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                             Abstract 

  In Part II of this paper it is shown that, provided some errors be overlooked, effects 
 of meteorological factors can be expressed solely in terms of an atmospheric pressure 

 gradient when a storm surge computation is performed. It is also remarked at the same 
 time that the theoretical equations derived here, taking account of eddy viscosity, coin-
 cide approximately with the empirical formulas which have come into general use very 
 recently. By means of our computational scheme, influence of eddy viscosity upon the 
 resonant intensification of waves is studied, and it is concluded, after some investigations 

 and calculations, that generally it is small and in some cases small enough to be safely 
 neglected. Next, the disturbance which has been assumed ever since Part I is too small 
 in its spatial extent to stand for a larger example such as a typhoon. Therefore a 

 resonant high water caused by a depression whose dimension is large compared with the 
 linear scale of a sloping bottom is computed under similar conditions, but no sensible 

 modification is observed provided the present fundamental assumptions are employed. 
 Finally, since it is formidable in a practical computation of a storm surge to renew 

 meteorological data at every step of the calculation, intermittent supply of the data is 
 performed tentatively. With a view to obtaining a general idea of the situation, the high 

 water treated in our problem is computed again by furnishing data at intervals of certain 
 steps. The fact that no marked difference is resulted gives us not only an understanding 

 of the significance of resonance phenomenon itself but also a suggestion that sufficient 
 reliability may be obtained unless too long an interval is chosen. 

6. General considerations on equations of motion 

 Since our problem is confined to one-dimensional water surface, according 
to the wave theory of shallow water the equations 

 au  ±uau +v au =1 6P+v82u 
 p  axaye                 (33 )  at  ax 

 p=  pg(P+72—  y), (33'  ) 

            auay =0 (33") and+                Oxay 
are employed as the fundamental laws governing the motion of sea water. 
But, since it is impossible to treat these equations as they are, we shall take 

the usual way of simplification by substituting their means over y, the coor-

dinate measured in the upward direction, for their original forms. Meanwhile 
some considerations become necessary with the boundary layers on the bottom 
and on the surface of water. In the case, however, when the main stream 

varies with time or vertical distance from the surface, to distinguish the 

boundary layer from the main flow would be difficult, sometimes even illegi-

 1) Professor, Research Institute for Applied Mechanics, Kyushu University.
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timate. But, now that we cannot proceed further without taking some step 
for it, we shall assume for convenience's sake the following distinction  : 
supposing that the main stream is given by a function, u(x,  y  ; t) say, chang-
ing gradually with respect to time and space, the boundary layer will be 
defined as the region in the flow where the function mentioned above deviates 
noticeably from the existing velocity as we approach the bottom or the 
surface. If the boundary layer may be regarded as sufficiently thin and 
negligible in comparison to the depth of water, then consequently the slip of 
the main stream is necessarily needed on the bottom as well as on the surface 
of the water. Let us begin our computations with this flow picture as the 
basis. 
 Turning now to  Ts, the traction exerted by wind on the surface of water, 
we may assume it is determined solely by  V., the wind velocity at a standard 
height, this supposition being supported by the fact that the wind velocity is 
large compared with the water velocity in a higher order and that therefore 
there is no need to take into account the boundary layers of air and of water 
formed on their interface. Thus we may put 

 ie(   4);  Ts  =  kpaV  a2 (k~0.0024), 0.0024), (34) 
where  pa means the density of air. The real problem lies in estimation of 
Tb, the frictional force on the bottom of the water. Adopting the picture of 
the bottom slip stated above, together with the law of squared velocity for 
the turbulent friction, we may write 

              irt(au\              \j
y= plublub ; ub-==u (x,— h ; t). (35) 

For the sake of easiness of subsequent treatments, however, we shall resort 
to an expedient of substituting temporalily  lubl with  vo, a kind of its mean 
value with regard to both space and time  : 

 Tb-"="•k'  pvoub. (35') 

Concerning u(x, y ; t), on the other hand, we shall assume it in the form of 
a polynomial of the second degree, a parabolic distribution in other words, 
against y, the vertical distance  (9)  . Evidently we should be able to grasp 
the main point of things by means of this simple approximation even if there 
be a backward stream at the  bottom." If we express three indeterminate 
coefficients with the aid of conditions (34) and (35) together with the average 
velocity defined by 

 = 5n 
             h+72-hudy'2)(36) 

then the distribution of velocity may be written 

  1) We shall have another chance to discuss this problem in more detail. 
  2) In  m hat follows, a bar placed above a letter indicates that the mean value with 

 regard to y is to be taken.
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 h'T, (Ts—Tb)  +h'Ts  (y' h'  (Ts—Tb) Yr   12 
         2P 6PP  1h'  2P  1h'  )  ,  (37) 

where  =h+v, and  y'=y—v. 

