which case the decryption algorithmifiPKE also fails.

Shoup defined a hybrid public key encryption scheme as the above
H-PKE for an ISO standard (selgq] for more details).

*The set of all possible outputs of the encryption algorithm should be a subset of some
easy to recognize prefix-free language — language L is prefix free if for any twe k, ¥
is not a proper prefix of y. The prefix-freeness property is needed so that we can parse byte
strings from left to right, andf&ciently strip df a ciphertext. Note that if all ciphertexts
have the same length, then the prefix-freeness property is trivially satisfied.
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Chapter 3

Universal Composability

The notion of UC was formalized by Caneli. Informally, we redescribe
the UC framework.

3.1 Overview

UC framework treats a protocol as a system of Interactive Turing Ma-
chines (ITMs) and assume that all ITMs run in probabilistic polynomial
time (PPT). So, each party runs the program in the ITM system.

In the UC framework, there are input, output, and communication tapes.
The input and output tapes represent the input and output that are received
from and given to other systems (involving some programs) running on the
same machine, respectively. On the other hand, the messages in the commu-
nication tapes are sent to and received from the participants in the system.
In addition, an adversary is also modeled as an ITM. The merits of this
framework are itemized below.

¢ In the sense of UC security, we can securely achieve (UC-realize) a
Byzantine system by combining some UC secure briefest units.

¢ Inclear and simple terms, we can understand and construct a complex
system.
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The following describes how the Byzantine system is UC-realized from
some small systenotocols. First, we assume that small systems are UC
secure. By considering “ideal functionality”, we assume the systems can be
treated as functionality. Second, we must say that the constructed (Byzan-
tine) system is UC secure by using small ideal functionality. The UC hy-
brid model assures that the ideal functionalities construct a secure combined
system. Here, we refer to the basic notion of this framework as indicated
hereafter.

3.2 Security Framework

Protocolr is executed in the following three steps:

1. A real life model (or real world) is formalized to carry out a task of
protocolr. The adversary or the environment executaesith some
parties in this real life model.

2. An ideal process model (or ideal world) is formalized to idealize the
executions in the real life model. In this model, the parties communi-
cate with each other through an “ideal functionality.” The ideal func-
tionality is a functionality to achieve the desired functionality of the
task in the real life model and it is essentially an incorruptible trusted

party.

3. The environment is activated to distinguish computationally between
the real life model and ideal process model.

Informally, we say that protocat UC-realizes an ideal functionality if the
environment cannot distinguish the execution of the real life process from
the ideal process model. More details regarding the real life world and the
ideal process world are given below.
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3.2.1 Real Life Model

In the real life model, the real world has partlgsenvironmen&ny, and an
adversaryAdvas participants. Partidy execute protocaot in conjunction
with Advand environmenEnvbased on the input from Env. All partic-
ipants have security parameteand they are able to perform the actions
below.

e EitherPj, Eny, or Advis activated to executeby inputting a message
as their respective input or in their respective inpucoming communi-
cation tapes. The input or input communication tape is modeled as
an ITM as well. From the input tape or incoming communication
tapes the activated participant reads some information, executes its
program, and outputs information on its output tape or outgoing com-
munication tapes. In addition, the environment can read the output
tapes of the partieB;, and write some information on the input tapes
of the parties;.

e Advis able to read messages on the outgoing communication tapes
and can deliver these messages to the incoming message tapes of the
recipient parties. Note that only messages generateH; lman be
delivered.

e Advis also able to corrupt partidy according to four types of cor-
ruption.

— An adaptive adversary may corrupt the partesvhile the pro-
tocol is executed.

— A non-adaptive adversary can corrupt pdffybefore any party
P; is activated.

— An active adversary can establish complete control over the be-
havior of the corrupted partid3.

— A passive adversary can obtain only the internal information of
the corrupted partieB;. In the case of a passive adversary, cor-
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rupted partied®; can continue to follow their prescribed proto-
col.

Formally, the notion of security in the real life model is denoted as fol-
lows. LetReal) advz(K,zr) denote the output of environmeBnv when
interacting with adversarAdv and partiesP;, ..., P, executing proto-
col 7 on security parametek, input z and random input = rgny, Fadw
ri ... rp be as described above &ndrgp, for Env; ragy for Adv, r; for
party P;). Let Rea) advendk,2) denote the random variable describing
Real advendK,z r) whenr is uniformly chosen. LeRea} agvenv denote

the ensembl¢Real aqvendK. 2)}keN z(0.1)*-

3.2.2 ldeal Functionality Model

In the ideal process model, there is a simula®am and ideal functionality
¥ . Simand¥ proceed withEnvand dummy party; in the ideal process
world as follows:

e Envis activated with its input, and activate$ imandP;.

e Simshall simulate the protocat in the real world faithfully. Sim
proceeds to deceive environmdahv that has interaction, real life
world or ideal world. Furthermore$ im simulates protocoir with
ideal functionality.

e ¥ communicates with some dummy parti@sandS iminteractively
in the PPT. In other words, oncg is activated, it reads the infor-
mation in its incoming communication tape, and outputs to dummy
partiesP; or sends messages to simulafam

Formally, the notion of security in the ideal process model is denoted
as follows. Letldealr simendk.zr) denote the output of environment
Env after interacting in the ideal process with advers&mn and ideal
functionality #, on security parametek, input z, and random input

= I'enw 'sim f¢# as described above @ndrgny, for Eny, rsim for Sim

18



r# for ). Let ldealr sinendk,2) denote the random variable describing
Idealr simendk.z ) whenr is uniformly chosen. Letdeals simeny de-
note the ensemblgdealr simenuK, 2)}keN,z¢(0,1}*-

3.2.3 UC Security

We say that protocot UC-realizes ideal functionalit§ if for any real life
model adversaryAdy, there exists an ideal process model adversaiy)
such that no environmenEny, on any input, can tell with non-negligible
probability whether it is interacting witlhdv and parties executing; in
the real life model, or it is interacting wit8 imand# in the ideal process
model. This means that, from the viewpoint of the environment, execut-
ing protocolrx is just as good as interacting with an ideal processffor
Formally, Environment Security(ES) is denoted as follows.

Let ¥ be an ideal functionality and let be a protocol. We say that
UC-realizesfF if for any adversanAdvthere exists an ideal process model
adversarys im such that for any environmeginvwe have :

Idealr simenv~ Reak advEny-

3.2.4 Non-Adaptive/ Adaptive Adversary

Two adversary attack types are modeled in the UC framework. The first
is a non-adaptive adversary in which adversAgy cannot collapse and
withdraw the parties in the running of the real life protocol. Another is an
adaptive adversary that can collapse and withdraw the parties in the execu-
tion of the real life protocol. For parties Init and Rec in protacahere are

four statuses.

Status 1 : No party is corrupted by Adv

All of the parties in protocok are safe becaugedv
collapses no party. Thatis, this status shows that pro-
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tocolr is executed securely between Init and Rec be-
causeAdvcan obtain no information except with the
outputs of the parties and the information forwarded
from Env.

Status 2 : Only Init is corrupted by Adv

AdversaryAdv collapses only Init upon the input by
Env. This status shows that protocelmay not be
executed securely between Init and Rec becéuake
can obtain any information from the corrupted party
Init.

Status 3 : Only Recis corrupted by Adv

The adversary collapses only Rec upon the input by
Env. This status shows that protocelmay not be
executed securely between Init and Rec becé&ule
can obtain any information from the corrupted party
Rec.

Status 4 : Both parties are corrupted byAdv

The adversary collapses both Init and Rec upon the
input by Env. This status also shows that proto-
col  is not executed securely between Init and Rec
becauseAdv can obtain any information from cor-
rupted parties Init and Rec, and the information for-
warded fromEnv.

¢ Non-Adaptive Adversary The non-adaptive adversary never tran-
sits from the first status to another status when executing protocol
n. Therefore, the first status, which is fixed Bywv beforer begins,
continues to the end of the protocol
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e Adaptive Adversary The adaptive adversary can collapse and with-
draw the parties in the execution of the real life protocol although the
non-adaptive adversary cann@tdv can change from the first status
to another status whdanvactivatesAdvto collapse or withdraw the
target party. The status may transit to any of the above-mentioned
four statuses anytime.

3.2.5 Hybrid Model

The UC framework formalizes the hybrid model as described hereafter. The
hybrid model is specified as a real life model that is assisted by some ideal
functionality, 7 (in short, theF -hybrid model). We consider an unlimited
number of copies of ideal functionalit§f’. The copies off are diferen-
tiated using their session I1Bjd. The parties and the adversary may send
messages to and receive messages from each copyirokach activation.

If they send messages to each copyrotising sid, they write information

on the incoming communication tape of that copy. On the other hard, if
sends outgoing messages, adversanyelivers the messages but is barred
access to the contents of that message.

Let Hbe’jAdv’Env(k, 2) denote a random variable describing the output of
environmenEnvon inputz, afterEnvinteracts in ther-hybrid model with
protocolr and adversanadv(We stress that heveis a hybrid protocol with
ideal functionality#). Let Hyb” denote the distribution ensemble

m,Adv,Env
{Hyb,tAdv, enlK DlkeNze(0,1)-

3.2.6 UC Hybrid Security

The universal composition theorem is hereafter. EeindG be ideal func-
tionalities. Letr be a protocol in thé -hybrid model, and let” be a proto-
col that UC-realizes™ in theG-hybrid model. Then for any adversatylyg
there exists adversa®dv- such that for any environmeginvwe have

Hyb’ ~ Hyb?

,Adv=,Env 7 Advg,Env’
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Chapter 4
(Task) Probabilistic 1/O Automata

4.1 Introduction

This chapter introduces PIOA and task-PIOA that can model and verify a
security protocol. Task-PIOA enables us to consider the protocols as the
automaton of tasks defined in the task-PIOA settings. We must consider
composable security using the UC framework, but the framework is based
on ITMs. Therefore, we must compensate for the lack of power due to
the ITM construction because ITM is sequencial model not the concurrent
model. More specifically, we need a schedule property when we consider
reducing the SCs, ACs, and DICs. As a result, we focus on the UC with
task-PIOA considering these three cryptographic channels.

4.2 Preliminaries

This section introduces the basic notions of mathematics on task-PIOA from
[15 16 17 19.

Probabilistic measureLet X andu be a set and a discrete probability
measure, respectively. is the discrete probability measure on XetA o-
field over seX is setF C 2%, F contains the empty set amfidcan be closed.
If Fis ac-field overX, then the pair of X, F) is a measurable space. Let
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u be functionF — [0, o] andu be countably additive. The other details are
described in[1g).

Support Support of probability measugeis measurable s such that
u(C) = 1. If probability measure: is a discrete probability measure, we
denote this by suppj where the support of probability measures the set
of elements that have non-zero measure.

Apply Functionapply(u,p) takes discrete probability measyreon fi-
nite execution fragments (sge3 and task schedule (se€4.5.7), and re-
turns a probability measure on execution fragments. Note that this function
satisfies apply(, 1) = 1 (1 is the empty sequence).

4.3 Probabilistic I/O Automaton (PIOA)

The PIOA framework was introduced by Segalad8,[51, 57 to analyze
probabilistic distributed algorithms. The PIOA framework treats the proba-
bilistic and nondeterministic choices in the notion. To analyze the level of
cryptographic security and resolve the problem of concurrency, we essen-
tially need the notion of nondeterminism.

Definition 2. [PIOA:] Let P be PIOA that is a tuple ¢R,q,1,0,H, D)
[[1g as follows:

- Qis a countable set of states.

- g describes a start state and satisfies Q.
- | is a countable set of input actions.

- Ois a countable set of output actions.

- His a countable set of internal actions.

- D is a transition relation satisfying X Qx (I UOU H) x Dis(Q),
where Dis¢Q) is the set of discrete probability measures on Q.

The following sets are also defined:
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- Ais lTUOUH, this represents the set of actions.
- E denotes U O, this represents the set of external actions.

- L denotes QJ H, this represents the set of locally controlled actions.

Note that the sets O, and H are pairwise disjoint sets, respectively. If
| =0, then P is closed.

We say an action a isnabledn state q if(g,a,u) € D for someu. We
assume that P satisfies two properties, input enabling and transition de-
terminism. The input enabling means that for every @ and ac |, a is
enabled in gq. The transition determinism means that for everyQgand
ge A, there is at most one € Disc(Q) such that(g,a,u) € D.

Letqg anda forie€{0,1,2,---} be states and actions, respectively. We
consider that an execution fragment of PIGAis the following infinite
or finite sequencer = qoa1q1a2.... If sequencer is a finite sequence,
the last state ofr is denoted by Ist{). If « is a finite sequence with
Ist(@) = qj+1, for each ¢, a+1,0i+1) there exists a transitiomji( a+1,u) € D
with gj+1 € suppfs), where supp) is a support ofi. Here, we use the term
of “FragqP)” (resp., “Frags’(P)”) to denote the set of all (resp., all fi-
nite) execution fragments &. We then use the term oExec$P)” (resp.,
“Exec$(P)”) to denote the set of all (resp., all finite) executionsRof If
there exists execution fragmenbf P, we denote the input and output (ex-
ternal actions) sequence obtained frorastrace(a).

4.4 Task-PIOA

The perfect information schedules of PIOA are very powerful in analyz-
ing the security of protocols. The schedule based on the all information
included the local information that parties have. The perfect information
schedules are open to all participants. However, the adversary cannot ac-
cess to the local information in the case of non-corrupted case when we
analize the security of protocols. Therefore, the local information should
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be hided against the perfect information schedules or adversary to execute
tasks nondeterministically.

When an adversary corrupts a party, the secret information that the party
retain in the internal process is reveal to the adversary. For this problem, we
must apply the non-adaptive task schedule mechanism. This mechanism is
defined in task PIOA. In simple terms, the task is used as units of scheduling.

Definition 3. [Task-PIOA:] Task-PIOA T is defined to be pdi?,R) where

- PisaPIOA Q.,G,1,0,H,D),

- Ris an equivalence relation dn= OUH.

The task is an equivalence classRf We say that taskis enabled in
stateq if somea et is enabled ing. We require that every task-PIOA
satisfiesaction determinisnproperty. Theaction determinisnmeans that
for every stateg € Q and every task € R, there is at most one actiane t
that is enabled i

The tasks can be used to resolve all nondeterminisms using action deter-
minism and transition determinism for PIOAs. In other words, subsequent
action is specified with the given state and by specifying a task.

45 Schedules

In this thesis, we formally model parti€y, - - - , P, in a protocol using task-
PIOA T4,---,Tnh. EachP; executes its task according to the following task
schedule, local schedule, and master schedule.

45.1 Task Schedule

We refer to the notion of “task schedule,” which chooses the next task to per-
form. For a closed task-PIOA, i.e., one with no input actions, a task schedule
resolves all nondeterminism due to the next-action determinism property of
task-PIOAs and the next-transition determinism property of general PIOAs.
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Definition 4. [Task Schedule:;] Let T = (P,R) be a closed task-PIOA
where P=(Q,q,l,0,H, D). A task schedule for T is defined to be a finite or
infinite sequence = tit,... of tasks in R.

Here, for a task schedude we define the trace distributiddist(p). The
trace distributiontdist(p), is the image measure afpply5(q),p) where
6(q) is the Dirac measure on the start stgte\We define the set of trace
distributions ofT, tdistqT), to beftdist(p)|p is a task schedule far}.

45.2 Local Schedule

A second schedule is introduced to the local schedule to resolve nondeter-
minisms. The local schedule resolves the nondeterminisms within the sys-
tem components based on local information. This schedterslifrom the

task schedule in the point of no action determinism assumption. The local
schedule for task-PIOA is defined to be as follows.

Definition 5. [Local Schedule:] LetT=(P,R) and s be a closed task-
PIOA for party P and local information, respectively. A local schedule,
w(9), for T is defined to be a finite or infinite sequence of task$,t--,
i.e.,w(s) = 11,12, --. w(s) specifies the execution order of the tasks in R with
s (We often omit from the specification the explicit descriptian(sf in the
specification of a task-PIOA i and s where s includes are trivial).

45.3 Master Schedule

Definition 6. [Master Schedule:] A master schedule, M, is defined to be
a finite or infinite sequence of party identifierg,is,---, i.e., M=1i1,i2,---.
M globally specifies the execution order of tasks in a protocol @f-(P, Py)
while preserving the local scheduling of all parties.

For example, letp; of party i be f,to,--- (i = 1,2,3), and
M=12223113 Then the global execution order of tasks is
t11, 121, 122, 123, 31, 112, 113, t32.
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The master schedule is not under the control of an adversary although
the local schedule is under the control of an adversary. In other words, the
adversary cannot intervene on the master schedule, but he can encumber a
local schedule. This construction can be generalized from a single execution
fragmenta to a discrete probability measusen execution fragments. See
15,19 for detalils.

In [I5 [1§], a master schedule is defined to resolve nondeterminism. The
master schedule controls local schedules in a large system nondeterministi-
cally or deterministically. A local schedule helps the master schedule from
within the system components and uses only local information. One of the
ways to realize the task schedule is using local local schedulg@nanas-
ter schedule.

4.5.4 Operations

The other operations for task-PIOAs are definedlid.[ The formal defi-
nitions and theorems are available in that paper. Here, we briefly describe
operations, composition, and hiding operations hereatfter.

Definition 7. [Composition Operation:] For two compatible task-PIOAs
T1 = (P1,R1) and T, = (P2, Rp), their composition T|| T is defined to be
task-PIOA(P1 || P2,R1 URY).

Definition 8. [Hiding Operation:] For task-PIOA T=(P,R) and set SC O
of output actions, hidd, S) is defined to béhidg(P, S), R) where hid¢P, S)
yields(Q,q,1,0\S,HUS,D) for P=(Q,q,!,0,H, D).

Here, we introduce thé&ull operation as described hereafter. Tif =
(P1,R1) and T, = (P2,Ry) are two task-PIOAs, and if : (Ri X Ry) — R,
then we defing ull(c) : R; — R recursively, as

o full(c)(2) =2
o full(c)(pT) = full(©)(o)c(o, T).
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4.5.5 Security Definitions
We describe “comparable” and “environment” definitions as follows.

Definition 9. Two task-PIOAs T and T, are comparable if { = I, and
01 = Oy, that is, if they have the same input actions and the same output
actions.

Definition 10. If T and E are task-PIOAs, then E is said to be an environ-
ment for T if T and E are compatible, and[E is closed.

We now introduce implementation, the basic definition of security for
task-PIOA as described id.

Definition 11. [Implementation:]  Suppose Tand T, are two compara-
ble task-PIOAs. We say that g T provided that, for every environment
E for both T, and To, tdistgT4||E) C tdist{T2||E).

We obtain the following theorems.

Theorem 1. Suppose thatTand T, are comparable task-PIOAs such that
T1 <0 T2, and Tz is a task-PIOA that is compatible with each af @nd T>.
Then T [ T3 <o T2 Ts.

Theorem 2. Suppose thatTand T, are comparable task-PIOAs such that
T1 <o T2. Suppose that S is a set of output actions of bqtadd T,. Then
hidg(T1,S) <o hidg(T>,S).

Definition 12. Let T; = (P1,R1) and T = (P2, Rp) be two comparable closed
task-PIOAs. Let R be a relation from D{&xec$(P;)) to DisqE xec$(P2))
such that ife;Reo, then tdisfe;) = tdist(e2). Then R is a simulation from;T
to T if there exists ¢ (R} X R1) — R; such that the start and step conditions
given below hold.

1. Start condition:5(g1)R5(qp).

2. Step condition: I&;Rep, p € R}, € is consistent withp, €, is consistent
with full(c)(p), and T € Ry, then € E(R)e;,, wheree] = apply(e;, T) and

€, = applyez, c(p, T)).
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Theorem 3. Let T; and T> be two comparable closed task-PIOAs. If there
is a simulation relation R from {to T, then tdist§T) C tdistgT»).

Corollary 1. Let T; and T, be two comparable task-PIOAs. Suppose that,
for every environment E for bothy Bnd Ty, there is a simulation relation R
fromTi||Eto T2 || E. Then | <q To.

Corollary 2. Let T = (P1,R1) and T, = (P2,Rp) be two compara-
ble closed task- PIOAs. Let R be a relation from Rigecs(P1))
to DisdExec$(P2)), satisfying the following condition: it1Re> then
tdist(e;) = tdist(ez). Let c: (R} xRy) — R;. Suppose further that the fol-
lowing conditions hold. 1. Start conditiod(q1)R5(qy)-

2. Step condition: 1E1Re2, p1 € R, €1 IS consistent witlpq, eé is consistent
with full(c)(p1), and Te Ry, then there exist the following.

- Probability measure p on countable index set I,

- Probability measuresij, J € I on finite executions of  and
- Probability measuresé’j, j € I on finite executions of P
such that:

- For each jel, Ei,ijé,j’

- Sigmaei p(j)(e; ;) = applyes, T), and

- Sigmae p(j)(&3 ;) = applyez, clo1. T))-

Then R is a simulation relation fromyTo T using c.

4.6 Security Definitions

We define the security notion on task-PIOA considering the synchronous
and asynchronous schedule as described hereatfter.
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Definition 13. [Perfect Implementation:]  Let Env, Realand Ideal be

an environment task-PIOA, a real protocol task-PIOA system and an ideal
functionality task-P1OA system, respectively. &€ be some (synchronous

or asynchronous) schedule. We say tRatal perfectly implementideal
under some (synchronous or asynchronous) schedul@eéarsg‘-'h' Ideal),

if trace(ReallEnv) = trace(ldeal|Env) for every environmenEnv under a
synchronous or asynchronous schedule.

Definition 14. [Perfect Hybrid Implementation:]  LetHybrid be a real
protocol task-PIOA system with the hybrid model. We sayHlydirid per-
fectly hybrid-implementklealunder some (synchronous or asynchronous)
schedule (or Hyb. <5 Ideal), if trace(Hybrid||Env) = trace(ldeal|Env)

for every environmenEnv under some (synchronous or asynchronous)
schedule.
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Chapter 5

Semantic Securities for KEM and
DEM

This chapter defines the three NMs for KEM and proves equivalence among
the three NMs. In addition, we prove equivalence between IND and NM.
We then provide the IND and NM of DEM and prove equivalence between
IND and NM.

5.1 Three NMs for KEM

The NM of KEM is defined as three NMs: a simulation based NM, compar-
ison based NM, and parallel chosen-ciphertext attack based NM.

5.1.1 Simulation Based NM

KEM % is called “SNM-ATK-KEM” in the sense th& is secure irsimula-
tion based NMSNM) for each attack type ATk {CPA,CCAL CCAZ2}.

Definition 15. Let ¥ be KEM, Rel be a relation, A= (A1,A2) be an
adversary, S= (S1,S») be an algorithm (the “simulator”), and lk N
be the security parameter. FOATK € {CPA CCAL1 CCA2}, we define

AdvTATK(Rel k) in Fig. B We say thak is SNM-ATK-KEM, if for any
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adversary Ae # and all relations Rel computable iR, there exists simu-
lator S € # such thatAdvz’\'s'\"z'ATK(Rel,k) is negligible in k, whereATK e
{CPA/.CCAL CCA2 and P denotes a class of polynomial-time bounded

machines.

Note that adversanf; is not allowed to pose the challenge ciphertext
C* to its decryption oracle in the case of CCA2 and we requireGtigt C.

In the previous NM definition®[], [42], the adversary can select the key
space. As mentioned in the Introduction, it is a serious problem that the
definitions are available only for a few types of KEM schemes. Therefore,
the revised point in this paper is to free the key space of the old version
definition inExpt 31V (Rel k).

In the attack scenario of SNM for PKE (SNM-PKE), the adversary can
decide the message spal@€]][ Note that such a message space in the sce-
nario is introduced to make SNM-PKE compatible with IND-PKE, i.e., to
make SNM-PKE imply IND-PKE, in the attack scenario in which the ad-
versary can decide a pair of messages (a message space).

In contrast, in the IND-KEM attack scenario, a correct key or a ran-
dom value along with the target ciphertext is given to the adversary. To
make SNM-KEM compatible with IND-KEM, i.e., to make SNM-KEM im-
ply IND-KEM, the SNM-KEM attack scenario herein gives the adversary a
randomly-ordered pair comprising a correct key and a random value.

Here, if KEM X is not IND(-ATK), i.e., adversanA can distinguish
(C*,K")and C*,R")), X is not NM(-ATK). For exampleA guesse&* from
X, setsRelK*,K’) iff Isb(K*) = Isb(K”), and randomly searches f6f such
that K’,C’) & E(pK) andlsb(K*) = Isb(K")).

Two additional minor dierences between SNM-KEM and SNM-PKE
are given hereatfter.

1. SimulatorS also obtains access to the decryption oracle when ATK
allows it to do so.

2. RelationR utilizes state informatiors calculated not byA; or S; but
by Az or S, in SNM-KEM.
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The ditference between the NM-KEM herein and wNM-KEM proposed
by Herrantz et al. is whether or not adversarg, can gain key in-
formation X (this includes the order of kel(* and a random strin& (or
another random string*)). Information X in the definition of the SNM-
KEM (PNM-KEM, and CNM-KEM) described herein plays a similar role
to the message space in the NM definition$1ig [B] for PKE.

5.1.2 Comparison Based NM

KEM X is called “CNM-ATK-KEM"” in the sense that is secure incom-
parison based NMCNM) for each attack type ATk {CPA CCA1 CCAZ2).

Definition 16. Let £ be KEM, A = (A1,A2) be an adversary, and & N
be the security parameter. FOATK € {CPA CCAL1 CCA2}, we define
AdvSIMATK(K) in Fig. We say tha is CNM-ATK-KEM, if for

any adversary A P, Adv,i';'\"'ATK(k) is negligible in k, whereATK e
{CPA CCALCCA2 and # denotes a class of polynomial-time bounded

machines.

Note that adversanf; is not allowed to ask its oracle to decrypt chal-
lenge ciphertex€* for CCA2 and we require th&* ¢ C.

The revised point is to free the key space of the old version definitions
in Expt M ATK (k) andExptay - (K).

Similar to SNM-KEM, the CNM-KEM'’s attack scenario herein gives the
adversary a randomly-ordered pair comprising a correct key and a random

value to make CNM-KEM compatible with IND-KEM.

5.1.3 Parallel Chosen-Ciphertext Attack Based NM

KEM X is called “PNM-ATK-KEM” in the sense thaX is secure irparal-
lel chosen-ciphertext attack based NFINM) for each attack type ATk
{CPA CCAL CCAZ.

Definition 17. Let ¥ be aKEM, A = (A1,A2,A3) be an adversary, and
k € N be the security parameter. FATK € {CPA CCA1, CCA2}, we de-
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fine Advi3"4T¢(K) in Fig. E3 We say thak is PNM-ATK-KEM, if for
any adversary /& P, Adv,y"A™(K) is negligible in k, where k is the se-
curity parameter,ATK € {CPA CCAL1, CCA2}, and # denotes a class of

polynomial-time bounded machines.

Note that adversanp; is not allowed to ask its oracle to decrypt chal-
lenge ciphertex€* for CCA2 and we require th&* ¢ C.

The revised point is to free the key space of the old version definitions
in ExptigM'ATK(k).

In the PNM definition, the NM property is captured by IND under the
parallel chosen-ciphertext attack such tAabutputs a vector of ciphertext
C and its decryption resuK is given toAs.

5.2 Equivalence among Three NM Definitions

Here, we prove the equivalence of the three NM definitions.

Theorem 1. For anyATK € {CPA CCAL1 CCA2}, if KEM X is CNM-ATK-
KEM, thenX is SNM-ATK-KEM.

Theorem 2. For anyATK € {CPA CCALCCA2}, if KEM X is SNM-ATK-
KEM, thenX is PNM-ATK-KEM.

Theorem 3. For anyATK € {CPA,CCAL CCA2}, if KEM X is PNM-ATK-
KEM, thenX is CNM-ATK-KEM.

5.2.1 Proof of Theoren]

Proof. We prove that KEMX is not CNM-ATK-KEM if X is not SNM-
ATK-KEM. More precisely, we show that if adversafdvand relatiorRel
exist such thatdvyVeir ¢ (Relk) is not negligible ink for any simulator
Sim, then there exists advers@uch thatdvg "™ (k) is not negligible
in k, wherek is the security parameter and ARKCPA CCA1 CCA2}.

Let A = (A1,A2) be an adversary to SNM-ATK. First, we construct a

CNM-ATK adversaryB = (B, Bo), using SNM-ATK adversarydvin Fig.
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B.4 From the construction d8, we obtain the following equivalence for all
keN:

PrExptaye (Relk) = 1] = PrExpt g\ "™ (K) = 1].  (5.1)

We then construct SNM-ATK simulato8im = (Sim,Simp) using
SNM-ATK adversaryAdvas shown in Figh.3

From the construction dB usingAdy, and the construction & im we
obtain the following equivalence for dtle N:

PrEXpt AT (Relk) = 1] = PriExptgy (=1  (5.2)

Here, note that, even iA(Z)2 outputsC with C* € C, BSZ outputs ci-

phertext vectolC and Efx\“mggM'ATK(k) returns 0 becausg® € C. Sim™2

returns.L andExptgA'i\‘Mz'ATK(ReL K) returns O (A problem regarding this note
was investigated irid9)).

The assumption (for contradiction) is that, for a8ym the advantage
AcAlvi’(;‘\’),"S'iAnTé(ReL K) > u(K) impIiesAdvi’S‘\')f'S'fi*;;(Rel K) > u(k) (for a specific
Sim). From this inequality and Eq&{l) and £.2), we obtain

AdvENMATK (k)

PrExpt S\ AT(K) = 1] - PriExptay  (K) = 1]

PrExptays  (Relk) = 1] - PrExpt 3NV AT(Rel K) = 1]

Simz
SNM-ATK
AdvAdv,S“imE(ReL K) > u(K).

5.2.2 Proof of TheoreniZ

Proof. We prove that KEME is not SNM-ATK-KEM if £ is not PNM-ATK-
KEM. More precisely, we show that if there exists adversady such that

AdviNMEATR(K) is not negligible irk, then adversar and relatiorRelexist
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for any simulatorSimsuch thatadvy'g} 5" (Relk) is not negligible ink
wherek is a security parameter and AT&{CPA CCA1 CCAZ2}.

Let A= (A1,A2,A3) be an adversary for PNM-ATK. First, we construct
SNM-ATK adversaryB = (B, Bo) and relatiorRelusing PNM-ATK adver-
sary Adv as shown in Fig.5.8 Here, we say everad occurs ff Y is
not an element oK. From the construction dB, we obtain the following

equivalence for alk € N:

PrExptigus’(K) = 1] = PrExptgy" " (RelK) = 1] (5.3)
Using EqlB.4), we show that given relatioRel for any simulatoiSim the
success probability dfxpt2 VAT (Relk) is at most3.
PrExptins " (Relk) = 1]
= Pr[g=bA-Bad]
= Prlbo=0Ag=0A-Bad]+Prlb=1Ag=1A-Bad]
= Pr[b=0A-Bad] xPr[g=0lb=0A -Bad]
+Pr[b=1A-Bad] xPr[g= 1jb= 1A -Bad]

IA

% X Pr[g=0|b=0A—-Bad] + % x Pr[g=1|b=1A -Bad]
(hereb andBad are independent @)

= Jx(Pg=0]+Prig=1) = 5

By applying Egs.[£.3), (5.4 and the above-mentioned assumption that

Adv e AT(K) > p(k), we obtain:

(5.4)

Advg' S T (RelK)

= PrlExptgy" " (Relk) = 1] - PrExpt e T (RelK) = 1]

] 1
> PrlEptRiE ™0 =115

= AdVIIMATK(K) > 1K),
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5.2.3 Proof of Theoreni3

Proof. We prove that KEMX is not PNM-ATK-KEM if X is not CNM-
ATK-KEM. More precisely, we show that if there exists adversadysuch
thatAdvg /AT (K) is not negligible ink, then there exists adversaBsuch
thatAdvgy" AT (k) is not negligible ink wherek is the security parameter
and ATK e {CPA CCAL CCA2}.

Let A= (A1,A2) be an adversary for CNM-ATK. We construct PNM-
ATK adversaryB = (B, B2, B3) using CNM-ATK adversarnAdvas shown

in Fig.54 From the construction d8, we obtain

Pr[ExptE"\éM_ATK(k) =1]
= Prb=g]
= Pro=0Ag=0]+Prlb=1Ag=1]
= Prlb=0]xPr[g=0b=0]+Prlb=1]xPr[g=1b=1]

1 - 1 —~ CNM-ATK
= éPr[Exptgg'QﬂzATK(k) =11+ 5(1-PrlExptagy (k) =1])

1 - —~_ CNM-ATK 1
= E(Pr[Exptiy\'z/'zATK(k) =1]-PrlExptag,s (K =1])+ >

. - 1
Thatis,  PrExptpy" (k) = 1] - 5

1 - ~—~— CNM-ATK
= E(Pr[Exptgy\'Z/'zATK(k) =1]- Pr[ExptAdv’z K) =1))

1 -
= 5Aclvgg‘v“fzATK(k). (5.5)

By applying EqE.D) and the above-mentioned assumption that

AdvSIMEAT(K) > 1u(K), we obtain

] 1 ]
AV T (k) = SAdVEREAT() > (k)2
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5.2.4 Equivalence of the Three NM Definitions

From Theoremf] [2 and[3, we immediately obtain the equivalence of the
three NM definitions, SNM-ATK-KEM, CNM-ATK-KEM, and PNM-ATK-
KEM. Hereafter, we use NM-ATK-KEM to refer to the three NM defini-
tions. If it is clear that NM-ATK-KEM is used for KEM, we refer to it
simply as NM-ATK.

5.3 IND-CCA2 KEM is Equivalent to NM-
CCA2 KEM

This section shows that NM is equivalent to IND for KEM against adaptive
chosen ciphertext attacks (CCA2). For PKE, it has already been proven that
NM is equivalent to IND against CCAH].

Theorem 4. KEM X is NM-CCA2-KEM, if and only i& is IND-CCA2-
KEM.

Proof. To prove this theorem, itis $icient to show that PNM-CCA2-KEM
is equivalent to IND-CCA2-KEM. It is trivial from the definition that KEM
¥ is not IND-CCA2-KEM if £ is not PNM-CCA2-KEM. The opposite di-
rection, i.e.X is not PNM-CCA2-KEM ifX is not IND-CCA2-KEM, is also
easy to prove as indicated hereafter. Ret (A1, A2) be an attacker for IND-
CCA2-KEM. We then construct attack8r= (B, B2, B3) for PNM-CCA2-
KEM usingAdvsuch thaB; execute®\;, andB; executes\, which outputs
g and outputs$, C) such thats, < g andC* ¢ C . B3 outputssy(= g) re-
gardless of the value d€. Clearly, B is an attacker of PNM-CCA2-KEM
with the same advantage Aslvfor IND-CCA2-KEM. O

5.4 IND and NM for DEM

This section explains the definition of IND and NM for DEM.
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5.4.1 IND for DEM

The advantage of indistinguishability of DEM (we use “IND-DEM”) fol-
lowing [37] is stated in Figg.8 In this thesis, we also use IND-PX-CY-
DEM to describe the security notion of the IND of DEM agaifist Y} €
{0,1, 2.

Definition 18. Let X’ be aDEM over message space M,=A(A1,A) be
an adversary, and k N be the security parameter. F¢X, Y} € {0, 1, 3,
Adv\ 0PV (K) is defined in FigB.8 We say thak’ is IND-PX-CY-DEM,

if for any adversary A P, Advia © 7“7 (k) is negligible in k whergX, Y}

€ {0, 1, 3, and® denotes a class of polynomial-time bounded machines.

Note that, the length afy equals the length ofy, i.e.,|xg| = [x1|. Fur-
thermore, whery = 2, we insist tha#®, does not ask for the decryption of
challenge ciphertext

5.4.2 NM for DEM

We state the formal definition of NM for DEM in F[@.9 following
Bellare[lJ and Katz[37], which we call NM-DEM. We also use NM-PX-
CY-DEM to describe NM for DEM against several types of attacks where
{X,Y}e{0,1, 2.

Definition 19. Let ¥’ = (&',9’) be aDEM over message space M,-A
(A1,A2) be an adversary, and &N be the security parameter. F¢K, Y}
€10, 1, 2, Adv\rP"“"(K) is defined in Fig/5.9 We say thak’ is NM-

PX-CY-DEM, if for any adversary AP, Advi\%, "*"¢Y(k) is negligible in k,
where{X, Y} € {0, 1, 3, and® denotes a class of polynomial-time bounded

machines.

Informally, we describe the secure notion of NM for DEM. In BEid, O
(orOy") = L wherei € {1,2}. This means thad; (or G;’), which takes on any
input, returns the empty string, andR is some relation. We require thiat
= [X] for all x andX in the support oM. We also require that the vector of
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ciphertextsy, output byA; should be non-empty ang¢ y. Furthermore,
whenY = 2, we insist tha#\, does not ask for the decryption wf

At the first stage of the attack, advers@youtputs distributiorM over
messages along with state informat®rnwo messages andX are chosen
at random according t¥, andx is encrypted to give ciphertext In the
second stage of the attackand s are given to adversarm,. Ay outputs
relationR and a vector of ciphertexgssuch thay ¢ y (we require thay ¢y
in Exptay < (K)).

Y’ is NM secure in the sense of NM-PX-CY f¢X, Y} € {0, 1, 2 if
AdeYT;?X'CY(k) is negligible for any PPT adversafy That is, we say’ is
NM secure if for every PPT algorithi, the probability thaR(X; X) is true
is at most negligibly dferent from the probability thd®(x, X) is true.

5.5 IND-P2-C2 DEM is Equivalent to NM-P2-
C2 DEM

The two above security notions of DEM vyield the following Theof@m

Theorem 5. Encryption schem&’ is secure in the sense of NM-P2-C2 if
and only if¥” is secure in the sense of IND-P2-C2.

Proof. We prove the equivalence between IND and NM for DEM hereatfter.
("only if” part) Let Abe an adversary attackiny in the sense of IND-

P2-C2-DEM. We construct adversaBy= (B1,B,) attackingX’ in the sense

of NM-P2-C2-DEM in Fig5. 10

It is not difficult to see that Pﬂfﬁggfpz_cz(k)] = % so that

AdVINP2C2(K) = AdvIND P2 C2(K).
SinceY’ is secure in the sense of NM-P2-C2-DEMiv'NP-P2-C2(k) is neg-

Ax
ligible and the theorem follows.

("if” part) This direction is the exact counterpart B, and we repeat
essentially the same proof here for completeness. ALké an adversary
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attackingX’ in the sense of NM-P2-C2-DEM. We define adversBrat-
tackingX’ in the sense of IND-P2-C2-DEM in Fig.11
We note that the probability th&returns 0 given thatis an encryption

of xg is exactly PrExptNM"P2-C2 (k)] while the probability thaB returns 0

A’
given thaty is an encryption oky is exactly Pr. xpt,’i'\gf P22 1)]. Thus,

AdvDP2-C2 (k) = AdvY;P2C2 (k)

NM"P2-C2 (k) is negligible. H

and hencadv AY
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AdvREEATK (Rel k)
= PrExpt3y" A (Relk) = 1] - PrExpt 3\ (Rel k) = 1]

whereExpt\MATK(Rel k) :

(k. SK < G(14);51 « A%(pK)
(K*,C*) & &(pk:R < (0,1)/®

b (0,1
ro—K* andri1<R, if b=0
ro—R andri<K*, if b=1
(s2.C) & AY(X,51,C)

K—D(skC)
return 1, ff Re(K* K, sp)

Xe(ro,r1)where

Expt WM ATK(Rel k) :
R ky- R <O
(Pk sK) < G(1%);s1 < S (pK)
R < {0,1)®:R & (0,1)'®
b {0.1)
ro—R* andri<R if b=0

Xe(rp,r1)where )
roR andri<R*, if b=1

($2,C) & S%(X, 51);K —D(sk C)
return 1, ff Re(R*, K, )

and

If ATK = CPA, thenO1 = L andOy = 1.

If ATK = CCAL, thenO;1 = D(sk-) andOz = L.

If ATK = CCA2, thenO1 = D(sk-) andOz = D(sk -).

Figure 5.1:Advantage of SNM-ATK-KEM
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Adv TV AT () = PriExpt YA (k) = 1] - PriExptay  (K)=1]

whereExpt SNMATK(K) :

(pk K  G(1K);s = A% (pk)
(K*.C*) < &(pRiR < {0,1)®

b {0.1)

ro—K* andri<R, if b=0

X« (ro,r1),where _
ro—R andri<K*, if b=1

(RelC) & A%(X,s,C*);K—D(sk C)
return 1, ff Re(K*,K)

Exptay (K
R K.« R AO1
(Pk sK) «— G(19);s < A;*(pK)
(K*,C*) < &(pK);R* < {0,1}'®
R (0,1)/®:h & (0,1)
ro—R* andri<R if b=0
ro—R andri<R", if b=1

(RelC) & A2(X,5,C*);K—D(sk C)
return 1, ff RelR*,K)

Xe(ro,r1),where

and

If ATK = CPA, thenO1 = L andOy = 1.

If ATK = CCAL, thenO1 = D(sk-) andO; = L.

If ATK = CCA2, thenO1 = D(sk-) andO, = D(sk -).

Figure 5.2:Advantage of CNM-ATK-KEM
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- - 1
AdV,}ZgM ATK(k) = Pr[ExptZ'\éM ATK(k) — 1] _ é

whereExpt i\ ATK(K):

(pk sK) & (1K1 & A% (pk)
(K*,C") & &(pK:R < {0, 1)'®
b {0.1)

K* if b=0
R if b=1
($2,.C) = A%(X,51,C")

R
K—D(sk C);g — Ag(s2, K)
return 1,ff g=>b

Xe—

and

If ATK = CPA, thenO; = L andOy = 1.

If ATK = CCAL, thenO1 = D(sk-) andOz = L.

If ATK = CCA2, thenO1 = D(sk-) andO, = D(sk -).

