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Abstract

In relation to the statistical design method of anti-earthquake structures for moderate-
ly intense excitations, the basic studies on the statistical quantities such as the co-
variance and spectral density in the non-stationary stochastic process are described and
the input and output relations of such quantities in the case of a multi-input and -output,
linear discrete system having time-variant coefficients are presented.

As the basic statistical quantities in the time and frequency domain, the local co-
variance matrix and the local spectral density matrices are considered in this paper. At
first, the tocal co-variance matrix is defined as the product of a two-dimensional cutoff
operator and the co-variance matrix in a non-stationary stochastic process. And then.
the two-dimensional local spectral density matrix and the several kinds of one-dimension-
al local spectral density matrices are introduced by defining them as the double and
single Fourier transform of the local co-variance matrix, respectively. It is found that
the appropriately defined one-dimensional spectral density matrices containing a time
variable have the meaning of the power spectral density matrix in the non-stationary
stochastic process in the sense that the integral of these quantities over the finite time
domain results in the local energy spectral density matrix defined in the square time
domain. And also, it is shown that as a limiting case, the one-dimensional local Her-
mitian spectral density matrix presented in this paper is reduced to the spectral density
matrix introduced by D. G. Lampard. Moreover it is shuwn that the local spectral
density matrices are expressed as the weighted averages of the corresponding total
spectral density matrices associated with the full time domain.

For the general case of 2 multi-input and -output linear discrete system having time-
variant, complex-valued coefficients, the input and output relations of the local co-variance
matrix and the one- or two-dimensional local spectral density matrices are presented.
And it is shown that as a special case of a linear discrete system having time-invariant,
real-valued coeflicients, the input and output relation of the two-dimensional total spectral
density matrix is reduced to the relation presented by J. S. Bendat. As an example of
the non-stationary input process most applicable to earthquake engineering, the quasi-
stationary random process introduced by V. V, Bolotin as well as the locally stationary
random process presented by R. A. Silverman are considered, and the basic statjstical
gquantities of the output of a linear system subjected to these random inputs are estimat-
ed. And also, it is shown that as a special case of a time-invariant, linear discrete
system subjected to a stationary input, the input and output relations of the co-variance
matrix and the total spectral density matrices are reduced to the well-known results in
the staticnary stochastic process.

Finally. in the appendix, it is shown that the ensemble averages of the short-time cor-
relation and power spectral density matrix which are introduced by R. M. Fano. are ex-
pressed as the weighted time averages of the local co-variance matrix and the local
spectral density matrices, respectively.
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1. Introduction

In order to determine the reasonable dynamic characteristics of an elasto-
plastic anti-earthquake structure, the structure should be designed according to
the following two kinds of aseismic design method depending upon the intensity
and the frequency of occurrence of earthquake excitations’. For very intense
earthquake excitations, the dynamic characteristics concering the elasto-plastic
behaviour of the structures during earthquakes should be determined according
to the elasto-plastic aseismic design method in which a comparatively small
safety factor with respect to the structural response and an appropriate safety
factor for the earthquake excitations are introduced, and the aseismic safety of
the elasto-plastic structure must be guaranteed in the uvltimate state. For
moderately intense earthquake excitations having large frequency of occurrence,
on the other hand, the elastic aseismic design method should be applied with a
comparatively large safety factor in respect to the response, and the aseismic
safety of the structure is to be examined in the allowable elastic range. Parti-
cularly in the latter case, a statistical approach to establishing the aseismic
design method is more plausible because the elastic responses of structures with
slight damping subjected to random earthquake excitations are sensitively af-
fected by the spectral characteristics of the excitations which statistically dif-
fer from each other according to the seismicity and soil conditions of the con-
struction site of the structure. In this case, it is better to consider that both
structural response and earthquake excitations belong to the non-stationary
stochastic process since the statistical properties of earthquake excitations es-
sentially vary with time. Even if the earthquake excitations could bz equiva-
lently approximated by the finite duration of a stationary random time function,
the transient responses due to a suddenly applied excitation are apt to be pre-
dominant because liftle damping effect can be anticipated in the elastic structure
designed with a comparatively large safety factor.

As a problem of earthquake response analysis, the output-responses of the
structure subjected to non-stationary random excitations should be defined by the
statistical measures of aseismic safety of each part of the structure which may
be, for example, the expected number in excess of the allowable response
level, the probability of peak amplitude over the allowable response level and
so on. These statistical earthquake responses, however, can be analytically
expressible in the non-stationary stochastic process by using the first and second
moment of the response and its derivatives with respect to time, at least in the
case where the Gausian process is concerned”?®. The purpose of the present
paper is not to deal directly with such statistical earthquake responses but to
study the basic statistical quantities such as the co-variance and the correspond-
ing spectral density in the non-stationary stochastic process and to present the
input and output relationship of those basic quantities expressed in matrix from
for a multi-input and -output, linear discrete system. For the generality of an-
alytical results, it is assumed that the linear system considered is a time-
variant discrete system having complex-valued coefficients and that the non-
stationary stochastic processes have at least the first and the second moments.
Therefore, the analytical results of the present paper contain those of a time-
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invariant system having real-valued coefficients and of the so-called quasi-station-
ary excitation*'®’ as special cases and also tend to the well-known results in a
stationary process when a limiting case is considered. As regards the spectral
density matrix in a non-stationary process, the one- or two-dimensional local
spectral density matrix is defined in this paper as the single or double Fourier
transform of the local co-variance matrix which is equal to the co-variance
matrix in the prescribed finite two-dimensional time domain and zero outside
this domain. And it will be found that this one- or two-dimensional local
spectral density matrix can be related to the spectral density defined by D. G.
Lampard® and that given by J. S. Bendat”, respectively, as the limiting cases.
And, it will also be shown that the input and output relationship of the local
spectral density matrices is reducible to J. S. Bendat's formula in a non-
stationary stochastic process where a time-invariant linear discrele system and
the two-dimensional spectral density matrix defined as the double Fourier trans-
form of the co-variance matriy in R%. are concerned and also reducible to the
well-known relationship between the input and output spectral density matrix
in the case where a time-invariant linear discrete system and the stationary
process are concerned.

2. The local co-variance matrix and local spectral density matrix in the non-
stationary stochastic process

The co-variance matrix (K(z,, 72)) of a complex-valued non-stationary random
vector, {£(r)} which is defined in the one-dimensional infinite domain, R'. of a
real variable 7, is given as a complex-valued matrix defined in the two-dimen-
sional infinite domain, KR?. of real variables 7,, 7€ R'« by the following well-
known foumula :

(K(ri t))=[K(z\, 7a; R)I=E{&a(z) Héa(t)}H)
()} ={8(D}—-E{E @Dy Y

in which the symbol £ and the superscript * denote the ensemble average and
the transposed conjugate, respectively.

By making use of the one- and two-dimensional cutoff operator, D{z;; R'r)
and D(z, s ; R% ;) which are unit in the inside of any finite closed domain,
Rz, or K%, half in the boundary domain, C'z, or C¥;z, and zero outside the
domain, the local co-variance matrix, [(K(r), 7s; R% 1)) is defined by the fol-
lowing equation :

(K (71, 705 Rered I=E{D(t1; R'eDE(@ O HD (225 R'e)éu(t) 1)

=D(1y, 72 ; Rz 7)) (K(t1, 72 ; R2))=D(1\, T2 ; R%=2) (K(7y, T5))  +oovevenee (2
where
D(zy; Rz =1 7,eR-,—C'r,
= é ;€ C\s,
=0 T €R =Ry, i=1,2 e 3)
Dz, 72 R ) =1 (ty, 72) ER% 2, — Cr i1y
=1 (1), 72) €C%7e

2
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=0 (t1, 72) E 20— R 1,

Therefore, the local co-variance matrix is equal to the co-variance matrix in
the inside of an arbitrarily prescribed finite domain, K%, and zero outside the
domain.

The two-dimensional local spectral density matrix associated with the finite
domain, R, is defined as the double Fourier transform of the local co-variance
matrix given by eq. (2).

[S(ﬂ)], W RZﬁTq)j — SR2 EI((TI; Ty, R2r|rg)j€—j(w|71—wgfe)dtld’fg

= SRzr,nEK(T" ) Je-Hwm —wwddrdry, oo )

In particular, for the rectangular domain, Rz, eq. (4) can be expressed by
CSlan, w5 Reer))=E{Fe,(w ; R ) HFelwr; R'e) )
{Féa(wi ) R’n)}=s D(z, y R'r,){fd(fz) }E‘f“’l“"dft

=g feoyedomdr,,  i=1,2. )

Rl

Inversely transforming eq. (4), the local co-variance matrix can be expressed
as the inverse double Fourier transform of the two-dimensional local spectral
density matrix except a set of points of zero measure.

1
C2nyt
where K%, denotes the two-dimensional infinite domain of two real frequency
variables, w, and ;.

In the general case of the complex-valued non-stationary process, the follow-
ing relations are valid :

Kz, 12 Rere) V¥ =(K (e, 71 R2r)) e )
[S(w,, Wy ; RPr2) )%= [S(ﬂ)z. (O Rzrm)] """""" ®

In particular, for the real-valued non-stationary process, eqs. {(7) and (8) are
reduced to the following expressions, respectively :

K, o ' Rre)] = SRz (S, w ; R ) )eilor i —oaddwdw, -+ (®

(K(zy, 72 Rered ) =(K(zs, 71 Rr )] e (€)]
(S(wy, we; R e ) )T={S(~w, —ay; Rrpr)) e X))
where the superscript, 7 denotes the transposed matrix. Also, in the case of

a real process, the real and imaginary parts of the inverse double Fourier
transform given by eq. (6) are expressed by

oy e RS (@1, 013 Recie) eitonr—wsdand = (K (21, 72 Rieir)
oy e IS, 02 Rz destom —omddwdan=(0) e (1D

in which the symbols R and I represent the real and imaginary parts, respec-
tively.
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Particularly considering the square domain, ,R%rr,=R?r,r,, in which 7z and 7p
denote the common lower and upper limits of the variables 7, and 7;, and sub-
stituting vy =w;=® in the two-dimensional local spectral density matrix defined
by eq. (4) or (56), we can define the local energy spectral density matrix by
the equation, .

(S<w; @ -szl.fu)j =E<{F§d<w y leﬂ-’u)}{FEa(w y RXTLTU)}*)
- SR: (K (ty, T2 ; R2rizy) Je~i(mi—vdodrdry --veovveees a2

Integrating eq. (12) over the infinite domain R'. with respect to ® and devid-
ing by 27, we obtain

) (5@ 03 Reie) o= ("R (5, 75 Rieie)ddr v (3)

From the definition given by eq. (12), it is clear that the local energy spectral
density matrix is a Hermitian matrix, that is

(Slw, @; Rryrp) *=(S(w, @ ; Rrizp))  ceeeeeeees (14)

Then, the diagonal elements of the local energy spectral density matrix are
real numbers and each of them corresponds to the integral over the interval
(rz, 7v) of the ensemble average of the square absolute value of each element
of complex-vector.

In particular, if the two-dimensional local spectral density matrix exists in
the case of R%rr,—R2., we define it as the two-dimensional total spectral density
matrix.

CSeirel@, @) =(S{@1, @ ; R¥ri7,—=R2) =(S(@1, 0§ B2 ovvveveee 1%

Since the local co-variance matrix and the two-dimensional spectral density
matrix are additive as the set functions of the two-dimensional domain R,
that is,

Kz, 72 ; L}szurzi)] = BtEK@'n. Ty 3 Riryrei) ]
(S, @2 L{_)Rﬂrmi) 1= ?ES (@1, @35 RPrppei)]  ceveereee (16)
where
Mr.tql—cznrg,lnRgnrw— Cznrg,u=0 for Askp e (17)

the co-variance matrix and the corresponding two-dimensional total spectral
density matrix can be expressed by the sum of the relevant quantities defined
in finite or denumerably infinite disjunctive domains, Rrr.'s.

(K (zy, 72))= ch(Ti , To ) Reraai))
(Srimu(@s, @) =~(2—17;>TS ngCK (73, 1) e~ iwri—owddr,dr,
= Z‘ESC(Dl, sz Rgr,rzl')] ............ (18)

where
szr)rgi=R2m, Rat'lrgl—cgnnknRanrw—C2nr9,u=0 for 254
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Inversely, as far as the rectangular domain ,R%,r is concerned, the two-
dimensional spectral density matrix can be expressed by using the total
spectral density matrix as follows :

(Slw, @ 5 oRPr72))= -(2117)2—0(@1 s R *(Sevre (@1, @) J%Q* (g 3 R'z)) +ooveee- (19)
) wz
where
Qs Ry =, D(xe; Rize—jordr,
= ((sin wityo—sin wtir) + 7(COSWLT 1y — COSW(T L)) /@y =+ (20)
21_7Z'SR' Q(wy; R'rpeiordw,=D(ty; R'r)) e 1)

and the symbol * denotes the convolution with respect to @, and in eq. (20)
Wy
7.z, Tw Tepresent the lower and the upper limits of the domain R'r,, respectively.
Representing the domain R'r, in the form,

Riz={rs, o) = [th - —1:25"—, T+ TZLD:‘ ............ (22)

where
Toe=(TutTw) /2, To=Tw—Ti e (23)

and transforming the variable 7; and the domains R'z,,R?rz, to new variable
7' and new domains R'r/,rR%r'r,; respectively, the two-dimensional local spectral
density matrix with respct to ,R%,r, is expressed by

(S(w, wy; R y)) =ei(wirie =[Sy, w; ; PRirr,)]

:'1 Q(CUI ;Rl!-’l')*tsﬁ"l'e' (ws, wz)]*Q*(a)z ; Riz) e 24)
(2m)? o s
Egs. (19) and (24) show that the two-dimensional local spectral density can be
expressed as a kind of extended weighted averages of the two-dimensional total
spectral density if the latter exists. In these equations, the weights have the
following property.