Substituting this value of u at the bottom y= —h for  ub in (35'), we obtain 

                      pvo(g hr Tsle) 
                                                   Tb

,  6
P  3u  / 

or              Tb—1+2kpvou2+22  Ts, (38) 

                               3v whereA=(39)                                        k'
voh'• 

Further, introducing here the third constant  k", we put 

 pv0=k'plub1=—k"pliil ; (40) 

validity of this approximation might be assured only for the case when the 
flow is almost always in one direction throughout its depth. Consequently, 
the bottom friction has the form 

 Tb= (41) 

where  m=  (2+22)-'  , and  s  =  2(1+  2)-1k"  . (41') 

 Expression (41) for Tb has just the same form as given recently by 
GROEN and GROVES (10). The coefficients  wt and s can be evaluated in the 
following way when the stream is in one direction without backward flow at 
the bottom  : by making use  of  BOWDEN'S formula (11) we have 

 0.00251ub  'marl/  0.0025voh. 

So that from (39) we get  2>3.0, since k'=0.0025. It follows that 

 m<0.125, and  s  _�,0.75k"==0.002. 

These values are found compatible exactly with those mentioned by GROEN 
and GROVES as appropriate for the North Sea  : 

 nv,5..0.1, and slid =---0.2cm/sec, 

if we note  li,t( is of the order of  1m/sec there. Legitimacy of formula (41) 
for the bottom friction, therefore, has been established. 

 Now, to take the averages of the equations in regard to the depth, first 
integrate (33") from  —h to  i. If we consider the relations 

 ah                                     V
b= 

on the bottom, and 

 vs—                                072672                                          +us                       ata x 

on the surface respectively, where
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 h  ; t), 

 v  ;  t), and  vs-2)(x,  v ; t), 

then we are led to 

                av  8  
 at  Oxf-g(h+V)), (42) 

the so-called equation of continuity. Next, after substituting for p in equation 

(33) the expression given by (33'), integrate the both-hand sides with respect 
to y, then the left-hand side (LHS) is found to be 

              0-{g(h+av(av.6v           LHS----Rv)} us at +usatox 
 —itt,vb+ 

Ox {u2 (h+— us2  Ox +u&vb, 

 Or  LHS—a {u(h+72)}±8x{ie(h+v)} ;       OEO 

in carrying out the

( above computation the following relations were  employed  :               at -4{Ü(h+V)}—usZ, 
           C au 1 (  a  ,—672 

              3u ax dY—2 I, Oxku2(h+72)} }—use ox+ubvbi, 
                                au  and 5/)/audy—usys—ubvb+uax dy. 

On the other hand, making use of (34) and (41), the right-hand side (RHS) 
becomes 

                                     )2              RHS= —g(h+)(6 + 6+ (1.+M)  TS  —slala.                         axOx 

Expressing the equation (33) in its  'averaged' form  instead of the  `integrated' 
form, we obtain, therefore, 

         1  r _a
x—             h+77 at fit(h+V)1+{u2(h+v)}] 

                     OP av (1 +m)Ts  

                   — 

      —g
ax +03)                     azOxp(h+v) h+v - 

 With a view to reducing equation (43) into a form more familiar to us, let 
us introduce a function q  (x,  t) such as 

 U2  =  qu. (44) 

Then it follows from (43) that 

         au  au  r ava           +q++fq(h+v))]            at Ox h+vLat Ox 

                    n.aP  ++m)Ts  
                ax—g xp(h+v) h+v' (43')
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and if ignoring some errors we might put q as equal to  Fc in the third term 
on the left-hand side, then this is found to vanish by virtue of (42) . We 
have namely 