Figure 5.3:Advantage of PNM-ATK-KEM

B (PK) BY?(X,5.C")

b CAM(PR | (2.0) €« AZ(X.SCY)

St DefineRel by Rel(a,b) = 1,

returns iff Re(a,b,sp) =1
return Rel,C)

Figure 5.4:CNM-ATK adversaryB using SNM-ATK adversanAdv.
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Simy"(pk) Simy*(X, 1)
e A%pl) | (K*,C) < E(pK)

sty (52.C) & AS%(X,51,C")
returns; If C* € C, then return..
Otherwise, returng, C).

Figure 5.5:SNM-ATK simulatorSimusing SNM-ATK adversanAdv.

B} (PK)
t R (0]} . .
1< AY(PK); spety;return s;

B(2)2(X, $1,C*), wheres; =t; and X =(ro,r1)

R .
(t2,C) < AX(ro,t1,C")
Choose random coins for As.
S (t2, 0, X); return (s, C)

RelY,K, ), where s, = (t2, 0, X)

If Y is not an element oX, return O.
If Y=rg, thenb=0. Otherwise b=1.
g—As3(t2,K;o);return 1, ff b=g

Figure 5.6:SNM-ATK adversaryB and RelatiorRelusing PNM-ATK ad-
versaryAdv.

a7



B*(pK)
t& AD(pk); syt return s;

BSZ(X, $1,C*), wheres; =t andX = K* orR

R <0,1®:c0,1)

, (R,X),if c=0
X — )
X,R),if c=1

(RelC) & A%(X',5,,C")
s«—(Rel X);return (5,,C)

B3(s2, K) wheres, = (Rel X)

If Re(X,K), then g0,
otherwiseg«1;returng

Figure 5.7:PNM-ATK adversaryB using CNM-ATK adversarAd\v.
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px- px- 1
Advi e (K) = PrlExpt (K] - 5

whereExptho "X CY (K) :

K10, 110 (x0, x1, 9 S AT (14)
b {0, 1}ye&' (K, Xp)

R 0.0,
g=A,” (15 sY)
return1ff g=>b

and

If X =0, thenO1(-) = L andOy(:) = L.

If X =1, thenO1(-) = &'(K,-) andOs(-) = L.

If X =2, thenO4(:) = &(K,-) andOz(-) = &' (K, ).
If Y =0, thenOj(-) = L andO;(-) = L.

IfY =1, thenO;()) = D'(K, ) andO,(-) = L.

IfY =2, thenO;() = D'(K,-) andO,()) = D'(K,").

Figure 5.8:Advantage ofND-PX-CY-DEM
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/-\-/NM PX-CY

AdVINTPCY(K) = PriExpt)y, Y (K) = 1] - Pr[Exptay,

whereExpt)\" PX"CY (k)

K {0, 1},(M, A
x<—M yeS’(K X)
02,0,
(RY)=A,"72(sY)
x—D'(K,y)
return 1 ff R(X, X)

1(1k)

—~—— NM-PX-CY
Exptpy, (K

K {0, 15(M, 9~ AT 1(14)
(X, X)—M y<—8’(K X)
(RY)—A>*(s)
X</ (K,y)
return 1 if R(x,X)

and

If X =0, thenO1(-) = L andOy(:) = L.

If X =1, thenO(-) = &'(K, ) andOs(-) = L.

If X =2, thenO(-) = &'(K,-) andOs(-) = &' (K, ).
If Y =0, thenO;() = L andO,(-) = L.

IfY =1, thenO;()) = D'(K,-) andO,(-) = L.
Ify =2, thenO’() D'(K, )andO =D (K,").

(k) = 1]

Figure 5.9:Advantage oNM-PX-CY-DEM
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01,0/

B, (1)

(X0, X1, )  AC+O1(1K)

M = {Xo, X1}
return (M, (Xg, X1, S))

0,,0,,
Bz ? 2(1k’ (XO, X1, S)’ y)

b — AQ202(1k 5 y)

choosex’ and semantic relatioR
whereR(x,X’) = 1 iff X = Xy

y « &(K,X)

return Ry’)

Figure 5.10:NM-P2-C2-DEM=> IND-P2-C2-DEM

0.0,
(M,5) — A 31Ky
X0, X1 <~ M

return (o, X1, (Xo, 9))

0,,0;,
B,” %(1%,(x0,9).Y)

(Ry) — A*72(15,sy)
X < D'(K,y)

if (L ¢ XAR(Xo,X))
return 0

else return 1

Figure 5.11:IND-P2-C2-DEM= NM-P2-C2-DEM
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Chapter 6
UC KEM and UC DEM

6.1 UCKEM

Let X = (G,E,D) be KEM. Hereafter, we define the KEM functionality
Fkem and protocolrs that is constructed from KEME and that has the
same interface with the environment&s=y .

Definition 20. Let Fxem be the KEM functionality shown in Fg.J, and
let 7y be the KEM protocol in Fi@.2

Here, note that there is no functionality of data transmission between
parties infFkem.

6.2 UC KEM Is Equivalentto IND-CCA2 KEM

This section shows that KEM is UC secure if and only iE is IND-CCA2
(or NM-CCA2).

Theorem 6. LetX be a KEM scheme, antikem andry be as described in
Definition2Zd Protocolry UC-realizesFxem With respect to non-adaptive
adversaries, if and only i is IND-CCA2-KEM.

Proof.
(“Only if” part) LetX =(G,&,D) be a KEM scheme. We prove thagifis

53



Functionality¥Fkem
Fkem Which runs with adversarg improceeds as follows:

Key Generation: Upon receiving KEM.KeyGen, sid) from
some partyD, verify thatsid=(D, sid’) for somesid'. If
not, then ignore the request. Else, hak#MKeyGen,
sid) to adversarySim Upon receiving £1gorithms,
sid, e, d) from Simwheree andd are descriptions of
PPT ITMs, output Encryption Algorithm, Sid, €) to
D.

Encryption:  Upon receiving KEM.Encrypt, sid, €) from
any partykg, perform the following: Ife¢’ # e, or decryp-
tor D is corrupted, then execut and obtain K*,C*).
Let (keycip) « (K*,C*). Else, obtain K*,C*) by &

andR < {0,1}'®, then let key cip) « (R C*) and record
(key,cip). Output Key and Ciphertext, sid, key cip)
to E.

Decryption:  Upon receiving a valuekEM.Decrypt, sSid,
C*) from D (and D only), perform the following: If
there is recorded entryK(C*) for someK then return
(Shared Key, sid, K) to D. Else, return §hared Key,
sid, d(C*)) to D (If there is more than onK recorded
for C*, then output an error message).

Figure 6.1:KEM FunctionalityFxgm

not IND-CCA2-KEM, thenrs does not UC-realiz€xem. In more detail,
we can construct environmeBnvsuch that, for any ideal process world ad-
versary (simulatory im Envcan tell whether it is interacting witAdvand

ny or with Simand the ideal protocol foFkgm, by using adversar that
breaksZ in the sense of IND-CCA2-KEM with non-negligible advantage,
ie., Adv'c’;\fZD‘CCAZ(k) > u(K)).
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Protocol nrs
ny, proceeds with partie§ andD as follows:

Key Generation:  Upon input KEM.KeyGen, sid), party
D verifies thatsid=(D,sid’) for some sid. If not,
then ignore the request. EIs® obtains public key
pk and secret keysk by executing algorithmgz, and
generatee «— &(pk,-) andd « D(sk-), then outputs
(Encryption Algorithm, sid, €).

Encryption: Upon input KEM.Encrypt, sid, €), party
E obtains pair Keycip) « (K*,C*) of a key and
a ciphertext by executing algorithre and outputs
(Key and Ciphertext, sid, keycip).

Decryption: Upon input KEM.Decrypt, sid, C%),
party D (that hasd) obtainsK* « d(C*) and outputs
(Shared Key, sid, K¥).

Figure 6.2:KEM Protocolry

Envactivates partiek andD, and uses adversa@yas follows:

1.

Envactivates key decryptd with (KEM.KeyGen, sid) for sid=(D, 0),
obtains encryption algorithmg and handeto G.

Env activatesE with (KEM.Encrypt, sid, €), and obtainskeycip).
Envchoosed < (0,1} andR & {0,1/®_ If b= 0, thenkey « key.
If b= 1, thenkey «— R. Envhands key, cip) to G as a target pair of
key and ciphertext in the IND-CCA2 game shown in gl

When G asks its decryption oracle to decrypt ciphert€t+ cip,
Env activatesD with input (KEM.Decrypt, sid,C"), obtains keyK",
and hand¥' to G.

WhenG outputsg € {0,1}, Envoutputsg® b and halts.
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Here note thaEnvcorrupts no party and interacts with no adversary.

WhenEnvinteracts withry, the view ofG interacting withEnvis ex-
actly the same as that behaving in the real IND-CCA2 game in [Eid.
Therefore, in this case (s®&gal), g = b with probability > %+u(k).

In contrast, wherEnvinteracts with the ideal process world 6kewm,
the view of G interacting withEnv is independent ob, sinceb is inde-
pendent of Key,cip) generated b¥nvin step 2 and is independent of the
decryption resulK in step 3 (akey andK' are random strings indepen-

dent ofb). Hence, in this case (sayeal), g = b with probability of exactly
1

’ Thus,|Pr[Env— 0| Real] —|Pr[Env— 0| Ideal]| > u(k).

(“If” part) We show that ifrs does not UC-realiz6kem, thenX is
not IND-CCA2-KEM. To do so, we first assume that for any simulator
Simthere exists real world adversaAdv and environmenEnv that dis-
tinguishes with probability % + u(K) whether it is interacting witls imand
the ideal process fafkgm or with Advandzy. We then show that there
exists an IND-CCA2 attackes agains® usingEnv.

First we show thaEnvcan distinguishAdv,7s) and S im¥xem) only
when no party is corrupted. Since we are dealing with non-adaptive adver-
saries, there are three cases. Case 1: Séhdecorrupted (throughout the
protocol). Case 2: Decrypt®@ is corrupted (throughout the protocol). Case
3: E andD are uncorrupted.

In Case 1, we can construct simula®msuch that ndenvcan distin-
guish Adv,7s) and SimFkem) as described hereatfter.

1. When Env sends KEM.KeyGen, sid) to D, D forwards it to Fxem.
Frkem sendsKEM.KeyGen, sid) to Sim Simcomputes pk,sK) by ex-
ecuting algorithmg, and generates andd, wheree « &(pk,-) and
d « D(sk-). Simreturns Algorithms, sid, e, d) to Fxem.

2. When Env sends KEM.Encrypt, sid, €) to corrupted partyE, i.e.,
Sim Simreceives the message and sends it to the simulated copy of
Adv, which replies tdSim Simthen returnAdvs reply (which may
be 1) to Env.
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3. When Env sends KEM.Decrypt, sid, C*) to D, D forwards it to
Fkem. Fkem then returns Shared Key, sid, d(C*)), sinceE, i.e.,
Sim sends noKEM.Encrypt, Sid, €) to Fxem, Which records nothing
as keycip). Note that,S imdoes not receive any message in this step.

In this case Env cannot distinguishAdv,zs) from (Sim¥kem), because
the message returned Bym(usingAdy) asE in the ideal world is the same
as that returned bydvaskE in the real world, andShared Key, sid, d(C*))
returned byFgewm is exactly the same as that returnedin the real world.

In Case 2, we can also construct simula®amsuch that ndEnv can
distinguish Adv,zy) and S im Fxem) as described hereafter.

1. When Env sends KEM.KeyGen, sid) to the corrupted partp, i.e.,
Sim receives the message and sends it to the simulated cojywf
which returns a reply message (which maylheo Sim Simsends
itto Env.

2. WhenEnvsendsKEM.Encrypt, sid, €) to E, E forwards it toFgem.
Fkem generates a corresponding pafr*( C*) by executinge, sets
(keycip) « (K*,C*) and returns Key and Ciphertext, sid, key,
cip) to E, sinceD, i.e., Sim sends noKEM.KeyGen, sid) to Fkewm,
which records nothing as encryption algoritlem

3. When Env sends KEM.Decrypt, sid, C*) to D, i.e., Sim sends
(KEM.Decrypt, sid, C*) to Adv. Advreturns a reply (which may be
1) to Sim which forwardsAdvs reply toEnv.

In this caseEnvcannot distinguishAdv,7z) and §im #xem) because the
message returned [&im(using Ady) asD in the ideal world is the same
as that returned bpdvasD in the real world, andKey and Ciphertext,
sid, key, cip) returned byFkewm is exactly the same as that returnedbbin
the real world.

Thus, Env cannot distinguish the reaeal worlds in Cases 1 and 2.
Hereafter, we consider only CaseBandD are uncorrupted.
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Referring to the UC framework, three types of messages are sent from
Envto Adv. The first message type is to corrupt either party, the second
message type is to report on message sending, and the third message type
is to deliver some message. ii, considered here, parties do not send
messages to each other over the network. In addition, we consider the case
that no party is corrupted. Therefore, there are no messagesEruio
Adv(andSim.

Since there exists at least one environnienvthat can distinguish the
real life world from the ideal process world for any simula&m we con-
sider the following special simulat&im

WhenSimreceives messag&HM.KeyGen, sid) from Fxem, Simexe-
cutes key generation algorithgand obtains public kepk and secret key
sk Simsetse « &(pk,-) andd « D(sk-), and returnsAlgorithms, sid,

e, d) to Fkem.

We now show that we can construct advergathat breaks IND-CCA2-

KEM by using the simulated copy dEnv, which distinguishes readleal
worlds. To do so, we assume that there is environrigwsuch that

|IDEAL# c\.simEnv(K, 2) —REAL o advend(K, 2)| > u(K).

We then show thaG using Env can correctly guesb in the IND-CCA2
game in Fig.2.J with a probability of at Ieasizl +u(k)/2¢, where¢ is the
total number of times the encryption oracle is invoked.

In the IND-CCAZ2 game, given target public-key (encryption algorithm)
e and target pairkey, cip) from the encryption oracle with private random
bit b, G is allowed to query the decryption oracle, and finally outpyts
which isG’s guess ob. G execute€nvwith the following simulated inter-
action as protocots/Fkem.

G acts as indicated hereafter whetg, C andR; denote thea-th key,
ciphertext and random value of the lenditk), respectively.

1. When Env activates some partlp with (KEM.KeyGen, sid), G lets
D output Encryption Algorithms, sid, €) wheree is the target
public-key (encryption algorithm) fa® in the IND-CCA2 game.
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2. For the firsth times thatEnvasks some partlg to generatekiey, cip)
with sid, G lets E return key cip) < (K{,C/") by using algorithrre.

3. Theh-th time thatEnvasks to generat&éy, cip) with sid, G queries
its encryption oracle in the IND-CCA2 game, and obtains correspond-
ing pair keycip) < (K}, C;) (whenb = 0) or non-corresponding pair
(keycip) « (Rn, C;) (whenb = 1), whereR, < 10,1))®. Accord-
ingly, G hands pairKey, cip) to Env.

4. For the remainindg — h times thatEnv asksE to generatekey, cip)
with sid, G letsE return keycip) < (R, C;), whereR, 10,10,

5. WheneverEnv activates decryptoD with (KEM.Decrypt, sid, C*),
whereC* = C for somei, G lets D return the corresponding ke
or R for anyi. If C* is different from aliC;"’s, G then pose€£* to its
decryption oracle, obtains valweand letsD returnv to Env.

6. WhenEnvhalts,G outputs whateveEnvoutputs and halts.

We use a standard hybrid argument to analyze the success probability of
G in the IND-CCA2 game.

Forhe{0,...,¢}, letEnv, be an event that for the firbttimes thatEnv
asks some partfe to generatekey, cip) with sid, E returns keycip) «
(K", C;) by using algorithne; theh-th time thatEnvasksE to generatekey,
cip) with sid, E returns key cip) « (K{,C") or (keycip) «(R;, C’) where

R < {0,1)'®. For the remaining — h times thatEnv asksE to generate

(key, cip) with sid, E returns key.cip) —(R;, C) whereR, <10,1)®. The
replies toEnvfrom decryptoD are the same as those shown in step 5 above.
Let H,, be PrEnv— 1Envy]. We then obtain the following inequality.

{

> IHn = Hnal > [Hz = Hol. (6.1)
h=1

Here, from the construction diy, it is clear that
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Ho = IDEALTKEM,SimEnV(k’ Z)’ (62)
H( = REAan,Adv,Env(k’ Z) (63)

Therefore,

{
D IHn—Hn 1l > [H; — Hol
h=1
= |REAL7r2,AdV,EnV(k’ Z) - IDEALTKEm,S imEnv(k’ Z)l > ,Ll(k)

Then there exists sontec {1, --- ¢} that satisfies

IHh—Hn-1l > u(K)/¢. (6.4)

Here, w.l.0.g., letHn-1 — Hp > u(k)/¢, since if Hy — Hp-1 > u(K)/¢ for
Env, we can obtairHy_1 — Hp > u(k)/¢ for Env', whereEnv' outputs the
opposite ofEnvs output bit.

In step 3 ofG’s construction, ifG obtains the corresponding pakK{,
C;) (whenb = 0), then the probability thaEnv outputs 1 is identical to
Hh. On the other hand, & obtains the non-corresponding pair 8(Cy)
(whenb = 1), then the probability tha&Envoutputs 1 is identical téj_1.

SinceG’s output followsEnvs output,

Hn=Pr[g=1b=0] and (6.5)
Hh-1=Prlg=1b=1], (6.6)

whereb is the private random bit of the encryption oracle in the IND-
CCA2 game and is G's output G's guess ob).

Since Prf= 1lb=0]+Pr[g=0b=0] = 1, we obtain Pif=0b=0] =
1-Prlg=1b=0].
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Therefore, we obtai’s success probability,

PrlExpt{'?~C“A%(k) = 1], as follows:
PrlExptdy ““*%(Kk) = 1]
= Prlb =g
=Prb=0]xPr[g=0b=0]
+Prlb=1]xPrjg=1b=1]
= % X (Pr[g=0b=0]+Pr[g=1b=1])

= 2 x(1-Prlg=1b=0]+ Prig=1Ib= 1]

= %X(l— Hn+Hp-1) > %-F,u(k)/Zf.

That is,Advi)D~CCA%(K) > u(K)/2¢, which is not negligible irk since¢
is polynomially bounded ifk. m|

6.3 UC DEM

LetY = (&,9’) be a DEM scheme and I1&” be a¥kem-hybrid DEM
scheme. Hereafter we define the KEM and DEM functionafiR¢m-pem
and protocoky~ that is constructed from DER in theFxgm hybrid model
and that has the same interfaces that environfa@ntses to communicate
with FKEM-DEM-

Definition 21. Let#kem-pem be the KEM and DEM, KEM-DEM, function-
ality shown in Figg.3and in Figle.4, and letrs» be the KEM-DEM protocol
in Figle.3and Figb.g.

Here, note that there is no functionality for the data transmission
between parties infkem-pem, and we consider that algorithra in
KEM.KeyGen offkem-pem outputs diferent key ciphertext™.
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Functionality¥kem-DEM

FkeM-DEM proceeds as follows, and is executed with party
Pe{E,...,En, D} and adversargim

KEM.KeyGen: Upon receiving KEM.KeyGen, sid) from
key decryptorD, verify that sid=(D,sid’) for some
sid. If not, then ignore the request. Else, hand
(KEM.KeyGen, sid) to adversarySim Upon receiving
(Algorithms, sid, e, d, epem, dpem) from Sim where
e, d, epem anddpgym are descriptions of PPT TMs, out-
put (KEM Encryption Algorithm, sid, €) to D.

KEM.Encrypt: Upon receiving KEM.Encrypt, Sid, €)
from key encryptoig(i € {1,...,n}), perform the follow-
ing:

e If € # e, or key decryptoD is corrupted, then ob-
tain K andC* by €, record Ej,K,C*,0) and send
(KEM.Ciphertext, sid, C*) to E;.

e Else, obtainC* by € and K & 10,1)'®, record
(Ej,K,C*,1) and sendKEM.Ciphertext, sid, C*)
to E;.

KEM.Decrypt: Upon receiving KEM.Decrypt, sid, C’)
from key decryptoD (andD only), perform the follow-
ing:

e If C"isinthe memoryE;,K,C’,1) for somek; and
K, record D,K,C’,1) and senakto D.

e Else, recordD,d(C’),C’,0) and senak to D.

Figure 6.3:KEM-DEM Functionality (Part I)
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FunctionalityFxem-pem

DEM.Encrypt: Upon receiving BEM.Encrypt, sid, m, C’)
from partyP, proceed as described below.

e If (P K,C’, 1) is recorded in the memory for some
K andP is uncorrupted R denotesD if P is Ej, P
denotesE"" if P is D, whereES" denotes the party
such that E, *, C’, 1) is recorded), then do as fol-
lows:

1. Generatec by epem(K, ), whereu is a fixed
message, and recoroh(c, C’) in the memory.
2. Send DEM.Ciphertext, sid, c) to P.

e Else if (P,K,C’,1) is recorded an® is corrupted)
or (P,K,C’,0) is recorded in the memory for some
K, then perform the following:

1. Generate usingepem (K, m).
2. Send DEM.Ciphertext, sid, c) to P.

e Else, do nothing.

DEM.Decrypt: Upon receiving EM.Decrypt, sid, ¢, C’)
from partyP, proceed as follows:

o If (PK,C’,1) is recorded in the memory for
some K and n, ¢, C’) is recorded, then send
(DEM.Plaintext, sid, m) to P.

e Else if (P,K,C’,x) is recorded in the memory for
somekK, send DEM.Plaintext, sid, dpem(K,C)) to
P.

e Else, do nothing.

Figure 6.4:KEM-DEM Functionality (Part I1)
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Protocol s

ny» proceeds as follows, and is executed with paPtye
{E1,...,En, D} and an ideal functionalitfxeym .

KEM.KeyGen: Upon input KEM.KeyGen, sid) within key
decryptorD,
1. D sendsKEM.KeyGen, Sid’) t0o Fkem-
2. Upon receiving KEM Key, sid’, €) from Fxgm, D
outputs KEM Encryption Algorithm, sid, €).
KEM.Encrypt: Upon input KEM.Encrypt, Sid, €) within
key encryptorE;,
1. Ej sendsKEM.Encrypt, sid’, €) to Fkem.
2. UponreceivingKey and Ciphertext, sid’, K, C*)
from Fxewm, Ei stores K,C*) in it's memory.
3. E;j outputs KEM.Ciphertext, sid, C*).
KEM.Decrypt: Upon input KEM.Decrypt, sid, C’) within
D,
1. D sendsKEM.Decrypt, sid’, C*) to Fxem.
2. Upon receiving $hared Key, sid’, K), D stores
(K,C’) in it's memory.
3. D outputsok.

Figure 6.5:KEM-DEM Protocol (Part I)

The revised point from the previous definitidd]] [42] is to remove
the restriction that the previouskem-pem can have only one key in the
DEM phase. To solve this problem, we made the current functionality ac-
cept the multiple key ciphertexts generated by (DEM.Decrsigtc,C’) in
DEM.Decrypt of Fkem-pem Wherec is the ciphertext of a message abd

is the encryption of some key.
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Protocol s

DEM.Encrypt: Upon input PEM.Encrypt, sid, m, C’)
within party P, proceed as described below.

e If (K,C’) exists inP’s memory,P obtains ciphertext
¢ = &(K,m) and outputsEM.Ciphertext, sid, C).
e Else, do nothing.

DEM.Decrypt: Upon input DEM.Decrypt, sid, ¢, C’)
within party P, proceed as described below.

e If (K,C’) exists inP’s memory,P obtains message
m = 2’(K,c) and outputsi{EM.Plaintext, Sid, m).
e Else, do nothing.

Figure 6.6:KEM-DEM Protocol (Part I1)

6.4 UC DEM Is Equivalent to IND-P2-C2 DEM

The following theorem implies that UC DEM is equivalent to IND-P2-C2
DEM.

Theorem 7. Protocol ny» UC-realizes#xem-pem With respect to non-
adaptive adversaries in th&xgm-hybrid model, if and only ifrs~ is IND-
P2-C2-DEM.

Proof.
(“only if” part) We prove that ifry- is not IND-P2-C2-DEM secure, then
ny» does not UC-realiz&xem-pem. More specifically, we can construct an
environmentEny, such that for any ideal process world adversary (simula-
tor) Sim Envcan tell whether it is interacting witAhdvandry in the Fxem
hybrid model or withS imand the ideal protocol foFkem-pem by using ad-
versaryF that breaks IND-P2-C2-DEM with non-negligible advantage, i.e.,
AdVIF'\,Ifo_ P2=C2(K) > u(K)).

Envactivates partf; andD, and uses adversaFyas follows:
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1. Envactivates key receivdd with (KEM.KeyGen, sid) for sid = (D, 0)
and obtains encryption algorithen

2. Envactivates key encryptde; with (KEM.Encrypt, sid, €) and ob-
tainsC* from the outputKEM.Ciphertext, sid, C*).

3. EnvactivatesD with (KEM.Decrypt, sid, C*) and obtain®k.

4. WhenF generates two plaintextsng, my), Env choosed & {0,1},
activatess; with (DEM.Encrypt, sid, m,, C*), and then obtainsfrom
the output PEM.Ciphertext, sid, ¢). Envhandsc to F in the IND-
P2-C2-DEM game shown in Fi§.8

5. WhenF asks its encryption oracle to encrypt messajévhich may
bemg or my), EnvactivatesE; with input (OEM.Encrypt, sid, n?, C*),
obtains ciphertext’, and hands’ to F.

6. WhenF asks its decryption oracle to decrypt ciphertekt: ¢, Env
activatesD with input (DEM.Decrypt, sid, ¢, C*), obtains message
m', and handsn' to F.

7. WhenF outputsg € {0,1}, Envoutputsg® b and halts.

Here note thaEnvcorrupts no party and interacts with no adversary.

When Env interacts withrrs, the view of F interacting withEnv is
exactly the same as that behaving in the real IND-P2-C2 game ifGHg.
Therefore, in this case (s&gal), g = b with probability > %+p(k).

In contrast, whenEnv interacts with the ideal process world for
Fkem-DEM, the view of F interacting withEnvis independent ob, since
b is independent ofnp, M, c, u) in step 4, and is independent of the en-
cryption and decryption resut® andm' in steps 5 and 6 (since’, mo,
my andm' are random strings independentt)f Hence, in this case (say
Ideal), g = b with probability of exactly%.

Thus,|Pr[Env— 0| Real] —|Pr[Env— 0| Ideal]| > u(K).

(“if” part) We show that ifrs» does not UC-realiz&kgm-pem in the
Fkem-hybrid model, themry is not IND-P2-C2-DEM. To do so, we first
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assume that for any simulat8rimthere is adversanjdvand environment
Envthat distinguishes with probability % + u(k) whether it interacts with
Simand¥kem-pem Or with Advandns-. We then show that there exists
an IND-P2-C2-DEM attackeF againstt” usingEnvin the Fxgm-hybrid
model.

First we show thaEnv can distinguish Adv, 7s~) in the Fxem-hybrid
model and § im Fxem-pem) only when no party is corrupted. Since we are
dealing with non-adaptive adversaries, there are three cases. Case 1: Sender
E; is corrupted (throughout the protocol). Case 2: Decryptas corrupted
(throughout the protocol). Case B; andD are uncorrupted.

These cases are dealt with using shegm-hybrid model, sadEnv can-
not tell whetherEnvinteracts with protocoks or ideal #xgm-pem in the
KEM= (G,&, D) phase. The KEM phase in all cases is performed as de-
scribed hereatfter.

1. When Env sends KEM.KeyGen, sid) to D, Fxem-pem Sends
(KEM.KeyGen, sid) to Sim Simcomputes pk,sK) by executing al-
gorithm G, and generates, d, epem anddpeym Wheree « &(pk, -),
d — D(sk-), epem < & anddpgpm < D’. Simreturns Algorithms,
sid, e, d, epem, dpem) t0 Fkem-pem and Fkem-pem forwards
(KEM Encryption Algorithm,sid,e) to D.

2. WhenEnvsends KEM.Encrypt, Sid, €) to corrupted partyg;, E; re-
ceives outputKEM.Ciphertext, sid, C*).

3. WhenEnvsendsKEM.Decrypt, sid, C*) to D, D receives outpubk.

We assume thd& nvcannot distinguish the idgatal world in the KEM
phase of all cases (hereafter, we discuss all cases after the KEM phase is
finished).

In Case 1, we can construct simula®im such that ndenv can dis-
tinguish @Adv, rs) in the Fxem-hybrid model and$ im Fxem-pem) as de-
scribed hereatfter.
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1. When Env sends BEM.Encrypt, sid, m, C*) to corrupted partyg;,
i.e.,Sim Simreceives the message and sends it to the simulated copy
of Adv, which replies toSim Simthen returnsAdvs reply (which
may bel) to Env.

2. When Env sends BEM.Decrypt, sid, ¢, C*) to D, D forwards
it to Fkem-DEm. Fkem-DeEm then returns HEM.Plaintext, sid,
doem(K,c)) sinceE, i.e., Sim sends noHEM.Encrypt, sid, m, C’)
to Fkem-pem, Which records nothing asr( ¢, C’). Note that,Sim
does not receive any message in this step.

In this caseEnvcannot distinguishAdv, 7s) and S im Fxem) because the
message returned I8/imaskE; in the ideal world is the same as that returned
by AdvasgE; in the real world, andDEM.Plaintext, sid, dpem(K,C)) re-
turned by¥Fkem-pewm is exactly the same as that returneddyn the real
world.

In Case 2, we can also construct simula®msuch that ndEnv can
distinguish Adv,7rs~) and S im Fkem-pem) as described hereafter.

1. When Env sends BEM.Encrypt, sid, m, C*) to E;, E; forwards it
to Fkem-DEM- FKEM-DEM generate€ usingepgm(K,m) and returns
(DEM.Ciphertext, sid, c) to P to Ej, sinceD, i.e.,Sim is corrupted
by Adv, which records nothing as ciphertext

2. WhenEnvsendsBEM.Decrypt, sid, ¢, C*)to D, i.e.,Sim Simsends
it to Adv. Advreturns a reply (which may be) to Sim which for-
wardsAdvs reply toEnv.

In this case Env cannot distinguishAdv,7rs) from (Sim Fxem-pem)
because the message returned®lm (usingAdy) asD in the ideal world is
the same as that returned AgvasD in the real world, andDEM.Decrypt,
sid, ¢, C¥) returned byFkem-pewm IS exactly the same as that returnediy
in the real world.

Thus, Env cannot distinguish the reaeal worlds in Cases 1 and 2.
Hereafter, we consider only CaseB:andD are uncorrupted.

68



Referring to the UC framework, three types of messages are sent from
Envto Adv. The first message type is to corrupt either party, the second
message type is to report on message sending, and the third message type
is to deliver some message. In protogel considered here, parties do not
send messages to each other over the network. In addition, we consider the
case that no party is corrupted. Therefore, there are no messageBirom
to Adv(andSim).

Since there exists at least one environnienvthat can distinguish the
real life world from the ideal process world for any simula&m we con-
sider the following special simulat&im

e Receiving KEM.KeyGen, sid) from Fxem-pem, Simobtains pk, sk
by executingF and sets KEM encryption algorithe—&(pk), the
KEM decryption algorithm, and<—2D(sk -). Simthen chooses DEM
encryption algorithmepgy <« & and DEM decryption algorithm
dpem <« D’ and sendsAlgorithms, sid, e d, epem, dpem) to

FKEM-DEM-

We now show that we can construct adversirthat breaks IND-P2-
C2-DEM by using the simulated copy Binvwhich distinguishes readleal
worlds in theFxem-hybrid model. To do so, we assume that there is an
environmentEnvsuch that

|IDEAL‘7"KEM-DEM,S imEnv(k, Z) - REALHZ// ,AdV,EnV(k’ Z)| > lu(k)’

whenEnvcommunicates with the message sending party {Ei,- -, En}
and the message receiving palty

We then show thaf usingEnvcan correctly guedsin the IND-P2-C2
game in Figs.8 with the probability of at Ieas% +u(k)/2nt, wheref is the
total number of times the encryption oracle is invoked anslthe number
of all message sending partiEs(i € {1,---,n}).

In the IND-P2-C2 gamef: chooses a target message pay; X1) with

IXol = |X1|. Given ciphertexy with private random bib & {0, 1} selected by
the encryption oracle; is allowed to query the encryption and decryption
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oracles, and finally outputg, which is F’'s guess ofb. F executesEnv
with the following simulated interaction as protoesl:/Fxem-pem In the
Fkem-hybrid model.

F performs as described hereafter whiyé, m;j, ¢j, K, Cj, Kak and
Catk denote the security parameter, the total number of encrypting messages
that Envactivates some party; with DEM.Encrypt, thej-th message, the
j-th ciphertext, the key oF’ choosing for message sending paBy the
ciphertext of key forE;, the shared key gained by usiffgepm between the
message sending pafB4x and the message receiving pailyand the key
ciphertext ofK 5, respectively. For somiee {0, --- , ¢},

1. F randomly selects one parByk.

2. For the first h times that Env activates some partyE; with
(DEM.Encrypt, sid, mj, Cj) to encrypt some messagg, if Ej # Ea,

F letsE; returnc; & epem(Ki, m;), wherek; &10,1)® is F's chosen
key for partyE;. Else, i.e.,Ej = Ea, andF lets Eq returnc; after
askingF’s encryption oracle regarding;.

3. Theh-th time thatEnvactivatesE; with (DEM.Encrypt, Sid, My, Catk),
if Ej # Eak, F halts. Else, i.e.Ej = Ea, thenF queries its encryp-
tion oracle regardingxg, X1) « (mn,u) in the IND-P2-C2 game, and
obtains corresponding ciphertest < epem(Katk, Mn) (Whenb = 0)
or non-corresponding ciphertesit < epem(Katk. 1) (Whenb=1). F
lets E4ik returnc, to Env.

4. For the remaining — h times thatEnv activates some partl; with
(DEM.Encrypt, sid, mj, Cj) to encrypt some messagsg, if Ej # Ea,

F letsE;j returnc; & epem(Ki, 1), whereu is the fixed message. Else,
I.e., Ei = Eat, thenF lets Eq returnc; after askingF’s encryption
oracle regarding.

5. WheneverEnvactivatesD with (DEM.Decrypt, sid, ¢, Cj) wherec =
cj for somej, F letsD return the corresponding messagge Here, if
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cis not allc;, thenF generates the decryption message;ofith the
key K for C; and letsD return it toEnv. Here, ifC; = C4, thenF
asks to its decryption oracle regardiag obtains values, and letsD
returnvto Env.

6. WhenEnvhalts,F outputs whateveE nvoutputs and halts.

Here, we also use a standard hybrid argument to analyze success proba-
bility of F in the IND-P2-C2 game.

Forhe{0,...,¢}, letEnvy be an event that for the firbttimes thatEnv
asks some part§; (which may beEay) to generate ciphertexy with sid,
Ei returnsmj’s encryptionc; according to the above mentioned ways. For
the h-th time thatEnvasksE; (which may beEat) to generate ciphertexy
with sid, E;j returnsm;’s encryption on:’s encryption and for the remaining
¢ —htimes thatEnvasksE; (which may beEqy) to generate; with sid, E;
returnsu’s encryptioncj. The replies t&Envfrom decryptorD are the same
as those shown in step 5 above.

Let Hy be PrEnv— 1jEnvy]. We then obtain the following inequality.

¢
> IHn=Hi_1l > [H = Hol. (6.7)
h=1

Here, from the construction ¢y, it is clear that

HO = IDEAL?KEM‘DEMySimEnV(k’ Z) and (68)
H[ = REALﬂ-Z,, ,Adv’Env(k, Z). (69)

Therefore,
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¢
D Hn=Hnal > [He—Hol
h=1
= |REAL71'E// ,AdV,EFIV(k’ Z) - IDEAL?"KEm-DEM,S imEnv(k, Z)|
> u(K).
(6.10)
Then there exists sonfec {1,--- ¢} that satisfies
IHh—Hn-1l > wu(k)/C. (6.11)

Here, w.l.0.g., letHn-1 — Hp > u(k)/¢, since ifHy — Hp—1 > p(K)/¢ for
Env, we can obtairHy_1 — Hy > u(k)/¢ for Env, whereEnv' outputs the
opposite ofEnvs output bit.

In step 3 ofF’s construction,F can continue the IND-P2-C2-DEM
game, when thé-th time activation occurs on jusizi. The probability
thatEnvactivatesE,ik from all partiesk; € {Eo,---,En} is 1/n. If F obtains
the corresponding pair ofrg, cn) (whenb = 0), then the probability that
Envoutputs 1 is identical tél,/n. On the other hand, i obtains the non-
corresponding ciphertext ofi( cj) (whenb = 1), then the probability that
Envoutputs 1 is identical tél,_1/n.

SinceF’s output followsEnvs output,

Prlg=1b=0] =Hp/n and (6.12)
Prlg=1/b= 1] = Hh-1/n, (6.13)

whereb is the private random bit of the encryption oracle in the IND-
P2-C2 game angdis F’s output ’s guess ob).

Since Pr=1b=0]+Pr[g=0b=0] = 1, we obtain Pig=0b=0] =
1-Pr[g=1b=0].

Therefore, from the above equalities, we obtais success probability,
PrExpt 0 P2 C%(K) = 1], as follows:
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PrExpt?D P2 (k) =1] = Prb=g]
= Prlb=0]xPr[g=0b=0]
+Prlb=1]xPr[g=1lb=1]

_ % x (Prlg = 0lb = 0] + Pr[g = 1jb = 1])

= %x(l—Pr[g: 1lb=0]+Pr[g=1b=1])

1 Hn Hp1 1
= 2><(1 - + m ) > 2+,u(k)/2n£.

That is, Adv"DP2"C%(K) > u(K)/2n¢, which is not negligible irk since
nand¢ are polynomially bounded ik.

Finally, we conclude that iy~ does not UC-realiz¢«em-pewm in the
Fkem-hybrid model, themry is not IND-P2-C2-DEM. O

Here, we define protocals: and obtain Theorei@

Theorem 8. LetY’ = (&',9’) be a DEM scheme. L&’ be aFkem-hybrid
>’. Protocolry~ is IND-P2-C2-DEM if and only ifry: is IND-P2-C2-DEM
(or 2’ is IND-P2-C2 DEM).

Proof. (“only if” part) We show that ifry/ is not IND-P2-C2-DEM then
s 1S not IND-P2-C2-DEM. From the definition ofy» and the fact that
ny 1S in theFgem-hybrid model, this is trivial.

(“if” part) We show that ifry is not IND-P2-C2-DEM themrs is not
IND-P2-C2-DEM. This is also trivial from the definition af. O

Theorem 9. Protocol ny» UC-realizes¥xem-pem With respect to non-
adaptive adversaries in th€kepm-hybrid model, if and only i’ is IND-
P2-C2 DEM.

Proof. This is also trivial from Theoreifid and Theorerg. O

From Theorem§, B, and@, we obtain that UC DEM is equivalent to
IND-P2-C2 DEM.
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Chapter 7

Three Cryptographic Channels

7.1 Three Cryptographic Channels

In this section, we introduce three cryptographic channels: the SC, 2AC,
and DIC.

7.1.1 SC

A SC is a channel such that the initiator (message sender) and the receiver
(message receiver) can safely transmit messages to each other without the
content being retrieved by a third party or adversary. This SC consists of
three sessions: the establish session, data sending session, and expire ses-
sion. 1. In the establish session a session is created between the initiator
and the receiver to prepare for sending the message. 2. In the data sending
session a message is safely sent to the message receiver. 3. In the expire
session the existing session is terminated.

Definition 22. The SC functionalityFsc, is defined in Fig.[Z.] and the
code for SC functionalityFsc, is defined in FiglZ2and FiglZ3 (X (X €
{Init, Red) means that if X= Init, thenX = Reg else if X= RecthenX =
Init).
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7.1.2 2AC

An AC is one of the three cryptographic channels and is used to send some
messages to the receiver from unknown senders ("anonymously”). The ad-
versary can identify the receiver and read the message content, but cannot
identify who sent the message to the receiver. When two senders and a re-
ceiver anonymously communicate using this channel, we say the channel is
a 2AC. That s, one of the two senders sends a message to the receiver. Note
that the 2AC can also be used when the receiver and one of the senders is
the same process.

Definition 23. The 2AC functionalityf,ac, is defined in FiglZ.4 and the
code for the 2AC functionalitfsoac, is defined in FiglZZ8. and Fig.[Z8

7.1.3 DIC

A DIC is one of the three cryptographic channels. A DIC can be used
to send some messages from the initiator to the receiver in a direction-
indeterminable manner. An adversary can read the transmitted messages,
but cannot identify the sender (and the receiver), i.e., the direction of the
message transmission is indeterminable.

Definition 24. The DIC functionalityFp,c, is defined in FiglZ.4and the
code for DIC functionalityFp,c, is defined in FiglZ.-8and FiglZ.3
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Functionality¥sc

Fsc proceeds as follows, running with partiB< {Init,Reg
and an adversary.

Establish Session:
Upon receiving Establishgc, sidsc) from some party
Init, verifies thatsidsc = (Init,Re¢ sidsc’) for Rec, then
sends $1ID, sidsc) to the adversary, and walits to receive
(Establishsc, sidsc) from Rec. Upon receiving this
value, sets a boolean variable as active.

Data Sending Session:
Upon receiving $end, sidsc, m) from some partyP, and
if active is set, sendssénd, sidsc,|m|) to the adversary.
Upon receiving Response,sidsc,0k) from the adver-
sary, sendsReceive, sidsc,m) to the other party.

Expire Session:
Upon receivingExpiresc, sidsc) from either party, un-
sets the variable active.