21—17_-SR|°°Q((01 f lel)da)t=1 if OERITI_C!T,

= % if 0e CJ T

=0 if 0eRWw—R'y, oo (25)
zlﬂ’gleQ(wt s RizDdw=1, 1Q(w; s RN =0 e 26)

In particular, if the domain is square and w,=w, that is, where the local energy
spectral density is concerned, the following equation is valid :

(Sw, © s R2r2))=(S(w, 0; R /2)]

1 sin(@w—v))75/2 SIN(@=v2)To/206 , ) Y.
_(ZTr)szlmyl (0—v)/2 Sledz (w—vz§/2 (Srved O, v)] - @D
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When the process is stationary, the two-dimensional total spectral density
matrix is expressed by

(Srime(@wr, ©2))=(S(@, ©2))=2m8(w; — @) (S(@)]  ovevvmeee (28)

where 6(w) denotes the delta-function with respect to @ and (S(w)) is the
spectral density matrix in the stationary process. Substituting eq. (28) to eq.
(24), the two-dimensional local spectral density matrix is given by

(S, w2 ;5 R2zy7) ) =eiowie—ox)(S(w, ) ; Rirzy)]
1 sin(@ —v)71s/2 _sin(we—v)Ts/2 .
- : (Tre—Teedvdy -oe-er
271'5 Y Cn -y /2 SO Jefmemmdvdy o (29)
Moreover, the local energy spectral density per unit time, that is, the local
power spectral density matrix can be expressed by a kind of conventional
weighted average of the power spectral density as follows:

LS, 0 Rree) )= 52 (B2 (S ()

2r \ wty/2
éDl Q:m)(RDY (30)
where
i »/2\2 2 )
w30 LI ED i, S@ICIRDY e 31

In the above equations, the symbol g denotes the correspondence between the

Fourier transform pair. Then denoting (R(2)) as the co-variance matrix in the
stationary process, the second equation in (31) represents the well-known
Wiener-Kintchin relation in the stationary process. And, the first equation in
(31) shows the so-called Bartlett’'s pair®. When 7, tends to infinity, eq. (30) is
reduced to the following equation :

lim (S, 0; Rirr) I=(S@ICRDY e 32

Tp—>C0

Particularly, if the stationary process is ergodic, the above equation tends to
the power spectral density conventionally defined on the ergodic stationary pro-
cess as follows:

lim (S, 0; R ce))= lim o (S, @; Rrere))

= 11_1_1; . E({ng(w RN HFelw; R'zp)})
= lim —{Fg,,(a) RuNHFelw; Riey) P=(S(w)]) -+roveeeeeer (33)

Now we consider the integral of the complex spectrum of D(zy'; R'z/){£4(z:")}
over the frequency domain, (0, w;l.

(s Rz} = (Pt Rz Yesveraduem 5| {Fesvus Ret) Y

o e T 0 Y=g T e e ) Y- 30)
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Considering the rectangular domain, ,R?r/r,, the ensemble average of the pro-
duct of the increments of {/(wi; R'z/)}’s defined above can be expressed by
making use of the two-dimensional local spectral density matrix as follows:
E({](wlﬂ s R'e)—J(wir; Ry )M (ww ; R'zy) =] (wer; R'v) )
=‘<‘23F§Rz,}><w,, @25 +R20,0)(S(wn, 02 ; Rorz) Jei@mie—orddw dw,
="627'1T')'2'SR,MD(0)1. @y 5 Rww)(S(wy, @2 ; Rizye)Jdwdw, oo 35
or
E@{](w; R'=)}Yd{] (w5 Rz} = (%W(S(wh s 5 RPr/1y) ddwdw, -+ (36)

Eq. (35) or (36) shows that ensemble average of the product of {/(ex; R'z/)}'s
is a set function of ,Rww, and it is additive with respect to the domain K%, w,.
In the stationary process, putting R!'zy—R'. and ,R%/y— K. and making use of
eq. (28), we obtain

E{J(ww; Rc/—Rw) —J(w1; Rev =R HJ(wew ; R'zy—R')

(@2 Rrei =R =5 Dlv; Ru)D ; Rin) (S Iy (37
or
E(d{J (@15 R/ =RI}A{ ] (@r; Riey =RI)}®) =5 (S My ovsvv (38)
where

dv=-da), ﬂda.)z, v€w1+dw,ﬂa)g+dwg

Eq. (37) or (38) shows the well-known fact that the random vector, {/(w; R',
—R'.)} has non-correlative increments in the stationary process. Particularly
in the case of the square frequency domain, R2uw,=R%,w, €q. (37) reduces to

E{J(wy; R:—Rw) =] (015 R >R ) H J(wo ; RE—R'x)

—J(wz; R —R')}*) =%5lewv(s(u) Jdy e 39

Substituting ww=o0, wizr=—cc in eq. (35) and taking into consideration
1 .
{J(o s Riz)—]J(—c0: RJ,L‘)}=ESRI {Fey(vi ; Rz Yeivaedy, = {€4(115) } -+ (40)
we have the follbwing equation identical to eq. (6):

E({fd (Tlc)}{fd<fgc)}*) =—<21]1:_)2 SR%»ES(G’U s 5 ,-Rzr\fg)jej(wlflr—wzfu)d01dwg

Next, we define the two kinds of one-dimensional local spectral density ma-
trices from the two-dimensional spectral density matrix defined by eq. (4) as
follows :

(Si(wy, 125 Ryzy)) “E({FEa(wl s R, (7)) YD (e 5 R’rz){ed(fz) *
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:VZIESRtm[S(COl y W 5 R r)Je-jomdw,

=5RIODEK(T1, 7y ; R Je—Jonde, 42

(Sa(r1, w25 R o) J=E(D(1y; Rz {a(t) H{Fel(wo; R'e, (T ) V)

- 2];7 j CS(CL)[, We Rz!'.'r )N'EJU 1T |dw‘

ZSanEK(Tl. 7y, R Jejorrade, (43)

in which R'r,(z7;) is the one-dimensional domain with respect to 7, as a func-
tion of r;. Inversely transforming eqs. (42) and (43), the local co-variance
matrix can be expressed by the above defined one-dimensional local spectral
matrices.

(K(zy, 72 rm)]' '''' S [Sl(wn, Ty Rz,) Jejoridw,

2177: 5 (Su(ty, @y Rirg)Je—jomadwy ooemvvee CY)

In general, there exists the following relationship between the two-kinds of
one-dimensional local spectral density matrices.

(Si(wy, 725 RzT!TZ)]*=[S2(T2y w; R
(Sa(tr, w5 Rrp) ¥ =(S1(@a, 71 ; KPer )] o (4%)

In particular, where the real-valued process is concerned, the following equa-
tions are valid :

(Silw, 12 R )3*=(Si(—w,, 7o ; Rize))T
(Sa(7y, w2 y R ) ¥ =(8a(t1, —wz; R&))T e (46)

If there exists a one-dimensional local spectral density matrix when R,
tends to R’., we call it the one-dimensional total spectral density matrix.

[Smn(w., Tz)] [S (w,. To, - R -'.T;_’R m))_rs ((U[, 2, oo)]
or
[Sz‘hfz<7h w2)]=[52(7|- Wy ;RETITQHRQN)]—;[S?(TI: W R2m)] """""" “n

Then, if the two-dimensional total spectral density matrix also exists, the fol-
lowing expressions are obtained:

ESlfxrz(wl, Tz)] = —ZI?SR'NEST'T'!(U)" a)g)Je'jszzdo)z

=§RIwEK(‘:., t)de—jwmdr, e (48)

[SZTlfz(TI, (U‘Z)] = ZLTL'A_(R'MESDTE(Q)]‘ (Ug)]ej“’:flda)l
= 5 le[KCTn 7o) deswstadT, e (49)

and
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EK(TI, T2)j="21?SRI (Sﬁlrg(wl,‘t'g)]efwﬂlda)l

L
2n

When the process is stationary, the one-dimensional total spectral density
matrices are expressed by using the power spectral density [S{w)).

Slefszr.rz(T;, wz)]e‘ﬂﬂzf:du}z ............ (50)

(Sizima(@i, ) =(S{wy) Se—jor:
(Sariza(ti, wo))=CS(ws)Jeswery 6D

Substituting eq. (51) for eq. (50), we obtain the Wiener-Kintchin relation in the
stationary process.

(K eI =(R(m =)= o Stwpleitriewd oo 2)

The two-dimensional local spectral density matrix can be expressed in terms
of the one-dimensional local spectral density matrices by inversely transform-
ing eqs. (42) and (43).

(S(w,, . 5 szn’z)] =S Si(a, Ty, Rgrm)]é’j‘“mdfz

-
Rles™

= (Se(r @n; R demsomdz, oo (53)

In particular, considering the square domain K%, and putting v, =w,=w in
eq. (53), the local energy spectral density matrix is expressed by

(S@, @i Ree)I =, (SiCw, w0 Rece) Yeswrdr,
R (S, @ Roew) Yemsomide, oo (54)
Now, transforming the variables 7; and 7, into 2 and 7 by the equations
A=Ti—=Ty, T=Ty e (55)
we define the following one-dimensional local spectral density matrix :

(SCw, 7; R I=(Si (@, 73 R2jers) Jeior
=(Sz(2+r, @ ; Rz)-’-,—r)Je_"""’l“‘”

- SleEK();'F‘Z‘, T3 Rz)&.—r))é‘j‘“dz
- SR' (f)(K()‘—i— 5,7, R2l+rr>]e_’"”2d}. ____________ (56)

Inversely transforming the above equation, the local co-variance matrix is
given by

(KQ+7,75 Ruwd) = 5| o (S(w, 5 Rudewide oo 57)

Substituting 2=0 in eq. (57), the spectral respresentation of the co-variance
matrix at any given time ¢ in the non-stationary process is obtained in a
similar form to that in the stationary process:
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(K, 7 R ) = (K (7, D) =217SR“”(5(Q,, £ R I s (58)
(1, 1) ERYyre

If there exists a one-dimensional local spectral density matrix defined by eq.
(56) in the case where R%,,—R%,, we call it also the one-dimensional total
spectral density matrix as in eq. (47).

(Sirlw,0))=CS(w, 7; R*):—=R))I=[S(0, 7; R%)T  vovreeee (59)
From egs. (47)~(50), (55) and (56), the following equations are obtainable :

Eskr(w) T)j = [Slkﬂ'r ((1): T) ]e'lwr = ES‘H-HT (T, w) je-jm( ¥

_1 e
_ﬁSR‘mES)ﬂT(‘”’ 0)2)32)( wz) d(l)g
1

2r

=SR.NEK(2+T, )JeleMd) (60)

il

[ pr_CSiureCan, @) st -0+ 22

and
(KQ+7,03= 5| (Su@, Do v (61)

It is easily shown from eqs. (51), (55) and (60) that when the process is sta-
tionary the one-dimensisoal total spectral density matrix defined by eq. (59)
agrees with the power spectral density matrix in the stationary process, that is,

(Si(w, )I=[SWw)) e (62)

and that eqs. (60) and (61) reduce to the Wiener-Kintchin theorem in the sta-
tionary process. From eqgs. (42), 43) and (56), the two-dimensional local
spectral density matrix can be expressed by

(S, @y ; R214ee))= SR'wES(w" T R Je—i(wi—wo)rdr
=SR|T[S((D" T th)]e—j(“’l—‘”‘z)fd‘r ............ (63)

Choosing the square domain R%).~ and substituting w,=w.=® in the above
equation, the local energy spectral density matrix is given by

(S@,0; Ree))=[p (S0, 75 RuDIdE &)

where ,R?;. represents the transformed paralleogram domain on the i—7 plane.
From eqgs. (58), (62) and (64) the one-dimensional local spectral density
matrix defined by eq. (56) can be interpreted as the local power spectral
density matrix in the non-stationary process.

It can easily be shown that the one-dimensional local spectral density matri-
ces defined by egs. (42), (43) and (56) are 2ll the additive set functions of the
relevant two-dimensional time domains. Therefore, as in the two-dimensional
case, the following expressions of one-dimensional local spectral density
matrices, that is the weighted averages of the corresponding total spectral
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density matrices, are obtainable :

(i@, o5 Roeed) = DGess Red@( s Re)*(Sirmy(@1, 7)) oovvone (65)
(S:(ry, 025 RPr2,)) =21_7rD (733 Rz ) (Soryre (74, wz)]ﬂ:@* (g3 R'zp) oo (66)
(5@, 75 RN =D ; R Q@ Ruu) WM Sye(@, )] oovooe G
And also, transforming the time variables by
T =Ti—T, 1=1,2; XN=2—l, t=T-Tc; A=Tjo—Ta, Te=Tpe (68)

we can obtain similar expressions related to the new variables, 7/, 2’ and 7’.