 6g 61,7OP ar2(l+m)Ts  
 at+q Rx—gaxgax+p(h+v) h+v(45) 

Equations (42) and (45) constitute the system of our basic equations . Further-
more considering that what is derived out of (45) by replacing q with  u is 
nothing but the  'fundamental equation' usually adopted (10) , we should say 
that this can be valid only if  uz might be approximated by  u2, or in other 
words, if the stream be predominantly one-directional throughout the depth 
at a fixed value of x. On the basis of this assumption , we also rewrite the 
fundamental equation (45) in the form 

 au  81,cSP Ov(l+m)Ts           -— —g 
axg  ox+p(h+v)(45')  81xh+v 

  In the third term on the right-hand side of this equation , if we neglect  v in 
the denominator against h, then the term becomes a known function of x and 

 t, and accordingly by introducing a known function defined as 

                   Q(x,t)=P l+m  CT Ts  
                          pg  3 h(x)               dx' (46) 

(45') can be transformed into 

 +t6tic  =—gav  6Qslidg                                               (47)                atax ax  —g  a x  h+v  ' 

this would reduce to equation (1) of Part I, provided we substituted Q by P 
and neglected the last term corresponding to the bottom friction. From this 
we know that the effect of wind traction can be evaluated in terms of that 
of pressure gradient. Only, in the case when a stationary disturbance advan-
ces with a uniform speed, does inconvenience in treatment arise from the 
fact that Q remains still non-stationary owing to h(x) involved in the deno-
minator of  Ts. However, when the disturbance itself is not stationary, this 
property does not constitute an additional difficulty, and the formulation (47) 
is expected very useful for calculations of storm surges. When the variation 
of h is small enough, or merely qualitative result is aimed at, we may ap-

proximate h with  ho, the average value over the region in  question  ; thus 
representing the disturbance by the function 

 Q0 (x, t)Ppgh
o+m 'Tsdx, (46') 

the problem is simplified to some extent. 

7. Effect of bottom friction (1) 

 Let us first investigate the influence of bottom friction upon the stationary 
attendant tidal wave in the area of uniform depth  hl. Reducing concerning 
quantities into non-dimensional forms in the same manner as in Section 2, 
we put
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                V —24,Li=x0,LVit  =to,-1-21  =n, and=91, (48). 

then (47) and (42) become 

 au, auo1  8 , Lis luoluo               +u
o =  at oaxom2 axo°2"-q1)— hi  1+721' 

                                              (49) 

                        ato                   6,71 a andaxo{uo(l+m)} 

respectively, where 

 m=V/i/gh1=-1/110/111 

is the parameter defined in equation (12) of Part I. Now, if we assume that 

                                  x— 
                        Q= Q(Vt \,                           \L i1 

namely  91=  91(  xo  to), 

then the wave in question will be found as asolution of 

        d  j11uoluo 
 de  lu° 2 u02m2°71-1-qii I—Lhis li1+vi' 

                                              (50) 
and  721=u0(1+721), 

the non-linear ordinary differential equation of the first order, where we write 
 x0-10=6 for short. 

  In order to solve this equation, we need to know the boundary conditions. 
Evidently they are  uo=0, accordingly  n=0, as  E—>±00 (the region where  qi=-0 
holds true). To begin with, from (50) the equation governing the tidal level 
is known to be 

 {m2  —  (1+m)3} dv, ---(1±Mdi              )3Lis(51)            dd$h i 

  and putting  0 we have 

 {m2—  (1+V1)3}dmL=(51')                               d$his i 

 Let us scrutinize the property of this equation in the two cases which 
follow. First, when  71i>0, (51') is readily integrated into the form 

            Lis
i1—m2   h1                                —3 log 17211 —3721--2V12+ const., (52) 

and so  Vi—>+0, 

                as  E—>+  00 when  1�m2, 

and  as  co when  m2>1. 

Secondly, since the integrated form for the case  7/i<0 is obtained simply by 
changing the sign of the left-hand side of (52), we know that
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                 as  E—>+  00 when  1  >m2, 

and as  E—>  —  co when  m2�1. 

