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Abstract

   The purpose of this paper is to discover the mechanism of the laminar damping of oscilla-

tory waves due to bottom friction with the aid of both the theory of the laminar boundary 

layer caused by waves and the measurements of the shearing stress and wave amplitude at-

tenuation. In a theoretical approach the effects of convective terms involved in the basic 

equations of laminar boundary layers developing both on the bottom and the side walls of a 

wave channel, are considered on the basis of an approximate solution of the equation, and a 

theory of the laminar damping of Airy waves is established. In experimental studies, further-

more, direct measurements of instantaneous shearing stresses and observations of wave ampli-

tude attenuation were performed, and the experimental results are compared with both the 

above theory and the linearized one.

1. Introduction

   The phenomenon of wave damping due to bottom friction is not only of 
interest as a problem in fluid mechanics, but of practical significance in forecasting 

ocean waves and determining the design wave for coastal structures in shallow 
water. 

   The present paper is part of the results obtained from basic studies on the 

wave damping due to bottom friction which have been carried out for several 

years at the Ujigawa Hydraulic Laboratory, Disaster Prevention Research Institute. 
   Up to the present, the wave damping due to internal friction caused by 

viscosity has been investigated theoretically by  Lamb') for deep water waves and 
 Hough2 and  Biesel" for shallow water waves on the basis of the small amplitude 

wave theory. 
   It is concluded from their studies, however, that the wave damping due to 

internal friction has generally little effect on the coastal waves treated in this 

paper. With respect to the wave damping due to bottom friction, on the other 
hand, in 1949 Putnam and  Johnson4) made practical studies, but it seems that they 

fail to provide an adequate description of the characteristics of flow near the sea 

bottom, that is the boundary layer developing in association with oscillatory wave 
motion. In 1953, some experiments on the wave damping due to bottom friction 
and percolation over a permeable bed were made by  Savage", and the experimental 
results were compared with the theory by Putnam and Johnson. He also investi-

gated the relationship between the formation of sand waves and the wave energy
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dissipation. In addition to bottom friction, there is the phenomenon of percolation 
in the energy dissipation on a sea bottom as discussed in Savage's paper. On this 
subject,  Putnam') made a theoretical investigation, and later the same problem 
was re-examined by Reid and  Kajiuran, using a more rigorous approach than that 
employed by Putnam. As a result, a misinterpretation was discovered in Putnam's 
paper. Recently such problems were investigated theoretically by  Hunt") and 

 Murray9), taking a viscous flow on the permeable boundary surface into account, 
and the result of the theory developed by Hunt agreed well with Savage's mea-
surements for both permeable and impermeable smooth beds. On the other hand, 
in Japan an investigation on wave damping was made by  Kishii°) using the same 

procedure as that used by Putnam and the friction factor off the Niigata coast was 
estimated. The authors observed wave damping off actual coasts and also estimated 
friction factors of these  coasts",12) 

   In studying the phenomenon of wave damping due to bottom friction, it is 
necessary to analyze the behavior of the boundary layer developing on a sea 
bottom. Regarding the development of the boundary layer,  Eagleson","), Grosch 
and  Lukasik",'"), and the  authors17,'",'9,20) have carried out experimental studies on 
the wave damping due to bottom friction and the results were compared with the 
formula of wave damping derived on the basis of the linearized, laminar boundary 
layer theory. It was found from the comparison that there are wide differences 
between the theoretical and experimental values.  Kajiura") developed a theory of 
the turbulent boundary layer on a smooth bed due to oscillatory currents and 
proposed a relationship between the friction factor and the Reynolds number. 

 Jonsson22,23) also attempted to estimate the relationship of the friction factor 
against the Reynolds number for both laminar and turbulent boundary layer on 
the basis of his velocity measurements in the turbulent boundary layer on a rough 

 bed") 
   Most recently Van  Dorn2") carried out precise experiments of laminar wave 
damping for dispersive oscillatory waves and compared the results of his theory, 
taking account of the energy dissipation on the water surface. Although, the 
results of these experiments agree well with the theoretical ones, it seems that 
the formula of the surface damping coefficient derived by assuming the free 
surface to be horizontally immobilized is questionable. 