Figure 7.1:Secure Channel Functionalifjsc
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Code for Secure Channel Functionalitgd-whereX € {Init,Reg

Signature:
sidsc = (Init,Regsidy.)
Input: Output:
receivgEstablishsc, sidsc)x sendSID, sidsc)adv
receivé€Send, sidsc, m)x sendSend, sidsc, |M)adv
receivéResponse,sidsc,0Kagy  Se€NdReceive,sidsc, ey
rECEiVQEXpiresc, Sidsc)x SenC(EXpiI'esc, Sidsc)Adv
State:
estcongl € {_L, T}, initially L activee {L, T}, initially L

okcondgygy € {L, T}, initially L mese ({0,1}) U{L}, initially L
ntaske ({0,1}*) U{L}, initially L

Tasks:
{SendSID, SidSC)AdV, Sen((Send, SidSC’ |m|)AdV’
sendReceive,sidsc,megy, sendExpiresc, sidsc)adv}

Figure 7.2:Code for Secure Channel Functionalit¢c, Fsc (Part I)
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Code for Secure Channel Functionalitgd-whereX € {Init,Reg

Transitions:

Establish Session:

ESS1.receivdEstablishgc, sidsc)x
pre: active ntask= L
eff: estcongt := T
If estcongl = T for all X thenactive:= T andntask:= ESS2.
Else do nothing.
ESS2.sendSID, sidsc)adv
preactive= T andntask= ESS2
eff:ntask:= L

Data Sending Session:

DSS1.receivéSend, sidsc, M)y

preactive= T andmesntask= L

eff: mes=mandntaski= DSS2
DSS2.sendSend, sidsc, [M)ady

pre: okconghgy = L, m:= mesandntask= DSS2

eff: ntaski=DSS3
DSS3.receivgResponse, sidsc, OK)agy

prentask= DSS3

eff: okcondgy := T andntask:= DSS4
DSS4.sendReceive,sidsc,megy

pre: ntask= DSS4

eff: mes okcondggy, andntask:= L

Expire Session:

EXSL1.receivéExpiresc, sidsc)x
pre:active# L andmes= L
eff: ntaski= EXS2

EXS2. sendExpiresc,sidsc)adv
pre: ntask= EXS2
eff: active ntaskandestcong := L for all X

Figure 7.3:Code for Secure Channel Functionalftgc, Fsc (Part 1)
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Functionalityfoac

Fonc proceeds as follows, running with pamye {Init;, Reg
(i€ {1,2}) and an adversary. Here, In&nd Inip are the mes-
sage sending party and Rec is the message receiving party.

Establish Session:
Upon receiving Establish;ac, sidyac) from message
sending party Injt (i € {1,2}), verifies thatsidac =
({Inity, Inito}, Regsidaac’), sends §ID,sidyac) to the
adversary, and waits to receivestablishyyc, sidaac)
from other party Init If message from all party received,
sets a boolean value as active.

Data Sending Session:
Upon receiving $end, sid;ac, M) from message send-
ing party Init, and if active is set, sendSdnd, sid;ac,
m) to the adversary. Upon receiving the message
(Response, sidyac,0K), sendsKeceive, sidaac, M) to
the receiver Rec.

Expire Session:

Upon receiving Expire;ac, sidzac) from some party,
un-sets the variable active.

Figure 7.4:Two Anonymous Channel Functionalifjhac

80




Code for Two Anonymous Channel FunctionalityaF,
where forX € {Inity, Inity, Reg

Signature:
sidaac = ({Inity, Initp},Regsidy, )
Input: Output:
receivdEstablishyac, sidaac)x  SendSID, sidaac)adv
receivégSend, sidzac, Minit; sendSend, sidac, MeJady
receivdExpire,ac, sidaac)x senqReceive, sidyac, MEJRec

receiv€Response, sidyac,0Kadqy  SendExpirezac, sidaac)adv

State:
estcong € {L, T}, initially L okcondygy € {L, T}, initially L
mese ({0,1}) U{L}, initially L activee {L, T}, initially L
ntaske ({0,1}) U{L}, initially L

Tasks: {sendSID, sidyac)adv, S€ENdReceive, sidaac, MEJRen
sendSend, sidac, Me9ady, SENAEXpire;ac, sidaac)adv)

Figure 7.5:Code for Two Anonymous Channel Functionalifgac, Foac
(Part)
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Code for Two Anonymous Channel FunctionalityaFE,
where forX € {Init4, Inity, Reg

Transitions:

Establish Session:

ESSl.receive{EstablishZAc, SidZAC)X
pre: active= L andntask= L
eff: estcongt := T
If estcongl for all X thenactive:= T andntaski= ESS2
Else do nothing.

ESS2.sendSID, sidaac)ady
pre:active= T andntask= ESS2
eff: ntaski= L

Data Sending Session:

DSS1.receivéSend, sidaac, Minit; (i € {1,2})
pre:active= T, mes= L andntask= L
eff: mes= mandntaski= DSS2

DSS2.sendSend, sidyac, Me3adv
pre: okconghgy = L, mes= mandntask= DSS2
eff: ntask= DSS3

DSS3.receivéResponse, sidaac, OK)ady
pre: ntask= DSS3
eff: okcondygy := T andntask:= DSS4

DSS4.sendReceive, sidyac, MEJRec
pre: ntask= DSS4
eff: okcondgy, mesandntask:= L

Expire Session:

EXS1. receiVQEXpiI‘GZAc, SidZAC)X
pre: active= T, mesandntask= L
eff: ntask:= EXS2

EXS2. SenC(EXpiI‘GZAc, SidZAC)AdV
pre: ntask= EXS2
eff: active estcongl andntask:= L for all X

Figure 7.6:Code for Two Anonymous Channel Functionalifgac, Foac
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Functionalityfpic

Fpic proceeds as follows, running with parties {Init,Reg
and an adversary.

Establish Session:

Upon receiving Establishprc, sidprc) from some
party Init, verifies thasidprc = ({Init,Req, sidprc’) for
Rec, sendsYID, sidpzrc) to the adversary, and waits to
receive Establishpzc, sidprc) from Rec. Upon receiv-
ing this message, sets a boolean variable as active.

Data Sending Session:

Upon receiving $end, sidprc, m) from P € {Init,Redg,

and if active is set, sendsdnd, sidprc,m) to the ad-
versary. Upon receivingRésponse, sidprc,0kK), sends
(Receive, sidprc, M) to the other party.

Expire Session:

Upon receiving Expireprc, sidprc) from either party,
un-sets the variable active.

Figure 7.7:Direction-Indeterminable Channel Functionalffy,c
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Code for Direction-Indeterminable Channel Functionalitydr
whereX € {Init,Reg

Signature:
sidpzc = ({Init,Regq, sid};)
Input: Output:
receiVQEStabliShplc, SidD]:c)x SenC(SID, SidDIC)Adv
receivgSend, sidprc, m)x sendSend, sidpic, Mady
receivgResponse,sidprc,0K)agy  SendSend, sidprc, megy
receinExpireDIc, Sidplc)x SendExpireDIc, SidDIC)AdV
State:
estcong € {L, T}, initially L mese ({0,1}) U{L}, initially L

okcondgy € {.L, T}, initially L activee {L, T}, initially L
ntaske ({0,1}) U{L}, initially L

Tasks:
{sendSID, sidpic)adv, SendSend, sidpic, M)adv,
sendSend, sidprc, MeJy, SendExpirepic, sidprc)adv)

Figure 7.8:Code for Direction-Indeterminable Channel Functionaligyc,
Foic(Part 1)
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Code for Direction-Indeterminable Channel Functionalityick
whereX e {Init,Reg

Transitions:

Establish Session:

ESS1. receive{Establi shpzc, Sid])Ic)x
pre: active= L andntask= L
eff: estcongl == T.
If estcongl = T for all X thenactive:= T andntask:= ESS2.
Else do nothing.

ESS2.sendSID, sidprc)ady
pre:active= T andntask= ESS2
eff: ntaski= L

Data Sending Session:

DSS1.receivégSend, sidprc, M)x

pre:active= T, mesandntask= L

eff: mes= mandntaski= DSS2
DSS2.sendSend, sidprc, Mady

pre: okconghgy = L, m:= mesandntask= DSS2

eff: ntask= DSS3
DSS3.receivéResponse, sidprc, OK)ady

pre: ntask= DSS3

eff: okcondygy := T andntask:= DSS4
DSS4.sendReceive,sidprc,megy

pre: ntask= DSS4

eff: okcondgy, mesandntask:= L

Expire Session:

EXS1. receinExpireDIc, SidDIC)X
pre:active= T, mes= L andntask= L
eff: ntask:= EXS2

EXS2. SendExpireDIc, SidDIC)Adv
pre: ntask= EXS2
eff: active estcongt andntask:= L for all X

Figure 7.9:Code for Direction-Indeterminable Channel Functiongligyc,
Foic (Part 1) 85




7.2 Equivalence Between DIC and 2AC

In this section, we prove that the DIC is equivalent to the 2AC under some
types of schedules. To prove this, we show two reductions, DIC to 2AC and
2AC to DIC. Here, we consider the exchange of a one bit message, i.e., the
message lengtim| = 1. Informally, the reduction of DIC to 2AC is proven

as described hereafter. The direction-indeterminable property is generated
using two 2AC functionalities, ¥, and B,.. Here, the two senders of
F%AC are Init and Rec, and the receiver @‘AE is Init. The two senders of
F%AC are Init and Rec, and the receiver chE iIs Rec. When Init sends
a message to receiver Rec, Init sends the message u§/i€gaﬁd FIZ‘AC.
More specifically, &,. forwards the message to Init and,E forwards

the message to Rec. The execution orderhfcﬁs selected at random by

the message sender. An adversary cannot detect the direction the message
was sent because Init and Rec receive the same messagansferred by

the two 2ACs. The other reduction, 2AC to DIC, is proven as described
hereafter. First, the message sending partys(lmitnity) sends message

to the other party using a DIC. Ipitand Inib then sendn to receiver Rec
directly under some type of master schedule. An adversary cannot detect
which is the sender because the direction the message was sent between

senders Init and Inib is indeterminable.

7.2.1 Reduction of DIC to 2AC

Let 7pic be a protocol of the DIC. We assume tihat, ., the master sched-

ule of rpc, is any schedule. Let Inic and Reg,c be the initiator code
and receiver code for a real system, seelFld Fig[Z.11 and FidZ.12

and FigZ.13and FidgZ.14 respectively. Letnitp,c andRegyc be the ini-
tiator code and receiver code for an ideal system, se@ Eigand Fig7.18

and FigZ.19and Fid7Z.2Q respectively. Finally, let Adyi,c and Sinpc be

the adversary code and the simulator code in[Ei@ and FigZ.1§ and
Fig[Z.21 and FidZ.22 respectively. Let Reg|c and Ideahc be a DIC
protocol system and a DIC functionality system, respectively. These are
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defined below.

Reabc := hide(Initpic||RedicllAdVDIclIF;pclFaac. frand(*))),
Ideabc = Initpic||RegiclISimpiclFpic.

Taskslnitp;c andRegy,c relay the input messages from the environment
to the ideal functionality task and relay the received messages from the ideal
functionality task to the environment as interface parties in the ideal system.

Theorem 4. DIC protocol systenReap,c perfectly hybrid-implements DIC
functionality systenideal,c with respect to an adaptive adversary under
any master schedule (DIC is reducible to 2AC with respect to an adaptive
adversary under any master schedule).

Let er and ¢ be discrete probability measures on finite executions of
Reabc|lEnv and Idealic||Env, respectively. We prove Theorddby
showing thategr and ¢ satisfy the trace distribution propertigist(er) =
tdist(¢). Here, we define correspondence relatibhetween the states in
Reab|c||Env and the states in Idegt||[Env. We say 4r, ¢) € Rif and only
if for every s € supplst(er) andu € supplst(g), all of the state correspon-
dences in Tableg.] [7.2 and[Z.3 hold. We then prover is a simulation
relation in Lemmdll

Lemma 1. Relation R defined above is a simulation relation from
Reabc||Envto Ideabc||Envunder master schedule V..

Proof. We prove thatR is a simulation relation from Regk||[Env to
Ideab,c||[Env using the mapping corrtaskE{geabIC”Envx RreabclEnv —
RTdeab.dlEnv’ which is defined below (hereaft@&r=co, T’ is used as an al-
ternative way to write corrtaslo(T) = T’).

The task sequence of system RgalEnv perfectly corresponds to that
of system Ideajc||Env under scheduld,, .. Formally, to prove thaR is
a simulation relation from Regl:||Env to Idead,c||Env, we must show that
R satisfies the start condition and step condition.
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e Start condition
It is true that the respective start statesaihdu in Reahc||Env and
Ideab,c||Env are on the Dirac measures. That is, the start states of
andu satisfy relatiorR because the start statessadndu are all L for
each task on master schedig,,.. Therefore, the trace distribution
property holds.

e Step condition
If (er,6) eR, p € REeab.annv’ €r IS consistent withp, ¢ is consistent
with full(corrtaskg(o), andT € Reabc||Env. Then there exist the
following.

— Probability measur@ on countable index sét

— Probability measures,
Reap,c||Env, and

i j €I, on finite executions of

— Probability measureSEI’j, j €1, on finite executions of
Ideabc||IEnv,

such that
— Foreachj e, E?e,j Rff,j’
— Zjer P(j)(eg ;) = applyer. T), and
— Zjer P())(€ ;) = apply(e, corrtaskp, T)).
Task Correspondence

For any p,T) € (Rlzeab.anan RreabclEnV), the following task correspon-
dences, which are also summarized in TébR hold.

1. Establish Session

(a) InitDK;.senc(EstablishZAc,sid%Ac)FgAC
-Initpic.sendEstablishyyc, sidgAC),:gAC

=corr. |nitD|C.SendEStabli shpic, SidDIC)ch
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LetTX;,, andTipear be sendEstablishyc, Sid)Z(AC)F’Z(AC where
X € {I,R} and sendEstablishpc,sidpic)ry e, respectively.
We assume that for each start statesia supplst(er) andu e

supplst(¢) are fixed. The preconditions fdﬁR(EAL and T1pgar

are the same astask= ESS2. T§EAL (resp.,T1peaL) IS enabled
(or disabled) ins (resp.,u) if and only if s.Initpc.ntask= ESS2
(resp.u.lnitpic.ntask= ESS2). Fromij and (j) in TableZ.], the
state correspondences imply th‘é,gAL andTpgar are uniformly
enabled or disabled in supgt(er) U supplst(e) for X € {I,R}.

Note that in the establish session, the orderh@-‘ls fixed with

I - -
Foac and F%Ac in this order.

i. Disable Case:

Let | and p be the set that has a single element and Dirac

measure onl, respectively. Letq’?’1 = €, and ell,l = €.
We have the fact that, = er and ¢ = . Here, we ob-
tain EI’?,lREI/,l from relationegrRg. The trace distribution
equivalence propertydist(e) = tdist(¢/), also holds since
tdist(er) = tdist(e/) underM,..

ii. Enable Case:
Let g denote the state of preconditionask= ESS2. Let

TX:a. @ndTpeaL be actions enabled.

Let | andp be a set that has a single element and the Dirac

measure orl, respectively. Letes, = €5 and €,=¢.
Here, we establish the property Bffor ¢/, ande/ to show
that (.€) € R To establish the property, consider any
states’ € supplst(e};) and U’ € supplst(¢/). Let s be any
state in supjst(er) such thats’ e suppfus) where §,¢,us) €
Reab|c||Env. Letu be any state in suppt(e) such that
U € suppfuy) where (i, corrtaskp, ), uy) € Ideabc||Env.
Itis true thafTX;,, updates Inifictiveto T and Inipc.ntask
to L from the definition of the fect of TX;,, for X e
{Init,Regd. Similarly, Tipgar updatesinitpic.activeto T
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and Initpc.ntaskto L from the definition of the &ect
of Trpea. From the state equivalences of and (j) in
Table[7.d, we haveu.lnitp,c.active = s.Initp,c.active and
u.lnitpic.ntask = s.nitpic.ntask By the definitions of
Initpic and Initpic, Thy,; (resp.,Tipeal) iS @ unique action
that updates the state a€tiveof Reab,c (resp., Idealic).
We then obtain that’.Initp,c.active= s'.Initp,c.activeand
u’.Initp,c.ntask= s'.Initpc.ntask Therefore, we obtain the
trace distribution propertyrace(ey) = trace(¢/).

(b) Rewic.sendEstablishaac, sidy,c)er

-Re)c.sendEstablishyc, sid‘z‘Ac)F%AC

=corr. Regc.sendEstablishprc, sidpic)rpc

This is analogous to the case[ld The states of precondition
and dfect for both expressions are the same. More specifically,
the precondition andfiect of the real task are the same as those
for the ideal task based on pne)(and €f:(n) and () in Table

[Z1 So, these tasks correspond (Hereafter, the descriptions of
precondition and fect are referred to as pre: anfl:erespec-
tively).

i. Disable Case: Ledg ande be discrete probability measures
in the real world and ideal world, respectively. We have
the fact thate/, = egr and ¢/ = €. Here, the start and step
conditions of simulation relatioR hold based on each task
definition and the state correspondence pje:Therefore,
we obtaintrace(ef) = trace(e)).

ii. Enable Case: Laek ande be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pjednd state
correspondencesfgm) and ), we haveey, = egr ande/ =
€. Here, the start and step conditions of simulation relation
Rhold. Therefore, we obtaittace(e) = trace(e)).
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() Fypc-5endSID, sidj, )ady - Fyac-S€ndSID, sid}, )adv
=corr. Foic.SendS1ID, sidpic)adv
The precondition andfect of the real tasks are identical to those
for the ideal tasks. The preconditions for each of the tasks on
the left side of the equation aextive= T andntask= ESS2,
respectively. The task for the expression on the right side of
the equation also has the same preconditions. Tieets of the
tasks on the left side of the equation atask:= L. This dfect
is also the same for the task on the right.

Let T}, be B,..sendSID, sidyac)adv for X € {Init,Regd. Let
Tear be Fpic.sendSID,sidprc)agqv. We show thatTh.,.
and Tipgar are uniformly enabled or disabled in sulsp(er) U
supplst(g). We consider that for each state sre supplst(er)
andu € supplst(e) are fixed. ThenTk.,, is enabled (or dis-
abled) insif and only if STX;,, .active= T ands.Tx;,, .ntask=
ESS2. The pred) and (f) in Table[Z Zimply that Tipgar is uni-
formly enabled or disabled. The rest of this proof is similar to

the case did

2. Data Sending Session

Here, we consider the case that Env sends the data sending message
in Initp)c. The case that Env sends a data sending messageg Init

is analogous to the case for Rgg. The task sequence in each world

is shown in Tabl€ .3 and Tabld7.8 The task sequence of the Real
Execution corresponds to that of the Ideal Execution. Note that the
order of the szAc for sending the message is not fixed so that the
message direction cannot be distinguished. To fix the orde@gg,F

we use kgc.

The flow of the states in each task is shown in Ta@lgkand[Z.8 for
each world. From the initial values and final values in Ta@lgkand
[7.8 we obtain the result of the state equivalenc&ifi That is, if
the state equivalences[iil hold before the task sequence is enabled
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(or disabled), the state equivalencefl after the task sequence is
completed also hold.

(a) Disable Case: This is a trivial case because all the states of the
parties areL. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
the parties. Lekr and ¢ be discrete probability measures in
the real world and ideal world, respectively. We have the fact
thate, = er and¢ = €. Here, the start and step conditions of
simulation relatiorR hold from the task definition and the state
correspondence. Therefore, we obtmarce(ef,) = trace(e)).

(b) Enable Case: Leig ande¢ be discrete probability measures in
the real world and ideal world, respectively. From each task
definition and the follow flow of states in Tablgsd and[7.§,
it is oblivious that the initial state is the same as the final state
for each task of each world. In addition, the states of the real
task are also the same as the states of the ideal world after the
data sending session is executed. Thata-((n) in Table[Z.]
hold. Therefore, we have theff = er ande¢| = €. Here, the start
and step conditions of simulation relati®hold. Therefore, we
obtaintrace(ef,) = trace(e)).

3. Expire Session

. . - 31
(@) |nItD|C.SenC(EXp1I‘e2AC,SleAC)FgAC
. . : IR
-Initpic.sendExpire;ac, 51d2AC)F§AC
=cor. INitpic.sendExpireprc, sidpic)rpc

The states of precondition andfect for the task on the left,
sendExpire;ac, Sid}Z(AC)F}z(AC’ are the same as those for the task
on the rightsendExpireprc, sidpic)ry,c, Wherentask= EXS2.
That is, if () and () in Table[Z.1 hold, then these tasks are en-
abled (or disabled) in every state in supffer) U supplst(e).
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(b)

Note that the order of the’z‘ﬁC is fixed with FEAC and FEAC in
this order.

The precondition of both tasks igask= EXS2. More specifi-
cally, the precondition andfiect of the real tasks are the same
as the ideal task from prg)( and €f:(i) and (), respectively.

i. Disable Case: Lefz ande be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thate(? = €R andel’ = ¢. Here, the start and step condi-
tions of simulation relatio® hold from each task definition
and the state correspondence pii¢: Therefore, we obtain
trace(eg) = trace(g)).

ii. Enable Case: Leik ande be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence pig; gnd the
state correspondences:€(i) and (j), we have that;, = er
ande/ = . Here, the start and step conditions of simulation
relationR hold. Therefore, we obtaitmace(ey;) = trace(e)).

. . I
Regc.sendExpire;ac, 31d2AC)F£AC

-Regc.sendExpire;ac, sidgAc),:gAC

=corr. Re®jc.sendExpirepic, sidpic)rpc

This is similar to the case The precondition states of both
expressions are the sameraask= EXS2. More specifically,
the precondition andfiect of the real task are the same as those
for the ideal task based on pre)(and df:(m) and §), respec-
tively. So, these tasks correspond. Note that the orde} of B
fixed with B, and B , - in this order.

i. Disable Case: Ledg ande be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thate/, = er and¢ = ¢. Here, the start and step condi-
tions of simulation relatiolR hold from each task definition
and the state correspondence prg: Therefore, we obtain

93



trace(e},) = trace(¢/).

I. Enable Case: Leiz ande be discrete probability measures

in the real world and ideal world, respectively. From each
task definition, the state correspondence prg; &nd the
state correspondence:.€m) and (), we have that/, = er
ande/ = €. Here, the start and step conditions of simulation
relationR hold. Therefore, we obtaittace(ey) = trace(e)).

I . .11

(© FZQC.Sen((ExplreZAC,51d2ﬁc)AdV
-F5ac-SendExpiresac, sid), )adv
=cor. Fpic.sendExpireprc, sidprc)adv

The precondition andfiect of the real task are the same as
those for the ideal task. The precondition is ontgsk= EXS2
and the €ect is active:= 1, estcong := L for all X (and
estconghi,, estcongec := L for all i in F’Z‘AC) and ntask:= L.
From (f) in Table[Z.], these tasks are enabled (or disabled) in
every state in supfst(er) U supplst(g). The rest of this proof is
analogous to the case[3d

i. Disable Case: Ledg ande be discrete probability measures

in the real world and ideal world, respectively. We have
the fact thate/, = er and ¢/ = €. Here, the start and step
conditions of the simulation relatidR hold from each task
definition and the state correspondence pf¢. Therefore,
we obtaintrace(ey) = trace(e)).

I. Enable Case: Leik ande be discrete probability measures

in the real world and ideal world, respectively. From each
task definition, the state correspondence pifg; &nd the
state correspondenceff:e(a), (b), (d), and (f), we have
thate; = er and ¢ = €. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(eg) = trace(g)).
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Environment Env

From the task definitions and state correspondenida abldZ.], the prov-
ability measures of both tasks are uniformly enabled or disabled in every
state in supgst(er) U supplst(e).

Claim 1 The state of Env remains static in all states in slgpar) U
supplst(e). Let ge denote this state of Env. This follows from state
correspondencey.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supst(er) U supplst(e) (simultaneously). Further-
more, if T is enabled in all states in sufgi(er) U supplst(e ), then:

1. There exists unique actiane T that is enabled in every state in
supplst(er) U supplst(g).

2. There exists a unique transition of Env framja with actiona.
Lettre = (Qe, &, ue) be this transition.

By considering ClainiZ.2.] task T of Env is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
| =1, we obtaineg{1 = eg and e|’71 = g, and the result i%,lREf,l since
we haveerRe . If T is enabled in every state in sujgi(er) U supplst(e),
Claim [Z2.1 implies that there exists unique acti@nin every state in
supplst(er) U supplst(g) and transitiontre of Env from ge enabled with
actionawheretre = (Qe, &, te).

Non Corrupted Case:

1. ais an input/ output action of Init. We assume thatis an input
action such as-n(EStabliShD:[c,SidDIc)mit, in(send,SidDIc,m)mit
and in(Expireprc,sidprc)init, and an output action such as
out(Receive, sidprc, I)init-

Let sbe any state such thslte suppfis) where § a, us) € Dreap,c|[Env-
Let u be any state such that’ € suppfy) where (,a,u,) €
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Dideab,c|Env- FOr eacha, we check that the state correspondence for
sf and U’ holds if that fors andu holds. If eacha is input from

Env, then the precondition andfect are exactly the same between
the real task and ideal task. For example, if the input message is
in(Establishprc, sidprc)init, then the precondition iactive ntask=

1 and the €ect isntask:= ESS2. The real task state correspond
to those for the ideal task. So, in the case of the enabled (or dis-
abled), it is hold that the state correspondence®)f({) and (j) for

s andU’, if those fors andu hold. Therefore, we obtain the trace
distribution propertytrace(e},) = trace(¢). This result also works
well in the case ofn(Send, sidprc, M)init, IN(Expireprc, sidprc)init
andout(Receive, sidpic, I)init-

2. ais an input/ output action of Rec. We assume tfaais an input
action such am(Establishprc, sidprc)rec iN(Send, sidprc, MReo
in(EXpiI‘eDIc,SidD:[c)ReC, and Out(Receive,sidDIc,r)ReC. This is
analogous to the casel[fif

3. ais an input/ output action of Adv. This means that input(g)agv
for some fixedg. For example,g is a corrupt message for some
party € {Init,Reg. From the fact that the state correspondences
(A) ~ (T) for sandu holds, we obtain that the state corresponces for
s andu’ holds. Therefore, we obtain the trace distribution property,
trace(e) = trace(e)).

4. ais an internal or an output action of Env. Taskn the real world
is identical to that in the ideal world. From the fact that state corre-
spondenced) for sandu holds, we obtain that state correspondence
(o) for & andu’ holds. Therefore, we obtain the trace distribution

property,trace(e;{ j) = trace(el’, j).
Corrupted Case:

1. ais an input action of Adv angbarty € {Init,Reg Here, the party
is included in the case of Init Rec. Letgaqy be the state of Adv
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or Sim, which is the same in all supgt(er) U supplst(e). Let
tradv = (Qadv, & uady) be a transition of Adv with actioa from gagy.
From Clain{Z.2.3 traqy is @ unique transition. Here, we suppose that
supp(fre X uadv)) is the pair sef(qyj,0z,j) : j € I}, wherel is a count-
able set. Lep be the probability measures such that for eagh(j) =

(e X padv)(de,j,02,j). For eachj, let eﬁ’j be eij(a/) = e1(a’), where

@ € sUppE;) such thaflst(a).Env= gy andlst(a).Adv =gz j. The

eé’ J. is analogously constructed froe.

The rest of this proof is the same as that for ddidey consider-
ing the state correspondence in each cpagy € {Init,RecInit A
Red. Finally, we obtain the trace distribution properm;ace(e&’ J.) =
trace(el"j).

Adversary Adv

From the task definitions and the state correspondenggs, (), in Table
[7.2 the provability measures of both tasks are uniformly enabled or disabled
in every state in sup|st(er) U supplst(e).

Claim 3 The state of Adv or Sim is the same in all states in
supplst(er) U supplst(g). Let gagy denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in suplst(er) U supplst(e ). Furthermore, if T is enabled
in all states in supst(er) U supplst(g ), then:

1. There is unique actiom € T that is enabled in every state in
supplst(er) U supplst(e).

2. There is a unigue transition of Adv frogpng, With actiona and
let tragv = (Qadv, & adv) be this transition.

By considering ClainY.2.1 task T of Adv is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
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| =1, we obtaine(:{,1 = eg and e|’71 = g, and the result igll:a,lRel/,l since we
haveerRe . If T is enabled, T is enabled in every state in sigifer) U
supplst(g). Claim[Z.2Z.1implies that there is unique acti@nin every state
in supplst(er) U supplst(g) and transitiortr of Adv from ge enabled with
actiona wheretragy = (dadv. & uadv). The following cases for the “Non
Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. ais an input action of Env. From the fact that the state correspon-
dences, A) ~ (T), for sandu holds, we obtain that the state corre-
spondences fos' andu’ holds. Therefore, we obtain the trace distri-
bution propertytrace(ey) = trace(e/).

2. ais an input or output action of functionality. This case concerns
the message®ceivgSID, sid} ac)Fs, - receiveSend, sid%, ., Mex,
and sendResponse, sidpic, 0K, .. The rest of this proof is analo-
gous to the case @ From the fact that the state correspondences,
(A) ~ (T), for sandu holds, we obtain that the state correspondences
for s andu’ holds. Therefore, we obtain the trace distribution prop-

erty, trace(e) = trace(¢/).

3. a is either an output action of Adv that is not an input action of
Env, Init,Rec, or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous to
the case dil. From the fact that the state correspondend®s;-((T),
for s andu holds, we obtain that the state correspondencess’for
andu holds. Therefore, we obtain the trace distribution property,
trace(e;) = trace(¢/).

4. a is an output action obut(x)aqy. This case also works well al-
though this action mayfect Env. However, the transition of Env
tre = (Qe, & e) is unique from ClainiZ.2.1 Claim[Z.2.1also says that
the state of Env remains static in all states in slgpfer) Usupplst(e).
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This follows from state correspondenoe Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(e;) = trace(e)).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupts

party € {Init,Reg.

1. ais input or output actiomn(:)party OF OUt(*)party OF corrupted party,
party € {Init,Reg, respectively. This case also works well from the
Claim[Z.Z1and state correspondence in TdBl&E~ [7.3

Perfect Simulation

Another task of Simpc is the simulatior(x) task. By usingsimulatior(x)
effectively, the simulation of Sig\c perfectly mimics the establish session,

the data sending session, and the expire session with respect to no corrup-
tion, static corruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessionFirst, in the establish session, environ-
ment Env sends establish messa&stablishprc, SidDIc)m
and messag@(Establishprc,sidprc)zg tO initiator Initpc
and receiverRegc, respectively. They send establish ses-
sion messagesendEstablishpic,sidprc)ry: 10 Foic. The
functionality sendssendSID, sidprc)agy t0 simulator Singc.
After Simp)c receives sendSID,sidprc)adv, Simpic Starts
simulatior(EstablishZAc,sid’z‘Ac) in his simulation world un-
der the following policy.

Simulation Policy

I. After receivingreceivgSID, sidpic)rpc, Simpic executes
the following simulation.
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A. prepares dummy parties Init, Rec, and Adv and ideal
functionality task Bac.

B. Simpc inputs messagem(Establishyac, sidaac)nit
andin(Establishyac, sidaac)rec tO Init and Rec, re-
spectively.

C. Simpic makes Init (resp., Rec) send message
senc(EstablishZAc,sid’z‘Ac)F)zgAC to F, for eachX e
{I,R} in this order(l then R), respectively.

D. Simpic makes B, . sendsendSID,sid}, )adv to Adv.
Task Correspondence of Simulation
i. InitD|C..sen((EsTcablish2Ac,sid’Z(AC),:;Z(AC
=corr. SlrnD|c.In|tD|C.senc(EstablishZAc,sid’z‘AC)F;Z(AC
pre: ntask= ESS2 ; ();
eff: active:= T andntask:= 1 ; (M), (L);
" . . X
ii. Req;.c..senc(EstabllshZAc,51d2AC.)F>2<AC |
=corr. Simpic.Redc.sendEstablishy,c, 51d’2‘AC)F>2<AC
pre: ntask= ESS2 ; Q);
eff: active= T andntask:= 1 ; (P),(Q);
iii. F},..sendSID, sidzac)Advpc
=corr. Slﬁb|c-F’2‘Ac-SenC(SID, sidzac)Advoic
pre: ntask= ESS2 ; ();
eff: active estcongt andntask:= L for all X ; (D) ~ (G),
(;
The simulation of the establish session is perfectly executed by

simulatior(x) of Simp|c. Finally, the parties establish two 2ACs
in the simulation world.

(b) Data Sending SessioMNext, in the data sending session, Env
sends message(Send, sidprc, M) (Orin(Send, sidprc, Mzg)
to Initpic (or Reg)c). Initpic sendssendSend, sidprc, M)Fy,c
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to Fpic. Fpic then sendsendSend, sidprc, M)agy t0 Simpc.

After Simp,c receivessendSend, sidprc, Magdy, SiMpic exe-
cutes tasksimulatior{Send, sidprc,m) in his simulation world
under the following policy.

Simulation Policy

I. After receivingreceivgSend, sidpic, Mry,c, SiMpic exe-
cutes the following simulation.

A.

w

. Simpic makes E

Simpc executegandon(x) and selects message input
party party € {Init,Reg (The following discussion as-
sumesparty = Init. The case ofparty = Rec is analo-
gous).

Simp,c inputsin(Send, sidzac, M)nit to InNit.

. Simp|c makes Init generate random valse {0, 1}.

o If s =0, Simpc makes Init send messages

: 1 : IR
sendSend, sid;,, m),:gAC andsendSend, sid;,,

Mg O Fac and B, in this order, respectively.

e Else 5= 1), Sinpc makes Init send message

: IR + 31
sendSend, sid;, ., m)FSAc andsendSend, sid;, .,

Mg, 1O Fac and B, in this order, respectively.

. . . X
5ac leceivereceivegSend, sidy, ., mes

)init and makes ¥, - sendsendSend, sid}, ., medaqy-

f senc(Response,sid’z‘AC,ok)F;z(AC to B, is received

from Adv, Sinp,c continues the following.

Simp;c makes FZEAC receivereceivéResponse, sidyac,
ok)agv and makes fAc sendsendReceive, sidjac,
me9nit andsendReceive, sidyac, MeJrecto INit and
Rec, respectively.

. Simp;c makes Init and Rec receiveceivédReceive,

. R . . . R
51d2AC,r_n)F£AC and recevaRecelve,51d2Ac,m)F;2<AC,
respectively.

. Simp)c makes Rec outpuwut(Receive, sidyac,l)Rrec
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ii. Simpic executesendResponse, sidpic, OK)Fgc.

Task Correspondence of Simulation

Init

X
I:ZAC

X
I:2AC

Init

(in(Send, sidprc, M)nit; pre: active= T, smesand
ntask = 1:(J),(L),(M) ; effismes:= m, ntask:=
DSS2:Q), (M))

. (rand(x); pre: ; df: ntask:= 1:(M)) (This

task is used to select the order of the next
task sendSend, sid? Mg - If rand() outputs

2AC°
0 then Init executessen((Send,sid’z‘Ac,m)FI and
2AC
. X . . .
senc(Send,51d21,xc,m)F1§AC in this order. Else, Init ex-

ecutessendSend, sid}, ., Mgz, _ first).

(sendSend, sid’Z‘Ac,m)F)chc; pre: m:= smesandntask=
DSS2: M); eff: ntask:= 1:(M))

(receivéSend, sidaac, M)nit; preactive= T, mes= L
andntask= L: (G), (H), (I); eff:mes= mandntask:=

DSS2:d).(1))

. (sendSend, sidjac, meJagv; preokcongygy = L, mes=

m andntask= DSS2:F), (H), (1); eff:ntask:= DSS3:
M)

(receive(Send,sid’Z‘AC,mes)F;chC; pre: active = T,
ntask= 1 : (R), (S); effismeg = mesand ntask:=

DSS2: §),(T))

» 1X . . _ .
: (senc(Response,51d2AC,ok)F;2(AC, pre: ntask= DSS2:

(S) ; eff: ntask:= 1: (S))
(receivéResponse, sidyac, 0K)agy, prentask= DSS3:();
eff:okcongygy := T andntask:= DSS4:§),(1))

. (sendReceive, sidypc, MeJRreg prentask= DSS4:();

eff:okconghgy, mesandntask:= L:(F),(H),(1))

. (receivgReceive,sid} Mg, Pre: active= T,

2AC°
rmes and ntask= L:(K),(L),(M) ;eff:smes= 1 and

ntask:= L :(J),(M))
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(©)

Rec . (receive(Receive,sid‘Z‘AC,m)Fg o pre active = T,
rmes and ntask= L:(0),(P),(Q) ;eff:rmes:= m and
ntask:= DSS4 :0),(Q))
il. (out(Receive,sidpic,l)Rrec prer := rmesandntask=
DSS4 :Q) ;eff:rmesandntask:= L :(0),(Q))

Simulator Singc executes the above-mentioned process to
mimic the real world under the simulation policy. The state cor-
respondences in Tablg2andZ.3work well. The key point of
this simulation is as follows. To mimic the real world, the simu-
lator activates the parties that execute the tasks of the real world.
Moreover, in order not to distinguish the output trace, the sim-
ulator simulates the real world in his simulation world by using
task codes. In the real world, Init uses two 2ACs without allow-
ing an adversary to identify the direction in which the message
was sent. In the simulation world, S can mimic the output
that Adwbc outputs in the real world. That is, the trace distribu-
tions of each world, the real world and the ideal world, are in-
distinguishable. In other words, since each task correspondence
and the state correspondence work well, the following property
works well: trace(ef;,) = trace(e/).

Expire SessionFinally, in the expire session, Env sends mes-
sage in(ExpireDIc,sidDIc)m and in(ExpireDIc,sidDIC)@

to Initp)c and Reg)c, respectively. They relay mes-
sage sendExpireprc, sidpic)ry. t0 Fpic. After receiving
receivExpirepic, sidpic)ry from Fpic, Simpic executes
tasksimulation{Establish;xc, sid’Z‘AC) in his simulation world
under the following policy.

Simulation Policy

I. After receivingreceivExpireprc, sidprc)rp,c, SiMpic €x-
ecutes the following simulation.

A. Simpc inputs messages(Expireprc, Sidprc)init and
in(Expireprc, sidprc)recto Init and Rec, respectively.
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B. Simp,c makes Init (resp., Rec) ses&ndExpire;ac,
sid%Ac)FgAc and SenC(EXpireuc,Sidl;Ac)FgAC to Fuc
and B, . in this order, respectively.

C. Simpic makes B, sendsendExpireprc,sidprc)adv
to Adv.

Task Correspondence of Simulation

i. InitD|c.senc(Establish2Ac,sid’chc),jz(AC

=corr. Sinb|c.lnitD|c.Senc(Establish2Ac,sid)Z(AC)F;éAC
pre: ntask= EXS2 ; (M);
eff: activeandntask:= L ; (L),(M);
ii. Repic.sendEstablishyc, sidy,)pr
=cor. Simpic.Reqc.sendEstablishy,c, Sid)z(Ac)F’gAC
pre: ntask= EXS2 ; Q);
eff: activeandntask= 1 ; (R),(Q);
iii. F},..sendExpirezac,sidaac)advpc
=corr. SimDIC-F)Z(AC-SendEXpiI'GZAC, sidzac)Advpic
pre: ntask= EXS2 ; ();
eff: active estcongt andntask:= L for all X ; (D) ~ (G),

();

We assume that the state correspondences in [fabend[Z.3 hold.
From[33 B0 and3d, the state correspondences also holds after the
simulation by Simyic. That is,trace(e},) = trace(¢/).

. Static Corruption This type of corruption is divided into the follow-

ing three cases: only Init is corrupted by Adv, only Rec is corrupted
by Adv and both parties are corrupted by Adv. Note that these cases
occur before the protocol starts. The adversary does not corrupt any
of the parties once Env starts the protocol.

(a) Only Init is corrupted by Adv. This case means that Agi:
corrupts only Init before the protocol starts. So, the remaining
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steps are identical to those for the above-mentioned No Corrup-
tion Case without the message input party selection.

i. After receiving the corrupt message from Env, Sigpre-
pares a situation in which only Init is corrupted and adds the
following policy befordI{a)iB Simpic makes Adv corrupt
Init.

ii. After receiving receivgSend, sidprc, Mr, IN party €
{Init, Req, Simp,c executes the following simulation.

A. If the message is input to corrupted party Init, Sim
inputs in(Send, sidprc, M)nit to Init in his simulation
world.

B. Else the message is input to Rec, and §dninputs
in(Send, sidprc, M)Recto RecC.

C. The remaining steps are the same as those in the simu-
lation of the No Corrupted Case.
iii. After receivingreceivgSend, sidprc, M)y IN Init, Simpc
execute®ut(Receive, sidprc, m)m.

In this case, the Adyic and Sinpc can identify the direction

that the message is sent from Init to Rec or from Rec to Init.
However, the simulation is perfectly executed. If the protocol
executed the establish session, data sending session, and expire
session, in any case, the simulator can simulate the real world
and the movement of Adv. That is, the simulation is perfectly
executed by Simc. From the Task Correspondenced®.]

the state correspondences/id, [7.2, andZ.3 hold in this case.

That is,trace(e) = trace(g) holds.

(b) Only Recis corrupted by Adv. This case is analogous to the
case of2d This case means that Agi¢. corrupts only the party
Rec before the protocol starts. So, the remaining steps are identi-
cal to those in the above-mentioned No Corruption Case without
the message input party selection.
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i. After receiving the corrupt message from Env, Sigmpre-
pares a situation where only Rec is corrupted adding the
following policy befordgI(a)iB Simpc makes Adv corrupt
Rec.

ii. After receiving receivgSend, sidpic,Mr,. from Fpic,
Simp,c executes the following simulation.

A. If the message is input to corrupted party Rec, im
inputsin(Send, sidprc, MRrecto Rec.

B. Else the message is input to Init, and $jminputs
in(send,sidplc,m)mit to Init.
C. The remaining steps are the same as those in the simu-
lation of the No Corrupted Case.
iii. After receivingreceivéSend, sidprc, Mr, in Rec, Sinbic
executedUut(Receive, sidprc, Mgge

Advpc and Sinpc identify the direction that the message is
sent, i.e., from Init to Rec or from Rec to Init. However, the
simulation is perfectly executed. If the protocol executes the
establish session, data sending session, and expire session, in
any case, the simulator emulates the real world and the move-
ment of Adv. That is, the simulation is perfectly executed by
Simpc. From the Task Correspondencd7iiZ.] the state cor-
respondences iid. ], [7.2, and[Z.3 hold in this case. That is,
trace(er) = trace(g) holds.