Combining these two cases, we may conclude  :— It is the case when  1,�m2 
that there can exist a tide extending forward to an infinite distance and 
vanishing there (a so-called preceding tide), and on the contrary when  m2�1 
that there can exist a tide extending backward to an infinite distance and 
vanishing there (a so-called receding tide). 

 Then, in order to have a tidal level vanishing at an infinite distance in 
 front and in the rear of the disturbance for the cases  m2�  1 and  1>m2 res-

pectively, the tide should be necessarily null  (72L-_--0, accordingly uo-----0) in 
those  regions  ; this is in fact a particular solution of equation (51'). In other 
words, when 1._.7=11m2, at the rear end of the distribution of disturbance  vi 
becomes zero and the water is calm in the background area, while on the 
other hand when  m21  vi vanishes at the forward end of the  q,-distribution 
and in front of it a domain is left free from all influences of disturbance 

(12). In this way we can clarify the pertinent boundary conditions when 
integrating equation (51) for the purpose of computing the tidal wave through-
out the whole region. To sum up, we have to put  v1=0 at the rearmost 
and the foremost ends of q1 for the cases 1.---±-pi2 and  m22-:1 respectively. 

 It is just the same as we saw in Section 3 of Part I that equation (51) has 
two solutions when  m2=1, and there is no question about it. At present, 
however, a difficulty arises in its neighborhood. Namely as is evident from 
the equation transformed from (51), namely 

  —1(1 +n)3 dqi                                    2LIS  dE(dE + mh; Ivilvi}/{m2- (53) 
D, the denominator of the right-hand side, vanishes at a point when m2 ap-

proaches unity beyond a certain limit, and the position is found where the 
gradient of surface elevation increases or decreases indefinitely. Since the 
sign of N, the numerator, is kept generally invariable in a small domain 
including that point,  c1721/de jumps abruptly from —  00 up to +  00 (or else 

                                            from  +  00 down to  —00) and 
                                          we cannot elongate the water 

 /rt.< 

                                          surface continuously in the 
 0,00   /  o forward (or backward) direc- 

        ,g                                         tion. With a view to studying 

  D=o the state of affairs in more 
 Pr:o 1 

        /-detail, for the cases  m<1 
                                        various phases of the integral 

 m-1-0 curves  721(E) are sketched in 

                                          FIGURES 5 taking into  con-
0.00 100               33=0                                        sideration the sign of   

   /p„,:::: cIE 
                                     (or  N  /  D) in the neighborhood 

                                       of the forward end of the 

  Fig. 5. Possible forms of attendant water surface  q1-distribution, which is as-
   at the forward end of the  disturbance  ; m<1. sumed in the form
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 Q=Po—h{l+cos (nE)}, (1$1<1),  91=  (54)  h i 
                          0, otherwise, 

the same expression as P in equation (15) of Part I. 
  What is most important for us is the position,  (E0,  no) say, where not only 

the denominator D but also the numerator N vanishes at the same time. 
In order to know the orientation of the curve  ii1(E), the limiting value of 
the right-hand side of (53) at that point is worked out. After some simple 
manipulations we obtain 

 d
dE  )02+211  21  ( ddqEl   )0  31  his  (1  +721°))21°).  )o  +  (1  +  721°)(  d2::  )0-0' 

Thus with the aid of the relations 

 (dgi/dE)0>0,  (d0qi/dE2)o<09 

 1+vi°>0, and  vi°<0, 

two branches of  VI (E) passing through  the point  ($09  )21°) are  found  : for one 
of them we have  (dvi/dE)0<0, and for the other,  (dvi/dE)0>0. The water 
surface generated by extending the latter forwards and backwards indefinitely 