   The purpose of the present studies is to discover the mechanism of the 
laminar damping of oscillatory waves. For this an approximate solution of the 
non-linear laminar boundary layer equations is derived by means of the perturba-
tion method, and the effects of the convective terms in the equations on the bottom 
shearing stress and wave energy dissipation are clarified. The theoretical results 
for bottom shearing stresses are compared with the results of the direct measure-
ment of them. With regard to the wave damping, a theory of laminar damping 
due to both bottom and side wall frictions is presented on the basis of the above 
laminar boundary layer theory, and the theoretical result is compared with the 
results of the experiment of wave amplitude attenuation and the linearized theory .
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2. Theory of wave damping due to bottom friction

(1) Laminar boundary  laver theory

   With regard to the boundary layer growth resulting from wave motion, for a 
solitary wave  Iwasa26) made an analytical investigation applying the momentum 

integral equation of the boundary layer and obtained interesting results on the 
laminar boundary layer growth and the wave damping. There is only a linearized 

theory of the laminar boundary layer, based on  Stokes' solution, of which the 
validity has been examined by comparing it with the experimental results obtained 
by  Eagleson,'5,'4) Grosch and  Lukasik'',"), and the  authors17,18). However, it has 

not yet been made clear how the convective terms involved in the basic equation 
of the laminar boundary layer influence the boundary layer growth.  Grosch27) has 
already derived a solution of the non-linear boundary layer equation in the form 

of a power series by using  Glauert's method, but it seems that the solution is 
inadequate because it is impossible to examine the phenomenon over a whole 

period. Therefore, the authors derive an approximate solution of the laminar 
boundary layer equation written in dimensionless forms by means of  Lighthill's 
method. With regard to the boundary layer developing both on the bottom and 

the side walls of a wave channel, the effects of the convective terms on the shear-
ing stress are investigated on the basis of the above solution. 

   (a) Laminar boundary layer developing on the bottom of a wave channel 

Taking the axis of x in the direction of the wave propagation and the axis of z 

perpendicular to the bottom and denoting the velocity components in these direc-
tions by u and w respectively, the two-dimensional laminar boundary layer equa-
tions for the unsteady, incompressible fluid are written  as  : 

        ataua2u=  apau   +u  +w+  v            ata
xazp  ax az2' 

  (1  )  auaw 1  ap
_  au + U au   + =o , —  axazp  ax at 8x '

, 

in which t is the time, p the pressure,  /, the kinematic viscosity of water, p the 
density and U the velocity just outside the boundary layer, to which the relation 

derived from the wave theory is applied. Now, introducing a representative 
velocity  uo, the wave length L and the wave celerity c, and using the dimension-

less quantities defined as  follows  : 

                      w—  %R U=u0U, 
                             cL   p=puo2T, R—  x—(  ( 2  ) 

        LL  
    z  ,                           —(27-c-V-R'=27-cc 

Eq. (1) can be written  as  :
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           au                    ±(140a+17auI = _Of± 
          arc/OEaCaE  OC2  ' 

           az-e—0 _  of   _   aU(Teo aU  ( 3  ) 
 aE aC' aE Orc  ) 

with the initial conditions that  is-=0 at  =0,  u=0 at  C=0 and  Ft=  U at  C—>00. 
   Taking account of progressive waves on the basis of Airy's wave theory and 

applying the maximum velocity component at a bottom  ub  max to  uo, the following 
relationships are obtained: 

         U=sin(—r),a=—cos(--r)+(21 Xc                                           °)sin2(—r), 

  C 

                                  27r  

  — 

 Uo  =  Ub  max   
         T sinhkhkL  ( 4  ) 