Both parties are corrupted by Adv. This case is also analo-
gous to case 1. This case means thatg\¢\corrupts both Init

and Rec before the protocol starts. So, the remaining steps are
identical to those in the above-mentioned No Corruption Case
without the message input party selection.

i. After receiving the corrupt message from Env, §igpre-
pares a situation in which Init and Rec are corrupted and
adds the following policy befofg(a)iB Simp;c makes Adv
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corrupt Init and Rec.

ii. If the data sending message is inputparty € {Init,Reg,
Simp,c inputsin(Send, sidprc, M)party t0 party.

iii. After receivingreceivéSend, sidprc, M)r,c in partyin his
simulation, Singc execute®ut(Receive, sidDIc,m)m.

iv. The remaining steps are the same as those in the simulation
of the No Corrupted Case.

In this case, Adgic and Sinpc can identify the direction that

the message is sent, i.e., from Init to Rec or from Rec to Init.
However, the simulation is perfectly executed. If the protocol
runs the establish session, data sending session, and expire ses-
sion, in any case, the simulator can simulate the real world and
the movement of the Adv. That is, the simulation is perfectly
executed by Simc. From the Task Correspondencdd®.]

the state correspondencesid, [7.2, and[Z.3 hold in this case.

That is,trace(ef;) = tracg(¢/) holds.

3. Adaptive Corruption In this case, an adversary corrupts some par-
ties when he wants to do so at any time. We assume that the adversary
corrupts the parties. However, this case is also simulated by the sim-
ulator Simpc, so the simulation is perfectly executed. This case is
separated into the following instances.

(a) Establish Session

Instance 1: Before Init and Rec are activated.

This case is analogous to cd8eéecause there is no se-
cret information in this time. The adversary can corrupt
Init, Rec, or both, but the simulator can also corrupt the
corresponding parties. This case is perfectly simulated by
SimD|c.

Instance 2: After Init is activated and before Rec is acti-
vated.
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This case is analogous to cdeecause there is no secret
information. The adversary can corrupt Init, Rec, or both,
but the simulator can also corrupt the corresponding parties.
This case is perfectly simulated by Sirs.

Instance 3: After Rec is activated and before Init is acti-
vated.

This case is analogous to the cBHeecause there is no se-
cret information. The adversary can corrupt Init or Rec, or
both, but the simulator can also corrupts the corresponding
parties. This case is also perfectly simulated bysgn
Instance 4: After Init and Rec are activated.

This case is analogous to the cBHeecause there is no se-
cret information. The adversary can corrupt Init or Rec, or
both, but the simulator can also corrupt the corresponding
parties. This case is perfectly simulated by Sim

(b) Data Sending Session

Instance 1: Before or after Init or Rec is activated by
receivingin(Send, sidprc, M)nit OF iN(Send, sidprc, MRec
respectively, from the Env.

The adversary can corrupt Init, or Rec, or both, but the sim-
ulator can also corrupt the corresponding parties. This case
is also perfectly simulated by Sgt.

Env can execute only the message sending indication and
the corrupt indication. So, this case represents only the case
in which the adversary corrupts one party. This case is also
simulated by Sim|c because there is no secret information
in this session. The task correspondence works well and
there exists a simulation relation between the real world and
ideal world. That istrace(e};) = trace(e) holds.

(c) Expire Session
Instance 1: After Init or Rec is activated with the expire
message.
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Once the expire message is sent to Init or Rec by Env, This
session terminates in the real world and ideal world. So

the adversary can corrupt the parties. That is, this case is
identical to casB

Simulation Policy

Simp|c executes a simulation in his simulation world as described
hereafter.

(a) After receiving the “corrupt Init” message from Env,

e Simpic corrupts Initpic and checks whetheparty €
{Init,Reg has already sent the data sending message to the
other parties. If the message was already sentpgighoes
the following. Else, Simc makes Adv corrupt Init.

e If party= Init,

— If Simp|c has already input message sending request
in(Send, sidprc, M)pit to Init in his simulation, then
Simpc simulates that Adv corrupts Init, immediately.

— Else, Sinpc has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simp,c simulates that Adv corrupts Rec.

e Else,party = Rec,

— If Simp,c has already input message sending request
in(Send, sidprc, M)pit tO Init in his simulation, then
Simp,c simulates that Adv corrupts Rec, immediately.

— Else, Sinpc has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simp|c simulates that Adv corrupts Init, immediately.

¢ If more data sending messages are inpytaay from Env
after Sinp c corrupts Init, Sinpc can also simulate. If
the message is input to corrupted Init, Sim inputs the
sending message to corruptedrty in his simulation. Else,
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the message is input to Rec, and §jminputs the sending
message to the non-corruptpdrty in his simulation.

o After receivingreceivgSend, sidprc, M, in INit, Simpic
execute®ut(Receive, sidprc, M)

(b) After receiving the “corrupt Rec” message from Env,

e Simpic corrupts Initpic and checks whetheparty €
{Init, Reg has already sent the data sending message to the
other party. If the message was already sent,prindoes
the following. Else, Simc makes Adv corrupt Rec.

e If party=Init,

— If Simp ¢ has already input message sending request
in(Send, sidprc, M)nit tO Init in his simulation, then
Simp,c simulates that Adv corrupts Rec.

— Else, Sinpc has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simp,c simulates that Adv corrupts Init.

e Else,party=Rec,

— If Simp|c has already input message sending request
in(Send, sidprc, M)pit tO Init in his simulation, then
Simp|c simulates that Adv corrupts Init, immediately.

— Else, Sinpc has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simpc simulates that Adv corrupts Rec, immediately.

e If more data sending messages are inpytanty from Env
after Simpc corrupts Rec, Simc can also simulate the real
world execution. If the message is input to corrupted Init,
Simpc inputs the sending message in the non-corrupted
party in his simulation. Else, the message is input to Rec,
and Sinpc inputs the sending message in corruppeaty
in his simulation.
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e After receivingreceivgSend, sidprc, M)r,,. iN Rec, Singc
exeCUte@Ut(RECEiVQ, sidprc, m)m:

(c) After receiving the “corrupt Init and Rec” message from Env,

e Simpic corruptsinitpic and Regc and checks whether
party € {Init,Reg has already sent the data sending mes-
sage to the other party. If the message was already sent,
Simp;c makes Adv corrupt Init and Rec and does the fol-
lowing. Else, Singc makes Adv corrupt Init and Rec.

— If the party to which Sim,c has already sent a request
message is equal to the party that Env sent the message,
Simpc inputs more data sending requests to the party.

— Else, the input party in the simulation world is not same
as the input party in the ideal world, Sy regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

e After receivingreceivéSend, sidprc, Mg, in partyin his
simulation, Sinpc execute®ut(Receive, sidDIc,m)m,.

Whenever Adwc corrupts some party, Skt corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Adw. Conversely, Simic
may obtain information from the simulated world based on the cor-
ruptions. Additionally, in this protocol the party has no secret infor-
mation becausegl,iC is securely executed. In all cases, since {tm
can simulate Adyic using his simulated world, Env cannot distin-
guish the real world from the ideal world. That is, simulating party
corruption is perfectly executed.

Finally, relationR is a simulation relation from the task and state corre-
spondence with respect to the adaptive adversary. We obtain LEmnma
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Next, Theoredis obtained from Lemniiiimmediately.

Proof. From Lemméf] and Theore@, Theorerd is proved. That is, the
trace distribution propertytdist(er) = tdist(¢) holds with respect to an
adaptive adversary. As a result, the simulation is perfectly executed be-
cause Simic can simulate the real world from the information message of
Advp|c. The tasks of the real world perfectly correspond to the the tasks of
the ideal world. That is,

Reabc||[Env Hyh sg"D'C ldeabc||Env.
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Functionality

(@) | u.Fpic.estcongi; = s.F’Z‘AC.estconmti
(b) | u.Fpic.estcongec = S.F5,c.estcongec
(¢) | u.Fpic.okcondhgy = SF5,..0kcondhay
(d) | uFpic.active= sF},..active

(e) | u.Fpc.mes= sk

oac-Mes

(f) | uFpic.ntask= sF},..ntask

Initiator

(@) | u.lnitpc.smes= s.Initp;c.smes
(h) | u.lnitpjc.rmes= s.nitp|c.rmes

() | ulnitpic.active= s.Initp|c.active

() | ulnitpjc.ntask= s.Initp;c.ntask

Receiver

(k) | uReg|c.smes= sRegc.smes
(D | uRegc.rmes= sReg)c.rmes

(m) | u.Reg)c.active= sReg,c.active

(n) | uRegc.ntask= s.Regc.ntask

Environment

(0) | uEnv=sEnv

Table 7.1:State Correspondence for Rgaland Ideah,c (Part I)
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Simulator (or Adversary)

(A) | u.Simpc.active= s Advp|c.active

(B) | u.Simpc.ntask= s.Advp|c.ntask

(C) | u.Simp;c.smeg = sAdvpc.smeg

(D) | u.Simpic.F},.estconghiy, = S.F,.estcongh,
(E) | u.Simpic.F5ac-estcongtec = SF5,..estcongtec

(F) | u.Simpic.F5,c.0kcondgy = sF

5 ac-OKCONGhgy

(G) | u.Simpic.F},..active= sF},..active
(H) | uSimpic.F},..mes=sF},..mes

() | u.Simpic.F¥,~.ntask= sF, ..ntask

2AC* 2AC*
(J) | u.Simpc.Initp|c.smes= s.Initp;c.smes
(K) | u.Simpc.Initpjc.rmes= s.Initpjc.rmes

(L) | u.Simpc.Initp|c.active= s.Initp|c.active

(M) | u.Simpc.Initpic.ntask= s.Initp c.ntask

Table 7.2:State Correspondence for Rgaland Ideah,c (Part I1)
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Simulator (or Adversary)

(N) | u.Simp|c.Regc.smes= s.Regpc.smes
(O) | u.Simpc.Regp)c.rmes= sRegc.rmes
(P) | u.Simpc.Reg)c.active= s.Reg)c.active
(Q) | u.Simpic.Regc.ntask= s.Reg)c.ntask
(R) | u.Simpc.Advp|c.active= s.Advpc.active
(S) | u.Simp c.Advpc.ntask= s Advp,c.ntask

(T) | u.Simpc.Advpic.smeg = s Advpic.smex

Table 7.3:State Correspondence for Rgal and Ideah,c (Part 111)
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1. Establish Session

(@) InitD|c.senc(EstablishZAC,sid’z‘Ac)F;ZﬁAC
=corr. INitpic.SendEstablishyrc, sidprc)rp,c
(b) Recmc.senc(EstablishZAc,sid’z(Ac)F;z(AC
=cor. Re®jc.sendEstablishprc, sidprc)ry,c
(€) | F3pc-sendSID, sidaac)adv =corr. Foic.seNdSID, sidprc)ady
2. Expire Session
(a) InitD|C.Senc(ExpireZAC,sid’z(Ac),:)z(AC
=cor. INitpic.sendExpirepc, sidprc)Fpic
(b) Req:nc.senc(ExpireZAC,sid’z‘Ac)pz(AC
=corr Re®ic.SendExpireprc, sidprc)ryc
(€) | F3ac-sendExpirezac, sidzac)adv =cor. Foic.SendExpirepic, sidpic)adv
3. Environment
(a) | All tasks of environment Env in Regt correspond with the tasks of envi

ronment in Ideal;c.

Table 7.4:Corresponding Tasks for Regt and Ideahc
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Code for Initiator of Direction-Indeterminable Channel, i,
whereX € {Init,Reg

Signature:
sidprc = ({Init,Red, sid] ;)
sidy,. = ({Init,Red, Init, sid},.)

2AC —
sid},. = ({Init,Red,RecsidR .
Input: Output:
in(EStabliShDIc,SidDIc)mit SendEStabliShZAc,Sid}Z(AC)F)ZKAC
in(Send, sidpzc, Minit Senc(Send,sid’z(AC,m)pz(AC
receive(Receive,sid%AC,m),:;AC out(Receive, sidpic, Ninit
in(Expireprc, sidprc)iit Senc(ExpireZAC,sid’z(Ac),jzcAC
State: o
smesrmese {0, 1}* U {1}, initially L
ntaske ({0, 1)) U{L}, initially L
activee {1, T}, initially L
Tasks:
. . X . X
{sendEstablishac, sidy,)rx, . SendSend, sidy,q, Mg,

. . . . X
out(Receive, sidpic, I)init, SENAEXpiresac, SleAc)FﬁAC}

Figure 7.10:Code for Initiator of Direction-Indeterminable Channel, hndt
(Part)
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Code for Initiator of Direction-Indeterminable Channel, i,
whereX e {Init,Reg

Transitions:

Establish Session:

ESSl.in(ES‘tabliShDIc,Sid])Ic)mit
pre: active ntask= L
eff: ntask= ESS2
ESSZ.Senc(EstablishZAc,sid’z(AC),:;zxAC
pre: ntask= ESS2
eff: after all X € {Init,Reqg finished, thenactive:= T and
ntask:= L

Data Sending Session:

DSS1.in(Send, sidprc, Mnit
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidy,c, Mgy
pre: m:= smesandntask= DSS2

eff: after all X € {Init, Reg finished, themtask:= L

DSS3.receivéReceive,sidy, Mg
. 2AC
pre:active= T, rmesandntask= L
eff: If smes= 1, thenrmes:= mandntask:= DSS4.

Elsesmes= 1 andntask= L.
DSS4.out(Receive, sidprc, M)init

pre:r = rmesandntask= DSS4

eff: rmesandntaski= L

Figure 7.11:.Code for Initiator of Direction-Indeterminable Channel, hnit
(Part II)
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Code for Initiator of Direction-Indeterminable Channel, i,
whereX e {Init,Reg

Transitions:

Expire Session:

EXS1. in(ExpireDIc, SidDIC)Init
pre:active= T andntask= L
eff: ntaski= EXS2

EXS2. sendExpire;ac, sid}z(AC)pZ(AC
pre: ntask= EXS2
eff: after allX € {Init,Reg finished, theractiveandntask= L

Figure 7.12:Code for Initiator of Direction-Indeterminable Channel, it
(Part 1)
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Code for Receiver of Direction-Indeterminable Channel,drec

Signature:
sidprc = ({Init,Red, sid] ;)
sidy,. = ({Init,Red, Init, sid},.)

sid},. = ({Init,Red,RecsidR .
Input: Output:
in(Establishpic,sidprc)Rec sendEstablishyac, Sid}Z{AC)F}z{AC
in(Send, sidprc, MRec sendSend, sid}, ., m)x

2AC
R

receive(Receive,sidZAC,m),:gAC out(Receive, sidprc, )Rec

in(Expireprc,sidprc)rec sendExpire;c, sid’Z(AC),jzcAC

State:
smesrmese {0,1}* U {1}, initially L ntaske ({0,1}*)U{L}, initially L
activee {1, T}, initially L

Tasks:

. . X . X
{sendEstablishypc, SleAc)FﬁAC’ sendSend, sid5, ., m)F>2<AC,

out(Receive, sidpic,I)rec SENAEXpire;sac, Sid}z(Ac)F’z‘AC}

Figure 7.13: Code for Receiver of Direction-Indeterminable Channel,
Regc (Part 1)
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Code for Receiver of Direction-Indeterminable Channel,drec

Transitions:

Establish Session:

ESSl.in(EStabliShplc, SidDIC)Rec
pre: activeandntask= L
eff: ntaski= ESS2

ESSZ.Senc(EstablishZAC,sid)Z(AC)F;Z(AC
pre: ntask= ESS2
eff: after all X € {Init,Reg finished, thenactive:= T and
ntaski= L

Data Sending Session:

DSSl.in(Send, sidprc, m)Rec
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidj,c, Mgy
pre: m:= smesandntask= DSS2
eff: after all X € {Init, Reg finished, themtask:= L

DSS3.receivéReceive, sid, ., M
. 2AC
pre:active=T, rmesandntasAk: L
eff: If smes= L, thenrmes:= mandntask:= DSS4
Elsesmes= 1 andntask:= L
DSS4.out(Receive, sidprc, )Rec
pre:r := rmesandntask= DSS4
eff: rmesandntaski= L

Expire Session:

EXS1.in(Expireprc, sidprc)rec
pre:active= T andntask= L
eff: ntaski= EXS2

EXS2. sendExpire;ac, sid)z(Ac),:Jz(AC
pre: ntask= EXS2
eff: after allX € {Init, Req finished, theractiveandntask:= L

Figure 7.14: Code for Receiver of Direction-Indeterminable Channel,
Regc (Part I1)
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Code fot Adversary for Direction Indeterminable Channel, gdy
whereX € {Init,Reg

Signature:
Sid%AC = ({Initq, Init2}, Init4, Sid’ZAC)

Sidl;AC = ({Initq, Init2}, Init, Sid’ZAC)

Input:
. . x
receivgSID, sid, Ac)F’z‘Ac

: X
receivgSend, sid;,., Mex

. . - X
receivéExpire;,c, SleAC)F)Z(AC

Output:
. X
sendResponse, sidy,, Ok),;;z(AC

Other:
*Qther arbitrary tasks are included the basic iriipiérnajoutput
tasks such as corrupt message auts).

State:
activee {L, T}, initially L
ntaske ({0, 1}*) U{L}, initially L
smeg € ({0,1}) U{L}, initially L

Tasks:

{sendResponse, sid’z‘Ac, Ok)F)Z(AC’ other arbitrary tasks

Figure 7.15: Code fot Adversary for Direction Indeterminable Channel,
Advpc (Partl)
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Code fot Adversary for Direction Indeterminable Channel, Ady
whereX € {Init,Reg

Transitions:

Establish Session:
ESS1.receivgSID, sid} AF,
pre:active= L
eff:active:=T
Data Sending Session:
DSSL. receivegSend, sid}, . Mg

pre:active= T andntask= L
eff: smes := mandntaski= DSS2

DS2. sendResponse, sid¥ 0k),:>2<AC

2AC°
pre: ntask= DSS2
eff: smeg,ntaski= L

Expire Session:

. . . X
EXSI. recelvegExplreZAc, sid; Ac)F’z‘Ac
pre:active=T
eff: active:= L
Other tasks:
This adversary makes other arbitary tasks.

Figure 7.16: Code fot Adversary for Direction Indeterminable Channel,
Advp|c (Part II)
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Code for ideal Initiator of Direction-Indeterminable Channeitp,c

Signature:
sidpic = ({Init,Red, sidy;.)
Input: Output:
in(EstablishDIc, SidDIC)m SenC(ES‘tab].i shprc, SidDIC)FD|c
in(Send, sidpzc, m)ﬁ sendSend, sidpic, M)ry,c
receivégSend, sidprc, M€9r,. OUl(Receive,sidprc, MeYpr
in(Expireprc, sidprc)img sendExpireprc, sidpic)rpc

State:
smesrmese {0,1}* U{L}, initially L ntaske ({0,1}*)U{L}, initially L
activee {1, T}, initially L

Tasks:
{SenC(ES‘tabliShDIc, SidDIC)FDK;’ Senc(Send, sidprc, m),:DIC,
Out(Receive, sidpic, M€Y, SeNAExpireprc, Sidprc)rpc)

Figure 7.17:Code for Initiator of Direction-Indeterminable Channel{p,c
(Part 1)
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Code for ideal Initiator of Direction-Indeterminable Channeitp,c
Transitions:

Establish Session:

ESSl.in(EstablishDIc, Sidnlc)m
pre: active ntask= L
eff: ntask.= ESS2
ESSZ.SenC(EStabliShDIc, Sidplc)Fch
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSSl.in(Send, sidprc, m)m
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidprc, M)ry,c
pre: m:= smesandntask= DSS2
eff: smesandntask:= L

DSS3.receivéSend, sidprc, Mry,c
pre: active= T, rmesandntask= L
eff: rmes:= mandntask:= DSS4

DSS4.out(Receive, sidprc, m)ﬁ
pre: m:=rmesandntask= DSS4
eff: rmesandntask:= L

Expire Session:

EXS1. in(ExpireDIc, SidDIC)m
pre: active= T andntask= L
eff:ntask:= EXS2

EXS2. SendExpireDIc, Sidplc)Fch
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.18:Code for Initiator of Direction-Indeterminable Channelip,c
(Part II)
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Code for ideal Receiver of Direction-Indeterminable ChanRelp,c

Signature: o
sidpyc = ({Init,Red, sid); )
Input: Output:
in(EStabliShDIc, SidDIC)@ SendEStabliSthc, SidDIC)FmC
in(Send, sidprc, m)@ Senc(Send, sidpic, m),:DIC
receivégSend, sidprc, Me€9r,. OUl(Receive,sidprc, MEYgs;
in(ExpireDIc, SidDIC)@ SenC(EXpiI'ech, SidDIC)FD|C
State:

smesrmese {0,1}* U{L}, initially L ntaske ({0,1}*)U{L}, initially L
activee {L, T}, initially L

Tasks:
{SenC(ES‘tabliShDIc, Sid])Ic)Fch, Senc(Send, sidprc, m),:DIC,
Out(Receive, sidpic, ME9gg, SENAExpirepic, Sidpic)ry )

Figure 7.19:Code for ideal Receiver of Direction-Indeterminable Channel,
Regc (Part 1)
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Code for ideal Receiver of Direction-Indeterminable ChanRelp,c

Transitions:

Establish Session:

ESSl.in(Establishprc, sidprc)gge
pre: activeandntask= L
eff: ntaski= ESS2
ESS2.sendEstablishpic, sidprc)rpc
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSSl.in(Send, sidprc, m)@:
preactive= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidprc, M)ry,c
pre: m:= smesandntask= DSS2
eff: smesandntask:= L

DSS3.receivéSend, sidprc, Mry,c
pre:rmes= L andntask= L
eff: rmes:= mandntask:= DSS4
DSS4.out(Receive, sidprc, Mg
pre: m:= rmesandntask= DSS4
eff: rmesandntaski= L

Expire Session:

EXS1. in(ExpireDIc, SidDIc)@
pre:active= T, smesrmesandntask= L
eff:ntask:= EXS2

EXS2. senc(ExpireDIc, SidDIC)ch
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.20:Code for ideal Receiver of Direction-Indeterminable Channel,
Regc (Part 1)
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Code for Simulator for Direction Indeterminable Channel, §im

Signature:
sidprc = ({Init,Req, sid; )
Input:
receivéSID, sidprc)ry,c
receivéSend, sidprc, My
receivéExpireprc, sidprc)rpc

Output:
sendResponse, sidprc, OK)Fp e

Other:
*QOther arbitrary tasks are included the basic iriipiérnajoutput
tasks such as corrupt message auts).

State:
activee {L, T}, initially L smes {0,1}" U{L}, initially L

ntaske ({0, 1}*) U{L}, initially L
Other arbitrary variables; call "new” variables.

Tasks:
{sendResponse, sidprc, 0K)Fyc }

Figure 7.21: Code fot Simulator for Direction Indeterminable Channel,
Simp|c (Partl)
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Transitions:

Establish Session:

ESS1.receivgSID, sidpic)rpc
pre: activeandntask= L
eff:active:=T

Data Sending Session:

DSS1.receivé€Send, sidprc, Mry e

pre:active= T andntask= L
eff: smes= mandntask:= DSS2

DSS2.sendResponse, sidprc, 0OK)Fy e
pre: ntask= DSS2
eff: smeg,ntask:= L

Expire Session:

EXSL. receivéExpirepic, sidpic)rpc
pre:active=T
eff: active:= L

Other tasks:

ing world to the environment.

Code for Simulator for Direction Indeterminable Channel, §im

This simulator makes arbitrary tasks to simulate the real world
protocol system Regjc. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-

tor can output the message from the adversary of the simjulat-

Figure 7.22: Code fot Simulator for Direction Indeterminable Channel,

Simpc (Partll)
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7.2.2 Reduction of 2AC to DIC

Let Initoac, (i € {1,2}) and Regac be the initiator code and receiver code

for a real system, see Hi§Z3and FigZ.24 and FigZ.2Z3and Fid7Z.28 re-

spectively. Letinitoac, andRegac be the initiator code and receiver code

for an ideal system, see Hig29 and FidZ.30 and FidZ.31and FidZ.32

respectively. Finally, let Adyac and Simac be the adversary code and

the simulator code in Fig.27and FigZ.28 and FigZ.33and FigZ.34 re-
spectively. Let Reahc and Idealac be a 2AC protocol system and a 2AC

functionality system, respectively, defined as described hereafter.

Reabac = Initoac IRegacllAdvaacliFpic,
Ideabac := Initaac;IRe@AclISimpaclIFaac.

Taskslnitoac, andRegac relay the input messages from the environ-
ment to the ideal functionality task and relay the messages received from
the ideal functionality task to the environment as interface parties in the
ideal system.

Master Schedule

Let n be the number of parties. L&lpsyndty,---,tn) be master schedules
wheret! is a task in partyP;.

Definition 25. [Mpsyndt;,---,t;)]  Let t* be a task in party P Let
ptaskt’) be the task just before in local schedulgo;. For example, let
pi = ti1,ti2, tiz for party B. Then ptasi;s) is task to.

1. Alignment property: After master schedule M activates ptaskV
does not activate jRuntil all of ptaskt;),- -, ptaskty) are scheduled.
This situation indicates that M satisfies the alignment property for
specified taskst.. ., t,.

2. Random execution property: The master schedule, M, globally exe-
cutes specified tasks, t..,t; in a random order. Note that the other
tasks are not scheduled until all of the specified tasks, .tt;, are
executed.
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Mpsyndts, -, 1) is defined to be a master schedule such that a master
scheduleM satisfies the two above-mentioned properties for specified tasks
t;,....th. Let My, be MpsyndInit},.sendSend, sidzac, SReenc:

Init3,-.sendSend, sidaac, S)Reaac) fOr m2Ac.

Theorem 5. 2AC protocol systeReapac perfectly hybrid-implements 2AC
functionality systeniddeabac with respect to an adaptive adversary under
M, (2AC is reducible to DIC with respect to an adaptive adversary under

M”ZAC)'

Let er and g be discrete probability measures on finite executions of
Reabac||Env and ldealac||Env, respectively. We prove Theordhby
showing thater and ¢ satisfy the trace distribution propertidist(er) =
tdist(¢)). Here, we define correspondenée between the states in
Reabacl||[Env and the states in Ideat||[Env. We say 4R, €) € Rif and only
if for every s € supplst(er) andu e supplst(g), all of the state correspon-
dences in Tabldg.g [7.I0andZ.I1 hold. We then prov& is a simulation
relation in Lemmd.

Lemma 2. Relation R defined above is a simulation relation from
Reabacl||Envto Ideabacl|Envunder master schedule ..

Proof. We prove thatR is a simulation relation from Reglc||Env
to Ideabacl|Env using mapping corrtask@*ReabAC”Envx RReapaclEnv —

Rikdeab ’
AcllEnv
The task sequence of system Rggl|[Env perfectly corresponds to that

of system Idealc||[Env under schedul#,,,.. Formally, to prove thaR
is a simulation relation from Regic||[Env to Ideapac||[Env, we show thaR
satisfies the start condition and step condition.

e Start condition
It is true that the start states of and u in Reapac|[Env and
Ideabacl|Env, respectively, are on the Dirac measures. That is, the
start states of andu satisfy relationR because the start states of
andu are all_L for each task on master schedMe,,.. Therefore, the
trace distribution property holds.
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e Step condition
Let €, = applyer, T) ande/ = apply(e, corrtaskgp, T)). If (er,€) €
R pe Rl*?eahAcHEnv’ €r IS consistent withp, theng is consistent with
full(corrtaskg(p), andT € Reabac||Env. Then there exist the fol-
lowing.

— Probability measur@ on countable index sét

— Probability measures,
Reapacl||Env, and

i j €I, on finite executions of

— Probability measureSq’j, j € 1, on finite executions of
IdeabACHEnv,

such that:

— For eachj 1, eg{’j Re,”j,
~ Zja p(j)(ek ;) = apply(er. T), and
— Zja P())(g ;) = apply(a, corrtaskp, T)).

Task Correspondence

For any p,T) € (REeabAannvx RreapaclEnv), the following task correspon-
dence, which is also summarized in TdBI&2 holds.

1. Establish Session

(a) Initoac,.sendEstablishprc, sidDIc)F(1,2>
DIC

=corr. |nit2ACi .SenC(EStabliShZAc, SidZAC)FzAc foreach e {1,2}

Let TREAL and T1DEAL be SenC(EStabliShDIc,SidDI(j)F(Dll,é) and
sendEstablishyac, sidaac)r,c, respectively. Here, we must
consider the cases of Iéj;c and Inig Ac» but these cases follow
the same discussion. (Note that we describe tha}AIgimeans

Initoac, and that InigAC means Inigac, for the sake of clarity).
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So, we consider the case of I%};[E. We assume that for each
state ins € supplst(er) andu € supplst(¢g) are fixed. The pre-

conditions ofTrga;. andT1pgar. arentask= ESS2 from each code.
Trear (resp.,T1pear) is enabled (or disabled) m(resp.,u) if and

only if sInit},..ntask= ESS2 (resp.u.Init},..ntask= ESS2).

From () in Table[7.3, u.Init%Ac.ntaskand s.lnit%AC.ntaskim-
ply that Trear and Trpear are uniformly enabled or disabled in

supplst(er) U supplst(e).

i. Disable Case:
Let | and p be the set that has a single element and Dirac
measure orl, respectively. Letes, = €5 and €,=¢.
We have the fact that, = er and ¢/ = . Here, we ob-
tain 6(?,1R€|/,1 from relationerRe. The trace distribution
equivalence propertydist(e;) = tdist(¢/), also holds since
tdist(er) = tdist(g) underMy,,..

ii. Enable Case:
Let g denote the state of preconditiomtask= ESS2. Let
Trear @andT1pear be the actions enabled qin each world.
We show that each dfgga; and Tipear iS @ unique action
that is enabled ig. From the definition oTgrgar andT1pgar,
the precondition is oniytask= ESS2. Then, there are two
unique dfects that update thectiveandntaskto beT and
1, respectively. From the precondition and théeet of
TreaL, and the state equivalence df) @nd @), we obtain
thatTrear (@NdTpear) IS @lSO a unique action that is enabled
in every state in suplst(er) U supplst(g).
Let|l andp be the set that has a single element and the Dirac
measure o, respectively. Lets , = &; andel”1 = ¢ . Here,
we establish the property & for €/, and¢ to show that
(€r-€) € R Then we show trace distribution equivalence
for e, ande/. To establish this property, we consider any
states’ € supplst(e;) andu’ € supplst(¢/). Let s be any
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state in suppist(er) such thas’ € suppfis), where §,,us) €
Reabac||[Env. Letu be any state in supst(g) such that
U’ € suppfuy) where @, corrtaskp, ¢),uy) € Ideabac||Env.
It is true that Trgar updates In@AC.active to T and
Init%AC.ntask to L from the definition of the fect of

Trear-  Similarly, Tipgar updateslnit%AC.active to T

and Init%AC.ntaskto 1 from the definition of the #ect
of Trpear. From the state equivalences df) (and ()

in Table[Z.9, we haveu.lnitl, .active= s.lnit%AC.active

2AC
ntask = s.Init%AC.ntask We obtain that

Lo 1 . Pl
.active= s’.InltZAC.actlve andu 'IthAC'

s.Inity,..ntask By the definition of Inif,. andInit},,
Trear (resp.,T1pear) IS @ unique action that updates the state
of activeof Reapac (resp., Idealac). Therefore, we obtain

trace distribution propertyrace(ey) = trace(e/).

=1
and U-'”'tzAc-

u’.Init%AC ntask=

The case of In@AC (andlnit%AC) follows the same discus-
sion as that above.

(b) Fpic.sendSID, sidpic)adv =corr. F2ac.SeNdSID, sidaac)adv

The precondition andfect of these tasks are identical to each
other. The preconditions for the task on the left side of the
equation isactive= T and ntask= ESS2. This is equivalent
to those for the task on the right. Théfext of task on the left

Is ntask:= L. This dfect is also the same as that for the task on
the rlght LetTreaL be FD|C.SenC(SID, SidDIC)AdV- Let TipgaL be
Foac.sendSID, sidyac)ady- We show thalrgar andTrpear are
uniformly enabled or disabled in supgi(er) U supplst(e). We
assume that for each statesr supplst(er) andu € supplst(¢)

are fixed. ThenTggar IS enabled (or disabled) isif and only if
S.Trear.active= T ands.Trear.Ntask= ESS2. The preconditions
of Trpear, (d) and (f) in Tablg7.9, imply thatTpga; is uniformly
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enabled or disabled. The rest of this proof is similar to the task
of sendEstablishpic, sidprc)a2) of the initiator.
DIC

More specifically, the pred) and (f) and €f:(f) of the real task
are the same as those for the ideal task. So, these tasks corre-
spond.

i. Disable Case: Letr and ¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that/, = er and¢ = . Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of pieaqd (f).
Therefore, we obtaitrace(ey) = trace(e/).

ii. Enable Case: Letr and ¢ be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definitions, the state correspondences of
pre: d) and (f), and state correspondence @f g f), we
have thatege = €r andel’ = ¢. Here, the start and step con-
ditions of simulation relatiolR hold. Therefore, we obtain
trace(eg) = trace(g)).

2. Data Sending Session

Here, we consider the case that Env sends the data sending message in
Init},.. The case that Env sends the data sending messagegig.Init
is analogous to the case of Iﬂ&. The task sequence in each world
is shown in TabléZI3 The task sequence for Real Execution are

corresponds to that for Ideal Execution.

The flow of the states for each task is shown in TaB@&g [7.15 and
[Z.18in each world. From the initial values and final values in Tables
[Z14 [ZI5andZ18 we obtain the results of state equivalencE@
That s, if the state equivalencelfi@holds before Realc is enabled
(or disabled), the state equivalencd/Zi also holds after Regic is
enableddisabled. Thelummystate does not use in the ideal world’s
tasks, but Sirf, can simulate the real world in his simulation world.
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Thedummystate is not used in the tasks in the ideal world, but;im
can simulate the real world in his simulation world. So, the trace
distribution property holds.

(a) Disable Case: This is a trivial case because all the states of the
parties areL. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
the parties. Lekr and ¢ be discrete probability measures in
the real world and ideal world, respectively. We have the fact
thate, = er and¢ = €. Here, the start and step conditions of
simulation relatiorR hold from the task definition and the state
correspondence. Therefore, we obtmarce(e/,) = trace(e)).

(b) Enable Case: Letr and¢ be discrete probability measures in
the real world and ideal world, respectively. From each task
definition and according to the states in Talle§4 [7.15 and
[Z18 it is clear that the initial state is the same as the final state
for each task of each world. In addition, the states of the real
task are the same as the states of the ideal world after the data
sending session is executed. That &, (I) in Table[Z.9hold.
Therefore,eﬁ =er and el’ = ¢. Here, the start and step condi-
tions of the simulation relatioR hold. Therefore, we obtain
trace(eg) = trace(¢)).

3. Expire Session

(a) Initoac,.sendExpireprc, Sidnxc),:gl,é)
=cor. INitoac.sendExpirezac, sidaac)Fouc
The states of precondition anffect forsendExpireprc, sidprc
)FS.’? are the same as those feendExpirezac,sidaac)ruc
where prentask= EXS2. That is, if {) in Table[7Z.9 holds,
then these tasks are enabled (or disabled) in every state in
supplst(er) U supplst(e). More specifically, the pre) and
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eff:(h) and ) of the real task are the same as those for the ideal
task. So, these tasks correspond.

Disable Case: Leir ande be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thate/, = er and ¢/ = €. Here, the start and step
conditions of simulation relatioR hold from each task def-
inition and the state correspondence of pig: Therefore,
we obtaintrace(e) = trace(e).

I. Enable Case: Leiz ande be discrete probability measures

in the real world and the ideal world, respectively. From
each task definition, the state correspondences of pye: (
and (), and state correspondences €t €h) and (), we
have thak;e = R andel’ = ¢. Here, the start and step con-
ditions of simulation relatiolR hold. Therefore, we obtain
trace(e},) = trace(¢/).

(b) Foic.sendExpireprc, sidpic)adv
=cor. F2ac.sendExpire;ac, sidaac)adv
The precondition and®ect for the real task are the same as those
for the ideal task. The precondition is om{ask= EXS2 and the
effects areactive:= L andestcong := L for all X andntask= L.
From (f) in Table[Z.9 these tasks are enabled (or disabled) in
every state in suplst(er) U supplst(¢). More specifically, the
pre:(f) and €f:(a), (b), and (f) for the real task are the same as
those for the ideal task. So, these tasks correspond.

Disable Case: Ledr ande be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thate;Q = er and el’ = ¢. Here, the start and step
conditions of simulation relatioR hold from each task def-
inition and the state correspondence of prid: Therefore,
we obtaintrace(eg) = trace(e|).

i. Enable Case: Lais ande be discrete probability measures

in the real world and the ideal world, respectively. From
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each task definition, the state correspondence of pie: (
and state correspondences €t €a), (b) and (f), we have
that e, = er and ¢ = . Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(er) = trace(g)).

Environment Env

From the task definitions and state correspondeoide (TabléZ.g, the prov-
ability measures for both tasks are uniformly enabled or disabled in every
state in supgst(er) U supplst(e).

Claim 1 The state of Env remains static in all states in slgpfer) U
supplst(g). Let ge denote this state of Env. This follows from state
correspondence.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supst(er) U supplst(e) (simultaneously). Further-
more, if T is enabled in all states in sulgi(er) U supplst(e), then:

1. There exists unique actiane T that is enabled in every state in
supplst(er) U supplst(g).

2. There exists a unique transition of Env framja with actiona.
Lettre = (Qe, &, ue) be this transition.

By considering ClainiZ.2.2 task T of Env is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
| =1, we obtainege’1 = er and Ell,l = ¢, and the result iSE{?,lREI"l since
we haveerRe . If T is enabled in every state in sugi(er) U supplst(e),
Claim [ZZ.2 implies that there exists unique acti@nin every state in
supplst(er) U supplst(g) and transitiontre of Env from ge enabled with
actionawheretre = (Qe, &, te)-

Non Corrupted Case:
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1. a is an input action of Injt We assume tha& is an input ac-
tion such am(EStabliShZAc,SidZAc)miti in(sel’ld,SidZAc,m)miti and
iN(Expirezac, sidaac)nit;-

Let sbe any state such thete suppfis) where &, a, ius) € Dreapac|[Env-

Let u be any state such that’ € suppfy) where (,a,uy) €
DideabpcEnv. FOr €acha, we check that the state correspondences
for s and U’ holds if that fors and u holds. If eacha is input
from Env, then the precondition andfect for the real task are ex-
actly the same as those for the ideal task. For example, if the in-
put message i1(Establishyac, sidaac)init;, then the precondition

is activentask= L and the &ect isntask:= ESS2. The states for
the real task correspond to those for the ideal task. That is, the state
correspondences ofmj, (h), and () for s andu’ hold, if the state
correspondences farandu hold. Therefore, we obtain the trace dis-
tribution propertytrace(ef,) = trace(¢/). This result also works well in

the case ofn(Send, sidaac, M)init; andin(Expirezac, sidaac)ini; for
eachi € {1,2}.

2. a is an input / output action of Rec. We assume that
a is an input action such as(Establishyac,sidaac)rec and
out(Receive,sidyac,MRec. This is analogous to calfe

3. ais an input action of Adv. This means that= input(g)aqy for
some fixedg. For exampleg is a corrupt message for sorparty €
{Init;, Reg. From the fact that the state correspondencesAp+((R)
for s and u hold, we obtain that the state correspondencessfor
and U hold. Therefore, we obtain the trace distribution property,
trace(e;) = trace(e/).

4. ais an internal or an output action of Env. Taskn the real world
is identical to that in the ideal world. From the fact that the state
correspondence tan) for sandu holds, we obtain that the state cor-
respondence off) for s andu’ holds. Therefore, we obtain the trace
distribution propertytrace(e;{ j) = trace(el’, j).
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Corrupted Case:

1. ais an input action of Adv angbarty € {Init;, Reg for eachi € {1, 2}
Here, the party is included in the case of {mtRec, Inib A Rec and
Inity A Inito. Let gagy be the state of Adv or Sim, which is the same
for all supplst(er) U supplst(e). Lettragy = (Qadv, & uadv) be a tran-
sition of Adv with actiona from gagy. From ClaimZ.2.2 traqy is a
unique transition. Here, we suppose that syp(uaqv)) is the pair
set{(dqyj.02,j) - J € I} wherel is a countable set. Lgt be the prob-
ability measures such that for eaghp(j) = (ue X padv)(dwj, 92,j)-
For eachj, let e,’q’j be Ei,j(“) = e1(a’) wherea € suppg;) such that
1st(a).Env=qyjandlst(e).Adv=0pj. Theeé,j is analogously con-
structed frome,.

The rest of this proof is the same as that for ddlsey consider-
ing the state correspondence in each cageaoty € {Init;, Reg Init; A
Reg. Finally, we obtain the trace distribution properth;ace(e&, J.) =
trace(el’,j).

Adversary Adv

From the task definitions and the state correspondencedjor (R) in
TablelZ.10 the provability measures for both tasks are uniformly enabled or
disabled in every state in sujgi(er) U supplst(e).

Claim 3 The state of Adv or Sim is the same in all states in
supplst(er) U supplst(g). Let gagy denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in suplst(er) U supplst(g). Furthermore, if T is enabled
in all states in supfst(er) U supplst(e ), then:

1. There is unique actiom € T that is enabled in every state in
supplst(er) U supplst(e).
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2. There is a unique transition of Adv frogngy With actiona and
let tr agy = (Qadv, & uady) be this transition.