(the curve LL' in the figure), we shall call it the limiting surface, for it is 
the lowest water surface possible. Some of the typical surfaces realized in 

practice are shown in full lines. Of these, concerning the surface which in-
tersects vertically the horizontal line denoted as  D=0, it is assumed, in order 
to ensure continuity of that surface in the forward region, that it is jointed 
with the limiting surface by means of a vertical surface as shown in the 
figure. Since, as stated before, vertical acceleration is ignored in our equa-
tions of motion, a surface having a vertical tangent at a point must be 
mentioned as lying beyond the scope of our approximation, and accordingly, 
all we can do is to connect through that point more or less arbitrarily, 
surfaces situated in front of it with those in the rear. Behaviors of surfaces 
in the neighborhood of that point have to be examined in detail by more 
elaborate treatment ; at any rate we may expect that a bore-like surface is 

generated near the point. 
 When  m=1  —0, the axis  vi  =0 coincides with the line  D=0. Change in the 

pattern is therefore brought about more or less as is shown in the figure. 
On the other hand, when  m>l, a similar problem arises near the rear end 
of the disturbance  qi (E), but we can verify without difficulty that the general 
behavior of surfaces may be visualized by the figures produced from both of 
FIGURES 5 by inverting them upside down, interchanging right and left at the 
same time. In both of these cases, the bore-like jump through which the 
level ascends steeply takes place at a point where the condition 

 M2  =  (1  +  V1)3, or V'(55)                           g(h
i+v) hi  ) 

is satisfied.
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 In order to estimate 0.1,0 
the effect of friction 

in practice, let us first 

calculate an attendant 
swell appearing in the  4,1111111111111111. case  m=1  —  0. Substi- 0.05 
tuting (54) for q1 in       IL (53), and assuming the 
same constant values 
as given already by (16) and (16') of Part  -Lo  -as- 0  a  5 LI 
I, the surface eleva-

tion of water is com-

puted through numeri-
cal integration. The  0.0s 
result is shown in 
FIGURE 6 ; for ready Fig. 6. Resonance of high water (a) with and (b) 

comparison the curvewithout  friction  ; m=1-0. 

is also drawn for the case when viscosity is negligible. In both of them,  111 
is replaced by  ho  =24m and the following values are employed : 

      7roLis                        —0.013090 , andh
o=1.0000  ;                      ho 

s is assumed to be 0.0024, the value not so far from those accepted in general. 
From this result we may say that the surface elevation is well reproduced 

by the curve yielded from the assumption of an inviscid fluid except the 

neighborhood of the bore, where the approximation is found less satisfactory. 
Besides considering that  m=1 is one of those cases in which the effect of 

friction appears most conspicuously, the above comparison suggests to us 
that it would be quite small altogether. TABLE 3 shows another example in 

which 

                                TABLE 3. 

 72 computed from nonlinear equations without (0) and with (x) friction ; m2=0,6. 

 X 0 x X 0  x 

 —  10km 0 .000m 0.000m  lkm  0.475m 0.473m 
 — 9 012 012 2 442 439 

 — 8 048 048 3 388 385 
 — 7 102 102 4 322 318 

 — 6 171 171 5 246 243 

 — 5 246 246 6 171 167 

 — 4 322 321 7 102 098 

 — 3 388 388 8 048 044 

 — 2 442 440 9 012 +0 .008 
 — 1 475 474 10 0.000  —0.004 

  — 0 0 .487 0.485
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 hi  —40m, m2=0.6, and  m2Lis/hi  =0.375. 

The difference between the cases with and without viscosity is found reason-
ably small as previously expected. What is more important in the bottom 

friction features is a low or a high water of small elevation which appears 
in front  (m<1) or in the rear (m>1) of the disturbance respectively, extend-
ing however to a great distance. For example, in the case of  m2=0.6 above-
mentioned, if the boundary value at E=1.0 : 

                                —0.004 
 40=0.0001 

is introduced in (52) in order to determine the constant involved we obtain 
accordingly the relation 

               —0.3750.4+4000 ; (56)                                        v
i 

from this we know that the distance through which  vi decreases to one half 
or  —0.00005 is  E=104 or about a hundred thousand kilometers in the forward 
direction. If larger  v be chosen, we obtain a lesser distance, but still it 
would not be unusual to find a distance of several thousand kilometers. If, 
therefore, two-dimensional extent of sea is confined by some reason or 
another against a disturbance whose intensity and scale are large enough at 
the same time, then we should expect with certainty that the influence of 
the disturbance may be transferred to a greater distance : this might be 
significant towards understanding the physics of typhoons. 