Finally, we introduce the one-dimensional local spectral density matrix which
is Hermitian and tends to the power spectral density (S(w)) in the stationary
process.

Su(w, 7 Ry @))=alS(w, 7; R +a*(S(o, v; RGO I*
= prucey @G+ 7, 7 Res) oo+ a* TR Q47,75 Ripe) e - (69)

where a is a complex-valued constant. Performing an inverse transform in
the above equation, we have

alKQ+7,7; Rue) )+ ¥ (K(— 247, 7 ) R ) )*
=alKQ+t,7; R))+a*(K(z, —2+7; R%us))
1 SR' Sel(w, 7; R, a)defotde 0 e (70)

3

Now, representing a rectangular domain .R%r, as the sum of a left upper right
triangular domain 1 R%r,and a right lower right triangular domain K%z, that is,

Tth’[Tg:tl.Rz'nfz"'[o_R‘zrlrz ............ (71)
we perform the following transformation of the time variables :
A=1—1y, T=1y for 4R%z, Z=T,—7, T=7, for tRPrgyeeeeees (72)

Then the two right triangular domains, #R%rr, and R, are maped to the
corresponding triangular domains, +/?;; and £R?x7, respectively. In particular,
if we select square domain .R%rr, the two triangular domains ¢R?. and ,R?57
are reduced to the same right isosceles triangular domain ,R? which is on the
left half-plane and has one side on the 7- or 7-axis and other side parallel to
A- or axis. And then, the integral over the square domain K%z, is trans-
formed to the following from :
'df‘d”=LRﬂ (RERT

(v 0 w ,-.(0 ~

_ST 'dTS —T.dx+§fL'drgTL—_.dl ----------- <73)

L 7L v

.dxdz+g .d3d7
AT

S ;R?T T2

By making use of the above transformation, the two-dimensional local spectral
density matrix can be expressed as follows :

(S(wi, 03 ; R z)) = SkszK(T" 75} oR%r,7y) Je—H(wimi—wm)dr dr,
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=g R2)r<EK(2+T’ T 3R21+,,.)je—j(w1(/1+r)—wzr)
2
+ (K (z, 2+7; Reio)Je— i or—w(2+ 1)) ddr

={ o (BT, 75 R ) Yemio(i o) —onm)
[2 T

+(BQ+z, 5 R J*e om0+ D) dade e (74)

Substituting w,=w,=w in eq. (74) and taking into consideration eq. (56), the
local energy spectral deansity matrix can be expressed by using the Hermitian
local power spectral density matrix which is obtainable by selecting a=1 and
K2, =R, in eq. (69).

(S, 0; Roeed)={ o, (KOG, 75 R Yo
X AT
+(KQ+7, 7 R ) J¥eio)dAde
= vadrfg _Td).([K(/Hr, T Rr))e I (K47, T 5 iR er) J¥ei0d)

TL v

= Sz (S, t; RLDI+(S(w, T; R1:)INdT

=SR' Sulw, t; R0, DYde (75)
TLTy

On the other hand, since the local energy spectral density matri¥ is substan-
tially Hermitian, the following equation is obtained from egs. (64) and (69) :

(S(w, v ; SR?TIY!)J:SR[TLTU [Sg((u, 7 o, é——)]dr ............ (76)

Eqgs. (64), (75) and (76) are the integral representations of the same local en-
ergy spectral density matrix with respect to K% 7, obtained by using the dif-
ferent local power spectral density matrices. It can be shown that the inverse
Fourier transforms of these equations give the same result,

1

'2—;5 R (S(w, @ ; sR?prr)desotdw = S (KQ+7, 7 Re)ddr -ooee )

Rz, ry

by using of egs. (57), (69) and the identities,

Ser . ((KQ+z, 75 t R ) )+ (K (z, t— A R ) dT
1

=l (Gt R (K (o= 2 R ) D
2 IRz, ry

(e KQbe, R 78

Substituting 2=0 in eq. (77) we obtain again eq. (13). The same equation can
be obtained from egs. (58) and (64).

The relation between the local co-variance matrix and the one-dimensional
local power spectral density matrix introduced to eq. (75) can be obtained from
egs. (69) and (70) as follows:

(Sr(@, ;5 R, 1D)=(S(w, 7 ; )+ (S(w, T ; RHDI*
=0 KOt iR (K G T T 1R ) Ve )
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S’ K (e, T2 R )Y+ (K (2, 7= 2 R ) ) e d)

SO KT+, 75 R0 Je i d A+ S;_T"[K (r,t—2; t.R2._)))e7»da

TL—7T

............ (79)
and
EK{T“‘X; T3 ’IR2)+TT)]+ EK(‘C: T—14; lszff—D]
- %) o Sn(@, 7 Ry, Detlde e (80

From the definition of the local co-variance matrix given by eqgs. (2) and (3)
the first and the second terms of the left hand side of eq. (80) are zero for
2>0 and 2<0, respectively, and they take on the same value, that is, one-half
of (K(z,7)) for A=0. Therefore eq. (80) can be rewritten as
EK(r+2,r;z{R%m)]=217SR, Sr(o, t; K, De’Mde  for 2<0
Kz, 75 tR ) )+ (K (7, T R0 )=(K (7, T} eR20xe))

= (Sao, 75 R Do for 1=0

(K7, 025 4RI =5 (Sm(@, 7 R, DYeide for 2>0 (8D

In particular, for the real-valued non-stationary process, the following rela-
tions are valid :

EK(I'.'T 75 R21+rv)j* EK(X"‘T T, Rzg.,.ﬁ.)j
(Slw,t; R})Y*=(S(—w, 7: R)IT e (82)

Therefore, if the coefficient « is real, the relatjon,

(Se(@,7; R, a))=(Su(—w, 7; R, a))  cooemreeeens (83)

is valid. By using the above relations, eqgs. (79) and (80) can be written as
the following equations for the real-valued non-stationary process :

(Sn®, 75 Ruae, DI= T T (K (@, 7= 25 R e Jesok
+EK(T f—]; tzRgrr—/l)jTeledZ

=52L (K(z+4 75 (R ) e 1“‘d,1+Sr KT, T =25 (R )de iR
............ (84)
and
(K@E+ At t:Rue) )+ (K(r, - 2; :R%:20))
_%S:(ESH(‘”’ 75 RY,, D0ei +(Sp(w, t; R, 1))Te o Ndw o (85)

In the stationary process, the triangular domains, £/%er, K% and K%,
are replaced by a left upper half-plane, (R?,, right lower half-plane, £R%. and
a left half-plane, (R%., respectively. And egs. (79) and (80) tend to the fol-
lowing equations :
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(Sa(@, 75 R, DI~ CRD e+ (RDI*edA
L RS

and
(KG@+A,7; 0tR)I+ (KT, 1-1; 6R2))
~(DQ; 1R + D5 kREIRDI=RDI= 5] o (S@)deswidw

In the above discussions, it appears that the selection of a triangular domain,
R, would make the convergence of inverse Fourier transforms given by egs.
(80), (81) and (85) poor in the neighbourhood of the boundary points 2=0 and
A=t—1;. To avoid poor convergency at the point =0, we can define the other
one-dimensional local power spectral density matrix by choosing a=1/2 and the
parallelogram domain ,R%. which corresponds to the square domain (K%, in
eq. (69). In this case, we can obtain the following pair of equations instead
of egs. (79) and (80).

[SH(‘U»T;»RZAn %)]= é EZ T(CKQ+1, 75 R e Jemied
FCKQ+1, 73 JRoinrd) Yoo d2
--1 5 KT, T Ry Y4 (K (2, 2475 oRoiee) Yol

2
é 5 [K(A-"-T T ,R.Z}"'")je jc“dl-l_iis _ [K(T, T‘_x 5 ORgrr-))je—“"MdX

............ (88)
and
%EK(A"‘T, T, 3R21+rr)3+*;*£K(T‘X, T, :Rzr-/lr>3*
=5 (KO, 75 R+ 5 CK(E, 715 R
_1 () A Vg,
— 5 [ Sa(@, 7 RO, ) Jeiides @
Substituting 2=0 in eq. (89), we have
. AN e
(K(z, r,,mmn—ggm [sa(w,r,pkzh, > Jde (90)

For the stationary process, replacing both (R%.- and %, by R2., egs. (88)
and (89) are (89) are reduced to

(Su(, 3 Rray -5-) | =5 o (CRD I+ (R I eI
é ((S(@I+{S(@IM)=(S(@)])  «oreereeenes (oD

and
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S (RDIFIR(=DIO = (RDI= 5= . (S@)efide oo ©2)

By the above discussions it is shown that the one-dimensional local power
spectral density matrices defined by eqs. (79) and (88) are Hermitian matrices
and reduce to the so-called power spectral density matrix in the stationary
process. The former constitute a Fourier transform pair with the local co-
variance matrix in a modified sense as shown in eqs. (79)~(81), but the in-
verse Fourier transform of the latter does not give directly the local co-variance
matrix. To obtain the local co-variance matrix in the latter case, we must
introduce the auxiliary spectral density matrix defined as

[SH’<(0. T, pRglr; 2 )} '1 S:Z T(CK(R"'T T, |R2,l+r-r)Je Jwl
- EK(/H‘T 7 ; oR2r) J*elo)d]
=-§—S'” K+, o3 R JeIo4d]

_%Sr TL[K(T T=2: R )Jeord )i e 93)
then,

KT, 75 R eI = (K (2, T =15 R )

_21_755 [Szz' (a), 75 oK%, %)]ef“dw ---------- (99

By adding eq. (89) and eq. (94) or subtracting eq. (94) from eq. (89) we obtain
K@+, 05 Ry )= SR, ([Sa(w,r;pk% %ﬂ
+ [Sn'(w, T R, %)Deﬁ“dw

(Kt =2iR ) =g ([Sa{on 3R )]

— LSﬂl(w’ r: R, T)])glwlda) ............ (95)

It is noted that each equation in the above is valid for all ‘2 in R's and that
they constitute a pair of transposed conjugate matrices if the sign of 1 is
changed in either of these equations, because the matrix defined by eq. (93)
is a skew Hermitian matrix, that is,

[Si(m, T o2, %)}*= - [SH(‘”’ T ok, %J]

Applying the Fourier transform operator with respect to 1 to each equation in
(95) and considering eq. (56) the following equations are obtained :

(S@. 7 5 R I=[Sulw, 75 R, ) |+ [Sa' (@, 75 R, 5]
O SN CY A X B A €
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And, from the above equations we obtain

[Sa(w. T oR%e, %—)] =%E5(w, T; pRYDI+ *%"Es(w, T pR%)I*

(S, 75 R0, ) | =5 (S(@, 71 pREDI= (S, 75 REDT*

The first equation in the above is the definition of the one-dimensional local
Hermitian spectral density matrix, (Su(w,7; ,R%:, 1/2)) as given by eq. (69),
and the second equation is considered as another definition of the auxiliary
skew Hermitian matrix [S#'(w, 7 ; »R%:, 1/2)], given by using the one-dimension-
al local power spectral density matrix (S(o, 7 ; &%) defined by eq. (56).

On the other hand, although the one-dimensional local power spectral density
matrix defined by eq. (56) is not 2 Hermitian matrix, it constitutes a Fourier
transform pair with the local co-variance matrix as shown in egs. (56) and
(57), and there is no difficulty respecting the convergency of the inverse Fourier
transform at =0 in the evaluating of the cross-variance matrix at any time
7. Also, it is reduced to the power spectral density matrix in the stationary
process if the process is stationary and the finite domain tends to the infinite
full domain.