By considering ClainiZ.2.2 task T of Adv is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
| =1, we obtainq’q,1 = er and 6(,1 = g, and the result i$§,1R€|/,1 since we
haveerRe. If T is enabled, T is enabled in every state in sigifer) U
supplst(g). Claim[Z.Z2implies that there is unique acti@nin every state
in supplst(er) U supplst(g) and transitiortr of Adv from ge enabled with
actiona wheretragy = (dagv, & uadv)- The following cases of “Non Cor-
rupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. ais an input action of Env. From the fact that the state correspon-
dencesA) ~ (R) for sandu hold, we obtain that the state correspon-
dences fors’ andu’ hold. Therefore, we obtain the trace distribution
property,trace(ef,) = trace(e).

2. ais an input or output action of functionality task. This case concerns

messagereceivé€SID, sidprc)ry,, receivgSend, sidprc, Mry,c,
receivgExpirepic, sidprc)rp . andsendResponse, sidprc, 0K)Fp -
The rest of this proof is analogous to c@éeFrom the fact that the
state correspondences)(~ (R) for sandu hold, we obtain that the
state correspondences fsrandu’ hold. Therefore, we obtain the
trace distribution propertytrace(e) = trace(¢/).

3. a is either an output action of Adv that is not an input action of
Env, Init;, Rec or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous
to casdll From the fact that the state corresponden@g®s~((R)
for s and u hold, we obtain that the state correspondencessfor
and u’ hold. Therefore, we obtain the trace distribution property,
trace(e) = trace(¢/).
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4. ais an output action obut(x)aqy. This case is also works well al-
though this action mayfiect Env. However, the transition of Env
tre = (Qe, &, e) is unique from Clainl/.2.2 Claim[Z.2.2also says that
the state of Env remains static in all states in slgpfer) U supplst(e).
This follows from state correspondenoe Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(e;) = trace(e/).

a is an output action of Injt This case concerns message
sendSend, sidpc, S)rec fOr eachi. The rest of this proof is analogous to
casdll From the fact that the state correspondences &du hold, we ob-
tain that the state correspondencesdaandu’ hold. Therefore, we obtain
the trace distribution propertirace(e,) = trace(¢/).

ais an input action of Rec. This case concerns messagEvé€Response,
sidaac, Minit;. The rest of this proof is analogous to cse~rom the fact
that the state correspondencesgandu hold, we obtain that the state cor-
respondences f@' andu’ hold. Therefore, we obtain the trace distribution
property,trace(ef,) = trace(e).

Corrupted Case:

This is the case in which the static and adaptive adversary, Adv, corrupts
party € {Initj, Reg.

1. ais an inputoutput actionin(x)party, OUI(*)party Of corrupted party,
party € {Initj, Reg. This case also works well based on Cl&Z.2
and the state correspondences in Teb8-~ [7.11

Perfect Simulation

Another task of Sipiac is the simulatior(x) task. By usingsimulatior{x)
effectively, the simulation of Sigac is perfectly executed for the establish
session, data sending session and expire session with respect to no corrup-
tion, static corruption, and adaptive corruption by an adversary.

1. No Corruption
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(a) Establish SessionFirst, in the establish session, Env sends
in(EStabliShZAc,SidZAc)Wandin(EStabliSthc,SidZAc)%c)

to initiator Initoac, and receivelRegac, respectively. |nlt2AC

and Init3,. send sendEstablishzac,sidaac)Fne 10 Foac
Foac sendssendSID, sidaac)adv tO Simpac. After Simpac re-
ceives the message, SiRg generates parties Iégc Inlt2AC

and Rec in his simulation world generate the real world situation
in which they exchange messages usiggFFor Sinpac to es-
tablish the session, he inputgEstablishyac, sidaac)init; and
iNn(Establishyyc, sidaac)rec O INitoac, and Rec, respectively.
Finally, the parties establish two DICs in the simulation world.
After the message is received by each party in the simulation
world, they sencBenc(EstabllshDIc,31dD1c)F(12) to the pic.

The states of each party becomes ptask= ESSZ from[) in
Table[Z.10 and €f: active:= T andntask:= L from (K) and

(L) in Table.[ZIQ When k¢ receives the messagestive of

the functionality becomes from pre:D), (E) and G) in Table.
[71Q Fpc then sendsendSID, sidprc)agdy to the adversary in
the simulation world (that may be Spxc). The statentaskof
Foic becomesL from (1). If the adversary obtains the message,
activebecomesrt from (P) in Table.[ZI1 The simulation in
the establish session of the real world is perfectly executed by
Simpac. Finally, the parties establish a DIC between %Imi
and Inig . in the simulation world.

Simulation Policy
I. After receivingreceivgSID, sidaac)r,ac, SiMpac executes
the following simulation.

A. Simpac prepares the dummy parties, kg, Regac,
and Adv, and ideal functionality taslkofc.

B. Simpac inputs messages(Establishprc, SidDIC)lnitZACi
for each i and in(Establishpic,sidpic)regpc 1O
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|I’]i'[2A(:i and Reeac.

C. Simpac makes Ini%AC and Ini%Ac rach send message
sendEstablishprc, sidprc)ry,, respectively.

D. Simpac makes Ipic sendsendSID, sidprc)agy to Adv.

Task Correspondence of Simulation

i. Init},..sendEstablishzac, sidaac)rpc
=corr. Simpac.Init}, -.sendEstablish;ac, sidaac)Fpc
pre: ntask= ESS2 ; ();
eff: active:= T andntask:= L ; (K),(L);
ii. Init3,..sendEstablish;ac, sidaac)ryc
=corr. Simpac.Init3, -.sendEstablish;ac, sidaac)rpc
pre: ntask= ESS2 ; );
eff: active:= T andntask:= L ; (K),(L);
iii. Fpic.sendSID, sidprc)simpac
=corr. SiMpac.Fpic.SeNdSID, sidp1c)simpac
pre: ntask= ESS2 ; ();
eff: ntask=_1; (I);
The simulation of the establish session is perfectly executed by

simulatior(x) of Simpac. Finally, the parties establish a DIC in
the simulation world.

(b) Data Sending SessiofMNext, in the data sending session, Env
sends messagm(Send,sidZAc,m)m to Initoac, for somei.
Here, we consider that Env sends the message téA(lpit
The case of In@AC is the same as that for Iégc Initoac
sendssendSend, sidzac, MF,,c 10 Foac.  Foac then sends
sendSend, sid;ac, meagy to Simpac. After receiving the mes-
sage, Simpac executesimulatior(Send, sidzac, meg to mimic
the data sending session in the real world. That is, he in-
putsin(Send, sidyac, Mnit tO Init%AC in the simulation world.
The parties, IngAC and Inil%AC, exchange the message using
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a DIC. Moreover, Ini%AC sendssendSend, sidprc, S)pa2) tO
DI

Foic. Fpic sendssendSend, sidprc,M)agy t0 Simpac. CAf-
ter receivingreceivéResponse, sidprc,0K)agy from Simpac,
the functionality sendssendReceive,sidpic,megy to the
other sender Ingt,.. Here, Ini§,. and Inig,. exchange
the same sending message. Next, both senders send
sendSend, sidprc, S)rec t0 receiver Rec. Rec receives mes-
sagereceivéResponse, sidzac, Mini; from both senders. Fi-
nally, Rec outputsout(Receive,sidyac,MRec This is the
basic simulation of Sienc. He can simulate every case
of the executions in the real world. After Sigx re-
ceives sendSend, sidaac,Magv, Simpac executes the task
simulatior(Send, sid,ac, M) in his simulation world under the
policy described hereatfter.

Simulation Policy

I. After receivingreceivéSend, sidaac, MF,,c, Sibac €xe-
cutes the following simulation.

A. Simpac executesandon(x) and selects message input

party, party € {Init}, ., Init5,.}. (The following discus-
sion isparty = Init%AC. The case oparty = InitgAC is
analogous.)

B. Simpac inputsin(Send, SidDIC’m)lnit;AC to Init} .

C. Simpac makes Init,. sendsendSend, sidpic)ry tO
Foic.

D. Simpac makes Ip|c receivereceivéSend, sidprc, mes
)'”it%Ac and makes fic sendsendSend, sidprc, MmeJagy-

E. If Fpic receivessendResponse, sidpic, OK)r,, . from
Adv, Simpac continues the following.

F. Simpac makes Ip|c receivereceivgResponse, sidpzc,
0Kk)agv and makes fic sendsendReceive, sidprc, me
itz, . 1O Init3, -.
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G. Simpac makes Inig ac FeceivereceivgReceive, sidprc,
M), respectively.

H. Simpac makes Ini¢, - and Inig, . each sendendSend,
sidpic, S)Recaccording toM, .

I. Simpac Mmakes Regac receivereceivgResponse,
sidDIc,m)mitzAci and makes Regc output message
out(Receive, sidzac, MReeac-

ii. Simpac executesendResponse, sidaac, OK)F,c-

The state changes and task correspondences are given hereafter.
Task Correspondence of Simulation

Init,. i (in(Send, sidzac,Miniy;; pre: active= T, mes and
ntask= 1:(J),(K),(L) ; eff:mes:= m and ntask:=

DSS2:Q0), (L))
il. (senc(Send,sidDIc,s)F(Dll,é); pre: s:= mesandntask=

DSS2: (); eff: ntask:= DSS4:())

Foic 1. (receivgSend,sidprc,m)x; preactive= T, mesand
ntask= 1: (G), (H), (I); eff:mes:= m and ntask:=

DSS2:H),(1))

ii. (sendSend,sidprc,Magdy; preokconggy = L, mes:=
m andntask= DSS2:f), (H), (1); eff:ntask:= DSS3:
Q)
Adv i. (receivéSend, sidprc,MFyc; Pre: active= T, ntask=
1 :(P), (Q); eff:smes=m, ntaski=DSS2: Q),(R)
ii. (sendResponse,sidprc,0K)F,; pre: ntask= DSS2:
(Q) ; eff: ntask:= L: (Q))
Fpic i. (receivgResponse, sidprc,0K)agy, prentask= DSSS3:
(1); eff:okcond\qy := T andntask:= DSS4:§),(1))
ii. (sendReceive,sidpic, Megy; pre:ntask=DSS4: ();
eff: okcondgy, mesandntask:= L:(F),(H),(I))
Init%AC i. (sendSend, sidjac,S)Reg pre:s := mesand ntask=
DSS4:() ; eff:mesandntask:= 1 :(J),(L))
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Init2

(©)

oA - (receive{Receive,sidDIc,r)Fgl,é); pre: active= T,mes
andntask= 1:(J),(K) and () ; eff:mes=r andntask:=
DSS4 :Q),(L))

il. (sendSend,sid;ac,S)Reg pre:s := mesand ntask=
DSS4:() ; eff:mesandntask:= 1 :(J),(L))

Rec i. (receivéSend, sidaac, Minit;(i €{1,2}); pre:active=T
andntask= L :(0),(P) ;eft: If mes= 1, thenmes=m.
Else, ifmes=m, thenntask:= DSS2 :M),(O))

il. (out(Receive,sidzac, MReg Prem:=mesandntask=
DSS2 :M) and ©) ;eff:mesandntask:= L :(M),(O))

Simulator Simac executes the above-mentioned process to
mimic the real world. The states correspondences in Tall@
and[Z.I1 work well. The key point of this simulation is as fol-
lows. To mimic the ideal world, the simulator executes the par-
ties that execute the tasks in the real world. Moreover, not to dis-
tinguish the output trace, the simulator simulates the real world
in his simulation world by using task codes. In the real world,
Initoac, uses a DIC without the adversary being able to identify
the direction of the sent message. Themnplt sends the shared
message to Regc. In the simulation world, Signc obtains the
same output that Aguc outputs in the real world by his simula-
tion. That is, the trace distributions of each world, the real world
and the ideal world, are indistinguishable. In other words, since
each task and state correspondences work well, the following
property works welltrace(ey) = trace(e/).

Expire SessionFinally, in the expire session, Env sends mes-
sage in(ExpireZAc,sidZAc)m and in(ExpireZAc,sidZAc)@
to Initopac, and Reeac, respectively. Initoac, relays mes-
sage sendExpirezac, sidaac)rac 10 Foac.  After receiving
receiv€Expire;ac, sidaac)x from Foac, Sinpac terminates the
session in the simulation world. That is, he inputs mes-
sagesin(ExpireZAc, SidZAC)Initi and in(ExpireZAc,sidZAc)Rec
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to Initoac, and Regac in the simulation world.
Simulation Policy
I. After receiving receiv€Expire;ac, sidaac)ropnc, SiMbac
executes the following simulation.
A. Simpac inputs messageisn(ExpireZAC,sidZAC)mit%AC
?:Sdplzf:Eti:\cl];;;eZAc,51d2Ac)|nitgAc to Init} - and Init .,
B. Sinpac makes Init,. (resp., Inig,.) send message
sendExpireprc, sidprc)rp,c 10 Foic.
C. Simpac makes Ipic sendsendExpireprc, sidprc)adv
to Adv.

We assume that the state correspondences in faland7Z.11
hold. Fron3dand3L, the state correspondences also hold after
the simulation by Sigpc. That is,trace(ef;,) = trace(e)).
Task Correspondence of Simulation
i Init3,..sendExpirezac, sidzac)rsc
=corr. Simpac.Init3, -.sendExpirezac, sidzac)rsc
pre: ntask= EXS2 ; ();
eff: activeandntask:= L ; (K),(L);
ii. InitgAC.Sen((ExpiregAc,sidZAc)FSC
=corr. Simpac.Init3, -.sendExpirezac, sidzac)rsc
pre: ntask= EXS2 ; L);
eff: activeandntask:= L ; (K),(L);
iii. Fpic.sendExpirepic,sidprc)Advoac
=corr. SiMac.Fpic.sendExpireprc, sidprc)Advaac
pre: ntask= EXS2 ; ();
eff: active estcongt andntask:= L for all X ; (D) ~ (F),
(h;

2. Static Corruption
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This type of corruption is divided into the following three cases: only
Initoac; is corrupted by Adv, only Reac is corrupted by Adv, and
both parties are corrupted by Adv.

(a) Only Initac, for some or both is corrupted by Adv This case
means that Adwac corrupts only Init before the protocol starts.
So, the remaining steps are identical to the above-mentioned No
Corruption Case.

i. After receiving the corrupt message from Env, Sigpre-
pares a situation in which only Iaj{c, for somei is cor-
rupted and adds the following policy bef@t&)iB Simpac
makes Adv corrupt Ingiac, for somei.

ii. After receivingreceivgSend, sidaac, megr,,. from Foac,

Simpac executes the following simulation.

A. If messagereceivgSend, sidzac, MeJr,,c IS iNput to
corrupted party Injt Sinpac inputsin(Send, sidyac, m
€9nit; to Init;.

B. Else messageaeceivgSend, sidaac, MeJr,,c IS IN-
put to non-corrupted partylmjt and Simac inputs
in(Send, sidzac, MeYnit- to Inity:

C. The remaining asteps are the same as the simulation for
No Corrupted Case.

iii. After receiving receivéSend, sidyac, Mr,, N INitoac,

Simpac execute®ut(Receive, sidaac, m)m.

Advoac and Simac identify who sends the sending message,
that is, Inig or Inito. However, the simulation is perfectly exe-
cuted. If the protocol executes the establish session, data sending
session, and expire session, in any case, the simulator emulates
the real world and the movement of Adv. That is, the simulation

is perfectly executed by Sigac. From the Task Correspondence
in[Z.Z.2 the state correspondenceiB, [7.10 andZ.I1hold in

this case. That idrace(e};) = trace(e/) holds.
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(b) Only Reeac is corrupted by Adv

This case means that Agh¢ corrupts only Regac before the
protocol starts. Adwac and Simac do not identify who sends
the sending message.

i. After receiving the corrupt message from Env, impre-
pares a situation in which only Rgg: is corrupted and adds

the following policy befor@l(a)iB Simpac makes Adv cor-
rupt Reeac.

ii. The remaining simulation is the same as the simulation for
the No Corrupted Case.

iii. After receiving receivgSend, sidaac, Mr,,c IN ReGac,
SirnZAC exeCUtGQUt(ReCEiVQ, sidaac, m)m

Additionally, Reeac has no secret information. So, the simu-
lation after the corruption is perfectly executed. If the protocol
executes the establish session, data sending session, and expire
session, in any case, the simulator emulates the real world and
the movement of Adv. That is, the simulation is perfectly exe-
cuted by Simac. From the Task Correspondencdi?.2 the

state correspondencedd®, [7.10 andZ.I1hold in this case.

(c) Both parties are corrupted by Adv
This case means that Aghe corrupts both Iniiac, for bothi
(Init3 . and Inig . .) and Regac before the protocol starts.

i. After receiving the corrupt message from Env, Sigpre-
pares a situation in which only Init and Rec are corrupted
adding the following policy beforE(@)iB Simpac makes
Adv corrupt Init%AC, Init%AC, and Regac.

ii. If the data sending message is inputparty € {Init,Reg,
Simpac inputsin(Send, sidaac, M)party to party.

iii. The remaining is the same as the simulation for the No Cor-
rupted Case.
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iv. After receivingreceivg€Send, sidaac, M, i partyin his
simulation, Simac execute®ut(Receive, sidZAc,m)m.

In this case, Adwac and Simac can identify who sends the
sending message. However, the simulation is perfectly executed.
If the protocol executes the establish session, data sending ses-
sion, and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sigac. From the Task Correspondence
in[Z.2.2 the state correspondence&if [7.10 andZ.I1hold in

this case. That idrace(e;) = trace(e/) holds.

3. Adaptive Corruption

In this case, the adversary corrupts some parties when he wants to
do so. This case is also simulated by the simulator, but the direction
that the message is sent cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by
simulator Simac, so the simulation is perfectly executed. This case

is separated into the following instances.

(a) Establish Session

Instance 1: Before Inibac, and Regac are activated.

. - 1 - -
Instance 2: A_fter Init, is activated but before Irﬁgc and
Regac are activated.

Instance 3: After Init2,, . activated and before It and Regac
are activated.

Instance 4: After Regac is activated but before Inikc, is acti-
vated

Instance 5: After Initoac, is activated but before Reg is acti-
vates.

Instance 6: After Init%AC and Reeac are activated but before

Init3 . is activated.

Instance 7: After InitgAC and Reegac are activated but before

- 1 - -
Inlt2 Ac IS activates.
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Instance 8: After Initoac, and Regac are activated.

These case are analogous to @because there is no secret in-
formation. The adversary can corrupt iit, Init3 . or Reeac,

or any combination, but the simulator can also corrupt the cor-
responding parties. These cases are also perfectly simulated by
SimZAc.

(b) Data Sending Session

Instance 1: Before or after Ini% Ac OF Regac is activated

by receivingin(Send, sidzac, Minit; from the Env.

Env can execute only the message sending indication and
the corrupt indication. So, this case is only the case that the
adversary corrupts the party. This case is also simulated by
Simpac, because there is no secret information in this ses-
sion. The task correspondence works well and there exists a
simulation relation between the real world and ideal world.
That is,trace(e) = trace(g) holds.

(c) Expire Session

Instance 1: After Init3,., Init5,., or Reeac is activated
with the expire message.

Once Env sends the expire message tepAgjtor Reeac,

this session terminates in the real and ideal world. So the
adversary can corrupt the parties. This is identical to case

2

Simulation Policy

Simpac simulates in his simulation world the following.

(a) After receiving “corrupt Ini% Ac Message from Env,

e Simpac corrupts Init%AC and checks whetheparty
{Init%AC, Init%AC} has already sent the data sending message
to the other party. If the message was already sentygim
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performs the following. Else, Sisnc makes Adv corrupt
i1
Init; 5
o If party=Init},.,
— If Simaac has already input message sending request
in(Send,sidZAc,m)lmt%AC to Init}, in his simulation,
then Simac simulates that Adv corrupts Iégc, im-
mediately.

— Else, Simac has already input message sending re-
questin(Send, sidaac, M),yiz, 0 Init3,,  in his simula-
tion, then Simac simulates that Adv corrupts Ilji/;c,
immediately.

o Else,party=Init3,.,
— If Simoac has already input message sending request
in(Send, sidzac, M)z 0 Init} . in his simulation,
then Simac simulates that Adv corrupts Igjt., im-
mediately.

— Else, Simac has already input message sending re-
questin(Send, sidaac, M)z, 0 Init3 , - in his simula-
tion, then Simac simulates that Adv corrupts Iéi,;c,
immediately.

e If more data sending messages are inputptoty from
Env after Simac corruptsparty, Sinpac can also simulate
the situation. If the message is input to corrupted%}l[?:it
Simpac inputs the sending message to the corrugiady
in his simulation. Else, the message is input to%l,{gtand
Simpac inputs the sending message to non-corrugtedy
in his simulation.

o After receiving receivgSend, sidaac, MF,pc N Init3 ¢,

SimZAC executeS)ut(Receive, sidaac, m)m
2AC

(b) After receiving “corrupt Inig Ac Message from Env,
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e Simpac corrupts Init%AC and checks whetheparty
{Init%AC, Init%AC} has already sent the data sending message
to the other party. If the message was already sentyzgim

performs the following. Else, Sisnc makes Adv corrupt

Init3 .
o If party=Init},.,

— If Simoac has already input message sending request
in(Send,sidZAc,m)mit%AC to Init},. in his simulation,
then Simac simulates that Adv corrupts I@&C, im-
mediately.

— Else, Simac has already input message sending re-
questin(Send, sidac, m)'nitEAc to Init3, in his simula-
tion, then Simac simulates that Adv corrupts Iéi,;c,
immediately.

e Else,party=Init3,.,

— If Simoac has already input message sending request
in(Send,sidZAC,m)mit%AC to Init},. in his simulation,
then Simac simulates that Adv corrupts Iéj&c, im-
mediately.

— Else, Simac has already input message sending re-
questin(Send, sidyac, m)lnitéAC to Init3 . in his simula-
tion, then Simac simulates that Adv corrupts I@i/;c,
immediately.

¢ If more data sending messages are inpytaay from Env
after Simac corruptedparty, Sinpac can also simulate
the situation. If the message is input to corrupted%},@'t
Simpac inputs the sending message to the corrugiady
in his simulation. Else, if the message is input toa);@,
Simpac inputs the sending message to non-corrugaty
in his simulation.

e Receivingreceivg€Send, sidyac, M), IN InitgAC, Sinpac
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execute®ut(Receive,sidyac, M) —5—.
InltZAC

(c) After receiving “corrupt Regac” message from Env,
e Simpac corruptsReeac and makes Adv corrupt Rege in
the simulation world, immediately.
o After receiving receivgSend, sidzac, Mr,,c IN ReGAC,

Simpac executedut(Receive, sidyac, m)m.

(d) After receiving “corrupt Ini, - and Ini€ ,.” message from Env,

e Simpac corrupts Init}, . and Init3,. and checks which
party € {Inity, Inito} sent the message to the other party. If
iNn(Send, sidzac, Mparty Was already sent, Skac makes
Adv corrupt Init and Rec and does the following. Else,

Simpac makes Adv corrupt Init and Rec.

— If the party that Simac has already input the message
sending request is equal to the party to which Env input
a message, Sigac inputs more data sending requests
to the party.

— Else, the input party in the simulation world is not same
as the input party in the ideal world, Sjax regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

o After receiving receivéSend, sidaac, M, IN INitoac,
Simpac execute®ut(Receive, sidaac, m)m.
i

(e) Afterreceiving “corrupt Iniﬁ Ac @and Regac” message from Env,

e Simbac corruptslnit%AC andReoac, and makes Adv cor-

rupt Reeac and Init according to cadgd
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(f) Afterreceiving “corrupt Iniﬁ ac and Regac” message from Env,

e Simpac corruptslnitgAC andRegac, and makes Adv cor-
rupt Reeac and Init according to cadai

(g) After receiving “corrupt Ini%AC, Init%AC and Regac” message
from Env,

e Simpac corruptsinit}, -, Init3, . and Regac, and makes
Adv corrupt Regac and Init for eachi according to case

3d.

Whenever Adyac corrupts some party, Sgac corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Agxc. If Advaac corrupts
party Inibac, or Regac then Simac corruptsinitpic or (and)Regc

in the ideal world, and provides the simulated copy of Agvin the
simulation world with the state information of the corrupted party.
Conversely, Simgic may obtain information from the simulated world
with the corruptions. Additionally, in this protocol party has no secret
information becausedrc is securely performed. In all cases, since
Simpac can simulate Adyac using his simulated world, Env cannot
distinguish the real world from the ideal world. That is, simulating
party corruption is perfectly executed.

Finally, relationR is a simulation relation based on the task and state corre-
spondences with respect to the adaptive adversary. We obtain [Zmma

O

Next, Theoreflis obtained from LemnfAimmediately.

Proof. From Lemm@& and Theore@, Theorerdl is proved. That is, the
trace distribution propertydist(er) = tdist(¢;) holds with respect to adap-
tive adversary undevl,,,.. As a result, the simulation is perfectly executed
because Siapc can simulate the real world from the information message
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through Adwac. The tasks of the real world perfectly correspond to the the
tasks in the ideal world. That is,

Reapac|l[Env Hyh Sgﬂz“c |deabacl||Env.
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Functionality

(@) | u.Foac.estconghit, = sFpic.estconghit
(b) | u.Foac.estconghit, = S.Fpic.estcongec
(¢) | uFoac.okconghgy = s.Fpic.okcong\gy

(d) | u.Foac.active= s.Fpc.active

(e) | uFoac.mes= sFpic.mes

(N | u.Foac.ntask= s.Fpic.ntask

Initiator

(@) | u.lnitpac,.mes= sinitaac,.mes
(h) | u.Initaac,.active= sInitaac;.active

(1) | u.lnitoac,.ntask= s.Initoac,.ntask

Receiver

() | u.Regac.mes= sRegpac.mes
(k) | u.Regac.active= sRegac.active

() | uRegac.ntask= s.Regac.ntask

Environment

(m) | uEnv=sEnv

Table 7.9:State Correspondence for Rgg] and Idealac (Part I)
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Simulator (or Adversary)

(A) | u.Simpac.active= s.Advoac.active

(B) | u.Sinpac.ntask= s.Advoac.ntask

(C) | u.Sinpac.smes= s Advoac.Smes

(D) | u.Simpac.Fpic.estconghit, = s.Fpic.estconghit,
(E) | u.Simpac.Fpic.estconghit, = s.Fpic.estconghit,
(F) | u.Simpac.Fpic.okcongygy = s.Fpic.okconggy
(G) | u.Simpac.Fpic.active= s.Fpic.active

(H) | u.Simpac.Fpic.mes= sFpic.mes

() | u.Simpac.Fpic.ntask= s.Fpic.ntask

(J) | u.Simpac.Initoac,.mes= s.initoac,.mes

(K) | u.Simpac.Initoac;.active= s.nitaac;.active

(L) | u.Simpac.Initoac,.ntask= s.Initoac,.ntask

Table 7.10:State Correspondence for Rgg) and Idealac (Part II)
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Simulator (or Adversary)

(M) | u.Simpac.Reeac.mes= s.Regac.mes

(N) | u.Simpac.Reoac.active= s.Regac.active
(O) | u.Simpac.Regac.ntask= sRexac.ntask
(P) | u.Simpac.Advoac.active= s Advoac.active
(Q) | u.Simpac.Advoac.ntask= s Advoac.ntask

(R) | u.Simpac.Advoac.smes= s Advoac.sSmes

Table 7.11:State Correspondence for Rgg) and Idealac (Part 1)
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1. Establish Session

(@) | Initoac;.sendEstablishprc, SidDIC)Fg@
=corr. INitoac,.seNdEstablishyac, sidzac)ronc
(b) | Fpic.sendSID, sidprc)adv =corr. F2ac.S€NdSID, sidaac)adv
2. Expire Session
(@) | Initoac,.sendExpireprc, SidDIC)F(leé)
=corr. W.Senc(ExpireZAc, sidaac)Fopc
(b) | Fpic.sendExpirepic, sidpic)adv =cor. F2ac.s€ndExpire;ac, sidaac)ady
3. Environment
(@) | All tasks of environment Env in Reglc correspond to the tasks of enviro

ment in Idealac.

Table 7.12:Corresponding Tasks for Reat and ldealac
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Real Execution
InitlAC.in(Send, sidyac, m)miti
InitZAC.senc(Send, sidpzc, S)F(Dll,(zz)

Fpic.receivéSend, sidpzc, m)x
Fpic.sendSend, sidprc, M)ady
Advaoac.receivé€Send, sidprc, Mpyc
Advaac.sendResponse, sidprc, OK)Fy e
Fpic.receivéResponse, sidpzrc, 0K)agy
Foic.sendSend, sidpic, me gy

Init2, ~.receivéReceive, sidprc, m)F(ll,é)

© 0O ~NO O~ W NHg

2AC’
{Init%AC.senc(Send, sidpzc, S)Rec,lnitgAC.Senc(Send, sidpzc, S)Rec}
Regac.receivgResponse, sidaac, Minit;
Regac.receivgResponse, sidaac, Minit;

Regac.Out(Receive, sidaac, MRec

el e
WN R O

Ideal Execution

1
IthAC.

Init3, ..sendSend, sidzac, MF,uc
Foac.receivgSend, sidyac, M)init,
Foac.sendSend, sidyac, me9adv
Simpac.receivgSend, sidzac, MESF, ¢
Simpac.sendResponse, sidaac, OK)F e
Foac.receivéResponse, sidaac, 0K)agy
Foac-sendSend, sidzac, Me3Rec
Regac.receivgResponse, sidaac, MeJr, -
Reoac.0ut(Receive, sidyac, m)R—ec

in(Send, sidac, M

©Coo~NOOULhA~,WN - g

[EY
o

Table 7.13: Corresponding Task Sequence of Data Sending Session for
Reapac and Idealac underMy,,
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T T 1 T T anen [eul
T T 1 T T anen feniu|
- -7 -7 - T1-T-T-T-T7T-71T-71-]-1 vssa
- - - - - - - - | essa
T - T ¢Ssda - - T - T ¢Ssda - - ¢Ssda
w T |2SSd T - L w T |2SSd T - L 1SSd
o |eud| o | eud | o [:eud | :pe [:aud | e | :eud | :pe |:eud [l ssedoid |
saw ysew anoe saw yseu annoe
ol Vg
uonnoaax3 [eap|
T T 1 T T an[en [eul
T T 1 T T anen [eniu|
T - T 7SSd - - T - T 7SSd - - 7SSd
1 T |¥SSd T - L 1 T |¥SSd T - L €SSsda
- - |PSSA (¢Sssd | - - - - |PSSA (¢Sssd | - - ¢SSsd
w T |ZSSd T - L w T |2SSd T - L 1SSd
o |aud | po | eud [:pe |eud || e [eud | :pe | :eud | :pe |:ud [[ql sseo0id |
saw ysew annoe saw yseu annoe
Vo RAEST

uonn2ax3 [eay
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Code for Initiator Inif(i € {1,2}) of Two Anonymous Channel, Initc,

Signature:
sidzac = ({Inity, Initp}, Regsid)
sidprc = ({Inity, Init2}, sidprc”)

AC)

Input: Output:
in(EstablishZAc, SidZAC)Initi SenC(EStabliShDj[c, SidDIC)F(l,Z)
DIC
in(Send, sidyac, rn)miti senC(Send, sidprc, S)F(l,z)
DIC
receivéReceive, sidprc,M)12 SendSend,sidpic, S)rec
DIC
In(ExpireZAc, SidZAC)Initi senc(ExpireDIc, SidDj[c)Fgl,é)
State:
activee {1, T}, initially L mese ({0, 1}*) U {L}, initially L
ntaske ({0,1}) U{L}, initially L
Tasks:

{SendEStabliShDIc, SidD]:c)F(l,Z), Sen((Send, sidprc, S)F(l,Z),
DIC DIC
sendSend, sidaac, S)rec SENAEXpPireprc, sidpic)ra2}
DIC

Figure 7.23:Code for Initiator of Two Anonymous Channel, It (Part
1)
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Code for Initiator Init(i € {1,2}) of Two Anonymous Channel, Initc,

Transitions:

Establish Session:

ESS1.in(Establishjac, sidaac)init;
pre: activeandntask= L
eff: ntaski= ESS2
ESS2.sendEstablishpzc, SidDIC)F(Dll,é)
pre: ntask= ESS2
eff: active:= T andntaski= L
Data Sending Session:

DSSl.in(Send, sidyac, rn)miti
pre: active= T, mesandntask= L
eff: mes= mandntask:= DSS2
DSS2.sendSend, sidpzc, s)F(Dll,é)
pre: s:= mesandntask= DSS2
eff: ntask=DSS4
DSS3.receivéReceive, sidpzc, r)F(Dll,é)
pre: active= T,mesandntask= L
eff: mes=r andntask:= DSS4

DSS4.sendSend, sidjac, S)Rec
pre: s:= mesandntask= DSS4
eff: mesandntask:= L

Expire Session:

EXSL1. in(EstablishZAc, SidZAC)Initi
pre: active= T andntask= L
eff: ntaski= EXS2

EXS2. SenC(EStabliSh[)Ic, SidDIC)F(Dll’é)
pre: ntask= EXS2
eff: active:= L andntaski= L

Figure 7.24:Code for Initiator of Two Anonymous Channel, Isit (Part
1))
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Code for Receiver Rec of Two Anonymous Channel,Rec

Signature:
sidaac = ({Inity, Initz},Regsid;, )

Input: Output:
in(EStabliShZAc,SidZAc)Rec
receivéResponse, sidyac, Miniy; OUHReceive,sidyac, MRec
in(Expirezac, sidaac)rec

State:
activee {1, T}, initially L mese ({0,1}*)u{L}
ntaske ({0, 1)) U{L}, initially L

Tasks:
{out(Receive, sidyac, MRed

Figure 7.25:Code for Receiver of Two Anonymous Channel, Rec(Part

)
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Code for Receiver Rec of Two Anonymous Channel,Rec

Transitions:

Establish Session:

ESSl.in(EStabliShZAc,SidZAc)Rec
pre: activeandntask= L
eff: active:=T

Data Sending Session:

DSSl.receive{Send, sidyac, I’n)miti (l e{1, 2})
pre:active= T andntask= L
eff: If mes= L thenmes=m.
Else if mes= mthenntask:= DSS2.
Elsemes= 1

DSS2.out(Receive, sidyac, MRec
pre: m:= mesandntask:= DSS2
eff: mesandntask:= L

Expire Session:

EXS1.in(Expirezac, sidaac)rec
pre: active= T, mesandntask= L
eff: activeandntask:= L

Figure 7.26:Code for Receiver of Two Anonymous Channel, Rec(Part
)
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Code for Adversary for Annonymous Channel, Agy

Signature:
sidprc = ({Init,Red,sid};)

Input:

receivégSID, sidpic)ry .
receivégSend, sidprc, Mryc
receivéExpireprc, sidprc)rpc

Output:
sendResponse, sidpic, OK)rp,c

Other:
*Other arbitrary tasks are included the basic iripérnajoutput
tasks such as corrupt messagendm)party, receivém)party, OUL(x),
whereparty € {Init4, Inito, Reg.

State:
activee {L, T}, initially L ntaske ({0, 1}*) U{L}, initially L

smes ({0,1}) U{L}, initially L

Tasks:
{sendResponse, sidpic, 0Ky}

Figure 7.27:Code for Adversary for two Annonymous Channel, Agy
(Part )
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Code for Adversary for Annonymous Channel, Agy
Transitions:

Establish Session:
ESS1.receivé€SID, sidpic)rpc
pre:active= L
eff:active:=T
Data Sending Session:
DSSL. receivgSend, sidprc, Meyc
pre:active= T, ntask= L
eff: smes=m, ntask:= DSS2

DSS&. sendResponse, sidprc, 0K)Fpy e
pre: ntask= DSS2
eff: ntask:= L

Expire Session:

EXSL. receivéExpireprc, sidpic)rpy e
pre:active=T
eff: active:= L
Other tasks:
This adversary makes other arbitary tasks.

Figure 7.28:Code for Adversary for two Annonymous Channel, Agy
(Part 1)
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Code for ideal Initiatoinit;(i € {1,2}) of Two Anonymous Channelnitaac,

Signature:
sidaac = ({Inity, Inito), Reg sidy, )
Input: Output:
in(Establishy,c, SidZAc)m sendEstablishyac, sidaac)rouc
in(Send,sidZAc,m)W sendSend, sidzac, M)F,uc
in(Expireaac, sidZAc)ﬁ sendExpire;zac, sidaac)rouc

State:
mese {1, T}, initially L ntaske ({0,1}*) U{L}, initially L
activee {L, T}, initially L

Tasks:
{sendEstablishyc, sidaac)rac, SENASend, sidzac, MF,acs
sendExpire;ac, Sidaac)Fouct*

Figure 7.29:Code for ideal Initiator of Two Anonymous Chann#ijtoac
(Part )
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Code for ideal Initiatoinit;(i € {1,2}) of Two Anonymous Channelnitaac,

Transitions:

Establish Session:

ESSl.in(EstablishZAc,sidZAc)ﬁ
pre: activeandntask= L
eff: ntaski= ESS2
ESS2.sendEstablishyac, sidaac)roac
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSSl.in(Send, sidyac, m)ﬁ
pre:active= T, mes= L andntask= L
eff: mes= mandntaski= DSS2
DSS2.sendSend, sidaac, MF,uc
pre: m:= mesandntask= DSS2
eff: mes= 1 andntask:= L

Expire Session:

EXS1. in(ExpireZAc, SidZAC)W
pre: active= T andntask= L
eff: ntaski= EXS2

EXS2. senc(ExpireZAc, Sid—ZAC)Fz/_\c
pre: ntask= EXS2
eff: active mesandntask:= L

Figure 7.30:Code for ideal Initiator of Two Anonymous Chann#ljtoac
(Part II)
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Code for ideal ReceiveRec of Two Anonymous Channdegac

Signature: L
sidaac = ({Initq, Inito}, Reg sid’ZAC)

Input: Output:
in(EstablishZAc,sidZAc)R—ec
receivgResponse, sidaac, Me9F,,. OUt(Receive,sidyac, Mgge
in(Expirezac, sidzac)gec

State:
mese ({0, 1}*)u{L} ntaske ({0,1}*) U{L}, initially L
activee {L, T}, initially L

Tasks:
{out(Receive, sidjac, MRed

Figure 7.31:Code for ideal Receiver of Two Anonymous Chanmoac
(Part 1)
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Code for ideal ReceiveRec of Two Anonymous Channdkecac

Transitions:

Establish Session:

ESSl.in(EStabliShZAc,SidZAc)@
pre: activeandntask= L
eff: active:=

Data Sending Session:
DSS1.receivéResponse, sidzac, MF,uc

pre:active= T, mesandntask= L
eff: mes= mandntask:= DSS2

DSS2.out(Receive, sidaac, Mga
pre: ntask= DSS2
eff: mesandntask:= L

Expire Session:

EXS1. in(ExpireZAc, SidZAc)@:
pre:active= T, mesandntask= L
eff: ntaski= EXS2

Figure 7.32:Code for ideal Receiver of Two Anonymous Chanf®oac
(Part II)
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Code for Simulator for Anonymous Channel, Sip

Signature:
sidaac = ({Inity, Init2},Recsid), )
Input:
receivgSID, sidaac)roac
receivgSend, sidyac, MEIF, ¢
receivgExpire;ac, Sld)chc)F’gAC

Output:
sendResponse, sidac, OK)F,uc

Other:
*Other arbitrary tasks are included the basic iripérnajoutput
tasks such as corrupt message autfs).

State:
activee {1, T}, initialy L smes {0,1} U{L}, initialy L

ntaske ({0, 1}*) U{L}, initialy L
Other arbitrary variables; cal "new” variables.

Tasks:
{sendResponse, sidaac, OK)Fuc )

Figure 7.33: Code fot Simulator for Anonymous Channel, Sip (Part 1)
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Code for Simulator for Anonymous Channel, Sig

Transitions:

Establish Session:

ESS1.receiv€SID, sidaac)Fac
pre:active= L, ntask= L
eff: active:=T

Data Sending Session:

DSS1.receivéSend, sidaac, Me9F, e
pre:active= T andntask= L
eff: smes= mesandntask:= DSS2

DSS2.sendResponse, sidac, OK)F,uc
pre: ntask= DSS2
eff: ntask:= L

Expire Session:

EXSL. receivéExpiresc. sidy,)pr

pre:active= T eff: active:= L
Other tasks:
This simulator makes arbitrary tasks to simulate the real world
protocol system Regdc. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary of the simjulat-
ing world to the environment.

Figure 7.34: Code fot Simulator for Anonymous Channel, Sigg (Part 11)
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7.3 Equivalence Between DIC and SC

In this section, we prove that the DIC is equivalent to the SC under a spe-
cific type of schedule. To prove this, we show two reductions, SC to DIC
and DIC to SC. Here, we consider a one bit message exchangli-el.
Informally, the reduction of SC to DIC is proven as described hereafter. To
make the channel between Init and Rec secure, the parties exchange a ran-
dom bit (as a secret shared key) using the DIC. The message encrypted using
the shared key is exchanged using a public channel. Communications are
conducted not using the DIC but by a public channel. When the next mes-
sage is sent, the parties restart from the key exchange stage. Here, the key
exchange takes place under the master schedule. After the key exchange, the
cipher text generated by the secret key is sent. The other reduction of DIC to
SC is proven as described hereafter. Parties Init and Rec exchange two mes-
sages using the SC. One messagm,ishe message that the sender wants

to send. The other message is a dummy message to conceal the message
direction. More specifically, sender Init sends messagmd the receiver
sends dummy messagaunder a specific type of schedul¢. We gener-

ate random messagausing kgc. Note that, the adversary cannot identify

the direction of the message because the messages are exchanged under a
specific type of schedule. In this section, we must consider the schedules
(key exchange schedule and message exchange schedule) to avoid exposing
information to an adversary. In the UC framework, all schedules are under
control of an adversary. So, we use the task PIOA framework.