8. Effect of bottom friction (2) 

 Since we saw in the preceding section that the influence of friction upon a 
surge would not be so large, we shall study in a simple way its effect upon 
the resonance phenomenon by introducing linearized frictional force into the 
system of our linearized  equations. Ignoring the inertia terms and appro-
ximating  h+v, the depth, by h, and  slid, the friction term , by r, a constant 
velocity, (42) and (47) become 

 672  6(2 r 
 at  mg6x  g  ax  h"' 
                                              (57)                       0726  and 

                        atax (hu) 

respectively ; this is the system of the fundamental linearized equations go-
verning a surge of a dissipative medium . 

 By putting Q=Q (X), the stationary attendant wave is first computed . 
Employing the notations defined  previously  : 

                                                V2 
        V =u°'xt=X;hi=11' gh,=m2, 

equations (57) may be written
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                      m2rdqi                    (1 –m2)
dX+hi Vm–dX'                                                 (58) 

and  =  teo, 

which can be integrated without difficulty into the form 

 721=e-ei(const.   15x'1°1,eE1'dX1), 
 1–m2—dX 

                                                (59) 
                       m2   r  where  Er=  1  —  M2  kV  • 

When, therefore,  m<1 namely  E>0, we have 

             -CXdqi„
, (60)                           1–1 m2 e — dX' ecx                           VI – 

and on the other hand when m>1 or  E<O, 

               _  1dqieEx" 1 –m2x dX'ec x dX'(61) 

As  m-4±0, we are led to a finite solution 

                             hiV  dq1                                             ( 
          r  dX'(62) 

but seeing that this is too crude to be looked upon as an approximate value, 
we should expect that both of (60) and (61) would also cease to be valid 
when  m approaches unity beyond a certain limit. 

 Now assuming (54) for the expression of q1 and also 

 Po  =0.10m,  Li  –10km, and  V  =  15.3362m/sec, 

the same values as used previously, together with the constant  r  =0.002m/sec, 
we shall compute the high water for the two cases  h1  –40m and  h1=8m. In 
the former we have  hi2  =0  .6  , and  E  =4.891  x10-skm-', while in the latter m2=3.0, 
and  c  =  –  2.445  x10-2km-' ; integrations involved in (60) and (61) may be 

                                TABLE 4. 
 12 computed from linear equations without (0) and with (x) friction ;  m2=0.6 and 3.0. 

 m2=0.6  m2=3.0 

 X 0  x 0 

 —  10km  0.000m  0.000m  0.0000m  +0.0192m 
  —  7.5 073 073 — 0146 + 0055 

  — 5 250 248 — 0500 — 0306 
  —  2.5 427 420 — 0854 — 0690 
   0 500 488 — 1000 — 0886 
 2.5 427 409 — 0854 — 0792 
   5 250 228 — 0500 — 0478 
 7.5 073 050 — 0146 — 0143 
   10  0.000  —0.023  0.0000  0.0000
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carried out in the domain  IX  L-1, and we get 
when m2=0.6 

 vi=  —0.001989{a sin  (ne)  —  ir cos  (re)  —  re-au+ol, 

and when m2=3.0 

 721=0.001977{a sin  (re)  —  r cos  (re)  —  reau-t)), 

where  e=  X/Li, and  a=c1.4. 

 v's computed through both of these formulas are shown in TABLE 4, in cont-
rast with the results from linear approximation for an  inviscid fluid (see 
TABLE 2 of Part I). In TABLE 4 the column  m2=0.6 gives the linear approxi-
mation corresponding to TABLE 3. By comparing both of them with each 
other, it is noticed that the dissipation term contained in the linear theory 
is particularly too great. Since this results from the fact that the assumption 

 r  =0.002 m/sec was in reality too large, we shall estimate the appropriate 
value of  slid inversely. From (58),  Vv/hi�0.2  m/sec, and using  s=0.0025 
we obtain slidX0.0005  m/sec. r defined as a kind of its average should be 
estimated therefore as of the order of 0.0004 m/sec at the most. Accordingly, 
we know that the value of r used by us was about five times as large as the 
correct one. Also for the case  m2=3.0, the situation is found to be completely 
similar. But, as already remarked, in cases of the resonance on a slope 
between them, the velocity of water can attain 0.8  m/sec at its maximum, so 
that it gives  =0.002  m/sec. Since our object in view is primarily to show 
that the influence of frictional force is quite small, we shall use this maxi-
mum value 0.002  m/sec throughout all cases. Furthermore, it is evident that 
in the case m2=0.6 we may substitute for the attendant wave the tidal level 
taking place in the limit of vanishing viscosity and to adopt it as the initial 
condition for subsequent integrations. 