 U0 =   Ub  max   T  C  H   <1. 
 c  c  L  sink  kh 

   Expressing the solutions of  it and  To respectively by 

 fi=flod-eizi+EViz+   ,   (5  ) 

 20=2Uo-I-E—wi+0702+  

the solution of Eq. (3) can be obtained by the perturbation method with a para-
meter of  E which is equal to uo/c. Substituting these expressions into Eq. (3) 
and satisfying the relation between each coefficient of the terms on both sides, 
multiplied by the ascending powers of  E, a family of equations is obtained as 

 follows: For  Teo and  ii7o, 

 ano   —   a21,40   —cos(—r) ,  ar  av 
 ( 6 )                         alto± a-77,0 _0

,                  aac 

which is identical with that for one-dimensional heat conduction. The initial and 

boundary conditions for Eq. (6) are:  740=0 at  r=0 and  C=0, and  ico=U=sin(C—r) 
at  C—.00. Eq. (6) is for the so-called linearized theory and its solution has been 
derived by  Grosch27) in the form 

 ft°  =  sin(  —  r)  —  sin(  —  ±  
 V  2 

  (7) 
                       4_ 2 rece_7)0.2  6 sin(Co.) dc. 

 or h) 1+64 

In the above equation, the third term on the right vanishes when r becomes 

sufficiently large. Therefore, taking only the so-called steady state solution into 
account, the third term can be omitted. 

   Next, the equations  for  ul and  w, can be written together with the initial and 
boundary conditions as  follows:
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 Oki   —  __(k auo +Thaz-,0, au 
         ar aC2°° ac 

             aul   ( 8 )                      awl u
i=i4.31=0;=0,                ac 

In general, the expression for  ui can formally be written in the form 

                     a a   —C)
, let+—o,     ac2  

(  9  )                                ac 
                   iti=zr)i=0; r=C=0, 

together with the initial and boundary conditions. 
   Since this is a heat conduction type equation, the solution for  ki can be found 

by applying  Green's function H(C,  r  ; q, s) and the solution for  ü by the perturba-
tion method can formally be expressed  as: 

               r,  c>=77,0+Efa  rds  fo  H(C,  r : q,  s)Fi(q, s)dq 

                                     — 

                  +Ofords                         00rdsfH(C, r  :  q, s)F2(q, s)dq 

  

.  (10) 

in which 

        H(C, r 1q,  s)—  /  r(r — s)1 
 x  [exp  [—  (C—q )2 — e XP — (C q )2 } ; >S, 

                         4(r— s) 4(r — s) 

      =0; r<s.  (11) 

   Since the integration of the above equation is complicated, taking into con-
sideration the form of function  Fi(q, s), only the steady state solution is considered 
in the subsequent descriptions. The steady state solutions for  'no and  TV0 can be 

written in the form 

                                     _ 

 PO  =  sin(—r)—e  siqE+ V1—2C) 

                                   1 

                                      2 
          —Tvo = C cos(—r) —c+ --C7, )  (12) 

                              v 

 +sin(  —  —  7r4  ). 

   Substituting these relationships for  Teo and  Tv° into Eq. (8), the equation for  fel 
becomes finally 

 au,  _  a2u,_  1  iecos( V1-2C)  a,  aC2  2 

 +Ce,/%-  cos(   LC—  )) sin  2(—r) 
 V  2  4
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 + 1 fe:‘,7"ffsin(1_C) 

                                2 

                    —Ce-TC,If sin(VLC—4)1cos  2(—r) 

             2 

                      +21[Ce-,C2-sin( __C— 
                         V2  4 

 +e cos( V 2C) e  vv).  (13) 

Following Schlichting's  procedure28), the solution of Eq. (13) which satisfies the 
boundary conditions that  =0 at  C=0 and  au,/8C=0 at  C--,00, can easily be 
derived, and an approximate solution for  it can finally be written in the form 

            it= sin( —r) — ec+                      V2C) 
               eri11e-sine— 18sin(  1 _C) 