7.3.1 Reduction of DIC to SC

Let n,, be a protocol of DIC. Let M”fmc be master schedule
MpsyndInity,-.sendSend, sidsc, Mg, REG, . s€NdSend, sidsc, M)rg) for
Thic

Let Inity,,- and Reg be the initiator code and receiver code for a real
system, see Fi@.353 Fig[Z.36and FigZ.37 and FigZ.38and FigZ.4q re-

spectively. Leﬂnit’DIC and RquIC be the initiator code identical timitpc
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and receiver code identical tBeg)c for an ideal system, respectively.
Finally, let Adv, - and Sin}, - be the adversary code and the simulator

code in FigZ.41 and FidZ.42 and FidZ.43and Fid7.44 respectively. Let

Real,,. and Idedl,. be a DIC protocol system and a DIC functionality
system defined, respectively, as follows:

Reablc = hide(lnit/D|c||Re(fmcllAdV/DK:”FSRC”FSO {rand(*)})1
Ideal, . := Init,, _|IReq IS clIFoic.

TasksInit - andReg, . relay the input messages from the environment
to the ideal functionality task and relay the received messages from the ideal
functionality task to the environment, respectively, as interface parties in the

ideal system.

Theorem 6. DIC protocol systeneal,, - perfectly hybrid-implements DIC
functionality systenideal,, . with respect to an adaptive adversary under
master schedule pyndsendSend, sidsc, Mrg., sSendSend, sidsc, M)Fc)-

(DIC is reducible to SC with respect to an adaptive adversary under master
schedule MsyndsendSend, sidsc, Mrg., sendSend, sidsc, Mrgc)).

Let er and g be discrete probability measures on finite executions of
Real, .[Env and Idedl . |[Env, respectively. We prove Theoré&hby show-
ing thater andg satisfy the trace distribution propertgist(er) = tdist(g).
Here, we define corresponderiReébetween the states in Rggal||Env and
the states in Ideg|ll[Env. We say 4r, &) € R if and only if for every
s e supplst(er) andu € supplst(g), all of the state correspondences in Ta-
bles[Z.17 [Z.18 andZ.I9hold. We then prov& is a simulation relation in
Lemma3

Lemma 3. Relation R defined above is a simulation relation from
Real, -[|[Envto Ideal,, . [|[Envunder master schedule,,I\D/IIC.

Proof. We prove thatR is a simulation relation from RegL|Env

to Idea},.|l[Env using mapping corrtais*Reablannvx RReab.cllE“V -

Ri"d eal [ENV which is defined hereafter.
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Forany p,T) e (Rl’;eablannvx RReab|c||E“V)’ the state correspondences in
[7.17and7.18hold.

The task sequence of system RgalEnv are perfectly corresponds to
that for system Ideg|.|[Env under the scheduMﬂfDIC. Formally, to prove
thatRis a simulation relation from Reg| [|Env to Idea}, ~[[Env, we show
thatR satisfies the start condition and step condition.

e Start condition
It is true that the start states of and u in Real,;[[Env and
Ideal,,-lIEnv, respectively, are on the Dirac measures. That is, the
start states of andu satisfy relationR because the start states of
andu are all_L for each task on master schedMe,/DIC. Therefore, the
trace distribution property holds.

e Step condition
Let €, = applyer, T) ande/ = apply(e, corrtaskgp, T)). If (er,€) €
R pe F\T?eabl [Env and er is consistent withp, theng is consistent

with full(corrtask9(p) and T € Real,[[Env. Then there exist the
following.

— Probability measur@ on countable index sét

— Probability measuresfﬁj, j €1, on finite executions of
Real, - [[Env, and

— Probability measuresfl’j, j €1, on finite executions of
Ideal,,lIEnv,

such that:

— Foreachj e, fﬁe,j Rell,j'
= Zjer P(j)(eg ;) = applyer, T), and
— Zjer P())(¢ ;) = apply(e, corrtaskp, T)).
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Task Correspondence

For any p,T) € (R;;eab Env X RReablcllEnv)’ the following task correspon-
IC
dence that is also summarized in TdBI2Qholds.

1. Establish Session

(@) Inity,.sendEstablishsc, sidsc)rsc

=corr. |nit|/3|C.SenC(EStabli shpic, SidDIC)FD|C

Let Trpar and Tipear be SenC(EStabliShsc,Sidsc)Fsc and
sendEstablishpic, sidprc)ry,c, respectively. We assume that
for each states € supplst(er) andu € supplst(g) are fixed. The
precondition ofTrear and Tipear IS Ntask= ESS2 from each
code. Trear (resp.,Tipear) iS enabled (or disabled) is (resp.,
u) if and only if s.Init;, ..ntask= ESS2 (respu.Initf -.ntask=
ESS2). From |) in Table[Z17% the state correspondence im-
plies thatTrear andTipear are uniformly enabled or disabled in

supplst(er) U supplst(e).

i. Disable Case:
Let | and p be the set that has a single element and Dirac
measure onl, respectively. Letege’l = €, and Ell,l = €.
We have the fact that, = er and ¢ = ¢. Here, we ob-
tain el/?,lREI/,l from relationegrRg. The trace distribution
equivalence propertydist(e) = tdist(¢/), also holds since
tdist(er) = tdist(g) underMﬂrch.

ii. Enable Case:
Let q denote the state of preconditionsask= ESS2. Let
Trear andTpear be the action enabled ipfor each world.
We show that each Ofggar and Tipgar IS @ unique ac-
tion that is enabled irg. From the definition OfTggar
and TpeaL, the precondition is onlyntask= ESS2, and
is unique in all tasks in Inf,~ and Initj, ., respectively.
Then, there are two uniqudfects that update thactive
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andntaskto be T and L, respectively. From the precon-
dition and the #&ect of Trear, and the state equivalence of
(1) and (), we obtain that the subsequent Tz (and
Trpear) IS @lso a unique action that is enabled in every state
in supplst(er) U supplst(e).

Let | and p be the set that has a single element and the
Dirac measure oh, respectively. Lety, = R andel”l = €.
Here, we establish the property Bffor ¢/, ande¢ to show
that (e;.€) € R Then we show trace distribution equiv-
alence fore;, and¢. To establish this property, consider
any states’ € supplst(e;;) andu’ € supplst(¢/). Let sbe any
state in suppst(er) such thas’ € suppfs), where §,,us) €
Real,-l[Env. Letu be any state in supt(g) such that

U’ € suppfuy), where (i, corrtaskp, {), uu) € Ideal;,-[[Env.

It is true that Trgar updates Iniactive to T and
Inity,~.ntask to L from the definition of the &ect of
Trear. Similarly, Tipgar updateslnitl’mc.active to T and
Inity .ntask to L from the definition of the #ect of
TmpeaL. From the states equivalences a) @nd (j)

in Table[Z.I7 we haveu.lnit’,, ~.active = slnit'DlC.active

DIC
and u.Init’DIC.ntask: slnit,’mc.ntask We obtain that
u’.InitI’DIC.active: s’.Init’DIC.active and U'.Init~, ..ntask=

DIC"
s'.Init;,..ntask By the definition of Inif, . and Init;

Trear (resp.,Tipear) IS @ unique action that updates trrl)lecstate
of activeof Real,, (resp., Idedl ). Therefore, we obtain
that the trace distribution propertsace(e;,) = trace(e/).
(b) Re(blc.senc(Establishsc,sidsc)psc
=corr. ReCBIC, SenC(EStabliShDI(j, SidDIC)FDlC
This case is analogous to the casélaf The state correspon-
dences arenf) and ). This case is also uniformly enabled or

disabled in supjst(er) U supplst(e).

(c) Fsc.sendSID, sidsc)adv =cor. Fpic.sendSID, sidprc)adv
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The precondition andfiect of these tasks are identical to each
other. The preconditions of the task on the left side of the equa-
tion areactive= T andntask= ESS2. This is equivalent to the
precondition for the task on the right side. THeeet of the task
on the left isntask:= L. This dfect is also the same as that
for the task on the right. Léliggar be Fsc.sendSID, sidsc)ady-

Let TipgaL be FD|C.SenC(SID,SidDIc)AdV. We show thatl"REA]_
and Tipear are uniformly enabled or disabled in sulgf(er) U
supplst(g). We consider that for each state sre supplst(er)
andu e supplst(g) are fixed. ThenTggar enables (or disables)
in sif and only if S.Trear.active= T ands.Trear.Ntask= ESS2.
The precondition of tpgar, (f) in TableZ. 17, implies thaTpgar

is uniformly enabled or disabled. The rest of this proof is similar
to that for the task did

i. Disable Case: Laizr andg be discrete probability measures
in the real world and the ideal world, respectively. We have
the fact thate;Q = eg and el' = ¢. Here, the start and step
conditions of simulation relatioR hold from each task def-
inition and the state correspondence of prig: Therefore,
we obtaintrace(ef) = trace(e)).

ii. Enable Case: Letr and ¢ be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of pre:
(f), and state correspondences fif €d) and (f), we have
thate; = er and ¢ = €. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(eg) = trace(g)).

2. Data Sending Session

Here, we consider two cases for this session. One is that Env inputs
in(Send, sidprc, M)y to Inity - and message receiver Rgc out-
puts messageut(Receive, sidpic, plain)gre¢. The other is that Env
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inputsin(Send, sidp1c, MRrec t0 Req, - and message receiver Igit
outputs messageut(Receive, sidpzc, plain),iy. The two cases are
given the same consideration, so we hereafter consider the first case.
The basic task sequences are in T&hEEL Note that the simulation

is also shown as the same sequences for Real Execution if7[2Hle

The task sequences for the Real Execution are correspond to those for
the Ideal Execution.

The flow of the states in each task is shown in Ta@l&g [7.23 and
[7.Z4for each world. From the initial and final values in TaGI&2
[7.23 andZ.24 we obtain the result of state equivalenc&ifid That
is, if the state equivalence iil7holds before Reg|. is enabled (or
disabled), the state equivalencd/dafter Reg) - is finished also
holds.

(a) Disable Case: This is a trivial case because all the states of the
parties areL. The states do not change before or after the pro-
tocol starts in each world. That is, Env inputs no message to
any party. Letegr ande be discrete probability measures in the
real world and ideal world, respectively. We have the fact that
e& = €r andel’ = ¢. Here, the start and step conditions of simu-
lation relationR hold from the task task definition and the state
correspondences. Therefore, we obtaate(e/,) = trace(e)).

(b) Enable Case: Leig ande¢ be discrete probability measures in
the real world and ideal world, respectively. From each task def-
inition and the state flows in Tabl&&22 [7.23 and[Z.24 it is
clear that the initial state is the same as the final state for each
task in each world. In addition, the states of the real task are also
the same as those for the ideal world after the data sending ses-
sion is executed. Thatisa)~ (I) in Table[Z.28hold. Therefore,
we have thak], = egr ande/ = . Here, the start and step con-
ditions of the simulation relatioR hold. Therefore, we obtain
trace(er) = trace(¢)).
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3. Expire Session

(@)

(b)

|nit'D|C.S€nC(EXpiI‘esc,Sidsc)FSC

=corr. Init’DlC.senc(ExpireDIc, SidDIc)Fch

The states of precondition anffect forsendExpiresc, sidsc)rgc
are the same as those feendExpirepic, sidprc)ryc) Where
ntask= EXS2. That is, if {) in Table[Z.17 holds, then these
tasks are enabled (or disabled) in every state in $siqx) U
supplst(e).

i. Disable Case: Ledg ande be discrete probability measures
in the real world and ideal world, respectively. We have the
fact thate; = er ande/ = . Here, the start and step condi-
tions of simulation relatioR hold from each task definition
and the state correspondence of pi¢: Therefore, we ob-
taintrace(ey) = trace(e/).

ii. Enable Case: Letr and ¢ be discrete probability mea-
sures in the real world and ideal world, respectively. From
each task definition, the state correspondence of pie: (
and state correspondences df. e(i) and (), we have
thate; = er and ¢ = €. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(eg) = trace(g)).

Req,,c-sendExpiresc, sidsc)rsc

=corr. Req,, SeNdExpireprc, sidprc)rp

The precondition andfgect for the real task are the same as
those for the ideal task. The precondition is ontgsk= EXS2

and the fects areactive:= L andntask:= LFrom () in Ta-
ble[7Z.17 these tasks are enabled (or disabled) in every state in

supplst(er) U supplst(g).

i. Disable Case: Ledg ande be discrete probability measures
in the real world and ideal world, respectively. We have the
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fact thate, = er ande/ = . Here, the start and step condi-
tions of simulation relatiolR hold from each task definition
and the state correspondence of prg: Therefore, we ob-
taintrace(ey) = trace(e/).

ii. Enable Case: Letr and ¢ be discrete probability mea-
sures in the real world and ideal world, respectively. From
each task definition, the state correspondence of pig: (
and state correspondences df e(m) and f), we have
that e& = er and el’ = ¢. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(e,) = trace(¢/).

(C) FSC.SenC(EXpiI’ES(:, SidSC)AdV
=corr. Foic.SendExpireprc, sidprc)adv
The precondition andfiect for the real task are the same as
those for the ideal task. The precondition is ontgsk= EXS2
and the &ects areactive:= 1 andestcong := L for all X (and
estconghitandestcondec:= L in Fsc) andntaski= L. From (f)
in TablelZ. 17, these tasks are enabled (or disabled) in every state
in supplst(er) U supplst(e).

i. Disable Case: Ledg ande be discrete probability measures
in the real world and ideal world, respectively. We have the
fact that.sge = €r andel’ = ¢. Here, the start and step condi-
tions of simulation relatio® hold from each task definition
and the state correspondence of pré). (Therefore, we
obtaintrace(e;) = trace(g)).

ii. Enable Case: Lekk ande be discrete probability measures
in the real world and ideal world, respectively. From each
task definition, the state correspondence of prg;, and
state correspondences df:e(a),(b),(d) and (f), we have
thate; = er and ¢ = €. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(eg) = trace(g)).
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Environment Env

From the task definitions and state correspondengén(TabléZ 17 the
provability measures of both tasks are uniformly enabled or disabled in ev-
ery state in supfst(er) U supplst(e).

Claim 1 The state of Env remains static in all states in slgpar) U
supplst(e). Let ge denote this state of Env. This follows from state
correspondence.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in supst(er) U supplst(e) (simultaneously). Further-
more, if T is enabled in all states in sulgi(er) U supplst(e), then:

1. There exists unique actiane T that is enabled in every state in
supplst(er) U supplst(e).

2. There exists a unique transition of Env framja with actiona.
Lettre = (Qe, &, ue) be this transition.

By considering ClainiZ3.] task T of Env is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
| =1, we obtainega,1 = er and €|',1 = ¢, and the result igléz,lRel/,l since
we haveerRe . If T is enabled in every state in supgi(er) U supplst(e),
Claim [Z3.1 implies that there exists unique acti@anin every state in
supplst(er) U supplst(g) and transitiontre of Env from ge enabled with
actiona, wheretre = (Qe, @, te)-

Non Corrupted Case:

1. ais an input/ output action of Init. We assume thatis an input
action such am(EStabliShD]:c,SidDIc)mit/ in(Send, SidDIc,m)mit/ )
in(Expireprc, sidprc)ini, andout(Receive, sidprc, plain)yit -

Let s be any state such tha¥ € suppfis), where §a,us) €
DReablannv- Let u be any state such that € suppfy), where
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(u,a,uy) € D'deabc”E”V' For eacha, we check that the state corre-
spondences fos" and U’ hold if those fors and u hold. If each

a is input from Env, then the precondition anéfext for the real
task are exactly the same as those for the ideal task. For example,
if ,the input message im(Establishpic,sidprc)nit, then the pre-
condition isactive ntask= L and the &ect isntask:= ESS2. These
states for the real task correspond to those for the ideal task. So,
in the case of the enabled (or disabled), it is hold that tate corre-
spondencesoj, (i), and () hold for s and U/, if the correspon-
dences fors andu hold. Therefore, we obtain the trace distribu-
tion property,trace(eg) = trace(g/). This result also works well for
in(Send,Sidplc,m)mit' andin(EXpiI‘eDIQSidplc)mit'.

. ais an input/ output action of Rec. We assume tlais an input
action such am(Establishprc, sidprc)ree, iN(Send, sidprc, MRe¢,

in(EXpireDIc,Silec)Red andout(Receive,sidDIc, pIain)Rec. This
is analogous tAl

. ais an input action of Adv. This means that= input(g)agy for
some fixedy. For exampleg is a corrupt message for sorparty €
{Init,Reg. From the fact that the state corresponden@gs~((U)

for s and u hold, we obtain that the state correspondencessfor
and v’ hold. Therefore, we obtain the trace distribution property,
trace(e) = trace(e)).

. ais an internal or an output action of Env. Taslkn the real world

is identical to that in the ideal world. From the fact that state corre-
spondenced) for sandu holds, we obtain that state correspondence
(o) for & andu’ holds. Therefore, we obtain the trace distribution

property,trace(e,, j) = trace(e j).

Corrupted Case:

1. ais an input action of Adv angbarty € {Init,Reg Here, the party

is included in the case of Init Rec. Letgaqy be the state of Adv
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or Sim, which is the same in all supgt(er) U supplst(e). Let
tradv = (Qadv, & uady) be a transition of Adv with actioa from gagy.
From Clain{Z.3.]3 traqy is @ unigue transition. Here, we suppose that
supp(fre X uadv)) is the pair sef(qyj,0z,j) : j € I}, wherel is a count-
able set. Lep be the probability measures such that for eagh(j) =

(e X padv)(de,j,02,j). For eachj, let eﬁ’j be eij(a/) = e1(a’), where

@ € sUppE;) such thaflst(a).Env= gy andlst(a).Adv =gz j. The

eé’ J. is analogously constructed froe.

The rest of this proof is the same as that{fdsy the state correspon-
dences for each cagarty € {Init, Rec Init A Reg. Finally, we obtain
the trace distribution propertyrace(e, j) = trace(¢/ J.).

Adversary Adv

From the task definitions and state corresponden®es (U) in TablelZ.18
the provability measures for both tasks are uniformly enabled or disabled in
every state in suplst(er) U supplst(g).

Claim 3 The state for Adv or Sim is the same in all states in
supplst(er) U supplst(e). Let gagy denote this state of Adv and Sim.
This follows from state correspondence of Sim.

Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in supfst(er) U supplst(e). Furthermore, if T is enabled
in all states in supfst(er) U supplst(e ), then:

1. There is unique actiom € T that is enabled in every state in
supplst(er) U supplst(g).

2. There is a unique transition of Adv frogagy With actiona, and
let tr agy = (Qadv, & uady) be this transition.

By considering ClainY.3.1 task T of Adv is uniformly enabled or
disabled in every state in supgi(er) U supplst(g). If T is disabled, let
| =1, we obtaine;{l = er and el’l = ¢, and this results in th&t& 1Re|’l
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since we haveerRe. If T is enabled, T is enabled in every state in
supplst(er) U supplst(g). Claim[Z.3.1implies that there is unique action
a in every state in suplst(er) U supplst(g) and transitiortr of Adv from

Je €nabled with actiom, wheretragy = (qadv, & uadv)- The following cases
for the “Non Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. ais an input action of Env. From the fact that state correspondences
(A) ~ (U) for sandu hold, we obtain that the state correspondences
for § andu’ hold. Therefore, we obtain the trace distribution property,
trace(e;) = trace(¢/).

2. ais an input or output action of functionality task. This case con-
cerns messageeceivgSID, sidsc)rs., receivgSend, sidsc,|M)rg.,
receivgExpiresc, sidsc)rs. andsendResponse, sidsc, 0K)rg.. The
rest of this proof is analogous to céBe-rom the fact that state corre-
spondencesX) ~ (U) for sandu hold, we obtain that state correspon-
dences fois’ andu’ hold. Therefore, we obtain the trace distribution
property,trace(ey;) = trace(e)).

3. a is either an output action of Adv that is not an input action of
Env, Init, Rec or functionality task, or is an internal action of Adv.
This case concerns “new” tasks. The rest of this proof is analogous
to casdll From the fact that the state correspondendgs~((U)
for s and u hold, we obtain that the state correspondencessfor
and u’ hold. Therefore, we obtain the trace distribution property,
trace(e) = trace(e)).

4. ais an output action obut(x)aqy. This case is also works well al-
though this action mayfiect Env. However, the transition of Env
tre = (Qe, &, e) is unique from ClainiZ. 3.1 Claim[Z.3.]also says that
the state of Env remains static in all states in slgbfer) U supplst(g).
This follows from state correspondenoe Similarly, from the def-
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inition and some claims, we obtain the trace distribution property,
trace(e;) = trace(¢/).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupts
party € {Init,Reg.

1. ais inpufoutput actionin(x)party and out()party Of corrupted party,
party € {Init,Red. This case is also works well from Clala3.1and
state correspondence in Ta@ld7~[7.19

Perfect Simulation

The simulation of Sirf, is perfectly executed for the establish session,
data sending session and expire session with respect to no corruption, static
corruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessiorFirst, in the establish session, environment
Env sends establish messagé&stablishprc, SidDIc)W and
messag@(Establishprc, sidDIc)@to initiatorlnit’DIC and re-
ceiverReq, ., respectively. They send establish session mes-
sagessendEstablishpc, sidpic)ry, t0 Foic. The function-
ality sendssendSID, sidprc)agy t0 Sinf, .. After Singy . re-
ceives the message , Sifp generates the parties Init and Rec
in his simulation world to generate the real world situation in
which Init and Rec exchange messages usigg. FSin, -
then generates the establish session in the simulation world.
That is, he inputs messagesyEstablishgc, sidsc)init and
in(Establishsc, sidsc)ree tO INit and Rec, respectively. Fi-
nally, the parties establish SC in the simulation world.

Simulation Policy
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i. After receivingreceivegSID, sidprc)rp e, Sin, . executes
the following simulation.

A. Simp - prepares dummy parties, Ifjjt, Reg, ., and
Adv and ideal functionality taskdc.

B. Sint,c inputs messages)(Establishsc, sidsc)it,.
and in(Establishsc,sidsc)re, ., 10 Inity,. and
Reg,,c, respectively.

C. Simp,c makes Init - (resp., Reg,c) send message
SenC(EStabliShsc, SidSC)Fsc to Fsc.

D. Sint,,c makes Isc sendsendSID, sidsc)adv to Adv.
Task Correspondence of Simulation

I. Inity),~.sendEstablishsc, sidsc)rsc
=corr. SiMp,c.INit} .sendEstablishsc, sidsc)rse

pre: ntask= ESS2 ; ();
eff: active:= T andntask:= L ; (K),(L);
ii. Reg,.sendEstablishsc,sidsc)rsc
=corr. SiMy,-Req,c.sendEstablishsc, sidsc)rgc
pre: ntask= ESS2 ; Q);
eff: active= T andntask:= L ; (P),(Q);
iii. Fsc.sendSID, SidSC)AdVBm
=corr. SiMp,c.Fsc.sendSID, sidsc)agvy
pre: active= T andntask= ESS2 ; E),(H);
eff: ntask=_1; (H);
The stateactiveof Init andrecbecomesr, then state correspon-
dences ) and K) hold. If the adversary obtains the message
receivgSID, sidsc)rg. in the simulation worldactivebecomes
T from (S) in TablgZ.19 The simulation in the establish session

of the real world is perfectly executed by Simp. Finally, the
parties establish SC in the simulation world.
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(b) Data Sending SessioMext, in the data sending session, Env
sends message(Send, sidpic, M) (orin(Send, sidpic, Mgzg)
to Init’DIC (or Recfmc)- Init'DIC sendssendSend, sidprc, M)Fy,c
to Fpic. Fpic then sendssendSend,sidprc,M)agy tO
Sim,, .. After receiving the message, Sijp executes
simulatior(Send, sidprc,meg to mimic the data sending ses-
sion in the real world. That is, he inputs message
in(Send, sidsc, M)t (or in(Send, sidsc, M)Reg to Init (or Rec)
in the simulation world. This is executed as follows. First, if
the message sender is Init, then the receiver generates a random
message withand(t)wa. Next, both parties, thatis, Init and Rec,
send messages to each other. Init ses&ig{Send, sidsc, M)F.
to Rec and Rec sendendSend, sidsc,t)rg. to Init. This is ex-
ecuted under master schedMQch. If the master schedule does
not work, then the random message exchange is not occurred. If
so, the adversary can identify the directions that the messages
were sent.

The policy of Sin},,. is described hereafter.
Simulation Policy

i. After receivingreceivégSend, sidpic, Mryc, Sint, exe-
cutes the following simulation.

A. Simp,. executegandon(x) and selects dummy mes-
saget wherelt| = 1.

B. Simj, - generates random bd € {0,1} by executing
randonyx).

C.If 0=0, then Sim sendsin(Send,sidsc,m)mit/DIC
to Initp, andin(Send,sidsc,t)mwDIC to Reg,,.. Else,

Siny,, performs the opposite actions.

D. Simp,, . makes Init,~ send sendSend, sidsc, M)Fsc
and makes Regg- sendsendSend, sidsc,t)rsc at the
same moment according M’f’mc'

197



E. Simp,. makes screceivereceivégSend, Sidsc,m)mit'D |c
and makes &c sendsendSend, sidsc, Magy to Adv.

F. Simp,c makes lscreceivereceivgSend, SidSC’t)Re({nc
and makes &c sendsendSend, sidsc,t)agy to Adv.

G. If Fsc receives sendResponse, sidsc,0K)r. from
Adv twice, Sin},, continues the following.

H. Sint,,c makes ksc receivereceivéResponse, sidsc,
ok)agv and makes &c sendsendReceive, Sidsc’t)'““’m
and senc(Receive,sidsc,mesRe(«DIC to Init;,. and
Reg,,c, respectively.

l. Simi,, - makes Init, - and Reg,. receive message
receivgReceive, sidsc, t)rg. and receive the message
receivgReceive, sidsc, M)rg., respectively.

J. Sim,,c makes Refg, - outputout(Receive, sidsc, Mreg .-

ii. Simp, executesendResponse, sidpc, OK)Fpc-

The details of this task sequence are shown in Ta&8 This

task sequence is also simulated by i So, state correspon-
dencesA) ~ (L) and (N) ~ (T) hold. That is, simulator Sify)-
executes the above-mentioned process to mimic the real world.
The state correspondence in Talled8 and[7.19 work well.

The key point of this simulation is as follows. To mimic the real
world, the simulator executes the parties that execute the tasks in
the real world. Moreover, not to distinguish the output trace, the
simulator simulates the real world in his simulation world using
task codes. In the real world, Ifijt. and Reg . use SC with-
outan adversary identifying the direction in which the message
was sent under master schedMngC. In the simulation world,
Sin,, - obtains the same output which Agly outputs in the real
world by his simulation. That is, the trace distributions in each
world are indistinguishable by Env. In other words, since each
task correspondence and the state correspondence work well, the
following property works wellfrace(ey) = trace(e/).
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Task Correspondence of Simulation
. Inity,-.sendSend, sidsc, M)Fgc
=corr. SiMp,.INit},~.sendSend, sidsc, M)Fgc
pre: m:= smesandntask= DSS2 ; ();
eff: smes= L andntaski=DSS4 ; (), (L);
ii. Reqc.rand(twalrg, =corr. SiMp,c.ReG,.rand(tvairg,
pre: ntask= 1 ; (Q);
eff: dummy= T, smes=t andntask:= DSS2 ; O),(Q);
ii. Reqmc.senc(Send,sidsc,m)pSC
=corr. SiMy,.Req,-.sendSend, sidsc, MFgc
pre: m:= smesandntask= DSS2 ; Q);
eff: smes= L andntask:=DSS4 ; (N),(Q);
Iv. Fsc.sendSend, sidsc,|M)ady
=corr. SIM;,c.Fsc.sendSend, sidsc, [m)agy
pre: active= T, mes# L1, okcongygy = L, m:= mesand
ntask= DSS2 ; €) ~ (G),(H);
eff: ntaski=DSS3 ; H);
V. Advp,-.sendResponse, sidsc, 0K)Fg.
=corr. SiMsc.AdV, .sendResponse, sidsc, OK)Fgc
pre: ntask= DSS2; [);
eff: ntask= L1 ; (T);
Vi. Fgc.senc(Receive,sidg,c,mes)Re(«DIC
=cor. Simsc.Fsc.sendReceive, sidpic, MeJrec
pre: activemes= T, okcongyg, # L and ntask= DSS4 ;
(B).(F),(H);
eff: mesandokcondygy, ntask= L ; (E),(G),(H);
vii. Fsc.sendReceive,sidsc, megnir

DIC

=cor. Simsc.Fsc.sendReceive, sidprc, MeJnitr, .

pre: activemes= T, okconggy # L andntask= DSS4 ;

(B).(F).(H);
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eff: mesandokcondg\gy, ntask:= L ; (E), (G), (H);
Viii. Re%lc.out(Receive,sidsc,pIain)Re%IC

=cor. SiMsc.Req, .Out(Receive, sidsc, plain)re

pre: plain:= rmesandntask= DSS5 ; O),(Q);

eff: dummyrmesandntask:= 1 ; (O),(R),(Q);

(c) Expire SessionFinally, in the expire session, Env sends mes-
sage in(EXpiI‘eDI(;,Sid])Ic)W and in(EXpiI‘eDI(;,Sid])Ic)@
to Inity . and Reg,., respectively. They relay mes-
sage sendExpireprc, sidpic)ry. t0 Fpic. After receiving
sendExpireprc, sidprc)adv from Fpic, Sing - terminates the
session in the simulation world.

Simulation Policy

i. After receivingreceiv€Expirepic, sidprc)rpc. Simp,c €x-
ecutes the following simulation.

A. Simp, inputs messages)(Expirepzc, sidprc)init and
in(EXpirech,Sidplc)ReC, to |nitl’3|C and Reglc, re-
spectively.

B. Simp,c makes Init,~ (resp., Reg,c) send message
sendExpiresc, sidsc)r. t0 Fsc.

C. Simj,, makes ksc sendsendExpiresc,sidsc)adv t0
Adv.

D. Siny,,¢ finishes the simulation of the expire session.

That is, Simy,- inputs messages(Expiresc,sidsc)init and
in(Expiresc, sidsc)recto Init and Rec in the simulation world.
We assume that the state correspondences in faland7.19
hold. From33 B0 and[3d, the state correspondences also hold
after the simulation by Sif)-. That is,trace(e],) = trace(e/).

Task Correspondence of Simulation

I Init’DIC.sen((Expiresc, SidSC)FSC
=corr. SiMp.INit},~.sendExpiresc, sidsc)rsc
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pre: ntask= EXS2 ; (L);
eff: activeandntask:= L ; (K),(L);
ii. Req,.sendExpiresc,sidsc)rsc
=cor. SiMpy.Req,,.sendExpiresc, sidsc)rsc
pre: ntask= EXS2 ; Q);
eff: activeandntask:= L ; (P),(Q);
lii. Fsc.sendExpiresc,sidsc)ady
=corr. SiMpy,.Fsc.sendExpiresc, sidsc)adv
pre: ntask= EXS2 ; ();
eff: active estcongt andntask:= L for all X ; (C) ~ (F),
(H);

2. Static Corruption

This type of corruption is divided into the following three cases: only
Init is corrupted by Adv, only Rec is corrupted by Adv, and both par-
ties are corrupted by Adv. Once the corruption occurs, the adversary
can identify the direction. However, the simulator can simulate all the
cases, so Env can not distinguish the real world from the ideal world.

(a) Only Initis corrupted by Adv

This case means that Agy. corrupts only Init before the pro-
tocol starts. Ady,- and Sinj, . identify the direction that the
message was sent from Init to Rec and from Rec to Init, respec-
tively. So, the simulation is perfectly executed.

I. After receiving the corrupt message from Env, gjmpre-
pares the situation in which only Injt. is corrupted and
adds the following policy befofg(a)iB Siny,,. makes Adv
corrupt Inity .

ii. After receiving receivgSend, sidprc, Mr,,. N party €
{Init,Reg, Sin,, - executes the following simulation.
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A. If the message is input to corrupted party Init, §jm
inputsin(Send, sidprc, M)init to Init.

B. Else the message is input to Rec and Giminputs
in(Send, sidprc, MRecto Rec.

C. The remaining steps are the same as the simulation for
the No Corrupted Case.

iii. After receiving receivgSend, sidprc, Mgy, IN Inltch,
Sin,,~ execute®ut(Receive, sidprc, M.
DIC InltDIC

If the protocol executes the establish session, data sending ses-
sion, and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sifjp.. From the Task Correspondence

in 73] the state corresponderlZel? [7.18 andZ.I9hold in

this case. That idrace(e;) = tracg(¢) holds.

(b) Only Rec is corrupted by Adv

This case is analogous to cé&2 This case means that Agy
corrupts only Rec before the protocol starts. Agvand Sing,
identify the direction that the message was sent from Init to Rec
and from Rec to Init, respectively. So, the simulation is perfectly
executed.

I. After receiving the corrupt message from Env, gjmpre-
pares a situation in which only Rgge is corrupted and adds
the following policy beforl(a)iB Sint, . makes Adv cor-
rupt Reg,

ii. After receiving receivgSend, sidpic, Mr,. from Fpic,
Simg,, executes the following simulation.

A. If the message is input to corrupted party Rec, Gim
inputsin(Send, sidprc, MRecto Rec.

B. Else the message is input to Init and $jm inputs
in(send,SidDI(:,m)mit to Init.
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(€)

C. The remaining steps are the same as the simulation for
the No Corrupted Case.
iii. After receiving receivgSend, sidprc, Mry, IN Re(fmc’

Simp,, . executeout(Receive, sidprc, m)m.

If the protocol executes the establish session, data sending ses-
sion and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sifjp.. From the Task Correspondence
in[Z.3.] the state correspondence$7id? [7.18 andZ.I9hold

in this case. That igrace(ef) = trace(e/) holds.

Both parties are corrupted by Adv

This case is also analogous to c&® This case means that
Advp, corrupts both Init and Rec before the protocol starts.
Advp, - and Sin, -~ identify the direction that the message was
sent from Init to Rec and from Rec to Init, respectively. So, the
simulation is perfectly executed.

i. After receiving the corrupt message from Env, gjmpre-
pares the situation in which only Init. and Reg are cor-
rupted and adds the following policy befdt&)iB Sin, -
makes Adv corrupt Inff, - and Reg .

ii. If the data sending message is inputparty € {Init,Reg,
Simg,, . inputsin(Send, sidprc, M)party t0 party.

iii. The remaining is the same as the simulation for the No Cor-
rupted Case.

Iv. After receiving receivgSend,sidprc, Mr, iN party,
Sin,, - execute®ut(Receive, sidprc, M) party-

If the protocol executes the establish session, data sending ses-
sion and expire session, in any case, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sifjp.. From the Task Correspondence
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in[Z.3.] the state correspondend&d? [7.18 andZ.I9hold in
this case. That idrace(e}) = trace(e/) holds.

3. Adaptive Corruption

In this case, the adversary corrupts some parties when he wants to
do so at any time. We assume that the adversary corrupts the parties.
This case is also simulated by the simulator, but the direction that
the message was sent cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by
simulator Sim,~, so the simulation is perfectly executed. This case

is separated into the following cases.

(a) Establish Session

Instance 1: Before Init;, . and Reg are activated.

This case is analogous to cdeecause there is no secret
information. The adversary can corrupt [pit, Reg,,, or
both, but the simulator can also corrupt the corresponding
parties. This case is also perfectly simulated by’Dﬁ,&m
Instance 2: After Init, - is activated but before RE. is
activated.

This case is analogous to cd&@éecause there is no secret
information. The adversary can corrupt [jit, Reg, ., or
both, but the simulator can also corrupt the corresponding
parties. This case is perfectly simulated by g

Instance 3: After Reg;, is activated but before Irfif is
activated.

This case is analogous to c&@éecause there is no secret
information. The adversary can corrupt [pit, Reg, -, or
both, but the simulator can also corrupt the corresponding
parties. This case is also perfectly simulated by im

Instance 4: After Initj,, - and Reg, are activated.
This case is analogous to cdeecause there is no secret
information. The adversary can corrupt [pit, Reg, -, or
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both, but the simulator can also corrupt the corresponding
parties. These case are also perfectly simulated by Sim

(b) Data Sending Session

Instance 1: Before or after activating Il or Reg, - by
receivingin(Send, sidpzc, m)'“it'mc orin(Send, sidprc,m
)Reqmc’ respectively, from the Env.
Env can execute only the message sending indication and
the corrupt indication. So, in this case only the adversary
corrupts the party. This case is also simulated by Rim
because there is no secret information. So, the task cor-
responding works well and there exists a simulation re-
lation between the real world and ideal world. That is,
trace(e},) = trace(¢) holds.

(c) Expire Session
Instance 1: After Initj,, . or Reg, . is activated with expire
message.
Once the expire message is sent toqjpior Reg,, - by Env,
this session terminates in the real world and ideal world. So

the adversary can corrupt the parties. That is, this case is
identical to cas&

Simulation Policy

Simp,c simulates in his simulation world as follows:

(a) After receiving “corrupt Init, " message from Env,

e Simp,c corrupts Init; . and checks whethemparty €
{Init, Reg has already sent the data sending message to the
other party. If the message was already sent,Rindoes
the following. Else, Sirfj,. makes Adv corrupt Init.

e If party= Init,
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— If Simp - has already input message sending request
in(Send, sidprc, M)pit to Init in his simulation, then
Simg,, simulates that Adv corrupts Init, immediately.

— Else, Sinj - has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simp,, simulates that Adv corrupts Rec, immediately.

e Else,party=Rec,

— If Simp . has already input message sending request
in(Send, sidprc, M)pit to Init in his simulation, then
Simg,, simulates that Adv corrupts Rec, immediately.

— Else, Sinj - has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simp,, simulates that Adv corrupts Init, immediately.

e If more data sending messages are inpysaay from Env
after Sinj,,- corruptsparty, Sinj,,~ can also simulate the
situation. If the message is input to corrupted Init, Sim
inputs the sending message to corruppedty in his simu-
lation. Else, the message is input to Rec and jinmputs
the sending message to non-corruppedity in his simula-
tion.

o After receiving receivgSend, sidprc, Mry, IN 'nitfmc’
Simg,, . execute®ut(Receive, sidpic, m)m.

(b) After receiving the “corrupt Rgg." message from Env,

e Simp, corrupts Req, . and checks whetheparty €
{Init,Reg has already sent the data sending message to the
other party. If the message was already sent, do as follows.
Else, makes Adv corrupt Rec.

e If party=Init,
— If Simp - has already input message sending request

in(Send, sidprc, M)nit tO Init in his simulation, then
Simg,, - simulates that Adv corrupts Rec, immediately.
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— Else, Sin}, - has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simg,, simulates that Adv corrupts Init.

e Else,party=Rec,

— If Simp - has already input message sending request
in(Send, sidprc, M)pit tO Init in his simulation, then
Sin,, simulates that Adv corrupts Init.

— Else, Sinj, . has already input message sending request
in(Send, sidprc, MRec t0 Rec in his simulation, then
Simg,, - simulates that Adv corrupts Rec.

¢ If more data sending messages are inpytanty from Env
after Sinj,, corruptsparty, Sim, - can also simulate the
situation. If the message is input to corrupted Init, 5im
inputs the sending message in non-corrugpedty in his
simulation. Else, the message is input to Rec and,gim
inputs the sending message to corrupbadty in his simu-
lation.

o After receiving receivgSend, sidprc, M)ry,c IN Reqmc,

Sin,, - execute®ut(Receive, sidprc, m)m.

(c) After receiving the “corrupt Inf§,. and Reg " message from
Env,

e Simpy, corruptsinity . and Req, . and checks whether
party € {Init,Reg has already sent the data sending mes-
sage to the other party.

If the message was already sent, gjgmakes Adv corrupt
Init and Rec and does the following. Else, $jp makes

Adv corrupt Init and Rec.

— If Simp - has already input message sending request
in(Send, sidprc, M)party t0 partyin his simulation, then
Sin,, simulates that Sig) - inputs more data sending
requests to the correspondipgrty. Thatis, if the party
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that Sin,, has already sent a request message is equal
to the party that received a message from Env,3im
inputs more data sending requested to the party.

— Else, the input party in the simulation world is not same
as the input party in the ideal world, Sijp regards the
input party in the simulation world as the input party
which has already input a message in the ideal world.
The other party in the simulation world is also regarded
as the party which has not input a message yet in the
ideal world.

o After receiving receivgSend,sidprc, Mry N party,
Sin,, - execute®ut(Receive, sidprc, M) party-

Whenever Ad{, corrupts some party, Sig. corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Afly.. If Advp,. corrupts
party Inity, or Reg, . then Sin,, corruptsinitpc or Regc in the
ideal world, and provides a simulated copy of Agvin the simula-
tion world with the states of the corrupted party. Conversely,gim
may obtain information from the simulated world with the corrup-
tion. Additionally, in this protocol party there is no secret information
because &c is securely executed. In all cases, since Gintan sim-
ulate Ady, - by using his simulated world, Env cannot distinguish
real world from ideal world. That is, simulating party corruption is
perfectly executed.

Finally, relationRis a simulation relation from the task and state correspon-
dence. We obtain LemiBa o

Next, Theorefflis obtained from Lemnf@immediately.