The several kinds of one-dimensional local spectral density matrices discuss-
ed above are all defined with reference to the finite two-dimensional time
domains, and their relations to the local co-variance matrix defined in the re-
levant finite two-dimensional time domain are obtained. However, it is noted
that the explicit time variable contained in these one-dimensional local power
spectral density matrices can be considered as a parameter rather than a va-
riable restricted in the finite domains. In other words, we need not take
particular note of the boundary points with respect to the explicit time variable
but only of the boundary points with respect to the implicit time variable.
Then the two-dimensional time domains can be replaced by the one-dimension-
al time domains with respect to the implicit time variable. Since the boundary
points with respect to the implicit time variable are generzally expressed as the
functions of the explicit time variable, the one-dimensional local spectral
density matrices and the local co-variance matrix are symbolically rewritten as

(Si(wy, 725 Rirr) J=D{(ry; R'e)(S1{(w), 725 Rz (72))]

(Se(ry, 0y ; Rr ) )= D7y 5 RD(Se(7), we; Rize(T)))

(S(w, 7; R:)I=D(T; R'OLS(w, t; RYW(D)

CSu(w, 75 R, ))=D(r; RO(Sulw, 7, R, )3 oo €]

and

(KQ4+7,7; RYe)I=D(r ; ROY(KQ+7, 75 R4Y(T)))
=D(; RODQ; RUENKQ+T, 7)) o (98

Finally we will discuss the relationship between the one-dimensional local
power spectral density matrices and the spectral density defined by D. G.
Lampard for a real-valued non-stationary process®. By using egs. (64), (75)
and (76), the partial derivative with respect to the upper limit, 7y of the square
domain, of the local energy spectral density matrix can be expressed as follows :



54 T. KOBORI and R. MINAI

6\%(5(0), ®; Rue) J=(S(w, tv; pR2)) + Serqu %[S(w, 7 JR2))dr
=ES((I), 7o, DRzlr)] + [S((ﬂ, Tu; PR21'>]*
=D(TU N erg) Su(w, tu; RuGo), D) e 99)
2 (S, 0 R ) =(Su(@, 705 Riaey DI+, 2-CSm(@, 75 ey D)
=D(to; R+ )(Su(w, tv; RuGEe), DY e (100)

G%ES((», 03 R )= Salw, 70; R0, _é)]

S O

SCYRSEE ) NEAA e )1
=2[Su(w, 703 2R, 5 )| = Dro; Rz (Su(@, 705 sRu(Ea), 1)) oo (10D
Then it follows that

ESH(CU, Tu; pR]1<TU>» l)j=ESH((U, T, 5R11(7U>) ]-)j
=[Sa(w, to; R(tr), DI=[(Su(w, tr;T)) oo (102)

Hence the following equations are obtained by making use of egs. (79), (80D,
(88), (89 and (98).
(Se(w, to; 7)) =S;U_TL(EK(TU, tu—2; R'_;(tp)))e
+{K(rg, tv—21; R'_)(zp)) )*ei>N)d2
- SOL*TUEK(TU +'2’ v Rll (TU))JeF"m)‘dA

7

+ S;U_TLEK (tv, Tv—24; R (zp))de**d)

| o (K @u+2, 705 RuGo) I+ K (Fo, o= 15 Ra(n))Deseidd - (103)

and
(K(to+4, 103 RU@e)))+ (Ko, to—2; R _1(70))]
=21—7FSR1 Su(w,tv;t)lede e (104)
where
Ry =(t1—77,0), R(u)=—RH (o) =00, 1p—TL) «=-irreeree: (105)

As previously mentioned, the explicit time variable can be considered as 2
parameter, and we can replace vy by ¢t and ,R%.. by Rr,r. Then, egs. (99)~
(105) can be expressed as

Se(@,7;7.]) =58;CS (@, ®; R*,0)
(o (K427 RUEI+ Kz, 71 RV -+-(108)
(K42, 75 Ru@)I+(K(E, =13 Ra())
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=-21?ERIMCSH(Q}, TiyTlede e (107)

where
Ru(@=(z.-7,0), R L@ ==Ry(t)=00,7—7,]  verereeemm: (108)

The above equations determined at the boundary points 7y are completely
equivalent to egs. (79) and (80) which are valid inside the two-dimensional tri-
angular time domain. Of course, this is directly obtainable from eq. (21) and the
property of the explicit time variable as a parameter. As shown in eq. (107),
the inverse Fourier transform of the one-dimensional local power spectral
density matrix given by eq. (106) converges to the value of the co-variance
matrix on the orthogonal line-segments, t,<7,=7, 73=7 and 7,=7, 7. <7,<7 and
one-half of the value of the co-variance matrix at the points 7,=7;, 7.=7 and
Ty=7, T,=7;. However, as previously mentioned, the convergency of the inverse
Fourier transform in the neighbourhood of the points 7,=7,=7 would be poor
even if the convergence to the value of the co-variance matrix at t,=7,=7
might be guaranteed, since this points corresponds to one of the boundary
points, 2=0, of the implicit time variable.

The spectral density matrix defined by D. G. Lampard corresponds to the
limiting case of the one-dimensional local power spectral density matrix defin-
ed by eq. (106) taking r.— —co for the case of the real-valued non-stationary pro-
cess. Assuming the existence of the limit,

Su(w, D))=(Sa(w, t; —)) (109)
we obtain the following expressions by using egs. (84), (85), (106) and (107).
(Su(o, T)j=g:°([K(T, =21 RGy)de o4 (K(z, =23 R'ow))Te»))d)
=SR, (K42, 75 R wa) J+ (K (r, T =25 Rlow) D) e0dR -ovene (110)
(K, 7= 2; R1o)I+ (K, 1+2; R_up))”
=K+l 7; R.w)J+(K(t,7—2; R'o)]
= zlﬂ_ S:‘(ESH(‘D‘ ) Je i+ Egﬁ(a), )Y e iNdw

- %,SRImES,,(w,r))ewdw ------------ (111
where

Ry=(—00,0), Rlu=(0,) e (112)

3. Input and output relations of the local co-variance matrix and the local
spectral density matrix

The deviation vector of the output response of a multi-input and -output linear
discrete system with complex-valued time-variant coefficients subjected to a
finite duration of a complex-valued non-stationary random input vector is given
by the following equation :

(@ = (0@ =B} =7 e, iIDes R fuldydpe oo (L3)
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Etr@}={" e 0D ROEFWYds+ (n@) e a0
{faWY={fWY-E{f®} (115)

where {»(z)}, E{w(t)} and {%(7)} are a complex-valued output random vector,
its mean vector and its deviation vector, respectively, and {f(&)}, E{f(®)},
{fa(#)} are the corresponding input vectors. © and # are the real-valued time
variables in R'w. [g(r, #)] is the unit impulsive response matrix of the time-
variant linear discrete system with complex-valued coefficients. D(#¢; R',) is
the cutoff operator defined by eq. (3). And {%(z)}; is the output response
vector resulting from the initial conditions at #, which is the lower boundary
of R',. For the sake of simplicity, the initial conditions are assumed here to
be deterministic. For the case where the initial conditions are random, the
following equations should be used instead of egs. (113) and (114).

(@) ={ e 01D s R ()it e, ) Hia () oo 116)

Etn@}={" (e, 01D ; RDE{SGO)detGie, s)IE(i(e)) oo 7

where (i(r, #,)) is a unit impulsive response matrix related to the initial con-
ditions and {i(u.)}, E{i(#.)} and {is(#2)} are an initial random vector at #,
its mean vector and its deviation vector, respectively. Under the assumption
that {{(#x)} is a deterministic vector, we have

E{ite)y={iCen)}, {au)}={0y e (118)
Then, eqs. (116) and (117) are reduced to eqs. (113) and (114) by making use
of the notation,

{n(o) }y=Ci(r, n Wi}y (119)

The input and output relation of the local co-variance matrix defined in the
two-dimensional time domain is easily determined from egs. (2) and (113) as
follows :

LK (), T2 s orR%250))
=D(r(, 72 orRzr.re)gi;dMSi:d/‘zEg(Tu D IGK (R, 2y 1R 0, ) J(g (T2, 122) 0¥

where subscripts / and 0 denote the quantities with respect to the input and
the output, respectively. Substituting o.R*rr,=R%, in eq. (120), we obtain the
co-variance matrix defined in RZ..

The input and output relation of the two-dimensional local spectral density
matrix can be obtained from eq. (120), by making use of its correspondence
to the local co-variance matrix as a double Fourier transform.

(oS(wy, @y ; 0r R z) ) = '(2}02 SRg,EG(“’" w5 o R':DIGS (0, 0r 5 1R )]
(Glws, ' 3 oR'z)Y¥dw, ' dw,! e (121

where
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(G(wy, @) ; oR2))= SoR'n
=S e (G Dleiwmolds e (122)
[ Yooy 1

e—f'wﬂfdrgT (g(z, 1) dejoi udp

and
(Glw; T)]=Sf_ (g(z, w)de—Fz—mwldp e (123)

The quantity given by eq. (123) is the complex transfer function of the time-
variant linear discrete system, which means the frequency characteristics at
time 7.

As mentioned above, the local co-variance matrix of the output can be ex-
pressed as the inverse double Fourier transform of the two-dimensional local
spectral density matrix of the output, that is,

1
(2m)?

Therefore, the co-variance matrix of the output, defined in R%. can be given
by the following formula from egs. (121) and (124):

GK(zy, 105 0o e 3 = S[ez CoS{wy, @ ; o, R0 Jei ot —wrddwdw, -+ (124)

(oK (7y, 7)) =CK (1), 725 R%)3

= (2;:)2 SRz CoS(wi, @y 3 R2)Jer(om —orddwdw,
=?’2}r)“ SR? da).'dcuz'SR2 dwdw,(G(wy, w' ; R')IGS(w)', @y 1R¥mu))

(Glw,, wy' ; Riu))*ei(omi—wr) e (125)

On the other hand, substituting ,R%,r=R% and the integral representation
of the local co-variance matrix of the input similar to eq. (124), in eq. (120),
we can obtain another expression of the co-variance matrix of the output as
follows :

[ (71, 72)) = 7(2}02 SRZM(OS(Q)]’. @y ; Ty, 7o) JeH o' T m)dw,  dw,’
B (Q}T)TSRE’CEOS(CDII. w7y, T dew,’ e (126)
where
Sy, w571, ) I=(G(wy ; TDILS (@), @2 5 1R ) (G (@' 5 7o) % e az2n
[og(wl', w;' Ty, T))=(X (@' ; tDIGS (@), @ 5 1R ) J(X (@' 5 7)) IF-veeeee (128)
and
(X{(w/' ; T)HI=(G(wy ; v)Jeje/7 = Sl[g(rn p))edwiudp e (129)

As regards the quantities given by egs. (127) and (128), the following relations
are valid :

Eo?(wx', @, Ty, Z'z))*=fo§(0)2'. @' T, T1))
G, wo' 5 7y, T )*¥=0oS (e, @) 572, 7)) e (130
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The quantity expressed by eq. (129) is the output response of the time-variant
linear discrete system subjected to a complex harmonic excitation.

Both egs. (125) and (126) are the spectral representations of the co-variance
matrix of the output. [ndeed, eq. (126) can be obtained from eq. (125) by using
the following equation :

SR'MEG((DE’ w/ ; R\.) Jejozdw, = SR‘de[G (wy's r)]ejw-’r.\-ledwte—Kf—n)w.
=2x(G(wy : t)deswlve e (13D

However, it should be noted that the output spectral density matrix used in
eq. (125) does constitute a pair of Fourier transforms with the co-variance
matrix in R?%., but that used in eq. (126) does not. In the following, we will
generally discuss the relations between the local co-variance matrix of the out-
put and the two kinds of two-dimensional spectral density matrices given by
eq. (121) and eq. (127), respectively. Denoting the integrand in eq. (121) as

GS(@y, @ 5 @y @' 5 1R w12, 0rR%172) ]
=(G(w,, "; RDICS(w,, @ 5 1R2) G (@2, w3 5 oR'2)S* o (132)
and putting
0 =w—awd e (133)
in eq. (122), eq. (132) can be expressed as follows.

CoS{wy, (ﬂé' ; W, @y zRgmm. oK) 3
EC“_:S(‘UII,. 0))' H 0’2“, a)iy s lRZ,“l#i, Drszl‘l'z)j ~
=G0, o'; RIS (@), @y 5 1R ) G (@', @o' o R'z) I oveeenn (134)

where

[5(0%”, w5 oR'2)) =SOR|T‘[G((1),’ cT))e—Jol'tdr et (135)

Since the following equations are valid,

—;_HSR-MCG(C’!, @ ; oR'z,)Jejordw,

1 . - N
_ESOR.Tidr[G(wL 5 T)ejw Sledee Hr—r)mi

=D(ty; R )(Glw ; T)dejwd'ss (136)
and
] o G, 0 oR Yeiiedor =5 (G0, dote-it=c
27 JRw £ T et T8 JoRte b RTY €
=D(t:; R DG ;7)) e (137
the inverse double Fourier transforms of eqs. (132) and (134) result in

D(1y, 725 o Rom) (S(@), o' ; 71, 7o) JeH @ vi—w'72)
w\we

DGS(wy, o ; @, @2 5 1Rty ocR%x)) e (138

TiTg

and
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D(T], T2, DrRZT)TQ) [os(a)]’, (02’ 3T Tz)j

LU”a)g“

D Eu§(w1", W/ ; W', Wy’ : IRzﬂlﬂ2l 0rR271T'2>J ............ (139)

1T

W)W Wyl

where the symbols D D2 and lDz denote the double Fourier transform, the in-
T

vers double Four1er transform and a pair of the double Fourier transforms,

respectively. Therefore the local co-variance matrix can be expressed by
making use of the quantities defined by egs. (132) and (134) as follows:

W
(K (71, T2 oszrlrz)]DZEos((U_l, Wy 4 o;Rgr)rz))

T17Ta2
w. mz

= (2}[)2 [os(ﬂ)], @y’ s 0)2, w,' s IR e OTREVITZ)] """"" (140)
1 @ e L ,
(K (71, 735 0o R20170) ) =“(—2;)—2 S1D(1),72; o Rz (6S (@4, @, 5 Ty, T2)Jei o't —we'ss)

Wy 0)2 e

St D (S(wy, 0" ; 0y, @' 5 1R wissy 0rR22175) ]

(2 )2 e
............ 141
and
U)l I 1
(oK (z(, 725 0-RP7175)) D [as (@', @' 5Ty, Ta s orR%i20))
y (02 =
D [os(wl',, ' H @', ' ; IR2#1#2, orRz‘f\Tz)J """""" (142)
7172
Lﬂl'd)i'
CK (75, 705 orR%12)]) D D(Tl, T35 orllrir) (S (W', w2 5 71, 7))
0w -
132 LS(@)', o' ; 0!, 00 5 (R sy o R%eiz) ] oo (143)
T2