        L17 V 2 

               +-16Ce-^sin(^ 2--4  )J sin  2(  —7) 
                          11  +1— 118e-: cos C+ 18e-Tcrffcos( V 21_4) 

 1 

               + 61 Ce-*g•cos( v  24 )icos 2(e'—r) 
              +  1  e vc:2' +   sin( 1 C)—e ^cos( 1 C) 

      4 2V 2V 2 

 1                                Ce- ,7b-               2sin( V 2-:+44                             71.))1+ 0(€2). (14) 
From this result, it is found that only the constant term on the right of Eq. (14) 
remains, taking the average of  it with respect to time at  C—.00, just outside the 
boundary layer, and that there exists a certain mass transport velocity which can 
be expressed by 

 um= 3  E  (15)                          4 

This can be rewritten in the form 

                   um_( 3 V 27r112k   (16)                 (16)( T sinh2 kh 
which is identical with that obtained by  Lonquet-Higgins"). 

   Applying the above result, a theoretical formula for the bottom shearing stress 
can be derived. The shearing stress on the bottom is generally given by the 

relationship  7-0  7,1(au/az)=a for laminar flows. Expressing this in the dimension-
less form and using Eq. (5), the shearing stress can be written as 

                                 e(a411          puo-  —4OC  )(=0
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                     +(ait2           \OC / c=0 (17) 

Calculating the above equation with the relationship of Eq. (14), the following 
equation is obtained as an approximate solution for  r0: 

                                    _1  - isin(E—r —  ) 1  +( 11- —5 V 2-)sin 2(—r) 
 Puo2  4 21/-2- 18 18 

           +(18 —4182  cos  r)j +0(02)1,  (18) 

in which 

                R6= 7T ( cHyH1uo2T  (19)                   2 
sinh2 khvALv 

The first term in the brackets of Eq. (18) indicates the results based on the 
linearized theory and the second term indicates the effect of the convective terms. 
In Fig. 1, the calculated results of Eq. (18) are shown by using the value of 

 0=7(H/L)/sinh kh as a parameter and also the time variation of the dimension-
less water surface profile  T2 for the purpose of comparison. It is found from the 
figure that the characteristics of the shearing stress vary slightly with the value 
of e, but the effect of  e may be negligible because the value will not exceed about 
0.15 for the waves treated in practice. 

                            ,                

'IMMIERIP2,14110\111111  7I  (1-1/L)/stnhkh 
           MEN^;Al^M•E                 lNIERA mil                      FA—wnfirea 0.6CFAA (INMAUSic,....0 1•••             W

E'0•1^111111M••••••„ 

 0 

 12N11•••••111^MEMIEMEN  -----  AMR  ^•^^••^  MEEKS 
 NCI  0.4  •••1111^••^•NEVA             ^  •1

•^••••••^^110:1,%% 
                  Fig. 1. Effect of convective terms in boundary layer 

                           equation on bottom shearing stress. 

   According to Eagleson's study, the average bottom friction coefficient is defined 
by 

 2r0  (20) 

in which  Fo and U2 are the average values of  ro and U2 expressed by Eqs. (18) 

and (4) respectively. Since it is complicated to calculate  Cr directly by Eq. (17), 
the results obtained by the graphical integration are shown in Fig. 2. Each of 

the curves (a), (b) and (c), indicates how the phase interval is to be chosen in 
taking the time  average  ; (a) resulted when the absolute value of  ro was averaged 
with respect to time from the phase 0 when  ro=0 to  0+27r, and (b) and (c) 

resulted when  ro was averaged over the phase intervals corresponding to the
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                  Fig. 2. Effect of convective terms in boundary layer 
                         equation on bottom friction coefficient  Uy.. 

positive and negative values of  ro respectively. In the figure, the wave Reynolds 
number  R,T is expressed as 

                                       uoTuo2T .          12,,T=2nR,-=( u°11 (21) 
 V  A  H 

In the case of the linearized theory where the value of a vanishes, the friction 
coefficient  Cr is expressed as 

 Cr—B\/   2   ReT  (22) 
 7C 

   (b) Laminar boundary layer developing on the side walls of a wave channel  
In the experiment on wave damping, the energy dissipation due to the friction 
acting on the side walls of a wave channel must be considered when the width of 
a wave channel is small compared with the water depth, so that it is necessary to 
clarify the behavior of boundary layers developing on the side walls. 