Proof. From Lemmd3 and TheorenB, Theorenfdis proved. That is, the
trace distribution propertydist(er) = tdist(¢) holds with respect to adap-
tive adversary.
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As a result, the simulation is perfectly executed becausg,giman
simulate the real world from the information message throughdvrhe
tasks of the real world perfectly correspond with the tasks of the ideal world.
That s,

M,
Real, |[Env Hyh <, Ideal, [Env.
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Functionality

(@) | u.Fpc.estcong; = s.Fsc.estcongic
(b) | u.Fpic.estcon@ec = S.Fsc.estcongec
(c) | u.Fpjc.okcondg, = s.Fsc.okcond gy
(d) | u.Fpic.active= sFsc.active

(e) | uFpc.mes=sFsc.mes

(f) | u.Fpic.ntask= s.Fsc.ntask

Initiator

Y4 1+’
(@) | ulnity,..smes= slnity ..smes

it/ — 1t/
(h) | u.Inity ..rmes= sinit; ..rmes

. — o ,
(i) | ulnity ..active= slnit;..active

() | ulnity ..ntask= slnit;..ntask

Receiver

(k) | uReq,..smes= sReg,..smes
(I) | uReq, .rmes=sReg,..rmes
(m) | u.Req, ..active= sRegq,.active

(n) | uRegq,.ntask= sReg,.ntask

Environment

(0) | uEnv=sEnv

Table 7.17:State Correspondence for Rgaland Ided), - (Part I)
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Simulator (or Adversary)

(A) | u.Simy.active= sAdvp.active

(B) | u.Sin,,.ntask= sAdvp,.ntask

(C) | u.Sim;,.Fsc.estconghit = s.Fsc.estconghit
(D) | u.Simg,~.Fsc.estcongec = S.Fsc.estcongec
(E) | u.Sin,,.Fsc.okcondg, = S.Fsc.okcondgy/
(F) | u.Sim,,..Fsc.active= sFsc.active

(G) | u.Simy,.Fscmes= sFsc.mes

(H) U.Silec.Fsc.ﬂtaSI(: S.Fsc.ntask

(1) | uSimy,c.Inity,..smes= s.Init;, ..smes

(J) | u.Simg,c.Init;

— 1t/
Dic-fmes= s.Init

pic-fMes

(K) | u.Simg,.Init,~.active= s.nit, .active

(L) | u.Simyc.Initp,-.ntask= s.Inity -.ntask

DIC

(M) | u.Simg..Inity), ~.dummy= s.Init;, ..dummy

Table 7.18:State Correspondence for Rgaland Ided], - (Part Il)
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Simulator (or Adversary)

(N)
(©)
(P)
Q)
(R)
(S)
(M
(V)

u.Sin,c.Req, .smes= sReg, ..smes
u.Simy,-.Reg,.rmes= sReg, .rmes
u.Simg, -.Reg, .active= sReg, ..active
u.Simpy,c.Req, .ntask= s.Req, -.ntask
u.Simp.Reg,,c.dummy= sReg, ..dummy
u.Simg,.Advp,-.active= sAdvy,.active

u.Simg,.Advp,-.ntask= sAdvy-.ntask

u.Sing,.Advp,c.length= s Advy, .length

Table 7.19:State Correspondence for Rgaland Ided], - (Part 1)
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1. Establish Session

(@ | Inity,..sendEstablishsc, sidsc)rsc
=corr. Nt} .sendEstablishprc, sidprc)ryc
(b) | Req,c-sendEstablishsc,sidsc)rec
=cor. Re& ., sendEstablishprc, sidprc)ryc
(¢) | Fsc.sendsID, sidsc)adv =corr. Foic.SendSID, sidprc)ady
2. Expire Session
(@) | Inity-.sendExpiresc,sidsc)rsc
=corr. m.senc(ExpireDIc, sidprc)rpc
(b) | Req,c-sendExpiresc, sidsc)rgc
=corr. Fcblc, sendExpireprc, sidpic)rp,c
(c) | Fsc.sendExpiresc, sidsc)adv
=corr. Fpic.SeNdExpirepic, sidprc)adv
3. Environment
(@) | All tasks of environment Env in Regl. correspond to the tasks ¢

environment in Ide@lc.

of

Table 7.20:Corresponding Tasks for Rggl and Ideg] -
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Code for Initiator of Direction-Indeterminable Channel, ﬂ;@

Signature:
sidprc = ({Init’,Rec}, sid]
sidsc = (lnit,, Red, Sld,SC)

IC)

Input: Output:

in(Establishprc, sidprc)inir SendEstablishge, sidsc)rge
in(send,Sidplc,m)mit/ Sendsend,Sidsc,m)Fsc
receivéReceive,sidsc,Mr,. OUY(Receive, sidprc, plain)py
rand(s)svall

in(ExpireDIc, SidDIC)Init’ senc{Expiresc, SidSC)FSC

State:
smesrmese ({0,1}*) U{L}, initially L
activee {L, T}, initially L
ntaske ({0,1}) U{L}, initially L
dummye {L, T}, initially L

Tasks:
{sendEstablishgc, sidsc)rs., SENASend, sidsc, Mg,
out(Receive, sidpic, plain) i, sendExpiresc, sidsc)rgc)

Figure 7.35:Code for Initiator of Direction-Indeterminable Channel, Jjyit
(Part 1)
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Code for Initiator of Direction-Indeterminable Channel, }jit
Transitions:

Establish Session:

ESS1.in(Establishprc, sidprc)ini
pre: activeandntask= L
eff: ntaski= ESS2
ESSZ.Sen((EStabliShsc, Sidsc)FsC
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSS1.in(Send, sidprc, M)nit’

pre:active= T, smesandntask= L

eff: smes= mandntask:= DSS2
DSS2.sendSend, sidsc, M)rg.

pre: m:= smesandntask= DSS2

eff: smes= L andntask:=DSS4
DSS3.rand(s)sval

pre:ntask= L

eff: dummy= T, smes= sandntask:= DSS2
DSS4.receivéReceive, sidsc, Mg,

pre:active= T andntask= DSS4

eff: If dummy= T thenrmes:= mandntask:= DSS5.

Elsermesandntask:= L.
DSS5.0ut(Receive, sidprc, plain)iv

pre: plain := rmesandntask= DSS5

eff: dummyrmesandntask:= L

Figure 7.36:Code for Initiator of Direction-Indeterminable Channel, it
(Part 1)
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Code for Initiator of Direction-Indeterminable Channel, ﬂm’t

Transitions:

Expire Session:

EXSL.in(Expireprc, sidpc)init
pre: active= T andsmesrmesandntask= L
eff: ntaski= EXS2

EXS2. Sen((EXpiI‘esc, Sidsc)FSC
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.37:Code for Initiator of Direction-Indeterminable Channel, Jjit
(Part III)
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Code for Receiver of Direction-Indeterminable Channel,fgec

Signature:
sidprc = ({Init’,Rec}, sid}; ) sidsc = (Init’,Rec, sidg.)
Input: Output:
in(Establishprc,sidprc)re¢  S€NAEstablishge, sidsc)rge
in(Send, sidprc, m)Red SendSend, sidsc, m),:sc
receivgReceive,sidsc,M)r,. OUf(Receive,sidprc, plain)re¢
rand(t)tval
in(Expireprc, sidprc)Rrec sendExpiresc, sidsc)rsc
State:

smesrmese ({0,1}") U{L}, initially L
activee {L, T}, initially L

ntaske ({0,1}) U{L}, initially L
dummye {L, T}, initially L

Tasks:
{sendEstablishgc, sidsc)rs., S€NASend, sidsc, Mg,
out(Receive, sidpic, plain)re¢, SENAExpiresc, sidsc)rgc)

Figure 7.38: Code for Receiver of Direction Indeterminable Channel,
Req, (Partl)
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Code for Receiver of Direction-Indeterminable Channel,Rec
Transitions:

Establish Session:

ESSl.in(Establishprc, sidpic)rec
pre: activeandntask= L
eff: ntaski= ESS2
ESSZ.Sen((EStabliShsc, SidSC)Fsc
pre: ntask= ESS2
eff: active:= T andntaski= L

Data Sending Session:

DSS1.in(Send, sidprc, MRec

pre: active= T, smesandntask= L

eff: smes= mandntask:= DSS2
DSS2.sendSend, sidsc, M)rg,

pre: m:= smesandntask= DSS2

eff: smes= 1 andntask:=DSS4
DSS3.rand(t)wal

pre:ntask= L

eff: dummy= T, smes=t andntask:= DSS2
DSS4.receivéReceive, sidsc, Mg,

pre: active= T andntask= DSS4

eff: if dummy= T thenrmes:= mandntask:= DSS5

elsermes:= 1 andntask:= L
DSS5.0ut(Receive, sidprc, plain)rec

pre: plain := rmesandntask= DSS5

eff: dummyrmesandntask:= L

Figure 7.39: Code for Receiver of Direction Indeterminable Channel,
Req, . (Partll)
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Code for Receiver of Direction-Indeterminable Channel,fgec

Transitions:

Expire Session:

EXSI1. in(ExpireDIc, SidDIC)Re(‘,‘
pre: active= T andsmesrmesandntask= L
eff: ntaski= EXS2

EXS2. SenC(EXpiI'eSc, Sidsc)FSC
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.40: Code for Receiver of Direction Indeterminable Channel,
Req, . (Part III)
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Code for Adversary for Secure Channel, Agv

Signature:
sidsc = (Init,Reg sid’sc)

Input:

receiveéSID, sidsc)rs.
receivgSend, sidsc, |M)rec
receivéExpiresc, sidsc)rec

Output:
sendResponse, sidsc, OK)rg.

Other:
*QOther arbitrary tasks are included the basic iriipié¢rnajoutput
tasks such as corrupt message aatfs).

State:
activee {L, T}, initially L
ntaske ({0, 1}*) U{L}, initially L
lengthe ({0,1}*) U{L}, initially L

Tasks:
{sendResponse, sidsc, 0K)rg., Other arbitrary tasks

Figure 7.41:Code for Adversary for Secure Channel, Agv (Part I)
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Code for Adversary for Secure Channel, Agv
Transitions:

Establish Session:
ESS1.receivgSID, sidsc)rsc
pre:active= L
eff:active:=T
Data Sending Session:
DSSL. receivgSend, sidsc, |[M)Fge

pre:active= T andntask= L
eff: length:= |m| andntask:= DSS2

DSS&2. sendResponse, sidsc, 0K)Fg.
pre: ntask= DSS2
eff: length:= L andntask:= L

Expire Session:

EXSL. receiVE{Expiresc, Sidsc)FSC
pre:active=T
eff: active:= L
Other tasks:
This adversary makes other arbitary tasks.

Figure 7.42.Code for Adversary for Secure Channel, Agv (Part I)
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Code for Simulator for Direction Indeterminable Channel, §im

Signature: L
sidprc = ({Init,Red, sidp;)
Input:
receivéSID, sidprc)rpc
receivgSend, sidprc, My,

Output:
sendResponse, sidprc, OK)Fp e

Other:

*Other arbitrary tasks are included the basic irijpiérnajoutput
tasks such as corrupt message antfx).

State:
activee {L, T}, initially L mese {0, 1}* U{L}, initially L

ntaske ({0, 1}*) U{L}, initially L
Other arbitrary variables; call "new” variables.

Tasks:
{sendResponse, sidprc, 0Ky, }

Figure 7.43: Code for Simulator for Direction Indeterminable Channel,

Simg,c (Part 1)
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Code for Simulator for Direction Indeterminable Channel, §im

Transitions:

Establish Session:

ESS1.receiv€SID, sidpic)ry e
pre: activeandntask= L
eff:active:=T

Data Sending Session:

DSS1.receivéSend, sidprc, Mrp,c
pre:active= T andntask= L
eff: mes= mandntask:= DSS2

DSS2.sendResponse, sidprc, OK)Fp e
pre: ntask= DSS2
eff: mes= 1 andntask:= L

Expire Session:

EXSLI. receiVéEXpiI‘eDIc, SidDIC)FD|C
pre:active= T eff: active:= L

Other tasks:

This simulator makes arbitrary tasks to simulate the real world
protocol system Reg|.. The tasks mey be run with the infor-
mation obtained from the simulator. Additionaly, this simula-

tor can output the message from the adversary in the simjulat-
ing world to the environment.

Figure 7.44: Code for Simulator for Direction Indeterminable Channel,
Simg, (Part 1)
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7.3.2 Reduction of SC to DIC

Let n be the number of parties aldrasyndty, - ,t;) be master schedules
wheret; is a task in partyP;.

Definition 26. [Mrasyndt], -+, th,K)]  Let k be a integer. Let'tbe a task
specified by for party B. Let g be the number of time§ ts scheduled by
M. M schedules the task activations pf-t-,t; so that|c; — cj| < k for all
i, ] in arandom order.

Note that we must consider a property similar to the Chernov bound
property if we employ this master schedule to use the key exchange among
parties for safe exchange.

Let 7sc be a protocol of SC. LeW,g. andM;_ . be MpsyndInitsc.send
Send, sidpic, S)Fp e, ReGe.sendSend, sidprc, t)ry ) @ndMiasyndInitsc.se
nd(Send, sidpzc, S)Fy . ReGe. sendSend, sidprc, t)ry . K), respectively.

Mrsc and My are accepted for the master schedule, hereafter, we ex-
plain by usingM ...

Let Initsc and Regc be the initiator code and receiver code for a real
system, see Fi@.43 Fig[Z.48and FigZ.47 Fig[7.48 Fig[7.49and FigZ.50
respectively. Letnitp,c andReg,c be the initiator code and receiver code
for an ideal system, see Hig53 and FidgZ.54 and FigZ.59 and Fig7.58
respectively. Finally, let Adyc, Simsc, and kgc be the adversary code,
the simulator code, and the random bit generator code ifiZ5E#and
Fig[Z.52 and FigZ.57and Fid7.58 and FidZ.59 respectively. Let Reat
and Ideadc be a SC protocol system and a SC functionality system, respec-
tively, defined as follows:

Reakc = hidg(Initsd|Reasd|Advsd|FsrcllFpic, {rand(x)}),
Ideakc := hidg(Initsd|Reascl|Simsd|Fsc, {rand(x)}).

TaskslInitsc and Regsc relay input messages from the environment to
the ideal functionality task and relay received messages from the ideal func-
tionality task to the environment, respectively, as interface parties in the
ideal system.
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Theorem 7. SC protocol systerReakc perfectly hybrid-implements SC
functionality systenideakc with respect to an adaptive adversary under
master schedule MyndsendSend, sidpzc, S)Fy e, S€NdSend, sidpic, t)rp,c)

(SC is reducible to DIC with respect to an adaptive adversary under master
schedule MsyndsendSend, sidprcS)ry,c. SendSend, sidprc,)rp,c))-

The proof of theorerillis described similarly to other theorems. The
master schedule can Basyncinstead ofMpsyne

Let er and ¢ be discrete probability measures on finite executions of
Reakd|Env and Ideald|Env, respectively. We prove Theoréfby show-
ing thater ande satisfy the trace distribution propertgist(er) = tdist(g).
Here, we define correspondenRebetween the states in ReglEnv and
the states in IdegH|Env. We say €r, ¢) € R if and only if for every
se supplst(er) andu € supplst(e ), all state correspondences in Taljfez3
[Z.2Z8andZ.27hold. We then prov® is a simulation relation in Lemnid

Lemma 4. Relation R defined above is a simulation relation from
Reakd||[Envto Ideakd||[Env under master schedule .

Proof. We prove thatR is a simulation relation from ResgdEnv to
Ideakd||[Env using mapping corrtais,T.{eadenvx RRreakdEnv — Rikdeagannv’
which is defined as follows.

The task sequence of system RgHEnv are perfectly correspond to the
task sequence of system ldeglEnv under schedul®l,... Formally, to
prove thatR is a simulation relation from Reglj|Env to Ideagd|Env, we
show thatR satisfies the start condition and step condition.

e Start condition
Itis true that the start states ®&ndu in Reakd||Env and Ideald|Env,
respectively, are on the Dirac measures. That is, the start states of
andu satisfy relatiorR because the start statessdndu are all L for
each task on master schediig... Therefore, the trace distribution
property holds.

e Step condition
Let €, = applyer, T) ande/ = apply(e, corrtaskgp, T)). If (er,€) €
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R pe REeathEW €r IS consistent withp, theneg is consistent with
full(corrtask3(p), andT € Reakd|Env. Then there exist the follow-

ing.
— Probability measur@ on countable index sét
— Probability measureSE;zj, j €I, on finite executions of
Reakd||Env, and
— Probability measureSq’j, j €1, on finite executions of
Ideakd|Env,
such that:

— Foreachj e, E?e,j Rff,j’
— Zjer P(j)(e ;) = appiyer. T), and
— Zje P())(¢ ;) = apply(e, corrtaskp, T)).

Task Correspondence

For any p,T) € (REeagCHEan RreakgEny), the following task Correspon-
dence, which is also summarized in TaBI23 holds.

1. Establish Session

(a) Initsc.sendEstablishprc, sidprc)rpc
=corr. INitsc.sendEstablishgc, sidsc)rge

Let TreaL and T1iDpEAL be senc(EstablishDIc, SidDIC)FmC and
sendEstablishsc, sidsc)r., respectively. Here, we must con-
sider the cases of Irjt andinitsc, but these follow the same dis-
cussion. So, we consider the caseérifsc. We assume that for
each statese supplst(er) andu € supplst(e) are fixed. The pre-
condition of Trear. andT1prar IS Ntask= ESS2 from each codes.
Trear (resp.,Tipear) iS enabled (or disabled) is (resp.,u) if
and only ifs.Initsc.ntask= ESS2 (respu.lnitsc.ntask= ESS?2).
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From (j) in Table[Z.25 u.lnitsc.ntask and s.Initsc.ntaskim-
ply that Trear and T1pear are uniformly enabled or disabled in

supplst(er) U supplst(g).

i. Disable Case:
Let | and p be the set that has a single element and Dirac
measure orl, respectively. Letes, = €5 and €,=¢.
We have the fact thant"Q = er and el’ = ¢g. Here, we ob-
tain 6&,1R€|’,1 from relationegrRg. The trace distribution
equivalence propertydist(e;) = tdist(¢/), also holds since
tdist(er) = tdist(g) underM...

ii. Enable Case:
Let g denote the state of preconditiomtask= ESS2. Let
Trear @andTrpear be the action enabled mpin each world.
We show that each ofgga; and Tipear iS @ unique action
that is enabled ig. From the definition oTgrgar andT1pgar,
the precondition is onlytask= ESS2, and is unique in all
tasks in Inigcandlnitsc. Then, there are two uniquéects
that update thactiveandntaskto beT and_L, respectively.
From the precondition and théfect of Trear, and the state
equivalence ofij and (), we obtain that the subsequent
action of Trear (@nd T1pgar) IS also a unique action that is
enabled in every state in sujgt(er) U supplst(e).
Letl andp be the set that has a single element and the Dirac
measure o, respectively. Let;,’q,1 = eq andel’,1 = ¢ . Here,
we establish the property & for €/, and¢ to show that
(er-€) € R Then we show trace distribution equivalence
for e; ande¢/. To establish this property, we consider any
states’ € supplst(e;) andu’ € supplst(¢/). Let s be any
state in supjst(er) such thats’ e suppfus) where §,¢,us) €
Reakd||Env. Letu be any state in supgt(¢ ) such that €
suppfuy) where (1, corrtaskp, ¢),uy) € ldeakd|Env.
It is true that Trear updates Iniactive to T and
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Initsc.ntask to L from the definition of the #ect of
TREAL- Slmllarly, T1pEAL updatesm.active to T
and Initgsc.ntask to L from the definition of the fect
of Trprar. From the state equivalence of) (and ()
in Table 728 we have u.lnitsc.active = s.Initsc.active
and u.lnitsc.ntask = slnitscntask ~ We obtain that
U .Initsc.active = < .Initsc.active and U’.Initsc.ntask =
s.Initsc.ntask By the definition of Inigc andInitsc, Trear
(resp.,T1pear) IS @ unique action that updates the state of
activeof Reakc (resp., Idealc). Therefore, we obtain the
trace distribution propertyrace(e;) = trace(e/).

(b) Reasc.sendEstablishprc, sidprc)rp,c
=corr. Re%c.sendEStabliShDj[c, Sidsc)FSC

This is similar to cas€éld The precondition andfkect of
these tasks are identical to each other. The preconditions
of the task on the left side of the equation aetive= T
and ntask= ESS2. This is equivalent to those on the right
side of the equation. Theffect of the task on left side is
ntask:= L. This dfect is also the same as that on the right
side. LetTrear be ’:D|C.Sen((SID,Sidplc)Adv. Let Tipgar be
FSC.SenC(SID,SidZAc)AdV. We show thatFREAL and TippaL are
uniformly enabled or disabled in supgi(er) U supplst(e). We
consider that for each states supplst(er) andu € supplst(g)

are fixed. ThenTggar IS enabled (or disabled) isif and only if
S.TreaL.active= T and s.Tgrear.Ntask= ESS2. The precondition
of Trpear, (N) in the TabldZ. 28 implies thatTtpgar is uniformly
enabled or disabled. The rest of this proof is similar to that for
the task of the initiator.

More specifically, the precondition anéfect of the real task are
the same as those for the ideal task framy @nd (n) and ),
respectively. So, these tasks correspond.

i. Disable Case: Letr and ¢ be discrete probability mea-
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sures in the real world and ideal world, respectively. We
have the fact that/, = er ande¢/ = . Here, the start and
step conditions of simulation relatiddhold from each task
definitions and the state correspondence of pre:There-
fore, we obtairtrace(e,) = trace(e)).

ii. Enable Case: Letr and ¢ be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of pre:
(n), and state correspondences fif ¢m) and ), we have
that e& = er and el’ = ¢. Here, the start and step condi-
tions of simulation relatiorR hold. Therefore, we obtain
trace(eg) = trace(g)).

(c) Fpic.sendSID, sidprc)adv =corr. Fsc.SendSID, sidsc)adv

The precondition and fect of these tasks are identical to
each other. The preconditions of the task on the left side
of the equation areactive= T and ntask= ESS2. These
are equivalent to those for the right side of the equation .
The dfect of the task on the left side of the equation is
ntask:= L. This dfect is also the same as that for the right
side. LetTreaL be I:D|C.SenC(SID,Sid])Ic)AdV. Let TipgaL be
Fsc.SenC(SID,Sidsc)Adv. We show thalTREAL and TipeaL are
uniformly enabled or disabled in supgi(er) U supplst(e). We
consider that for each statesmi supplst(er) andu € supplst(e)

are fixed. ThenTggar is enabled (or disabled) isif and only if
S.Trear.active= T ands.Tgear .Ntask= ESS2. The preconditions
of Trpear, (d) and (f) in Table[Z.28 implies thatTipgar is uni-
formly enabled or disabled. The rest of this proof is similar to
that for the task of the Initiator.

2. Data Sending Session

Here, we can consider the following two cases in this session. One
is that Env inputsin(Send, sidsc, M)nit to Initsc and message re-
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ceiver Regc outputs messageut(Receive,sidsc, plain)rec The

other is that Env inputg(Send, sidsc, Mrec t0 Regc and message
receiver Inigc outputs messagaut(Receive, sidsc, plain)nit. These

two cases are considered to be the same, so hereafter we consider the
first case. The basic task sequences are given in [faB¥Note that

the simulation has the same sequences as those for the Real Execution

in TablelZ.29

The key exchange phase is simulated by &hand more details are
given in[ll Hereafter, we explain that the message sending is safely
executed after the key exchange.

(a) Initsc.sendSend, sidprc,cipheng,,.
=corr. INitsc.sendSend, sidsc, M)Fg.

The precondition andfiect of these tasks are identical to each
other. LetTreaL and TipEAL be Senc(Send,sidDIc,Ciphel)Fch
andsendSend, sidsc, M)rg.. We show thalgrgar, andTipga. are
uniformly enabled or disabled in supgi(er) U supplst(e). We
consider that for each statesmi supplst(er) andu € supplst(e)

are fixed. Trear (resp.,Tipear) iS enabled (or disabled) if and
only if sInitsc.ntask= DSS2 (respuy.Initsc.ntask= DSS2). )
and () in Table[Z.28imply thatTgga; andTipgar are uniformly
enabled or disabled in supgt(er) U supplst(e). So, these tasks
are activated under the same conditions.

i. Disable Case: Letr and g be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that;z = er and el’ = ¢g. Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of ggeand (j).
Therefore, we obtaitrace(e;) = trace(e/).

ii. Enable Case: Lekk ande be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondences of gle: (
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and (j), and state correspondences €t €g) and (j), we
have thak;, = eg ande = . Here, the start and step condi-
tions of the simulation relatioR hold. Therefore, we obtain
trace(eg) = trace(g)).

(b) Regsc.sendSend, sidprc, Ciphenry,.
=corr. ReGc.sendSend, sidsc, M)Fge
This is identical to cadéd The states of precondition anffexct
of both expression are same. The rest of this proof is similar to
vE

i. Disable Case: Letgr and¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that/, = eg and¢ = . Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of gheaitd ).
Therefore, we obtaitrace(e) = trace(e/).

ii. Enable Case: Lekk ande be discrete probability measures
in the real world and the ideal world, respectively. From
each task definitions, the state correspondences of kye: (
and ), and state correspondences €t €k) and (), we
have thaie, = er ande/ = €. Here, the start and step con-
ditions of simulation relatiomR hold. Therefore, we obtain
trace(eg) = trace(g)).

(c) Fpic.sendSend, sidprc, Mady
=cor. Fsc.sendSend, sidsc, |M)adv
The precondition andfiect of these tasks are identical to each
other. LetTgrear and Tpear be sendSend, sidprc, M)agy and
Sendsend,sidsc,|m|)Adv. We show that['REA]_ and TipeaL are
uniformly enabled or disabled in supgi(er) U supplst(e). We
consider that for each statesmi supplst(er) andu € supplst(e)
are fixed. Trear (resp.,Tipear) iS enabled (or disabled) if and
only if STgear.ntask= DSS2 (resp.u.Tipear.Ntask= DSS2).
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(d)

()

(f)

(©), (d) and (f) in Table[Z.23 imply that Tgga; and Tipgar are
uniformly enabled or disabled in sujgi(er) U supplst(g). So,
these tasks are activated under the same conditions.

Advsc.sendResponse, sidprc, 0K)rp,c

=corr. Simsc.SendResponse, sidsc, 0K)Fg.

The precondition andfiect for the real task and are the same
as those for the ideal task. The precondition is omigsk=
DSS2 and theféect isntask:= L. From (C) in Tabl€[7.28 these
tasks are enabled (or disabled) in every state in $siy) U
supplst(e).

Foic.sendReceive,sidpic, megy

=cor. Fsc.sendReceive, sidsc, Me gy

The precondition of the task on the left side of the equation ,
ntask= DSS4, is that for the task on the right side. THieets

of the task on the leftpkcond\gy, mesandntask:= L, are also
identical to those for the task on the right side. The rest of this
proof is analogous to ca@a

Initsc.out(Receive, sidsc, plain)init

=corr. INitsc.0U(Receive, sidsc, MeYyr

The states of precondition apdain := rmesandntask= DSS4.
Then, the &ects of these tasks are the same. Sdy)ifapd ())

in Table[Z.Z8hold, then these tasks are enabled (or disabled) in
every state in suplst(er) U supplst(g).

i. Disable Case: Letgr and¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that/, = er ande/ = . Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of grgaid (j).
Therefore, we obtaitrace(ey) = trace(e/).

ii. Enable Case: Lekk ande be discrete probability measures
in the real world and the ideal world, respectively. From
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each task definition, the state correspondences of pje: (
and (j), and state correspondences €t €h) and (), we
have thak, = eg ande¢/ = . Here, the start and step condi-
tions of the simulation relatioR hold. Therefore, we obtain
trace(er) = trace(¢)).

(9) Regc.out(Receive,sidsc, plain)rec
=corr ReGc.0ut(Receive, sidsc, M)zec
This is identical to cad@fl The states of precondition anffexct
of both expressions are the same.

i. Disable Case: Letr and ¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that;z =er and el’ = ¢g. Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of djear(d ).
Therefore, we obtaitrace(e;) = trace(e/).

ii. Enable Case: Lek ande be discrete probability measures
in the real world and ideal world, respectively. From each
task definitions, the state correspondences of peand
(n), and state correspondences 6t €l) and f), we have
thate, = er and ¢ = g. Here, the start and step condi-
tions of the simulation relatioR hold. Therefore, we obtain
trace(e,) = trace(¢/).

3. Expire Session

(a) Initsc.sendExpireprc, Sidprc)rpc
=corr. INitsc.sendExpiresc, sidsc)rse
The states of precondition anffect orsendExpirepic, sidprc)rp,c
are the same as those feendExpiresc,sidsc)rg.) Where
ntask= EXS2. That is, if ) in Table[Z.25 holds, then these
tasks are enabled (or disabled) in every state in $sfyx) U

supplst(e).
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i. Disable Case: Letgr and¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that/, = er and¢ = . Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of giear(d (j).
Therefore, we obtaitrace(ey) = trace(e/).

ii. Enable Case: Lek ande be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondence of gie: (
and state correspondences €t €i) and (j), we have that
€ = €r and ¢ = ¢. Here, the start and step conditions
of the simulation relatiorR hold. Therefore, we obtain
trace(e,) = trace(¢/).

(b) Re%cﬂ(EXpil‘enlc, sidpic)Fpc
=corr. ReGc.sendExpireprc, sidsc)rgc
This case is analogous to the above ¢@deThe precondition
and dtect for the real task are the same as those for the ideal
task. The precondition is onlytask= EXS2 and the fects are
active:= L andntask:= LFrom () in TablelZ.Z5these tasks are
enabled (or disabled) in every state in sugter) U supplst(e).

i. Disable Case: Letgr ande¢ be discrete probability mea-
sures in the real world and the ideal world, respectively. We
have the fact that/, = er and¢ = ¢. Here, the start and
step conditions of simulation relatiddhold from each task
definition and the state correspondences of prgafd ).
Therefore, we obtaitrace(ey) = trace(e/).

ii. Enable Case: Lek ande be discrete probability measures
in the real world and the ideal world, respectively. From
each task definition, the state correspondence of pig: (
and state correspondences ff ém) and f), we have that
€ = €r and ¢ = ¢. Here, the start and step conditions
of the simulation relatiorR hold. Therefore, we obtain
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trace(e},) = trace(¢/).

(¢) Foic.sendExpireprc, sidprc)adv
=cor. Fsc.sendExpiresc, sidsc)adv
The precondition andfkect for the real task are the same as
those for the ideal task. The precondition is ontgsk= EXS2
and the fects areactive:= 1 andestcong := L for all X (and
estconghit, estcongec:= L in Fsc) andntask:= L. From @),
(b), (d), and (f) in Table[Z. 25 these tasks are enabled (or dis-
abled) in every state in supgt(er) U supplst(¢). The rest of
this proof is analogous t@] in the establish session.

Environment Env

From the task definitions and state correspondengen(TabléZ.23 the
provability measures for both tasks are uniformly enabled or disabled in
every state in suplst(er) U supplst(e).

Claim 1 The state of Env remains static in all states in slgbar) U
supplst(e). Let ge denote this state of Env. This follows from state
correspondence.

Claim 2 If T is a task of Env, then T is either enabled or disabled
in every state in suplst(er) U supplst(¢g) (simultaneously). Further-
more, if T is enabled in all states in sulgt(er) U supplst(e ), then:

1. There exists unique actiane T that is enabled in every state in
supplst(er) U supplst(g).

2. There exists a unique transition of Env fraja with actiona.
Lettre = (Qe, & ue) be this transition.

By considering Clain.3.2 task T of Env is uniformly enabled or dis-
abled in every state in supgt(er) U supplst(eg). If T is disabled, letl =1,
we obtaine{?’1 = eg and e|’71 = g, and this results in tharl’R’lRel”l since we
haveerRe . If T is enabled in in every state in supgi(er) U supplst(e),
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Claim [£3.2 implies that there exists unique acti@nin every state in
supplst(er) U supplst(g) and transitiontre of Env from ge enabled with
actiona, wheretre = (Qe, 8, te).

Non Corrupted Case:

1. a is an input/ output action of Init. We assume thatis an in-
put action such aB(Establishsc, sidsc)init, iIN(Send, sidsc, M)init
, INn(Expiresc, sidsc)init, andout(Receive, sidsc, plain)it-

Let sbe any state such thdte suppfss), where 6 a, us) € DreagdEnv-
Let u be any state such that’ € suppf:,), where (,a,u,) €

DideakqEnv- FOr eacha, we check that the state correspondences
for s andu’ hold if those fors andu hold. If eacha is input from

Env, then the precondition andfect for the real task are exactly the
same as those for the ideal task. For example, if the input message is
in(Establishsc, sidsc)init, then the precondition igctive ntask= L

and the #ect isntask:= ESS2. These states for the real task cor-
respond to those for the ideal task. So, in the case that the task is
enabled (or disabled), the state correspondences,df), and (j) for

s andU’ hold, if the state correspondencs ®andu hold. There-

fore, we obtain the trace distribution properirace(e,) = trace(e;).

This result also works well in the case iofSend, sidsc, M)t and
in(Expiresc, sidsc)init-

. ais an input/ output action of Rec. We assume tlais an in-
put action such am(Establishsc, sidsc)reo iIN(Send, sidsc, MReo
iNn(Expiresc, sidsc)rec @and out(Receive, sidsc, plain)rec.  This is
analogous tfl

. ais an input action of Adv. This means that= input(g)aqy for
some fixedg. For exampleg is a corrupt message for sorparty
{Init,Reg. From the fact that the state corresponden@gs~((V)
for s and u hold, we obtain that the state correspondencessfor
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and v’ hold. Therefore, we obtain the trace distribution property,
trace(e;) = trace(¢/).

4. ais an internal or an output action of Env. Taskor the real world
is identical to that for the ideal world. From the fact that the state
correspondence ob) for s andu hold, we obtain that the state cor-
respondence obj for s andu’ hold. Therefore, we obtain the trace
distribution propertytrace(e{?, j) = trace(el” j).

Corrupted Case:

1. ais an input action of Adv angbarty € {Init,Reg Here, the party
is included in the case of Init Rec. Letgaqy be the state of
Adv or Sim that is the same in all sufgi(er) U supplst(g). Let
tradv = (Qadv, & uady) be a transition of Adv with actioa from gagy-.
From Clain{Z.3.2 traqy is a unique transition. Here, we suppose that
supp(fre X uadv)) is the pair sef(qyj,az,) : j € I}, wherel is a count-
able set. Lep be the probability measures such that for eagh(j) =
(e X tadv)(dy,j,02,j). For eachj, let e,’?’j be ei,j(a) = e1(a’) where
@ € suppE;) such thaflst(a).Env= gy j andlst(a).Adv =gz j. The
eé’ J. is analogously constructed froe.

The rest of this proof is he same as that[bby considering state
correspondence in each cagarty € {Init,RecInit A Reg. Finally,
we obtain the trace distribution propertsace(e; J.) = trace(e/ j).

Adversary Adv

From the task definitions and state correspondenges (V) in TablelZ.28
the provability measures for both tasks are uniformly enabled or disabled in
every state in suplst(er) U supplst(e).

Claim 3 The state of Adv or Sim is the same in all states in
supplst(er) U supplst(g). Let gagy denote this state of Adv and Sim.
This follows from state correspondence of Sim.
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Claim 4 If T is a task of Adv, then T is either enabled or disabled in
every state in suplst(er) U supplst(g). Furthermore, if T is enabled
in all states in supst(er) U supplst(g ), then:

1. There is unique actiom € T that is enabled in every state in
supplst(er) U supplst(g).

2. There is a unique transition of Adv frogagy with actiona, and
let tragv = (Qadv, & adv) be this transition.

By considering Claini.3.2 task T of Adv is uniformly enabled or
disabled in every state in sujgi(er) U supplst(e). If T is disabled, let
| =1, we obtaine;{’1 = €r andfl’,1 = g, and the result igﬁe,lRff,l since we
haveerRe. If T is enabled, T is enabled in every state in sigifer) U
supplst(e). Claim[Z3.2implies that there is unique acti@nin every state
in supplst(er) U supplst(g) and transitiortr of Adv from ge enabled with
actiona, wheretragy = (gadv, & uadv). The following cases for the “Non
Corrupted Case” and “Corrupted Case” can be considered.

Non Corrupted Case:

1. ais an input action of Env. From the fact that state correspondences
(A) ~ (V) for sandu hold, we obtain that state correspondences for
s andu’ hold. Therefore, we obtain the trace distribution property,
trace(e) = trace(¢/).

2. ais an input or output action of functionality task. This case concerns
the messageeceivgSID, sidprc)ryc, receivéSend, sidprc, Mrpy e,
receivgExpireprc, sidpic)ry. andsendResponse, sidprc, OK)rp,c-

. The rest of this proof is analogous[fb From the fact that state

correspondenceg\| ~ (V) for sandu hold, we obtain that state cor-

respondences fa& andu’ hold. Therefore, we obtain the trace distri-
bution propertytrace(ef,) = trace(e) ).

3. a is either an output action of Adv that is not an input action of
Envy, Init, Rec, functionality task, or is an internal action of Adv. This
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case concerns “new” tasks. The rest of this proof is analogdlis to
From the fact that state correspondena®s~( (V) for s andu hold,
we obtain that the state correspondencesfandu’ hold. Therefore,
we obtain the trace distribution propertsace(e) = trace(e)).

4. ais an output action obut(x)aqy. This case is also works well al-
though this action mayfiect Env. However, the transition of Env
tre = (Qe, &, e) is unique from Clainl/.3.2 Claim[Z.3.2also says that
the state of Env remains static in all states in slgpfer) U supplst(e).
This follows from state correspondenoe Similarly, from the def-
inition and some claims, we obtain the trace distribution property,
trace(e;) = trace(¢/).

Corrupted Case:
This is the case that the static and adaptive adversary Adv corrupt
party € {Init,Reg.

1. ais an inputoutput actionin(x)party, OUt(*)party Of corrupted party,
party € {Init,Reqd. This case is also works well from Clalf3.2and
state correspondences in TaBI25~ [7.27

Perfect Simulation

The simulation of Simgc is perfectly executed for establish session, data
sending session, and expire session with respect to no corruption, static cor-
ruption and adaptive corruption by an adversary.

1. No Corruption

(a) Establish SessiorFirst, in the establish session, environment
Env sends establish messaggEstablishsc,sidsc)z and
messagen(Establishsc, sidsc)gg tO initiator Initsc and re-
ceiver Regsc, respectively. They send establish session mes-
sagessendEstablishsc, sidsc)rs 10 Fsc. The functionality
sendssendSID, sidsc)agv t0 Simgc. After Simsc receives the
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message, Sigt generates parties Init and Rec in his simula-
tion world to generate the real world situation in Init and Rec
exchange messages usingd: Simsc then generates the estab-
lish session in the simulation world. That is, he inputs messages
in(EStabliShSC,Sidsc)mit and in(EStabliShsc,Sidsc)Rec to
Initsc and Regc, respectively. Finally, the parties establish DIC
in the simulation world.

Simulation Policy
I. After receivingreceivgSID, sidsc)rs., Simsc executes the
following simulation.

A. Simgc prepares dummy parties, lgd, Regc, and Adv
and the ideal functionality taskdrc.

B. Simsc inputs messagéas(Establishpic, sidprc)initse
and in(Establishprc,sidpic)reqe 0 Initsc and
Regsc, respectively.

C. Simgc makes Inigc (resp., Regc) send message
SenC(EStabliShD]:c,SidDIc)Fch to Foic.

D. Simsc makes Ipic sendsendS1ID, sidprc)agv t0 Adv.
Task Correspondence of Simulation
I. Initsc.sendEstablishprc, sidpic)rpc
=corr. Simsc.Initsc.sendEstablishprc, sidprc)rp,c
pre: ntask= ESS2 ; M);
eff: active:= T andntask:= L ; (L), (M);
ii. Regc.sendEstablishpic,sidprc)rpc
=corr. SiMsc.ReGc. sendEstablishprc, sidpic)ry e
pre: ntask= ESS2 ; Q);
eff: active= T andntask:= _ ; (P),(Q);
iii. Fpic.sendSID, sidsc)adv
=cor. Simsc.Fpic.sendSID, sidsc)adv
pre: active= T andntask= ESS2 ; (5), (1);
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(b)

eff: ntask=_1; (I);

The stateactiveof Initsc and Regc becomesr, then state cor-
respondenced.f and @) hold. If the adversary obtains the mes-
sagereceivgSID, sidprc)ry, iN the simulation worldactivebe-
comesT from (R) in TablelZ.Z7 The simulation in the establish
session of the real world is perfectly executed by &infFinally,
the parties establish a DIC in the simulation world.

Data Sending Sessiolext, in the data sending session, §im
simulates the key exchange.

Key Exchange

First, the key exchange is executed, that is, the simula-
tor inputs sendSend, sidpic, )y N Init after a random
message is generated usimgnd(S)sva.  The receiver is
also receivesreceivgReceive,sidprc, Sr, - The receiver
generates a random message usnmand(t)a and sends
sendSend, sidpic,t)ry t0 Init. This key exchange is under
master schedulkl,... If the master schedule does not be sched-
uled, then the key exchange does not occurre safely. If so, the ad-
versary can identify the direction in which the random message
was sent. That is, he may obtain the key information. There-
fore, we need the master schedule. The following describe the
corresponding tasks in the key exchange.

Simulation Policy

i. the key exchange is executed as described hereafter.
A. Simgc executesrandon(x) and selects key bist,
where|g = |t| = 1.
B. Simsc makes Inigc sendsendSend, sidpic, S)Fp,c and
makes Regc sendsendSend, sidpic,t)ryc IN random
order according td/,..

C. Simgcmakes Ipic receivereceivgSend, sidpic, S)initse
and makes fFic sendsendSend, sidprc, S)adv t0 Adv.
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D. Simscmakes Ipic receivereceivgSend, sidpic, t)Reqgsc
and makes fFic sendsendSend, sidprc,t)aqv t0 Adv.

E. If Fpic receivessendResponse, sidpic,0K)r,, . from
Adv twice, Simsc continues the following.

F. Simsc makes Ipic receivereceivéResponse, sidpzc,
ok)agv and makes fic sendsenqReceive, sidprc,t
)initsc @and sendReceive, sidpic, SReq 10 INitsc and
Regsc, respectively.

G. Simgcmakes Inigcand RegcreceivereceivgReceive,
sidprc, t)ry,c and receiveeceivgReceive, sidpic, S)rp,c-

H. Simscmakes Inigc and Regc executekeycal¢sval tval
)kval, respectively.

l. In keycal¢sval tval)xya, if S# t then Singc continuew

next step. Else, Sigt executefl(b)iA ~ [L(b)IH until
CE S

Task Correspondence of Simulation

I. Initsc.sendSend, sidpic, S)rp,c

=corr. Simsc.Initsc.sendSend, sidprc, )y e

The precondition andfiect of these tasks are identical to

each other. LeTrEaL andTIDEAL be Senc(Send, sidpzc, S)Fch

and keycal¢svaltval)kva. ~We show thatTgea and

Tpear are uniformly enabled or disabled in sulsp(er) U

supplst(¢). We consider that for each state me

supplst(er) and u € supplst(e) are fixed.  Trear

(resp., Trpear) IS enabled (or disabled) if and only if

sInitsc.ntask= DSS2 (resp.p.Initsc.ntask= DSS2). ()

in Table[Z.28 implies thatTgga, and Tipgar are uniformly

enabled or disabled in supgt(er) U supplst(e). So, these

tasks are activated under the same conditions.