Wy
where the symbol S-! denmotes the integral operator with respect to @, and @,
over the two-dimensional full domain R%., and the quantity, (;S(w,'', '’ ; 7y, 7o ;
orR%r,z)) appearing in eq. (142) is

S, @' 571, T2 5 0o R¥rz) )= do'dw,"ej(w'T(—wi'ty)

_1_5
(2r)? JRre
‘SngflndlldXz]:t)S(a)l’, Wy A, ))e— i A—wed) (144)

From eqgs. (140)~(143), it is shown that the local co-variance matrix is de-

1 W/ wy! W)Wy 0wy ©," "’
Y51 St Dtoeq. (132) or O D
to eq. (134) and that the three kinds of two-dimensignal spectral density ma-
trices, (6S(@1, @3} orR22iz)), S(00', @' 571, 7)) and GS(@'', @' 5 71, T2 0rRP12))
are obtainable in the intermediate step of operations by changing the order
of the elemental operators of the double operators. And also, from these equa-
tions the following relations can be found :

(S (wy, 0 ; orfRPrr) )= @%{

termined by operating the double operator,

S . e—iorx((S(w,, 0 ; T, 7o) Jxejormdr dr,
o Rir T2 o we



60 T. KOBORI and R. MINAI

CoS(ws, 025 0rR?m0))
1

= (20)? S Rzme—iw'f';klES (@i, Wy ; Ty, Ty 5 - R ;) J¥€IOem2dT Ty oo (146)

We
Although the local co-variance matrix (oK (7, 72 ; or?rr:) ) associated with the
output of the time-variant discrete linear system can be obtained by operating
the inverse double Fourier transform to any one of the three kinds of two-
dimensional spectral density matrices, defined in a finite_domain oK%z,
(oS, 025 0rR%12,)Y, D(ry, 73 o R ) (S, @' 71, 7)) and (S(w,'', '’ ;7,723
orf?r17,) ), these quantities are different from each other in their spectral expres-
sions and have a different physical meaning. The two-dimensional local spectral
density matrix, (,S(®, @, o+R?%,z)] which only constitutes a pair of double
Fourier transforms with the local co-variance matrix is a set function of the
two-dimensional time domain +R?%.z, as well as a function of the output fre-
quency variables (w;, w:). The two-dimensional spectral density matrix, D(z|,
Ty 0rR%7,) (0S(w,', ws' ; 71, T2)) which contains time variables (z,, 72) as the para-
meters has a form expressed as the product of the cut-off operator associated
with the domain oK%z, and a function of the input frequency variables, (w,’,
w,") ang the time variables (z,, 7;). The two-dimensional spectral density ma-
trix, (S(@)", @' ; 1y, T3 ; orR%z,)), which depends on the time variables, (z,, 72)
as well as the domain ¢ R% ., is a function of the difference frequency varia-
bles (@', @,'") between the output and input. It is clear that the local co-
variance matrix expressed by eq. (120) is independent of the choice of the
lower limits of the double integral in eq. (120) provided they are smaller than
the relevant lower limits of the two-dimensional domain of input (R%y 4. The
two-dimensional local spectral density matrix, (o:S(@, @s; o-R%r7,)) expressed as
eq. (121) is uniquely determined independently of the lower limits of the integral
in spite of the dependence of the quantities similarly defined as egs. (122) and
(123) on the lower limit of integration. On the other hand, the other two-
dimensional spectral density matrix expressed as eq. (127) or (144) may be
influenced by the choice of the lower limit of integration. That is, similar ex-
pressions to these two-dimensional spectral density matrices can be obtained
according to the choice of the lower limit of integration. For the general case
of a time-variant linear discrete system, however, all of these types of spectral
density matrices of the output can not be expressed in terins of the co-variance
matrix or the local co-variance matrix of the output, whereas the two-dimen-
sional local spectral density matrix (S(w, s ; o-2%,r;)]) is given by the double
Fourier transform of the local co-variance matrix (K(7), 72 ; orR2%z ) J.

In particular, for the case of a time-invariant linear discrete system the
complex transfer function given by eq. (123) is reduced to

(G s01={" LG, me-itr—swwidy
—{Tlere-ieidi=(GGwY s (147)
Then, egs. (122) and (135) result in

(Gl o' 3 oRe)I=(G ) oy e=ston—virdz
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=(CUa)IQwi—w/ ;oR'z) (148)
[5(&);”, @' Rz )=[CGw:'))Q(w" ; oR'z) e (149)

where Q(w; R',) is defined by eq. (20).

By making use of eq. (147), the two-dimensional spectral density matrix de-
fined by eq. (127) can be expressed as

LGS/, @' ; 74, )1 =(G(G0,")ICS (W', @y 3 1R ) G Gw") ) *
=S, @) e (150)

It is noted that the two-dimensional spectral density matrix (oS{w/’, @' ; 7y, 72))

does not depend upon the time variables (r,, 7») in the case of a time-invariant
system. '

On the other hand, the two-dimensional local spectral density matrix defined
by eq. (121) is expressed in the following form by using eqs. (148) and (150) :

GS (@1, @15 R )= by § e Q=0 3 RITG 0 YILS @', w1’ 1RY))
(G ) Q¥ (W~ wy' § oR'z)dan'doy’

1
=- 15 o'z S 1y * s Rz,
(27)? Q((U 0 )::Fo (@1, wy) 3:9 (w250 ))
lCz(()K(TI‘ To OrRQTITz)j """""" (151)
TI1T2

When oR'r; and o.R%77. tend to Rle and R%. respectively, the following equation
is valid:

Q(U)i ; R\ =27d(w)C1 e (152)

Therefore, eq. (151) is reduced to

[05((0,, w5 R?%.))= [oSnrz((Dh @)
=(GCGw)IUS (@, @y 5 1R 1) G Gor) J*

[GROP)

= EOS(wI; w23 C EOK(TI; To)) e (153)
TiT2
From egs. (150) and (153) it is found that, for the case of a time-invariant
linear discrete system, the two-dimensional spectral density matrix defined by
eq. (127) is in accordance with the two-dimensional total spectral density
matrix of the output which gives the co-variance matrix of the output by the
inverse double Fourier transform.
Similarly, the two-dimensional spectral density matrix defined by eq. (144)
can be reduced to the following form by making use of egs. (150) and (153).

GoS(wy'", @' 571, T2 orR22.7,) ]

=Q(a)l” ; ORIT()Q*(OJZ" s QR)TQ) (21?1)_28.‘?'5“[”5((”)” wg')jej(wl'rl—wz‘r:)dw;'dwz'
=Q(w'"; R )Q* (W' ; oR'2) K (74, 72) ) t CE (1, 7o o R30z)]) oo (154)

If R's, and o.R%,r, tend to R'e and R, eq. (154) is reduced to
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CS(w)", we'’ 5Ty, T2 3 R2%) = (2725w )6 (wy ) K (1, 72))
wy '’

COEGE, ) e (155)
Egs. (154) and (155) show that, in the case of a time-invariant linear dis-
crete system, the two-dimensional spectral density matrix defined by eq. (144)
is expressed as the product of the co-variance matrix and the double Fourier
transform of the two-dimensional time domain. Particularly, eq. (155) which
means the concentration of the two-dimensional spectral density in the zero
difference frequency, (@', ®'")=(0,0), for the case of the full domain R?%., is
compatible with the accordance of the two-dimensional total spectral density
matrix (oS(w,, w,; R*.)) which concerns the output frequency and the two-
dimensional spectral density matrix (oS(w’, @,')] related to the input frequency,
as shown in eq. (153). But, if the input time domain R4, is finite and the
lower limits of integration 7., are taken as — o<t <y, (=1, 2) in the first
line of eq. (147), egs. (153) and (155) are no longer valid even in the case of
a time-invariant linear discrete system. In particular, when ;K% tends to
R, eq. (153) represents the input and output relation of the two-dimensional

total spectral density matrix under the assumption of its existence.

GoS(w,, w; ; R%)) =[G(ja)1)][15(wh @y R?’m)][G(J'Cvz)]* """""" (156)

The above equation is the result presented by J. S. Bendat™.

The input and output relations of the one-dimensional local spectral density
matrices defined by eqs. (42), (43) and (56) respectively, are found from eq.
(121) and their respective definitions as follows:

[USI (CD), To 3 OrRZr\1'2>J= .ZIE_Sle[,)S(CD), ws ; 07R2r172>]e_]-w272dw2
= ZIT;D(TQ s oR'rg)SRdew.'[G(wn, w,; oer,)JSi;duE,Sl(wl" v ’R2,U|/1¢_>J
'(8(72. D)]* ........ (157)

(0S2(71, W 5 0 RPy75) ) = ’QIESRIMCOS(&’]. Wz ; orR%r 1,) JeIomidw,

= 2-1{D(T| ;oR&.)SR'wdwz'Si;dp[g(T., WISy, w2 5 1R )
(G @y, wy' 5 o R I¥ereriiennn, (158)
and
[05‘(“)' T3 OPRZM)]= [OSI (a)v T orRzA-nr)jejwf
=%—D(T s OR")QIMSR'mdw'[G(w’ ' oR'z“)Jg‘_mdye—jw’»
UGS, v iR ICE(T, w) Y% (159)

To obtain the input and output relation of the one-dimensional local Hermitian
spectral density matrix defined by eq. (69), we must consider the auxiliary skew
Hermitian matrix which is similar to that defined by eq. (93),

GSu' (@, T 5 00R%e, @) )=aleS (@, T ;5 0pR%) I —a*(:S(w, T ; 0pR%1:) I*
EISH'(CU', v, I-Rzruv a):lzatls(w)’ v, IRZA-p)j—C(*EIS((U', v letu)J* """""" (160)
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and a pair of conjugate linear operators.
H= élh D(z; oR',)e“’TSR\ do'(G(w, »'; 0R12+rr)jST dve—jo'v(g(z, v)J*

Ht=g Dz 1R | do'(Glo, o R dveione(z, )

Then the input and output relations of the one-dimensional local spectral density
matrix (Sy) and the auxiliary spectral density matrix (Sr') are expressed as
follows :

GSuw, 75 0pR%:, )= (H+ BN (Sn(w', v i 1R, a/2))

+(H-H¥(Su (0, v 1R, @/2)) «-ooeeeeee (162)
CoSu' (@, T3 0pR%iz, o) )= (H— H(,Suw', v; 1R2,,, a/2)3
+ (H+HOS (@', v 1Ry, @f2)) vevreeens (163)

where

GSil@’, v iR, a/2))=(1/2)(Sh(e’, v 1R, o))
[ISH’(Q)’, Y, lena; a/2)j= (1/2) [ISH’(G),, Vv IRZIUM a)] ““““““ (164)

From the two-dimensional spectral density matrix of the output defined by
eq. (127) we can define the following two kinds of one-dimensional spectral
density matrices for the output in the same way as we define the one-dimen-
sional local spectral density matrices from the two-dimensional local spectral
density matrix. And they can be related to their relevant one-dimensional
local spectral density matrices for the input as follows :

GSiwy' 5 7y, Tz)):';n’gmw[os(wl', Wy’ 5 Ty, T2))e—Jw Ted s’

=G @ I BOS @, v Ru) I (o, I* e (165)

CoSetwn' s 71, 7)) = zlﬁ'SR)&[oS(wl', W' ; Ty, T)deJetdw,’
= Sr_;dvfg(‘r;, WI0Se (v, @ 5 1R ) G (we' 5 1) J* v (166

As regards the two-dimensional spectral density matrix defined by eq. (144),
similar relations are obtained, that is,

[o§| (' ;14,79 orR2nfz)J=217SRl [Og(wl“» W' 5 T1, TasorRPr ) Je—wd 'Td !
= D@5 R0, da(Bor, o s oR ) S @, v 5 Ra)
(g(ry, V) J*ejo'ti v (167

1

CoSa(@s"’ 5 7y, Ta 5 OTRzr'“)j:Z—'irSR' S, @ 571, T2 5 orRPrry) Jeio nidw, !
o0

= 2 DG oR o doy | ez, 080, @' 3 R
‘[G(wz”, Wy 3 oR'e))¥e—Jwr'rs  .oeiiii (168)
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Particularly for the case of a time-invariant linear discrete system, the one-
dimensional total spectral density matrices for the output are expressed by

using egs. (148), (152) and (157)~(159) as follows:

(oSi(wy, 72 ; R2)) = [G(jwl)JSdeuElSl (wy,v; IRzmm)][g(Tz—U)j*
= [G(j(UI)JEIS(wl, To § 1R ) J¥(g (7)) )*

=(Si (. n)]%[ok’(r., S T (169)
CoSe (71, w25 Rm)—Eg(r,)J:E,S(r:, s ; 1R ) (G (Jwo) J¥
=S eICTR T e (170)
(S, T; R2)3I=(G(ja)I0S(w, 7 ; ]Rer/)]’:([g(T)J*ej"”)
=(S(, r>3§wcoK<z+f, a3 a7

Similarly, from egs. (165)~(168) the following expressions are obtained :
CeSian’ : 71, 7)) =[G ) ILS:1 (@', T 1R ) J#(8(72) J*

—0GS@/, tICGR G, ) e ar)
Se@y’ 5 71, I =(oSe(tr, @ DICLK (1, 7] e a7

(o§1 (an' 574, 72)):5((01’/)Sledwl’[G(jwl')j([lsl(wl’; T 1R )]
*(g(t) Pein's
T2

= 5<m)”>SR1mE°S’ (@' ; 72))eio'ndw,’

— 2B (@ YK (o, tDIC G (T, 7)) e (174)
(o§2(0)2” 3 Ti, T2 ) =278(w,'") [oK(TI, f?)]&[OK(tl. To)) s (175)

In the special case of a time-invariant linear discrete system subjected to a
stationary input, the well-known input and output relation of the power spectral
density matrix in the stationary process is obtainable from eq. (153) or any
one of the eqgs. (169)~(173), if ;R%u., is replaced by R%. and eqgs. (28), (51)
and (62) which are valid in the stationary process are taken into consideration.