   Taking the axis of z vertically along the side walls and the axis of y perpen-
dicular to it, and using the same notations as those in Eq. (1), the boundary layer 
equations for this case are expressed as 

        au  6u  au au  _ 1  ap  62u   +u  +v +w 
       at ax ay az p  Ox  ay2 

 aw + u  aw +v aw  +w62w  23  Ow1  op  at  a
x az  p  az ay2() 

 au  av  Ow   -=0,  ax  ay  az 

in which g is the acceleration of gravity and v the velocity component in the
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direction of y. Using the dimensionless quantities,  v  *DT/1/R  ,  P=Puo215- 
(pgL/27)C, and  y=(L/2Tc)72/vP in addition to Eq. (2), the above equation can be 
written as 

           au +eiTe_au Ofi +77 afi ±azu,       a
r avacaa7,2 

 617+ e(i2OF,v+17 617)at7 _  ±az-7,13-   (24)  a rac acav2 

 au al7   ++aw -O .              a
v  ac 

   To derive the solution of Eq. (24) by the perturbation method, using the forms 

 2&=  /to  +  E2Ü2  +   

 T=To+Eiii+E2T)2+    (25) 

 u3=  27/0  ET,vi+  E2/72   y 

a family of the equations corresponding to Eqs. (6) and (8) together with the 
boundary conditions can be written as  follows  : 

    For  uo and  wo, 

 aTe0 a22-10 6U aiTo _62/70T47 
          ar avz ar  '  ar0722 ar 

 au,  +   az,0  +am, 0, I  (26)  av OC' 

 Po=wo=0  ;  72=0,  Po=  U and  Foo=W  77--c<D> 

and for  161  and 

 6161  62161 _  6U ad-az70,aPo+ auo   ara')22 U0av ac) 
       awl a2-17)1jaFf  Fife° ,-aivo,- 07,7,0 

 a,  -,""0VoWo ac ) 
 (27)   a?7, +a7,7,               a

v ac 
                  616                             -  aw,-0 

                  av  av 

in which  U and W are the velocity components of water particles just outside the 
boundary layer on the side wall. Applying the relationships derived from  Airy's 
wave theory in this case, the solutions for  u and  w calculated to the second 
approximation become finally 

                                1  
                                2 

                           +V—J2)) cosh 

 +Ei-  fe ̂  sin(V1212)+ (-1-4)e- sin(V  2  v) 

                                    1  

              +e- '7  sin  v}  sin 2(-r) + • e--:4 cos( 

                                        2
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            ±(-14)e- vm7 cos(1/4                           7i) (-'?-)e-cosv}cos 2r)1 (28) 

                               — 

             +0(02), 

 To=  —  (cos(—  r)—e-^ cos( — r +V1_2'77)1sinh C 
 +e   1  e- V2-ri+e-TYY sin(V21_72)— 14}sinh 2C+0(02). 