A. Disable Case: Laiz ande be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact th&g{ = €r andel’ = ¢q. Here,
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the start and step conditions of simulation relat®n
hold from each task definition and the state correspon-
dence of pre: J) in Table[Z.28 Therefore, we obtain
trace(eg) = trace(g)).

B. Enable Case: Lek ande¢ be discrete probability mea-
sures in the real world and ideal world, respectively.
From each task definitions, the state correspondence of
pre: (J), and state correspondence df. e(J) in Ta-
ble[Z.26 we have thak}, = er and¢/ = ¢. Here, the
start and step conditions of simulation relati®iold.
Therefore, we obtaitrace(e;) = trace(e).

ii. Regc.sendSend, sidprc,t)rp,c
=corr. Simsc.ReGc.sendSend, sidprc, t)ry e
This is identical tgL(b)] The state of precondition and ef-
fect of both expression are same. . The rest of this proof is
similar to[L(b)i

A. Disable Case: Leir ande be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact th&g = er andel’ = ¢g. Here,
the start and step conditions of simulation relat®n
hold from each task definition and the state correspon-
dence of pre: i) in Table[Z.271 Therefore, we obtain
trace(e,) = trace(¢/).

B. Enable Case: Lakk ande be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definitions, the state correspondence of
pre: (N) in Table[ZZ7 and state correspondence €f e
(N), we have that;, = er ande = . Here, the start and
step conditions of simulation relatidR hold. There-
fore, we obtairtrace(e,) = trace(e)).

iii. Initsc.keycalgsval tval)yyal
=corr. Simsc.Initsc.keycal¢sval tval)kyal
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These preconditions andffects are identical to each
other. LetTrear andTrpear be Initsc.keycalgsval tval)kyal
and Simyc.Initsckeycal¢svaltval)kva. We show that
Trear and Tipear are uniformly enabled or disabled in
supplst(er) U supplst(e)). We consider that for each
state in s € supplst(er) and u € supplst(g) are fixed.
Trear (resp.,Tipear) iS enabled (or disabled) if and only
if s.Initsc.ntask= DSSc (resp.,u.Simsc.Initsc.ntask =
DSSc). M) in TablelZ.Z8implies thatTrgar andTpear are
uniformly enabled or disabled in supgi(er) U supplst(e ).
So, these tasks are activated under the same conditions.

A. Disable Case: Leir ande be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact that, = g and¢ = . Here,
the start and step conditions of simulation relati®n
hold from each task definition and the state correspon-
dence of pre: ) in Table[Z.28 Therefore, we obtain
trace(er) = trace(¢)).

B. Enable Case: Lek ande be discrete probability mea-
sures in the real world and ideal world, respectively.
From each task definition, the state correspondence of
pre: (M), and state correspondences €f €M) and
(U), we have that,’? = €r andel’ = ¢. Here, the start and
step conditions of simulation relatidR hold. There-
fore, we obtairtrace(e) = trace(e).

Regsc.keycal¢sval tval)kyal

=corr. Simsc.Regc keycal¢sval tval)kyal

The precondition andfiect of these tasks are identical to
each other. LeTgea andTrpear be Initsc.keycalgsval tval
Jkval @and Simgc.Initsc.keycalgsvaltval)kya. We show
that Trear and Trpear are uniformly enabled or disabled
in supplst(er) U supplst(e). We consider that for each
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state ins € supplst(er) and u € supplst(g) are fixed.
Trear (resp., Trpear) IS enabled (or disabled) if and only
if sRegc.ntask= DSSc (resp.,u.Simsc.Regc.ntask =
DSSc). Q) in TablelZZ7implies thatTgear andTpear are
uniformly enabled or disabled in supgi(er) U supplst(e ).
So, these tasks are activated under the same conditions.

A. Disable Case: Leir ande be discrete probability mea-
sures in the real world and the ideal world, respec-
tively. We have the fact that, = eg and¢/ = . Here,
the start and step conditions of simulation relati®n
hold from each task definition and the state correspon-
dence of pre: Q) in Table[Z.22 Therefore, we obtain
trace(er) = trace(¢)).

B. Enable Case: Lek ande be discrete probability mea-
sures in the real world and the ideal world, respectively.
From each task definition, the state correspondence of
pre: @), and state correspondences f €Q) and {),
we have that& = €r andel’ = ¢. Here, the start and step
conditions of the simulation relatidRhold. Therefore,
we obtaintrace(e) = trace(e).

If the key exchange is completed safety, the message exchange
proceeds. Ingc sendssendSend, sidpzc, Ciphenr,,. to Regc.

Here, the key exchange is executed under master schedule
M. If the master schedule does not work, then the key ex-
change is not safe. If so, the adversary can identify the di-
rection of the random bit although we usg,& The details

of this task sequence are shown in TaBI&9 This task se-
quences are also simulated by Sin So, the state correspon-
dences in TableE28 and[Z.Z7 hold. More specifically, Env
sends messaga(Send, sidsc, M) (or in(Send, sidsc, Mzg)

to Initsc (or Regsc). Initsc sendssendSend, sidsc, Mg tO

Fsc. Fsc sendssendSend, sidsc,|M)agy t0 Simsc. After re-
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ceiving the message, Sgnexecutes a simulation to mimic the
data sending session in the real world. That is, he inputs mes-
sagein(Send, sidsc, M)yt for random message fromgge (or
in(Send, sidsc, MReg to Init (and Rec) in the simulation world.
The state correspondences in TaBI&6 and[Z.27 work well.

The key point of this simulation is as follows. To mimic the real
world, the simulator executes the parties that execute the tasks
of key exchange (and message sending) in the real world. More-
over, not to distinguish the output trace, the simulator simulates
the real world in his simulation world by using task codes. In
the real world, Inigc and Regc use a DIC without an adversary
being able to identify the direction of the key exchange under
master schedul®sc. In the simulation world, Sikc obtains

the same output which Ady outputs in the real world by his
simulation. That is, the trace distributions of each world are
indistinguishable by Env. In other words, since each task corre-
spondence and state correspondence works well, the following
property works wellfrace(ey) = trace(e/).

Simulation Policy

I. After receiving receivg€Send, sidsc,|M)Fs., Simsc exe-
cutes the following. simulation.

A. Simsc generates random bk (x| = 1) by executing
randon{x) for using as a message in the simulation.
Simsc inputsin(Send, sidprc, X)initsc t0 INitsc.

C. Simscmakes Inigc sendsendSend, sidpzc, ciphenr,,.
to Fpic, wherecipher:= x@kval.

D. Simscmakes Ipic receivereceivéSend, sidprc, Cipher
)initsc and makes fic sendsendSend, sidprc, Ciphenagy
to Adv.

E. If Fpic receivessendResponse, sidpic,0K)r,, . from
Adv, Simgsc continues the following.

F. Simscmakes Ip|c receivereceivgResponse, sidprc, 0k

w
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)adv and makes fc sendsendReceive, sidprc, Cipher
JReasc 10 Reasc.
G. Simscmakes Regcreceive the messageceivgReceive,
sidprc, Ciphenr,,..
H. Simscmakes Regcoutputout(Receive, sidprc, MReg-
ii. Simgc executesendResponse, sidsc, OK)rg..
Task Correspondence of Simulation
I. Initsc.sendSend, sidpzc,Cipheng, .
=corr. SiMsc.Initsc.sendSend, sidprc, Ciphenr,,.
pre: active= T, smesandntask= L ; (J),(L),(M);
eff: smes= mandntask:=DSS2 ; 0),(M);
ii. Fpic.sendSend, sidprc, M)Advsc
=corr. SiMsc.Fpic.sendSend, sidprc, Madvsc
pre: okconghgqy = L, mes:= m and ntask= DSS2 ;
(F).(H).(1);
eff: ntaski=DSS3; ();
lii. Advsc.sendResponse, sidpic, OK)rp,c
=corr. SiMsc.Advsc.sendResponse, sidprc, 0K)rp,c
pre: ntask= DSS2; [);
eff: ntask= L1 ; (T);
Iv. Fpic.sendReceive,sidpic, ME€IReqc
=corr. SiMsc.Fpic.sendReceive, sidprc, MEYReqc
pre: ntask=DSS4 ; ();
eff: okcong\gy, mesandntask:= L ; (F),(H),(I);
V. Regsc.out(Receive, sidsc, plain)rec:
=corr. SiMsc.ReGsc.0ut(Receive, sidsc, plain)reg
pre: plain:=rmesandntask= DSS4 ; O),(Q);
eff: kval rmesandntask:= L ; (O),(P),(V);
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(c) Expire Session Finally, in the expire session, Env sends
messagein(Expiresc,sidsc)iy and in(Expiresc, sidsc)gge
to Initsc and Regc, respectively.  They relay mes-
sage sendExpiresc,sidsc)rs. t0 Fsc. After receiving
sendExpireprc,sidsc)agy from Fsc, Simsc expires the ses-
sion in the simulation world. That is, he inputs messages
in(EXpiI‘esc,Sidsc)mit andin(Expiresc,sidsc)Rec to Init and
Rec in the simulation world.
Simulation Policy

I. After receiving receiv€Expiresc, sidsc)rs., Simsc exe-
cutes the following simulation.

A. Simgc inputs messagesin(Expirepic,sidpic)initse
and in(Expireprc, sidprc)initse, 10 Initsc and Regc,
respectively.

B. Simscmakes Inigc (resp., Regc) sendsendExpireprc,
sidpic)Fpc 0 Foic.

C. Simsc makes bic sendsenc(ExpireDIc, SidDIC)AdV to
Adv.

Task Correspondence of Simulation

I. Initsc.sendExpireprc, sidprc)rpc
=corr. SiMsc.Initsc.sendExpireprc, sidprc)rp,c
pre: ntask= EXS2 ; (L);
eff: activeandntask:= L ; (L),(M);
ii. Regc.sendExpireprc,sidpic)rpc
=corr. Simsc.ReGsc. sendExpireprc, sidpic)rpc
pre: ntask= EXS2 ; Q);
eff: activeandntask:= L ; (P),(Q);
lii. Fpic.sendExpireprc, sidprc)adv
=corr. Simsc.Fpic.sendExpireprc, sidprc)adv
pre: ntask= EXS2 ; ();
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eff: active estcongt andntask:= L for all X ; (D) ~ (G),
(1

We assume that the state correspondences in fa&and7.27hold.
From[3d B0, andB3d, the state correspondences also hold after the
simulation by Simgc. That is,trace(e) = trace(e)).

. Static Corruption

This type of corruption is divided into the following three cases: only
Init is corrupted by Adv, only Rec is corrupted by Adv, and both par-
ties are corrupted by Adv. Once the corruption occurs, the adversary
can identify the direction. However, the simulator can simulate all the
cases, so Env can not distinguish the real world from the ideal world.

(a) Only Initis corrupted by Adv

This case means that Agy corrupts only Init before the pro-
tocol starts. So, the remaining steps are identical to the above-
mentioned No Corruption Case without the data sending session.
In the data sending session, Agvand Singc identify the input
message.

After receiving the corrupt message from Env, §icorrupts
Initsc and prepares a simulation world in which only it

is corrupted. That is, receiving “corrupt message” from Env,
Simsc corruptsm and reflects the information in his simu-
lation world immediately. The establish and expire sessions are
the same as those[l@andld The simulation of the data send-
ing session is as follows.

The simulation policy of the key exchange is same above-
mentioned. The simulation policy for the remaining messages
sending in the data sending session is as follows:

Case 1: The message is input to the corrupted partinitsc.

I. After receiving receivgSend, sidsc,|M)rs., Simsc exe-
cutes the following. simulation.
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w

G.

H.

Simgc prepares messageto input to corrupted party
Initsc with in(Send, sidsc, M)init from Env and reflects
min his simulation world hereafter.

. Simgc inputsin(Send, sidprc, M)initsc 1O INitsc.
. Simgcmakes Inigc sendsendSend, sidprc, Ciphenry,.

to Fpic, wherecipher:= maekval.

. Simgcmakes Ipc receivereceivéSend, sidprc, Cipher

)initsc @nd makes fFic sendsendSend, sidpic, Cipher
)adv to Adv.

. If Fpic receivessendResponse, sidpic, 0K)ry,. from

Adv, Simsc continues the following.

Simgcmakes ¢ receivereceivgResponse, sidprc, 0k
)adv @nd makes b sendsendReceive, sidprc,Cipher
)Reqsc 10 ReGsc.

Simgc makes Regc receivereceivéReceive, sidprc,
Cipher)FDm'

Simgc makes Regc outputout(Receive, sidpic, MRegsc-

ii. After receivingout(Receive, sidpic,MReg: from Regyc,
Simsc executesendResponse, sidsc, OK)rgc.

Case 2: The message is input to the non-corrupted party

Regsc.

I. After receiving receivgSend, sidsc,|M)Fs., Simsc exe-
cutessendResponse, sidsc, OK)Fg.

ii. After receiving receivéReceive,sidsc, MFg. in Initsc,
Simgc executes the following simulation.

A.

B.

C.

Simsc inputsin(Send, sidprc, M)inits 10 ReGc.
Simsc makes Regc sendsendSend, sidprc, Ciphengy,c
to Fpic, wherecipher:= maekval.

Simgcmakes bpc receivereceivgSend, sidprc, Cipher
)Reasc @Nd makes fic sendsendSend, sidprc, Ciphenady
to Adv.

254



(b)

D. If Fpic receivessendResponse, sidpic, 0K)ry, from
Adv, Simsc continues the following.

E. Simscmakes Ipic receivereceivéResponse, sidprc, 0k
)adv and makes fic sendsendReceive, sidpzc,Cipher
Jinitsc 1O Initsc.
F. Simsc makes Inigc receivereceivgReceive, sidprc,
ciphenry,c.
G. Simscmakes Inigcoutputout(Receive, sidprc, Minitge-
iii. After receivingout(Receive, sidprc, M)initsc from Initscin
his simulation world, Sirgc execute®ut(Receive, sidsc,m
)
iv. After receivingreceivéSend, sidsc, M. in Initsc, Simsc
execute®ut(Receive,sidsc, m)m.

If the message is input to Init or Rec, the simulator emulates
the real world and movement of Adv. That is, the simulation is
perfectly executed by Sige. From the Task Correspondence in
[7.3.2 the state correspondences$/i23 andZ.27hold in

this case. That idrace(e}) = trace(e) holds.

Only Rec is corrupted by Adv

This case is analogous to the case of a. This case means that
Advsc corrupts only Rec before the protocol starts. So, the re-
maining steps are identical to the above-mentioned case where
only Init is corrupted. Ady¥c and Simgc can identify the input
message. So, the simulation is perfectly executed.

After receiving the corrupt message from Env, §icorrupts
Reasc and prepares a simulation world in which only Rec

is corrupted. That is, receiving “corrupt message” from Env,
Simsc corruptsRegsc and reflects the information into his sim-
ulation world immediately. The establish and expire sessions
are the same as thoselld and[Ld The simulation of the data
sending session is as follows.
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The simulation policy of the key exchange is the same as that
mentioned above. The simulation policy of the left in the data
sending session is as follows.

Case 1: The message is input tmitsc.
I. After receiving receivg€Send, sidsc,|M)rs., Simsc exe-
cutessendResponse, sidsc, OK)rg...

ii. After receivingreceivgReceive,sidsc, M. in the cor-
ruptedinitsc, Simgc executes the following simulation.

A. Simscinputsin(Send, sidprc, M)initsc tO INitsc.

B. Simscmakes Inigc sendsendSend, sidprc, Ciphengy,.
to Fpic, wherecipher:= ma kval.

C. Simgcmakes Ipic receivereceivéSend, sidpzc, cipher
)initsc @nd makes fic sendsendSend, sidprc, Ciphenagy
to Adv.

D. If Fpic receivessendResponse, sidpic,0K)r,, from
Adv, Simgsc continues the following.

E. Simscmakes Ipic receivereceivéResponse, sidprc, 0k
)adv and makes fic sendsendReceive, sidpzrc,Cipher
)initsc tO Initsc.

F. Simsc makes Inigc receivereceivgReceive, sidprc,
CiphEI)FDlC.
G. Simscmakes Inigcoutputout(Receive, sidprc, MRegsc-
iii. After receivingout(Receive, sidprc, M)initsc from Initscin
his simulation world, executesit(Receive, sidsc, m)m.

Iv. After receivingreceivgSend, sidsc, M)rs. IN ReGsc, Simsc
execute®ut(Receive, sidsc, m)FCSC.

Case 2: The message is input to corrupte®ecsc.
I. After receiving receivgSend, sidsc,|M)rs., Simsc exe-

cutes the following. simulation.
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A. Simgc prepares messageto input to corrupted party
Regcwith in(Send, sidsc, Mrecfrom Env and reflects
min his simulation world hereafter.

Simsc inputsin(Send, sidprc, M)inits tO INitsc.

C. Simsc makes Inigc sendsendSend, sidprc, Cipher
)Foic 10 Foic, wherecipher:= mekval

D. Simscmakes Ip ¢ receivereceivéSend, sidpc, Cipher
)initsc @nd makes fic sendsendSend, sidprc, Ciphenady
to Adv.

E. If Fpic receivessendResponse, sidpic, OK)r,,. from
Adv, Simsc continues the following.

F. Simscmakes Ipic receivereceivgResponse, sidprc, Ok
)adv @and makes fic sendsendReceive, sidpc,Cipher
dinitsc tO Initsc.

G. Simsc makes Inigc receivereceivgReceive, sidprc,
ciphenry,c.
H. Simscmakes Inigc outputout(Receive, sidprc, Minitge-
ii. After receivingout(Receive,sidpic, M)initsc from Initsc,
Simgc executesendResponse, sidsc, 0K)Fg..

@

If the message is input to Init or Rec, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Sige. From the Task Correspondence in
[7.3.2 the state correspondenced/i?g andZ.Z7hold in

this case. That idrace(ey) = tracg(¢) holds.

(c) Both parties are corrupted by Adv

This case is also analogous to case 1 of a. This case means
that Adwsc corrupts both Init and Rec before the protocol starts.
After receiving the corrupt message from Env, §georrupts
Initsc and Regc and prepares a simulation world in which
Initsc andRegsc are corrupted. That is, after receiving the “cor-
rupt message” from Env, Siga corruptsinitsc andRegsc and
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reflects the information in his simulation world, immediately.
The establish and expire sessions are sanfiedandId The
simulation of the data sending session is as follows:

The simulation policy of the key exchange is the same as that
mentioned above. The simulation policy for the remaining mes-
sages in the data sending session is as follows:

Case 1: The message is input to corruptethitsc.

This case is identical to Case 1 of a.

Case 2: The message is input to corrupte®ecsc.

This case is identical to Case 2 of b.

Simsc executes the following in the above mentioned cases:

o After receiving receivgSend,sidsc,m)r,. in party €
{Initsc, Reasc}, Simgc execute®ut(Receive, sidsc, M)party-

If the message is input to Init or Rec, the simulator emulates the
real world and the movement of Adv. That is, the simulation is
perfectly executed by Siga. From the Task Correspondence in
[Z.32 the state correspondences/iZs andZ.27hold in

this case. That idrace(e;) = tracg(¢) holds.

3. Adaptive Corruption In this case, the adversary corrupts some par-
ties when he wants to do so. This case is also simulated by the sim-
ulator, but the message cannot be concealed from the adversary after
he corrupts some parties. However, this case is also simulated by sim-
ulator Simsc, so the simulation is perfectly executed.

(a) Establish Session

Instance 1: Before Inikc and Regc are activated.

Instance 2: After Initscis activated but before Regis activated.
Instance 3: After Regsc is activated but before Injt is activated.
Instance 4: After Initsc and Regc are activated.
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Because there is no secret information, &man emulate the
situations in his simulation. So, there is no advantage for Env.
The adversary can corrupt 18d, Regsc, or both, but the simu-
lator can also corrupt the corresponding dummy parties. These
cases are also perfectly simulated by §m

(b) Data Sending Session

Instance 1:Before or after activating Iniic or Regsc by re-
ceiving in(Send, sidsc, M)initsc OF IN(Send, sidsc, MReg
respectively, from Env.

Env can execute only the message sending indication or the
corrupt indication at a time. This case is also simulated
by Simsc as the data sending session of Static Corruption
without the corruption timing. If the corruption message is
received from Env, Adv and Sim corrupt the party, and then
they continue the protocol. Note that all information with-
outactiveare cleared after the message is sent. So, there is
no secret information. The corresponding tasks work well
and there exists a simulation relation between the real world
and the ideal world. That istace(e/,) = trace(¢/) holds.

(c) Expire Session

Instance 1: After Initsc or Regsc is activated with the ex-
pire message.

Once the expire message is sent todaibr Regc by Env,

this session terminates in the real world and the ideal world.
So the adversary can corrupt the parties. The simulation is
also executed.

Simulation Policy

Simgc simulates as follows:
(a) After receiving the “corrupt Ingc” message from Env,
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i. Simgc corruptslnitsc and makes Adv corrupt Init in the
simulation world, immediately.

(b) After receiving the “corrupt Reg” message from Env,

I. Simgc corruptsRegc and makes Adv corrupt Rgg in the
simulation world, immediately.

(c) After receiving the “corrupt Ingc and Regc’ message from
Env,

I. Simsc corruptsinitsc andRegsc, and makes Adv corrupt
Initsc and Regc in the simulation world, immediately.

(d) After receivingsendSend, sidsc,|m|)agy from Fsc.

I. Simsc inputs messag@é(Send, sidsc, M)party t0 Message
input partyparty in his simulation.

ii. The remaining steps are the same as the simulation of the
No Corrupted Case.

(e) After receivingreceivgSend, sidsc, Mg IN party, Simsc exe-
cutesout(Receive, sidsc, m)m.

Whenever Adgc corrupts some party, Sisa corrupts the corre-
sponding dummy party in the ideal world and forwards the obtained
information to the simulated copy of Adg. If Advsccorrupts a party
Initsc or Regc then Simyc corruptsinitsc or (and)Regsc in the ideal
world, and provides the simulated copy of Agvin the simulation
world with the state information of the corrupted party. Conversely,
Simgc may obtain information from the simulated world with the cor-
ruption. Additionally, in this protocol, the party has no secret infor-
mation becausegr is securely executed. In all cases, since &gm
can simulate Adyc using his simulated world, Env cannot distinguish
real world from the ideal world. That is, simulating party corruption
is perfectly executed.

RelationR is a simulation relation from task and state correspondence.
We obtain Lemnid
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Next, Theorefid is obtained from Lemni@immediately.

Proof. From Lemmié], we proved that relatioR is a simulation relation
from Reagd|Env to ldeagd|Env.

TheorerTlis also proven from TheordBnthat is, we obtain thair and
€ satisfy the trace distribution propertgist(er) = tdist().

As aresult, the simulation is perfectly executed because simulatggSim
can simulate the real world from the information message throughksAdv
The tasks of the real world perfectly correspond to the tasks of the ideal
world. That is,

Reakd|Env Hyh sg”sc Ideakd||Env.
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Functionality

(@) | u.Fsc.estcong; = s.Fpic.estconghi

(b) | u.Fsc.estcongec= s.Fpic.estcongec
(¢) | u.Fsc.okcongyg, = s.Fpic.okcongygy

(d) | u.Fsc.active= s.Fpc.active

(e) | uFsc.mes= sFpic.mes

() | uFsc.ntask= s.Fpc.ntask

Initiator

(@) | ulnitsc.smes= s.Initsc.smes
(h) | u.lnitsc.rmes= s.nitgc.rmes

() | u.lnitsc.active= s.Initsc.active

() | ulnitsc.ntask= s.Initsc.ntask

Receiver

(K) | uReGgc.smes= s.Regc.smes
() | uRegcrmes= sRegcrmes

(m) | uRegc active= sRegc.active

(n) | uRegc.ntask= s.Regc.ntask

Environment

(0) | uEnv=sEnv

Table 7.25:State Correspondence for Rgahnd Ideadc (Part 1)
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Simulator (or Adversary)

(A) | u.Simsc.active= s Advsc.active

(B) | u.Simsc.smes= s Advsc.smes

(C) | u.Simgc.ntask= s.Advsc.ntask

(D) | u.Simsc.Fpic.estconghii = s.Fpic.estconghit
(E) | u.Simsc.Fpc.estcongec = S.Fpic.estcongec
(F) | u.Simsc.Fpic.okcondgy = S.Fpic.okcondgy
(G) | u.Simsc.Fpic.active= s.Fpic.active

(H) | u.Simgc.Fpic.mes= s.Fpc.mes

() | u.Simgc.Fpic.ntask= s.Fp|c.ntask

(J) | u.Simsc.Initsc.smes= s.Initsc.smes

(K) | u.Simgc.Initsc.rmes= s.lnitsc.rmes

(L) | u.Simsc.Initsc.active= s.Initgc.active

(M) | u.Simgc.Initsc.ntask= s.Initsc.ntask

Table 7.26:State Correspondence for Rgalnd Ideadc (Part 11)
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Simulator (or Adversary)

(N)
(©)
(P)
Q)
(R)
(S)
(M
(V)
(V)

u.Simsc.Regc.smes= sRegc.smes
u.Simsc.ReGc.rmes= sRegc.rmes
u.Simsc.Regsc.active= sRegc.active
u.Simsc.Regsc.ntask= s.Regsc.ntask
u.Simsc.Advsc.active=s.Advgc.active
u.Simgc.Advsc.smes= SAdvsc.smes
u.Simgc.Advsc.ntask= s Advsc.ntask
u.Simsc.Initsc.kval = s.Initgc.kval

u.Simsc.Regsc.kval = sRegsc.kval

Table 7.27:State Correspondence for Reablnd Ideadc (Part 111)
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1. Establish Session

(@) | Initsc.sendEstablishpic, sidprc)rpc
=cor. INitsc.sendEstablishsc, sidsc)ree
(b) | Rewc.sendEstablishpic, sidprc)rye
=corr ReGsc.sendEstablishprc, sidsc)rge
(€) | Foic.sendsSID, sidpic)adv =corr. Fsc.SENASID, sidsc)ady
2. Expire Session
(@) | Initsc.sendExpireprc,sidpic)ryc
=corr. m.senc(Expiresc, sidsc)rsc
(b) | Reasc.sendExpireprc,sidpic)ryc
=corr. F(S(}Senc(]:q-xli)ireDIC, sidsc)rsc
(¢) | Fopic.sendExpirepic,sidprc)ady
=corr. Fsc.sendExpiresc, sidsc)adv
3. Environment
(a) | All tasks of environment Env in Reat are correspond with the tasks of e

vironment in Idealc.

Table 7.28:Corresponding Tasks for Realand Ideadc
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Code for Initiator of Secure Channel, lgit

Signature:
sidsc = (Init,Recsidy,)
sidprc = ({|n|t, Re(}, Sid],)IC)

Input:

iﬂ(EStabliShsc, SidSC)Init
in(Send, sidsc, m)|nit
rand(s)"t
receivgReceive, sidprc,t)rp,c
receivgReceive, sidprc, Ciphenr,.

iNn(Expiresc, sidsc)init

Output:

sendEstablishprc, sidprc)ry,c
sendSend, sidprc, S)Fp
sendSend, sidpic, Ciphenry,
out(Receive, sidsc, plain)init
sendExpireprc, Sidprc)roc

Internal:
keycal¢sval tval)iyal
State:
smesrmese {0,1} U {1}, initially L kvale {0,1}* U{L}, initially L
activee {1, T}, initially L svale {0,1} U{L}, initially L
tval e {0,1} U{L}, initially L ntaske ({0, 1}*) U {L}, initially L
Tasks:

{sendEstablishprc, sidprc)rpc. S€NASend, sidprc, S)Fpcs
sendSend, sidpc, Ciphenr, ., Out(Receive, sidsc, plain)nit,
sendExpireprc, sidpic)ryc. Keycal¢sval tval)iyarl

Figure 7.45:Code for Initiator of Secure Channel, lgd(Part 1)
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Code for Initiator of Secure Channel, lgdt

Transitions:

Establish Session:

ESSl.in(Establishsc, sidsc)init
pre: active ntask= L
eff: ntask=ESS2
ESS2.sendEstablishpic, sidprc)rp,c
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSSl.in(Send,Sidsc,m)mit
pre:active= T, smesandntask= L
eff: smes= mandntask:=DSS2

DSS2.rand(s)"
pre: active= T, sval kvalandntask= L

eff: sval:= sandntask:= DSSa
DSS3.sendSend, sidpzc, S)rp e

pre: s:= svalandntask= DSSa

eff: ntask:= DSSh
DSS4.receivéReceive, sidpic, t)rpc

pre:tval = L andntask= DSSb

eff: tval := t andntask:= DSSc

Figure 7.46:Code for Initiator of Secure Channel, lgi(Part I1)
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Code for Initiator of Secure Channel, lgdt

Transitions:

Data Sending Session:

DSS5.keycalgsval tval)kyal
pre: ntask= DSSc
eff:
If sval# tval thenkval:= sval andsval tval andntask:= L.
Else all values withouactiveset initial valueL.

DSS6.sendSend, sidprc, Ciphenr,,.
pre:kval# L, cipher:= smespkvalandntask= DSS2
eff: smescipherandntask:= L

DSS7.receivéReceive, sidpic, Cipheng,,.
pre: active kval# L, rmesandntask= L
eff: rmes:= ciphera@ kvalandntask:= DSS4
DSS8.out(Receive, sidsc, plain)ni
pre: plain := rmesandntask= DSS4
eff: kval, rmesandntask:= L

Expire Session:

EXSI1. in(EXpir85c, Sidsc)mit
pre:active= T, mesandntask= L
eff: ntaski= EXS2

EXS2. sen((ExpireDIc, SidDIC)ch
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.47:Code for Initiator of Secure Channel, lgd (Part 111)
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Code for Receiver of Secure Channel, Rec

Signature:
Sidsc = (lnlt, ReQ Sld’sc)
sidprc = ({Init,Regq, sid]
Input:
in(Establishsc,sidsc)rec
in(Send, sidsc, M)Rec
receivgReceive, sidprc, S)rp e
receivéReceive, sidpzc,Cipheng,,.
rand(t)Ree
iN(Expiresc,sidsc)rec
Output:
sendEstablishprc, sidprc)rp,c
SenC(Send, sidprc, t)FDIC
sendSend, sidpzc, Ciphenr,,
out(Receive, sidsc, plain)rec
sendExpireprc, SidDIC)ch

IC)

Internal:
keycal¢sval tval)kyal
State:
smesrmese ({0, 1}*)U{L}, initially L kvale {0,1}* U{L}, initially L
activee {1, T}, initially L ntaske ({0, 1}*) U{.L}, initially
svale {0,1} U{L}, initially L tval € {0, 1} U{L}, initially L
Tasks:

{SenC(ES‘tab].i shprc, Sid])Ic)Fch R Senc(Send, sidprc, t)Fch R
sendSend, sidpzc, Ciphenr,,., Out(Receive, sidsc, plain)rec
sendExpireprc, sidpic)ry,c. Keycalg¢sval tval)gyal

Figure 7.48:Code for Receiver of Secure Channel, Re(Part 1)
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Code for Receiver of Secure Channel, Rec

Transitions:

Establish Session:

ESSLl.in(Establishsc, sidsc)rec
pre: active ntask= L
eff: ntaski= ESS2
ESS2.sendEstablishpic, sidprc)rpc
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSS1.in(Send, sidsc, MRec
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.rand(t)Ree
pre: active= T, tval, kvalandntask= L

eff: tval := t andntask:= DSSa
DSS3.sendSend, sidpzc, t)rpc

pre:t :=tval andntask= DSSa

eff: ntask:= DSSb
DSS4.receivéReceive, sidpic, S)Fpc

pre: sval= L andntask= DSSb

eff: sval:= sandntask:= DSSc

Expire Session:

EXS1. in(Expiresc, SidSC)ReC
pre: active= T, smesrmesandntask= L
eff: ntaski= EXS2

EXS2. SenC(EXpiI‘eplc, Sid]:)Ic)Fch
prentask= EXS2
eff: activeandntask:= L

Figure 7.49:Code for Receiver of Secure Channel, Re(Part II)
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Code for Receiver of Secure Channel, Rec

Transitions:

Data Sending Session:

DSS5.keycalgsval tval)kyal
pre: ntask= DSSc
eff: If sval# tval thenkval:= sval, andsval tval andntask:=
1
Else all values withoudctiveset initial valueL.

DSS6.sendSend, sidprc, Ciphenr,,.

pre:kval# L, cipher:= smespkvalandntask= DSS2

eff: smescipher:= L andntask:= L
DSS7.receivéReceive, sidpic, Cipheng,,.

pre: active kval# L, rmesandntask= L

eff: rmes:= ciphera@ kvalandntask:= DSS4
DSS8.out(Receive, sidsc, plain)rec

pre: plain := rmesandntask= DSS4

eff: kval, rmesandntask:= L

Expire Session:

EXSL. in(EXpir85c, Sidsc)Rec
pre:active= T, smesrmesandntask= L
eff: ntaski= EXS2

EXS2. sen((ExpireDIc, SidDIC)ch
prentask= EXS2
eff: activeandntask:= L

Figure 7.50:Code for Receiver of Secure Channel, Re@Part Ill)

272




Code for Adversary for Secure Channel, Adv

Signature:
sidprc = ({Init,Req, sidy;.)
Input:
receivéSID, sidprc)ry
receivéSend, sidprc, Mrp,c
receivgExpireprc, sidpic)rp,c

Output:
sendResponse, sidprc, OK)rp e

Other:
*Other arbitrary tasks are included the basic irijptérnajoutput
tasks such as corrupt message antfx).

State:
activee {L, T}, initially L ntaske ({0, 1}*) U{L}, initially L
smes ({0,1}) U{L}, initially L

Tasks:
{sendResponse, sidprc, 0K)Fy ., Other arbitrary tasks

Figure 7.51:Code for Adversary for Secure Channel, Ad\Part I)
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Code for Adversary for Secure Channel, Adv
Transitions:

Establish Session:

ESSL. receivgSID, sidprc)rp,c
pre:active= L
eff:active:=T

Data Sending Session:
DSSAL. receivégSend, sidprc, M)

pre:active= T andntask= L
eff: smes= mandntask:= DSS2

DSS&2. sendResponse, sidprc, 0K)Fy e
pre:ntask= DSS2
eff: smesntask= L

Expire Session:

EXSLI. receiVéEXpiI‘eDIc, SidDIC)FD|C
pre:active=T
eff: active:= L
Other tasks:
This adversary makes other arbitary tasks.

Figure 7.52:Code for Adversary for Secure Channel, Ad\(Part I1)
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Code for ideal Initiator of Secure Channkditsc

Signature:
sidsc = (Init,Regsidy,)
Input: Output:
in(Establishsc, Sidsc)m senc(Establi shgc, Sidsc)Fsc
in(Send, sidsc, m)m sendSend, sidsc, M)rg.
receivgReceive,sidsc,Me9r,. OUt(Receive,sidsc, e
in(Expiresc, sidsc)imp sendExpiresc, sidsc)rsc

State:

smesrmese ({0, 1}*) U{L}, initially L
ntaske ({0,1}) U{L}, initially L
activee {1, T}, initially L

Tasks:
{sendEstablishgc, sidsc)rs., S€NdSend, sidsc, M)k,
sendExpiresc, sidsc)rsc, OUl(Receive, sidsc, Me gy}

Figure 7.53:Code for ideal Initiator of Secure Channkgitsc (Part 1)
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Code for ideal Initiator of Secure Channkilitsc
Transitions:

Establish Session:

ESSl.in(ES‘tabliShsc, Sidsc)m
pre: active ntask= L
eff: ntask= ESS2
ESSZ.senc(Establishsc, Sidsc)FSC
pre: ntask= ESS2
eff: active:= T andntask:= L

Data Sending Session:

DSSL.in(Send, sidsc, M)
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidsc, M)gg.
pre: m:= smesandntask= DSS2
eff: smes= 1 andntask:= L

DSS3.receivéReceive, sidsc, MFy,
pre:rmesandntask= L
eff: rmes:= mandntask:= DSS4

DSS4.out(Receive, sidsc, m)m
pre: m:=rmesandntask= DSS4
eff: rmesandntaski= L

Expire Session:

EXS1. in(EXpil"esc, Sidsc)m
pre: active= T, smesrmesandntask= L
eff: .= 1 andntask:= EXS2
EXS2. SendExpiresc, SidSC)FSC
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.54:Code for ideal Initiator of Secure Channklitsc (Part I1)
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Code for ideal Receiver of Secure Chanidgc

Signature:
sidsc = (Init,Recsidy)
Input: Output:
in(EStabliShsc, Sidsc)@: SendEStabliSthc, Sidsc)Fsc
in(Send, sidsc, Mgge sendSend, sidsc, M)rg.
receivgReceive,sidsc,Mrs. OUYReceive,sidsc, Mgge
in(Expiresc,sidsc)gee sendExpireprc, sidsc)rsc

State:
smesrmese ({0, 1}*)U{L}, initially L ntaske ({0,1}*)U{L}, initially L

activee {1, T}, initially L

Tasks:
{sendEstablishprc, sidsc)rge, S€NASend, sidsc, M)k,
Out(Receive, sidsc, m)R7e6, SenC(EXpiI'eDIc, Sidsc)FSC}

Figure 7.55:Code for ideal Receiver of Secure Chanfgsc (Part 1)
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Code for ideal Receiver of Secure Chanfggc

Transitions:

Establish Session:

ESSl.in(ES‘tabliShsc, Sidsc)@
pre: activeandntask= L
eff: ntask= ESS2
ESS2.sendEstablishsc, sidsc)rge
pre: ntask= ESS2
eff: active:= T andntaski= L

Data Sending Session:

DSS1l.in(Send, sidsc, M)gge
pre:active= T, smesandntask= L
eff: smes= mandntask:= DSS2

DSS2.sendSend, sidsc, M)gg.
pre: ntask= DSS2
eff: m:= smesandntask:= L

DSS3.receivéReceive, sidsc, Mg,
prermesandntask= L
eff: rmes:= mandntask:= DSS4

DSS4.out(Receive, sidsc, m)R—ec
pre: ntask= DSS4
eff: rmes:= mandntask:= L

Expire Session:

EXSL1. in(Expiresc, Sidsc)@:
pre:active= T, smesrmesandntask= L
eff: ntaski= EXS2

EXS2. sendExpireprc, sidsc)rse
pre: ntask= EXS2
eff: activeandntask:= L

Figure 7.56:Code for ideal Receiver of Secure Chanfgsc (Part I1)
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Code for Simulator for Secure Channel, Stn

Signature:
sidsc = (Init, ReG sidy.)
Input:
receivgSID, sidsc)rgc
receivgSend, sidsc, |M|)rgc
receivgExpiresc, sidsc)rgc

Output:
sendResponse, sidsc, OK)rg.

Other:
*Other arbitrary tasks are included the basic irimi#rnaloutput
tasks such as corrupt messagégoserandrand(x) andout(x).

State: . - .-, - .-, .
activee {L, T}, initially L smes= {0,1}* U{L}, initially L

ntaske ({0,1}*) U{L}, initially L lengthe ({0,1}*) U{L}, initially
Other arbitrary variables; call "new” variables.

Tasks:
{sendResponse, sidsc, 0K)Fg. }

Figure 7.57:Code fot Simulator for Secure Channel, Sw{Part I)
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Code for Simulator for Secure Channel, Stn

Transitions:

Establish Session:

ESS1.receivgSID, sidsc)rsc
pre: active ntask= L
eff: active:=T.

Data Sending Session:

DSS1.receivéSend, sidsc, |M)Fge
pre:active= T, ntask= L
eff: length:= |m| andntask:= DSS2
DSS2.sendResponse, sidsc, 0K)Fg.
pre: ntask= DSS2
eff: lengthntask:= L

Expire Session:

EXSL. receivgExpiresc, sidsc)rgc
pre:active=T
eff: active:= L

Other tasks:

This simulator makes arbitrary tasks to simulate the real world

protocol system Regt. The tasks mey be run with the infor-

mation obtained from the simulator. Additionaly, this simula-
tor can output the message from the adversary of the simjulat-

ing world to the environment.

Figure 7.58:Code fot Simulator for Secure Channel, Siw{Part Il)
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Code for Random SourcrdD, i), Fsre,
parameterized by probability distributioD (u),
wherey is the uniform distribution over distributioD from [14.

Signature:
Input: none
Output:rand(d),d € D
Internal:chooserand

State:
chosenvakE DU {L}, initially L

Transitions:

chooserand

pre:chosenvak L

eff: chosenval= choose-randoni, )
rand(d)

pre:d = chosenval

eff: none

Tasks:
{chooserangrand(x)}

Figure 7.59:Code forSrqD, 1), Fsre
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7.4 Equivalence of Three Cryptographic Chan-
nels

From the four above-mentioned theorems, we can immediately obtain the
following main theorem.

Theorem 8. The three channels, SC, 2AC, and DIC are reducible to each
other under some specific types of schedules.
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Chapter 8

Conclusion

This thesis focused on the security of KEM and DEM for ISO, and Univer-
sal Composability for SC, 2AC, and DIC with task PIOA. The results are
itemized hereatfter.

1.

We introduced three appropriate definitions of NM for KEM, SNM,
CNM and PNM.

The NMs are equivalent to each other for three attack types; CPA,
CCA1, and CCA2.

The definition of IND is equivalent to that of the NM for KEM under
CCA2.

A protocol of KEM, X, UC-realizesfgewm if and only if X is IND-
CCA2 KEM.

A protocol of DEM, ¥’, UC-realizesfkem-pem in the Fxem hybrid
model if and only ifY’ is IND-P2-C2 DEM.

The three cryptographic channels, SC, 2AC, and DIC, are reducible
to each other. More specifically, we showed that 2AC and DIC are
reducible to each other under some types of schedule and that DIC
and SC are reducible to each other under some types of schedules in
the UC framework with PIOA model.
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