GS@I=(GCUDIGS@IGG))* e (176

4. Linear discrete systems subjected to quasi-stationary inputs

A quasi-stationary input vector {f(#)}, is defined as the product of a deter-
ministic matrix (a(#)), each element of which is a deterministic time function
defined in R'. and a stationary input vector {¢(w)}*.
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{fWY=latO Ky e (77

Hence, the mean and the deviation vector of the quasi-stationary input vector
are given by

E{/(®)}=CaIE{p(}, {fu)}=(a(@Npa(®)} -oroeers (178)
For a time-variant linear discrete system baving an impulsive response matrix
(g(z, )], we define the following modified impulsive response matrix (g.(z, &)),

by right-multiplying the deterministic matrix (a(s)], to the original impulsive
response matrix (g(r, #)].

(gn(z, ®))=(g, MIar)]) s (179)

Hence, the new system characterized by the above defined modified impulsive
response matrix (ga(7, #)], may be subjected to a stationary input vector hav-
ing the following co-variance matrix (R(2)2, and the corresponding power
spectral density matrix (,S(@)).

CS@NICHRDI=E{Gu+ mH (Y oo (180)

Substituting egs. (179) and (180) in eq. (120), the local co-variance matrix
of the output is given by
K (1, 25 o R = D1, o orRomed |7 e |7 diguer, )
GRUH —12) I gm (o, t82) J* o (181)

The two-dimensional local spectral density matrix of the output is obtained
from eq. (121) as follows by making use of eq. (28):
1 .
(oS, w2 ; o RPrm) )= z?gklm[(;m(wl, w'; R )S(@)]
(Gulws, 0 ; oR'z)J¥dw'  ovveeeen (182)

Similarly the two-dimensional spectral density matrices of the output defined
by eqgs. (127), (128) and (144) are expressed as

EOS((‘-)I’; @y 5 Ty, T2) )= 270wy’ _CUz’)EGm(fUl‘ ;‘-l>jE/S<wl,)jEGm(w'zl s T 3

............ (183)
[Og(a)l’, 0J2' v Oy, Z“z)j=2ﬂ'5((l)]' —ﬂ)g’)[Xm(U.h’ ’ fl)j[/S(w]’)jEXM(wgl ; TQ)j*
............ (184)
[o§(a)w, W' 5Ty, T o) )= 217[ SR! [ér:: (@, @ ; oR'=)I0S (@)
.[5(0)2", ' R m 0 dew e (185)

Substituting eqs. (183) and eq. (184) into eq. (126) the co-variance matrix of
the output is expressed as follows:

(K (r\, T2)) =-217T-SR‘°°EG'" (@' ;) IGS (@G (@ T) J¥el - dw’

= 1—
2r

SR, (Xn(@"; tDICGS@DIXn (0 T2)I¥dw" oo (186)
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By making use of eq. (131), the same expression as above can be obtained by
taking the inverse double Fourier transform of eq. (182) and replacing o Rrrs
by Ri..

The one-dimensional local spectral density matrices of the output are obtain-
ed from egs. (157), (158) and (153) by taking into account of egs. (51) and
(62) as follows:

GoSy (@1, T2 5 0rR270)) =’21?D(Tz N oerz)Sled(U'[Gm (@, @' ; oR'+)IGS (@)
7 dugn(es, 1 I*e o
=D R (Galan, @ RIS @I X (@' ;1) Yo’ - (187)
(S:1, 05 o Rieed 1= 9D (@1 s R o, der (™ dblga (e, 1) Yeiw'v

(S@)I(Gnlwy, @ 5 oRIz)I*
=21;D(Tl 5 Oerl)SR‘ooEXm(w' ; Tl))[ls(w’)jEGm (w2» ' 5 Olez)j*da)‘ """ (188)

and
S(@, 75 R 1= 5 D(E i oRDe| L d0'(Gu(@, @' RIS @)
A _dvgn(r, Y¥e-so's
=5 DR (G, 05 oRYDIGS @I X (@' 57 V¥d
From egs. (86), (91) and (162), the one-dimensional local Hermitian spectral
density matrices of the output defined by eq. (69) are given by the following

equations, because the one-dimensional total skew Hermitian spectral density
matrices are zero in the stationary input:

(oSr(w, 7; 0%, 1)) =-é— (Hi+ BN (S(w)) e (190)

Hi= DG aRDe | d0/(Gu(w, o' ; 0RY0)

. S:mdpg—jo)‘u[gm (r, p))* ............ (191)
(oSr(®@, T ; R, 1/2)]=~%—(HP+H,,*) US(@)) e 192)

Hym gD s R e d (Gu(@, 0 5 oR112))
. Simdpe—jw’»(gm (T, ))* e (193)

And also, by making use of eq. (51), the one-dimensional spectral density ma-
trices of the output defined by eqs. (165)~(168) are obtained as follows:

CoSi(@’ 5 74, 72 )=(Gn(@' ; TDIGS@ DI XK@y’ 5 7)I* v 194
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(Sa(wy 5 71, 2))=(Xn(w.' ; T:)j[IS(%')JEGm(wzl JTD)E (19%)
i@y 51, 7o s OrRzmg)J=j21;D(Tz ; OR)Tz>jSRdew'£5m(a)1”, @' 5 o R':))

8@ duCgnCra, 1) Yoeitri—0

=21—7':D(T2 N ORITQ)SRImtém(wl”p o ; RIS (@) I(Xn(w' ; t2))*eine'dw'

Eogz(wz” 5T, T2 D,Rzr.rg)3=2170(1‘. s oR'7) Sledw'gi;dUCgm(Tn v)Jeiw'v
-(S@DIGn(ar", @ ; oR') e jree
=%D<r, PR, (K@ 70I0S@)DICn(@r, @ 5 oR'e) e imwa'da

Moreover, if we define the following two kinds of one-dimensional spectral
density matrices based upon the two-dimensional spectral density matrix given
by eq. (128):

[0§, ('; 1, T2)3=217SR',=[°§((0’1' @1y, )y e (198
GSe(@ 5 1, 72)]=%SRIN[0§<‘UI" @', ) e (199)

GK (T, 1)) =%Smm[osl (w/'; 7y, Tz)]dw1'=‘21”—Sle(o§2(w2/ 3 Tty T2) Jdwy’

these two quantities defined by egs. (198) and (199) become jdentical in the
case of a stationary input. And they are expressed in the following form, as
can easily be seen from eqs. (28) and (128) :

GSi(@ 71, T 1= (Se(@' ; 71, 7)) = (X (@' ; 7D IS @)X (@0 5 7) % oo (20D

The spectral representation of the co-variance matrix of the output, as given
by egs. (200) and (201), has already been shown by V. V. Bolotin**,

In particular, when the impulsive response matrix of the modified linear
system (gn(7, #)), has the form of a time-invariant linear discrete system [(gn
(r—#)]), and the finite time domains related to the output tend to infinite full
domains, the spectral density matrices expressed as in egs. (182)~(185) and
egs. (187)~(199) are reduced in the following forms:

oS, ©: 5 R2.)I= (oS (@1, @1 5 71, T2) ]
=218(0— @) (Gn (Jw) IS (@)I(Gn(Ga)I* s (202)

(S (@, w; ; 71, T2) ) =278 (@, — 3) (X (G 3 7)I0GS (@)X (s ; 72))*

where
(Xn(jox s 7)) = (Gn( jw;) Jeiwr:
CS (@, 05 71, 7)) = )W) 8(@) GE (1 —T2))  eveereeen (204)
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and

CoSi (@, 725 R2) ) =S (@ 5 7y, T2) 3= (G ( j0,) 30S(@,) J( X (jeon ; 72)I*
CoSe (1, we 5 KB22) )= (6S: (w2 5 7y, T2) = (X Jovp ; ) JGS (@) I G fwn) T*

............ (205)
(S, 5 Ro) )= (oSr(@, 7§ iRow, D)= (eS5(@, 7 ; R, 1/2))
=(Ga(j)IGS@ICr(jdI* e 209
(oSi(w: 7y, 7)) = (682 (@ : 71, ) I=270 () K (T =72))  woeeeenes @07
(651 @5 73, 7= (6Sa(@; 73, )= (X jors 2GS (@I X 7) I* 208)

However, if the original system is a time-invariant linear discrete system, the
deterministic matrix (a(®)) in eq. (179) should be a constant matrix in order
that the modified system is a time-invariant linear discrete system. Hence, the
expressions given by eqs. (202)~(208) are nothing but the input and output re-
lations of the various spectral density matrices considered in the case of a sta-
tionary process which are adaptable only to a time-invariant linear discrete
system subjected to stationary input.

As a problem of the guasi-stationary input, the modified impulsive response
matrix should be considered to be a time-variant type whatever the original
linear system is. Thus the complex transfer matrix of the modified system is
generally given by the following expression by making use of eqs. (123) and
Q79 :

(Grlwd ;7)) =%[G(w¢’ ; r;)j*g—jrlw,'[A(—jwﬁ’)j ............ (209)
where

A (jwt’)jwclfa(lut}] ............ 210
My

Particularly when the original system is a time-invariant linear discrete system,
the above equation is written as follows by using eq. (147).

(Gl 3 7Y =5 (G(Go)Iwe =5 (A(—ju()
Wy
—geemirwl( |, (GGOWAG (s—)efeads o @
Therefore, in the case of a time-invariant linear discrete system subjected to a
quasi-stationary input, the local co-variance matrix and the various spectral

density matrices of the output which are given by egs. (181)~(201) are written
by making use of the following expressions :

(e mO)=CgCi—t)a(ed) e @12)
(Xm(w' ;7)) =(Gn(wy ; T Jeson'ze
- 2—17tSR)mEG(js>JEA(j (s—w))ermsds s (213)
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(Grlwn 00 ; BRI =5 o dSCG(ICAG (=)

S . dre—i(w—8)Ti e 214)
DR i

G, @' 5 oReDI= 5= o dSE(ICA G- w)))

‘ SORIT‘ dt‘,e_.’(wl,’ +w(' - S)f‘ ............ (215)

In particular, when the finite time domain tends to the full time domain, egs.
(214) and (215) are expressed as follows:

(Gn(wy, 0 ; R')I=(Go)(A(Glw—w)))  reeeeeen (216)
Cn(@’, o' ; RDI=(6G @ + @ NDICAG@I )Y oo 17
Hence the various spectral density matrices of the output, each of which is
definable in the relevant full time domain, are written as follows in the case of
a time-invariant linear discrete system subjected to a quasi-stationary input:
S, w15 RRDI=5-(G U, TAG @ -a))I0S@))
(Ao~ @' NI IGGw))* e (218)
GS(@, w5 71, t2) ) =210(w — @) (Gr(@:'; TDI0GS (@) IGm(@y'; 72) %+ (219)
GS(@/', @' 571, 7)) =218(wy’ — 02") (Xm(@)” 5 ) IS (@) I Xn(@y' ; T2)I*

WS, 00" 7, 7os REDI=5-{ | (GG@" +00))(AG@ IGS @)
(Ao I @01 +0)) Ve day oo 221)

(S, @1, 725 Ra)) =5 (GG ) (AL @ -0 IGS @) I Xn(@'; 7)Ydw

(S:(11, @r; Rie)I =5, (XK@’ s 1) IS @D ICAG (@ -0 1w’ (G Y?