                                         With regard to the mass transport, it can be seen from the above results that it 
does not exist in the direction of the wave propagation, but that in the vertical 
direction there exists a mass transport velocity expressed as 

 270.=- --4esinh 2C,  (29) 

which is rewritten as 

                 Fv„,—( 1  27rH2k                    16T
sinh2k sinh  2C.  (30) 

In the above equation,  ii)„, vanishes at  C=0 and becomes maximum at the water 
surface. 
   Consider the shearing stresses acting on the side walls of a wave channel. 
Using Eq. (28), the relationships for these are derived as follows: 

         r"0 —7r)COSh C 
     puo-4 

                + el(1 — 3 2  )sin 2( —r) 

                         4 

               +(43V2  )cos 2(e.— r)}  +0(02)1  (31) 
             44 

in the x-direction and 

               —  r"— RomItco#—r — 7r )sinh  C 
      puo24 

                —  4sinh  2C  +  0(02)1  (32) 
in the z-direction, in which Re is expressed by Eq. (19). 

   The above method of analysis in applying  Airy's wave theory is also appli-
cable in the case of waves accompanying the mass transport on a substantial scale, 

Stokes' waves for example, and the authors have already made some calculations 
regarding it which will be published at a later date. 

   (2) Theory on wave damping 

   In the subsequent descriptions, the wave damping due to friction is considered 

after the wave energy dissipation due to viscosity within the boundary layers on 

the bottom and side walls has been estimated on the basis of the non-linear laminar
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boundary layer theory. 
   (a) Wave energy dissipation within boundary layers It is assumed that the 

wave energy is dissipated only by bottom friction due to viscosity. The rate of 
energy dissipation in an incompressive fluid due to viscosity per second per unit 
volume is written in terms of velocity gradients through Rayleigh's laminar dissi-
pation function as 

             0= it2            r( au+ 2( awf( awT] ,                                                  (33)              L\8x I\ azl\axaz)1 

in which 0 is the rate of energy dissipation, known as the dissipation function. 

Neglecting the terms including w and  au/ax, which are quite small compared with 
 au/az, the average rate of energy dissipation per unit area in a boundary layer 
 Erb can be approximately expressed as 

 Erb,  fLf8( au)2dzdx 
 Looaz 

 /114°2  k  f'c( °,1;M)2d (34)  oo 

in which  ,u is the dynamic viscosity of water and  8( the dimensionless expression 

 (27WP  8/L) of the boundary layer thickness  8. 
   Calculating Eq. (34) with the aid of Eq. (14) yields 

        Erb,-,..2  24T11 Ycosech2 kh fl 8V-37r\2718)11288_911/):+0(E2)}.                                                 (35) 

   This shows, needless to say, the energy dissipation when the effect of the 

convective terms involved in the boundary layer equation is taken into account. 
In the equation, the first term on the right is identical with that derived from the 
linearized theory and the second term indicates the effect of the convective terms. 
From this result, it is found that the rate of the energy dissipation is about 2% 

less than that in the linearized theory when the value of  E is assumed to be 0.2. 
   Since the average rate of energy dissipation per unit area of the side wall of 

a water tank  Er. can be calculated by 

 24t  
Lhofh fo'o(au)2 +(a8wy)2ldydxdz 

              11,02
thvRrokh_ oc8,2f(   +( al7)2}clvc1HC ,  (36) 

                         7 

                                                        _                       Joav 

substituting Eq. (28) into this, the integration yields 

                                11 _  V2      2ErkhTfi(7111.)2coth kh [1 + 81/32)6  sech  kh+O(s2)}. •-(37)                           7r(12 120 
   From the above result, it is considered that the effect of the convective terms 

on the rate of energy dissipation on the side wall is of the order of  E sech kh. 
However in the  authors' experiment the maximum value becomes as much as 20% 
of that of the linearized theory.
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   Now, denoting the width of a water tank by B and the ratio of the energy 
dissipation in boundary layers on the bottom to that on the side walls by cb, the 
following approximate relationship can be  obtained  : 

 cb=   frbB kB   1—(1.086  sech  kh  +  0.197)E}  (38) 
 2kr„,h  sinh  2kh 

In the above equation, the relation corresponding to the case when e vanishes is 
identical with what is called  Keulegans method presented in Savage's paper which 
is derived from the linearized theory. 