 Our next step will be the calculation of the resonance. Computation scheme 
arranged for the electronic computer is completely the same as already 
mentioned in Section 5 of Part I when we treated the linearized theory with 
vanishing viscosity. Using  2=  hii/V in place of  u, and writing hoH(x) for h(x), 
the depth,  ho being  24m, we obtain 

               OA r 2 
             at = —+G), 

      

t  ho  H                                           x 

                                              (63) 
 and6v=  —  V62                    at  a

x' 

where G=6Q/6x. They can be expressed therefore in terms of differences , 
completely similar as in Section 5, and after all is done we arrive at the 
system of equations which may be derived simply by adding 

              0.002. 21+An                   4t = 0.002 Lit =0.00045281 AL +2n            24il
m 242T/A4 

to the right-hand side of the first equation of (32) of Part I. Thus, our diffe-
rence equations are found to be
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            Ap—              ( 1 0.00045281) (AL +AR 
 2)                  HM 

               +--             1HA/Vn                      VL—— 0.015708<.(x—Vt)>M}, ,   37r(64) 

    1 1 
and VP=2(VL-1-77n)± 3(AL—AR); 

as the inital condition use is invariably made of the value  77=d for an inviscid 
fluid (see TABLE 2). 

 This computation results in a series of curves in FIGURE 7A. Only in the 
neighborhood of their highest profile, are they compared with the results 

yielded through the linear theory under the assumption of an inviscid fluid, 
and the differences between  them are observed to be quite small. In fact 
they are much smaller than those between the theories  non-linear  =inviscid 
and  linear  =inviscid, both of which are shown in the same figure. Out of it 
we may expect with certainty that by modifying the value of r, the constant 
for friction, which was assumed too large, into a more appropriate one, 
the difference can be reduced much further. In this way we may conclude 
that the maximum level of the resonant high water is not influenced possibly 
by error contained in estimation of bottom friction nor by its very existence, 
but this does not necessarily mean that the friction itself might be ignored 
in all cases. Since the effect of bottom friction is supposed to make its ap-

pearance most remarkably for the tide which has entered into the region of 
shallow water, we should take the mean value placing more importance upon 
the shallow region if we want to determine the value of r valid throughout 
the whole area. 

9. Effect of scale of disturbance 

 As stated in Section 2 of  Fart I, the ratio  L2/Li--a, where L1 and L2 stand 
respectively for the scales of a disturbance and of a sloping bottom, is one 
of the factors determining the values of  72  /  1/16-=-720 and  ii/V=--uo. All our com-

putations performed up to now are concerned exclusively with the case  v=1, 
but when dealing with typhoons a takes a value, we suppose, sensibly less 
than unity. So in what follows, a calculation will be performed tentatively 
corresponding to  a  =1/2. To be more concrete, this is the case when  L,=20 km 
and L2=10 km, namely preserving the sloping bottom constant we have dou-
bled only  Li, the dimension of a disturbance. For the sake of simplicity, 
we make use of the linearized theory and introduce at the same time the 
bottom friction assuming  r  =0.002  m/sec. The height of the attendant wave 
is found independent of L1, and we have only to magnify the transversal 
dimension. Computation is started from the instant when the foremost end 
of the disturbance touches the rearmost point of the slope. By naming it 

 —60 th step of our calculation , we shall be able to make the middle point of 
the wide disturbance we are now interested in coincide with that of the 
narrow one previously treated. 