............ (224)
WS, 7; R, 1/2)= (e (GG, (AG @=0)IGS@))
(X' ))*do'
re| L (Xn@' DIGS@IIAG @= 0N I (G(G@)I®) oo (225)
GSi(w' ;s 71, ) ]=(Gn(w' ; TDILS (@0 DI Xy’ 5 T2)I*¥ e (226)
GSe(@y’ 571, 7)1 =(Xm(@2' ; T)IGS (@02 NILGm (@, 5 72)0%  ceveeeenss @27

(8@ s 1o R )= g (GU@1 +@))3CAG®, ) IGS @)
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(Xm(@' ;o) Ykein'dw! e (228)
S 71, 7o; R Y=o o (Xm0’ £030S @D ICA iy ) 7*
(G (w" +w)))*e—irw'dw' e (229)
where
(Xn@'; D)= o= (GUDIAG (s —0))desds
(Gut@'; D) me i CXn@, D= 5[, (GUDIAGG D) eiCs=0' s
............ (230>

In the special case where the deterministic matrix (a(#)] is a constant matrix,
eqs. (218)~(229) are reduced to the input and output relations of the spectral
density matrices in a stationary process by making use of the following equations:

(A(jw))=276(@")(a), (Ga(e'; T))=(GC(Jw")I(@) oo @31
(Xn(@', ))=(C(jw))(a)eive' = (X (jw) (@) = -coveereees (232)
In the substitution of eq. (231) in egs. (221), (228) and (229) it is noted that the
following expression can be used:
G, @' ; R'w)) =278/ )G (j ()’ +,')))=2r8(w;")(G(Gwi'))

In the above, the problem of a time-variant linear discrete system subjected
to a quasi-stationary input is discussed by replacing it by a modified time-variant
linear discrete system subjected to a stationary input. Of course, this problem
can be directly treated as a special case of a time-variant linear discrete system
subjected to non-stationary input discussed in the preceding section. In general,
in order to make use of the input and output relations of the local co-variance
matrix and the local spectral density matrices, we introduce the modified deter-
ministic matrix of the quasi-stationary input which is defined by

(an(e; s RI)I=D(u; R )(a()) e (233)

Then the local co-variance matrix and the local spectral density matrices are
determined as follows:

R, a5 17 R ) )= D (8, Ly 5 12R20005) (a(2) YR (14 — £22) 31 a(125) J*
=(an(t ; 1R uWIGR — 1)) (@m (2 ; sR i) ¥ o oveee (234)

OS@, @ 5 R )= § o (An(i(@0 =) 5 1R)ICS(E))
(AL (Flwy =8) 5 IRuDI¥ds e (235)

US(', w5 15R%D) =D (3 R eV (An(i(0' =5) 1 1RYw)
271' Rl

GSIaG) e ivds s (236)
and so on, where
(Ao’ R DIC a5 R s (237)

By substituting these quantities in the general input and output relations given in



Non-stationary Response of the Linear System lo Random Excitation 71

the preceding section, we can generally obtain the local co-variance matrix and
the one- or two-dimensional local spectral density matrices of the output of a
time-variant linear discrete system subjected to a quasi-stationary input.

In particular, the two-dimensional total spectral density matrix of the output
(oS(w, @, ; R2.)]) of a time-invariant linear discrete system subjected to the origi-
nal quasi-stationary input is obtained in the same expression to that of eq. (218)
by substituting eq. (235) in eq. (153). As shown in eq. (153), in the case of a
time-invariant system, the two-dimensional spectral density matrix (:S(w\', @y’ ;
Ty, T2) ), defined by eq. (127), has the same form as the two-dimensional total
spectral density matrix (,S(wi, w;; R%»)] and it does not depend upon the time
variables 7, and 7,. However, the expression given by eq. (219) which is derived
by using the modified time-variant linear discrete system contains the time vari-
ables even in the case of a time-invariant linear discrete system, hence it is dif-
ferent from the expression of (,S(w:, @, ; R?.)) although both of them are maped
to the co-variance matrix of the output by the inverse double Fourier transform.
In similar fashion, the one-dimensional total spectral density matrices, (oSi(®,, 72 ;
R, Sy, w3 R2.)) and ((S(w, 7; R%)) of a time-invariant linear discrete
system are obtained from eqs. (169), (170) and (171) in the same expressions
as eqs. (222), (223) and (224) by making use of the corresponding one-dimen-
sional total spectral density matrices of the original quasi-stationary input which
are given by the following forms, respectively :

GSi(w’, v; R%))= dw'CA(jwn'—w'D]E:S(w’)J

NpdSTAG =@ )I¥ems e (238)

e

(Sex, @' ; Ryl = or )25 dw'Jmmds[(A(j(570,'))]21“[,5(0).)3
CAG (@ —@))I* e (239)
(S, v; R%))=eiw'v( S (w', v JRA)Y (240)

As In the two-dimensional case, it can be shown that for a time-invariant linear
discrete system, the one-dimensional spectral density matrix, (oS, (@’ ; 7\, T2)] and
(oS2(ws' ; 71, 72)), are reduced to the same expressions as those of (,Si(@, 72 ; R%))
and ((S:(7y, @2 ; R2%.)) which are given by egs. (222) and (223) respectively. How-
ever, the expressions of egs. (226) and (227) which are derived by using the mod-
ified time-variant linear discrete system are different from the expression of (,S,
(w), 72 ; R2.)) and (0Se(71,w: ; R%.)) except for the special case of a time-invariant
linear discrete system subjected to a stationary input. This discrepancy between
the total spectral density matrices of the output and the corresponding spectral
density matrices of the output represented by using the input frequency parameter
substantially arises from the possible variety of definition of the latter spectral
density matrices. In general, the co-variance matrix of the output of a time-
variant linear discrete system subjected to the finite duration of a non-stationary
input can be expressed in terms of the modified impulsive response matrix and
the co-variance matrix of the non-stationary input as follows, as in the case of
the quasi-stationary input:
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G (ry, 7)) =S:Ldﬂls:;dﬂ2[gm(7n &y 5 1R ) Kty #22) )08 (T2 #a 5 RM)J*
— 0 LTS s, e (241)
where
[8m(Te, 23 iR ) )I=D (e 5 1 Ru)(&(Te, B))  cvvreeenins (242)

From eqs. (6) and (241), the two-dimensional spectral density matrix with respect
to the input parameters is given by

GS(w, @y y Ty Tg)J=EGm((Lh’ yT1s lRl,ul, 7,2) JiS (@', @)’ ; R‘Zm)]
(Gn(we' ;T2 1R o, T2 ¥ e (243)

where

(Gnlw) ;7e; 1R 4, Ti)) =£:LEgm (73, 5 1R ) Je— i(ri—mowi dpt;
—o LTSy e (244)

This expression clearly depends on the lower limits of the integral, 7.4’s, and
hence it does not always agree with the expression given by eq. (127), if either
of the input time domains, (R!,/’s is finite, even in the case where the original
System is a time-invariant linear discrete system. Only in the case where a
time-invariant linear discrete system and the input domain ;R?uu=R?. are con-
sidered do the two kinds of the two-dimensional spectral density matrices given
by egs. (127) and (243) become identical. After all, the spectral density matrices
of the output expressed by using the input frequency parameter are rather lim-
ited and vague spectral notions in the sense that they are only applicable to the
output of a linear system and that they may have different forms depending upon
the possible expression of the co-variance matrix of the output. And also it is
a disadvantageous property of these kinds of spectral density matrices that al-
though they can be maped to the co-variance matrix of the output by applying
the relevant inverse Fourier transform operators, the operators deriving them
from the co-variance matrix can not always be found. On the other hand, the
local or the total spectral density matrices are the general spectal notions which
are adaptable to any non-stationary random vector and each of these kinds of
spectral density matrices constitutes a relevant pair of Fourier transforms with
the local co-variance matrix or the co-variance matrix of the random vector.

In the above we have considered a linear discrete system subjected to a quasi-
stationary random input vactor. In the remainder of this section we shall con-
sider a similar case as the above in which a linear discrete system is applied to
a locally stationary random input vector introduced by R. A. Silverman®. The
co-variance matrix of the locally stationary input vector may be expressed by
the following form :

GE (4, #z)j=[a(l%ﬂ)J[,R(ﬂ.—yz))[a(#)]* ............ (245)

Hence the two-dimensional total spectral density matrix of this random input is
given by
(S, ' ; R%))

= _\ Rzm[a (%)]EIR (e — #z)j[a (#)]*g—j(w.’m —ae' pe)de dity
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=Sm CaCi) IR (1) JCa (1) Y=o = me = 52 suclp i
5 SRIMCA(j(w" —w,’ —s))][,S(gL’ ;“‘L? )][A(—js)]*ds ............ (246)
Similarly the one-dimensional total spectral density matrix is expressed by
*
R S ML) 2o E o) e
='% (e2ve' TA(2j ") ))* (S (07) J% (v’ (A(—~2jw") %)
w w

eiot,_duye-imot, dCAG @ —ar ~I[iS( 2 H2)]

CA=F)YF e 24D

Therefore the local co-variance matrix and the one-and two-dimensional local
spectral density matrices of the output of a time-variant linear discrete system
subjected to the above random process are easily obtainable according to the gen-
eral input and output relations described in the preceding section by making use’
of the modified impulsive response matrix [g.(z, #;R',)) defined by eq. (242).

-1
(2m)? R

5. Conclusive Remarks

In relation to the statistical design method of anti-earthquake structures for
moderately intense excitations, some basic studies on the statistical quantities
in the non-stationary stochastic processes are described in this paper, and the
input and output relations of such statistical quantities in the case of a multi-
input and output, time-variant, linear discrete system are presented.

At first, the local co-variance matrix of the complex-valued non-stationary
stochastic process, which is defined as the product of the two-dimensional cut-
off operator and the co-variance matrix, is introduced as the basic statistical
quantity in the time domain. And then, the two-dimensional local spectral den-
sity matrix and the several kinds of one-dimensional local spectral density mat-
rices, which are defined as the conjugate double and the single Fourier transforms
of the local co-variance matrix respectively, are presented as the basic quantities
in the frequency domain. It is shown that the appropriately defined one-dimen-
sional local spectral density matrices are equivalent to the power spectral density
matrices in the non-stationary stochastic process in the sense that the integrals
of these one-dimensional spectral density matrices over the finite time domain
result in the local energy spectral density matrix which is obtained from the
two-dimensional local spectral density mairix defined in the finite square domain
by equating the two frequency variables. Angd also it is found that as the limit-
ing case of the one-dimensional Hermitian local power spectral density matrix
introduced in this paper, the spectral density matrix of a non-stationary stochastic
process which is presented by D. G. Lampard is obtainable. Moreover, it is
shown that the one-or two-dimensional local spectral density matrices can be ex-
pressed as the weighted averages of the corresponding one-or two-dimensional
total spectral density matrices defined in the respective full time domains.

Secondly, for the multi-input and-output linear discrete system having the com-
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plex-valued time-variant coefficients, the input and output relations of the local
co-variance matrix and the one-or two-dimensional local spectral density
matrices are presented. In particular, for the case of a linear discrete system
having real-valued time-invariant coefficients. the input and output relation of the
two-dimensional total spectral density matrix is found to be reduced to the result
presented by J. S. Bendat. In these relatjons, the one-or two-dimensional local
spectral density matrices of the input and output are used to constitute the respec-
tive pairs of the single or the double Fourier transforms with the local co-variance
matrices of the input and output. However, particularly in regard to the output of
a linear system, the spectral density matrices which give formally the co-variance
matrix of the output by the inverse Fourier transform operators, but have different
expressions from the relevant total spectral density matrices of the output, are
obtainable. It is shown that these kinds of spectral density matrices expressed
in terms of the input frequency parameters may have different forms depend-
ing upon the possible expressions of the co-variance matrix of the output, except
for the special case of a time-invariant linear discrete system subjected to the
infinite duration of a random input. In these aspects, it is suggested that the
local or the total spectral density matrices defined as the Fourier transforms of
the local co-variance matrix or the co-variance matrix are the most reasonable
and generally applicable spectral notions in the non-stationary stochastic process.
Here it is noted that the local co-variance matrix is exactly in accordance with
the co-variance matrix of the non-stationary process in the defining time domain
and the value of the co-variance matrix inside the domain can be uniquely de-
termined from the spectral density matrices defined in any domains containing
the defining domain by the relevant inverse Fourier transforms. And also it is
noted that local spectral density matrices of a non-stationary process are ex-
pressed by the weighted average of the corresponding total spectral density
matrices and in general the local spectral desity matrices are given by the con-
volution of the Fourier transform of the defining domain and the local spectral
density matrices defined in any domain containing the defining domain. As a
rule, since the local co-variance matrix and the corresponding local spectral
density matrices associated with a prescribed domain can be found from those
defined in any domain containing the defining domain, the larger the defining
domain the more information is obtainable in both the time and the frequency
domain. However, it will not always be pcssible to acquire a perfect knowledge
of a non-stationary process in the full time domain. And also, if such knowledge
were available, the convergence of integra! transforms defined in the infinite
time domain would not always be guaranteed for the general non-stationary
process even in the generalized sense. Moreover, the time-dependence of the
spectral characteristics of a non-stationary process may not be precisely detected
from the local spectral density matrices defined in the large time domain. On
the other hand, it is noted that as the defining time domain becomes smaller
the resolvability of the frequency characteristics may decrease. Hence, in order
to estimate the time-dependence of the spectral characteristics of a non-stationary
process, it is important to select a pertinent defining domain of the local spectral
density matrices. Here, it is mentioned that for the case where the co-variance
matrix in the full time domain can be predicted, the one-dimensional total Spectral
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density matrices containing a time parameter present at least one aspect of the
time-dependent spectral characteristics of the non-stationary process under the
condition of their existence. And also it should be noted that the local co-variance
matrix and the one-and two-dimensional local spectral density matrices constitute
the respective pair of Fourier transforms and that they are all the additive set
functions of the defining time domain. This shows that the local spectral density
matrices defined in a domain give the complete knowledge of the co-variance
matrix inside the defining domain and that the sum of the local spectral density
matrices defined in the disjunctive domains gives the local spectral density ma-
trix asscciated with the sum of the domains. For instance, if the value of the
co-variance matrix (K(7,, 72)} is neglegible in the domain !r,—1,/>a or if we
restrict a priori our interest in the domain |c|=|c| <, i[=|7y— 14| <Za, the re-
quired information in the domain between the two parallel straight lines, ©,=7,+a,
or in the infinite strip region being parallel to the r-axis and having the width
2a in the direction of 4, can be determined from the local co-variance matrix
and the local spectral density matrices defined in a series of square domains
each side of which is parallel to the 7,-or r,-axis and has the side-length 4a,
and which have their centers at a series of points, t=7r=7,=2ma+b, where m
takes the values, 0, +1. £2,... and b is an arbitrary constant. That is, from the
local co-variance matrix and the local spectral density matrices defined in the se-
ries of square domains, we can determine those associated with a series of the dis-
junctive parallelogram domains enclosed by the lines, ra=7,4+a and .= 2m+Da
+b. And, by adding these quantities, the local co-variance matrix and the local
spectral density matrices in the sum of the parallelogram domains and taking the
limiting case, those in the infinite strip region, arc obtainable. And also once
the information in a broad domain is found the local quantities associated with
any domain contained within the domain are uniquely determined. In the above
discussion, in the case where only the local co-variance matrix and the one-di-
mensional spectral density matrices are concerned, the defining domain of such
quantities is reduced to the one-dimensional time domain |7,—7./<a or [} =a,
because the variable 7, or v can be considered as a parameter.

Finally, as the non-stationary input process miost applicable to earthquake
engineering the quasi-stationary random process introduced by V. V. Bolotin as
well as the locally stationary random process presented by R. A. Silverman are
considered and the basic statistical quantities presented in this paper, such as
the local co-variance matrix and the local or total spectral density matrices, with
respect to the output response vector of a multi-input and-output, time-variant,
linear discrete system subjected to these input random vectors, are estimated.
And it is shown that as a special case of the time-invariant linear discrete system
subjected to a stationary input random vector, the input and output relations of
the co-variance matrix and the one-or two-dimensional total spectral density ma-
trices are reduced to the well-known results in the stationary random process.

In this paper, since the analysis of a non-stationary stochastic process has
been carried out mainly from the mathematical point of view, the averaging
operator always means the ensemble average and the time domain considered
is not always restricted to the past time domain. However, in relation to an
experimental technique using a realizable filter with a finite time constant, the
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so-called short-time auto-correlation functions and power spectra have been intro-
duced by R. M. Fano'® and were extended by M. A. Schroeder and B. S. Atal'”,
Since these investigations were made for the purpose of the analysis of a sample
random function of a non-stationary stochastic process, the averaging operator
has meant always the time average and the time domain considered has been
always restricted to the past time domain. In the appendix which follows these
notions will be expressed in matrix forms as the short-time correlation matrix
and the short-time power spectral density matrix. And it will be shown that
the ensemble averages of this shot-time correlation matrix and power spectral
density matrix are expressed as the weighted averages of the local co-variance
matrix and the local spectral density matrices defined in the semi-infinite square
domain R?_e-.
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Appendix ; Short-time correlation matrix and power spectral density matrix
of a non-stationary random process

In this 2ppendix. we extend the short-time autocorrelation functions and power spectra
of a random sample functions, introduced by R. M. Fano, M. R. Schroeder and B. S.
Atal, to the matrix formulae which concern a random sample vector and show their
relations to the local co-variance matrix and the Jocal spectral density matrices of a
non-stationary stochastic process. First. we introduce a weighted random process {X(y,
7)} which is defined as the product of a deterministic weighting function w(7—y) and a
non-stationary stochastic process {¢(;)}. Here, the fuction w() is characterized as zero
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in the domain (—o, 0) and when ¢ tends to . Then, for a random sample function
{X(p, T}s, the energy spectral density matrix of the function (G(®, 7)) and its Fourier
transform (p(R, 7)) are expressed as follows :

(6@, ©3=({ g, 0 Ohemsondpe)([ o, 120 O)seswsdps)”
=§Remw(7_I‘l){f(#l)}s{f(#z)}’fw*(f—/Jz)e'f““”‘?‘"dmd/-tz
=J‘R*ED(/“' t2 3 Rioon)e(T = pp) {612} s {6 () Y™ (2 — oo™ 3 s D wd gy d pry

1 \ R
= oyt (W (= 0@ R o) )s)((F2(@ 5 )} (e~ ))

............ (a-1)
(o2, T)J=jR,“D(# 3 R'eaor) D=2 3 R'—oor) (T — i) {E(1) Y6 {6 (e — DY E0* (T — p+ Ddpe
:,(R'MDQ‘ s R, ea ) )w(T— ) E(D Y {E(u= DY (T —p+ Ddp s (a-2)
where
{X(p DY =w(@T = {(DY=D(y ; R'cest)w(T— ) {(E()} oo (a+3)

w() W(w)
¥}
From the above definitions of (G(w, 7)) and (¢(4, 7)) the following relations are valid:
G0, DI LD e (a-4)

(G, D) F*=LC(w.D)), (cQD)PF=((=21)) e (a-5)

By making use of egs. (a-1) and (a-2) the short-time correlation matrix (¢:(2)] and the
short-time power spectral density matrix [G-(@)) of the original sample function {§(;)}¢
can be defined as the following weighted time averages so as to be consistent with the
definitions of the short-time auto-correlation functions and power spectra given by R. M.
Fano.

(p:DI=07" (Dl TY) e (a-6)
(G:(@N)=v"'(O)(Glw, T)) e (a+7)
where

v(1)=§R,ND(,u 3 R comintr,re 2 )w(T— pw*(T— g+ Ddp
Y et , *Cod DNde .
—jmzm’_“w(/‘t)w (p+Ddp (a+8)
U(0>=_[leD(# T R wor) w(T—p) dp

=5:.w(/1) Y e (a-9)

It is noted that eqs. (a-8) and (a-9) represent the integrals of the weighting functions
in eq. (a-2) and in the integral of eq. (a-1) with respect to w/27, respectively. From
egs. (a-1), (a-2) and (a-4), the latter integral gives the energy matrix of the weighted
sample function.

2}1. ijmfG(“" 7))dw=(¢(0, T)J=§R.m{x(p. }edx(p D¥Edp

=jR‘mD(‘“ s R o )w(T — ) LED YA E(DYSw¥ (T —pddp - e (a-10)
By making use of eq. (a+5) and the relation, )

v*(2)=v(—k), v*(0)=u(0) ............ (a-ll)
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which is derived from egs. (a+8) and (a-9), the following relations are obtained for the
short-time correlation matrix and power spectral density matrix :

Cpr(DI*=Cp (=D, (GH(@DF*=(G(@w)] e (212)

And, by substituting eqs. (a-6) and (a-7) in eq. (a-4), the correspondence between the
short-time correlation matrix and power spectral density matrix is found as follows:

G LB e @1

that is,
Gel@N=[p 2D Cpe(resda (a14)
[tpr(l)J=’—2';)r—(v(?T)ER,NEGr(w)Jea'°‘dw ------------ (a-15)

Assuming that the mean vector of a non-stationary stochastic process {§(s0)} is zero,
the ensemble average of the short-time correlation matrix is given by the following
weighted average of the local co-variance matrix defined in the semi-infinite square
domain, R cr:

E(pO)=v"WEGR Y e (a-16)
ECpCh )= [ g, (Kx(ts =2 Rl

= g1 Dt s R'ominerreis K Cpt, =D 3dp

= [ R Dt ¢ R comintesra (T = ) CKeCpt, =307 = 4 DD

={ R (T = DKt =2 Roeane I (T4 Dilp TN

where the subscripts y and € denote the quantities concerning with {y(g, )} and {£(&)},
respectively. Similarly, the ensemble average of the shot-time power spectral density
matrix can be expressed by the weighted average of the two-dimensional local spectral
density matrjx defined in the square domain R?.~., as follows:

EG(@)=v"'(DEG(w, T3 e (a-18)
E(G(@, T)=(Sx(w, w : R*_w:))
— (W (= 0% (Si( @101 < Rooor))
¥ (€I W (—w)* | or=wr=0
=(T}r)fjk,mdwl'lewdwz'eiwl"W(w.'—w) (Se(wy’s @' 3 RPewe)ledoe *WH(an! —@)
coeevien(ar19)

The ensemble average of the short-time spectral density matrix is also expressed as the
weighted average of the one-dimensional local spectral density matrix defined in the
semi-infinite parallelogram domain ,R?1, in the A1—pz plane which is transformed from
the square domain KR! : in the p— g2 plane.

E(G(@))=v"(0)E(G(w, )]
E[G(O), TDJ:IR'@:E[(P()’ T)Je_fwldl

=.‘.led12“1“’lgkl&d#[1(x(#+2, i Rwr)]

=Lalw(5x(w' 2 pREL))de
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=2L§ N d/l(e_-’"-“)‘”W(—a)))*[S;(a), 25 o) e*(T— )

1
=T Rl a"“le dw' e~ e m e W (! —@)(Se(w’, gy pREa)Jw* (T — p)

By substituting 2=0 in the correspondence,
@ . y(2
EG(@. DI Blph 01, EGoNE LB Elpe) (a-21)
and making use of eqs. (a-16) and (a*17), we obtain the integral of the short-time
power spectral density matrix over the full frequency domain R'« as follows:

| 1 ELG (@)1= ECpr(0)) =5 (DD ETp(0. 73

=1;(170)_[RIMD(” i Rlceor) (T — ) B(Ke(pta p)ldp e (a-22)

Since the right-hand side of the above equation represents the weighted time average
of the co-variance matrix of a stochastic process {£(u)}, over the semi-infinite time
domain R'-wr, the ensemble average of the short-time power spectral density matrix has
meaning as the averaged power spectral density matrix over the same domain.

For the case considered by R. M. Fano where the physically realizable weighting
function is given by

w()=ae~@ns(y) e (a-23)

in which s(x) denotes a step function, the matrices (p(1,7)] and (G(w, 7)) are obtained
as the following expressions by using egs. (a-1), (a*2) and (a-3):

(o2 D)) =0t —a,{jm:(f’ » _2‘“”‘"{5(/4)}{(,u;))}*dy ............ (a-24)
G(w, T))=(X2[\. e~ T [E( )} —_}wudﬂ) (jf -—a(r-p){f(ﬂ)}e—}wﬂd‘u) ............ (a-25)

On the other hand., from eqs. (a‘8) and (a-9), the integral of the weighting functions
2(2) and »(0) are given by
ae At

2,,. . v(0)=% ............ (a+26)

respectively. Hence the short-time correlation matrix (¢-(1)) and power spectral deansity
matrix (G.(w)) are expressed as follows by using eqs. (a-6), (a-7) and (a-24)~(a-26):

()= aze"*I e Mugy=

mazio,—=2)

(T, T +R)

Cor(D)=aeatt= "M e (Y- e (a-27)

EGr(a))J=2&0 e—a(f—m{5(#)}2_1..,%#)(]-' emate=m (£ ()} o™ J"’“dp.) ............ (a-28)

And. from eqs. (a*14) and (a:15) the relationship between the short-time correlation
matrix and power spectral density matrix is given by the following set of equations:

(Ge(@)={p, e (DI
dil’
(D)= (g (Ge@ehdw (a-20)

On the other hand, the ensemble averages of the short-time correlation matrix and power
spectral density matrix are obtained from egs. (a-16)~(a-198) as follows:

E[,}a‘.(z)J:Qae—au—:A inI»e—Zdﬁ—u)[KE(#_ n—2a; Rz_m'_)]d# ............ (a-30)

20 g_.’ (k4

Soior
E(G(@)= Tor5t aTar b £

(Se(®r, W2 s Rwe ) om0 ==
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As another example, for the case where the weighting function is the so-called rec-
tangular window with the width T,

w(w=s(p)—s(ue=T)., T>0 e (a-32)

the matrices (p(2, 7)3 and (G(w, 7)) and the function v(1) are respectively determined
as follows :

S R TR V1 ¢) 112 ") P (a-33)

(G(w, T))= [L_T{f(p)‘}e',wud# )(j:_,{e(f‘)}e"“’”d# )* ............ (a-34)
10 (ry )

v()= dp=T—|2| e (a-35)

maz(r=T» r=r+X

Therefore the short-time correlation matrix and power spectral density matrix are re-
spectively expressed as the following formulae:

(oI oo™ EOHEGu-DPd (a-36)
Gr@=7(["_ teresman)([_ teGresoman)” e (a-37)

And the relationship of the short-time correlation matrix and the power spectral density
matrix is given by

2]

(G @)= p_TH o030

CorDI= 5 FoT R (Cr@emide (a-38)

The ensemble averages of the short-time correlation matrix and power spectral density
matrix are respectively determined as the following expressions :

E[gor(l)l='7t1lT|-IR,&EKe(p. p—2 s R p)ddpy e (a-39)

E(Gr(w)J—;CSe(w. ®: RYp)) e (a+40)

In the above discussions, when both the stochastic process {£(u)} and the weighting
function w(g) are real-valued time functions, the following relations are valid, as found
from egs. (a+4), (a+*5) and (a-11):

(e TIT=(p(=2, 1)), (G(@, TN?=(G(—w, T)) - (a+41)
v(]):y(—)) ............ (a.42)

Hence the short-time correlation matrix and power spectral density matrix together with
their ensemble averages have the same properties as those in eq. (a-41), that is,

(pr(DIT=Lpc(—=2)], Elp-(DIT=Elp:(—2))
(G (@)T=(G:(—®)], E(G(IT=E[G(—@)] oo (a-43)

This equation shows that the short-time auto-correlation functions and power spectra
defined by R. M. Fano and their ensemble averages, which are given by the diagonal
elements of the relevant matrices in eq. (a+43), are all even functions of their respec-
tive arguments.