 Computation formulas are completely the same as (63), except that the 
expression of G becomes
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         Fig. 7. Changes in surge height according to (A) several approximations 
          adopted, and (B) to assumed scales of  disturbance  ;  nonlinear in-

           viscid,   linear inviscid, 0-0-0 linear viscous, • —  •  —  • inter-
           mittent data supply,  •—•—• larger scale  disturbance.
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          G= 8Q  a —P(1 + cos 7rX-= RP° sinX(65)            ax  ax°2L,/2L,  2L1 

where, just as in the case of the narrow disturbance,  Li  =10  km. Therefore 
the corresponding difference equations on the whole also remain unchanged 
from (64), only the last term in the last parentheses of the first equation 
should  read 

                             7r            — 0 .007854 < sin 20000(x—VO>(x and Vt in m). (66) 

Expression (66) shows that at the instant t=  —60  4t, the middle point and 
the forward end of the disturbance pass through the points x=  —  10  km, and 

 10  km respectively, traversing the distance  4x  (=  500  m) in time  34t. The 
inviscid values  (v=2, TABLE 2) are used as the initial tide. 

 Calculations by means of the electronic computer were performed in the 
same way as in the preceding report, and the results are reproduced in 
FIGURE 7B together with those of the preceding example. A cursory glance 
at the figure shows the maximum heights coincident practically with each 
other. In other words, it is concluded that the resonant wave height seems 
to be either independent or very slightly dependent upon a. We are not in 
a position at present to infer in what circumstance does this interrelation 
break down. However, judging from the numericals put to use in our ex-
amples, we can suppose that generally the tidal level might not possibly be 
influenced by a to a great degree. But some difference, more or less, has to 
be expected in the dissipation stage of the wave which has been raised 
already. Namely an immense quantity of water sucked up by a depression 
of a larger extent is certainly inclined to preserve its form as a free tidal 
wave for a longer time than does the water of less volume. This fact is of 
some importance in understanding the mechanics of a surge which makes an 
attack on a coast when a disturbance is landing after passing through the 
resonance point. 

10. Intermittent supply of storm data 

 In our problems treated in the foregoing sections, data of a disturbance 
used to be supplied at every mesh point in every step of the computation. It 
was possible merely because we assumed not only one-dimensional water 
surface but also an extremely simplified storm pattern. When we deal with 
data of a typhoon (tangential stress from wind accompanied by gradient of 
atmospheric pressure) advancing on an ordinary two-dimensional extent of 
sea surface, renewal of data at every step would be formidable. It has been 
customary up to this time therefore to put to use, at every step of the com-

putation, data estimated through a crude formula. But we might conceive 
another idea as a more pertinent measure : that of renewing the data at 
intervals of certain steps on the understanding that the computation proceeds 
using the same data until the next replacing station is reached. In other 
words, we assume that during a certain interval of time, the behavior of a 
disturbance may as a matter of fact be approximated to those of the middle 

point of that interval. It is unquestionable that this method would be very
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accurate in so far as the interval chosen be so short, but also in a general 
case we shall be able to determine an appropriate interval of time taking 
account of facility of the computation on the one hand as well as of steepness 
of variation of data on the other. 

 One of the good examples of testing validity of this expedient is provided 
by the resonance phenomenon. In the problem where advancing speed of a 
disturbance is important, is it possible that procedure yield sufficient approxi-
mation to allow the advance to be replaced by a series of intermittent jumps 

(a multi-step function, so to speak) and for resonance to take place only in 
a sense of a rough  mean  ? In order to answer this question, let us take up 
the linearized equations for an inviscid fluid, (29) of Part I or the equations 
derived from (63) by putting  r  =0, and renew tentatively the values of 
G, the disturbance term, intermittently. Namely, by fixing the value of 

< sinr-(x—Vt)>N1 in equations (32') of Part I or that of equations (64), 

where however the coefficient of the first term on the right-hand side of  2p 
should be put simply as 1/2, invariably at their values in the middle of the 36 
step ones, behaviors of waves are computed throughout the interval consisting 
of these 36 steps. It corresponds to the distance of 6 km traversed by a distur-
bance in the time of 6.57  min, or in other words, to a mesh length, about 
three of which are sufficient to cover  20  km, the range of the sloping bottom. 

 The result of this computation is shown by a series of curves in FIGURE 7A. 
Most of these steps are situated at the junctions of the intervals, but the 
198 th step lies at the middle of the interval. Variations may be found more 
or less according to the relative position of a step in an interval, but a better 
approximation than anticipated is observed in the figure. This fact not  Only 
supports the intermittent renewal of data, but also indicates that, in spite of 
localization feeling suggested by the word  'resonance' the phenomenon is in 
reality nothing but a synthetic effect over a wider region. 
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