   (b) Mechanism of wave damping The relationship of the wave energy 
conservation for a two-dimensional case, under the assumption that the energy is 
dissipated by bottom friction only, is given by 

 d(C,E)   —  (39) 
                          dx 

in which  C, is the group velocity and E the wave energy per unit area. 
   Substituting the relationships for  C, and E derived from Airy's wave theory 

into Eq. (39), and integrating under the assumptions that  H=  Ho at x=0 and  E is 
taken to be constant, yields 

 H  =  Ho exp(   Lx),  (40) 
in which 

                    E,( 47r2  1  —0.197E   sinh  2kh  +2kh  ' 

       T/7-Y' (41) 
It is concluded from the above equation that the effect of the convective terms on 
Eb becomes at most 3% for the waves made in the authors' experiment. In 
addition, the expression for  Eb in the case when  E  =  0 agrees with that obtained by 
Eagleson and is called the dimensionless decay modulus. On the other hand, 
another expression for the relationship of Eq. (40) was established by one of the 

 authors17). 
    Instead of Eq. (39), the following equation must be used when the energy 

dissipation due to side wall friction is taken into account in addition to that due 
to bottom  friction  : 

          d(C,EB)  — — (E—fbB +2E7-wh)— E10(1 +1 )* (42) 
 dx 

Thus, denoting the decay modulus based on both bottom and side wall frictions 
by Eb+w, the relationship of wave damping corresponding to Eq. (40) becomes 

 H=  Ho  exp(   —Eb+wx  , 
 (43)                cb+w— 47'2  )(1 + 1 1  

 (3  L sinh 2kh +2kh
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    From the comparison between the above equation and Eq . (40), the relationship 
between  Eb and  Eb-Fw can be expressed as 

 Eb=    f  (1  +O)  eb+vj  (44) 
so that if  Eb-Fw is found by the experiment the wave decay modulus  Eb due only to 
bottom friction without the effect of the side walls can be calculated by Eq. (44). 
Referring to Eq. (37), the effect of the convective terms on  Cb is expected to be 
fairly large when the energy dissipation due to side wall friction is taken into 

 account. 
    Regarding the wave damping due to water surface friction, Van  Dorn25 derived 
the surface damping coefficient by calculating the energy dissipation due to the 
viscosity of water in the boundary layer developing on the water surface under 
the assumption that the surface is horizontally immobilized. 

    According to his idea, the wave decay modulus  es for the energy dissipation 
on the water surface is expressed as  follows  : 

 cs( 47r2cosh2 kh  (45)  sinh  2kh+2kh• 

Denoting the average energy dissipation on the water surface by  Erg, the ratio of 
 Erb to the bottom energy dissipation Erb becomes 

 Erg  —cosh2 kh .  (46) 
 Erb 

Consequently the estimation by Van  Dorn's method leads to the conclusion that 
the wave energy dissipation on the water surface is always more than that on the 
bottom, which is surely questionable in the normal sense. 

   Now, neglecting the vertical motion of oscillatory waves and assuming that 
the boundary layer does not develop in water but in air, the average energy 
dissipated in the boundary layer of air can be expressed as follows in reference 
to that on the  bottom  : 

                    _ (7rV 7rHcosh2 kh  
 (47)                    fg 2v aTAT sinh2 kh 

Therefore, the ratio of  Erg to that on the bottom becomes 

 f  g  /lav   cosh2 kh ,  (48) 
 Erb  V  Va 

in which  pa and  va are the dynamic and kinematic viscosities of air respectively. 
   Computing Eq. (48) using adequate values of  v,  va p, and  pa, it is found that 

the average energy dissipation on the water surface is, at most, as little as 1% 

of the bottom dissipation. Therefore, the influence of surface dissipation on the 
wave damping may be neglected. 

   (c) Relationships between bottom friction factor, bottom friction coefficient and  

wave decay modulus In the study of wave damping by wave observations, the
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estimation of the bottom friction factor has been usually made by using the 
following relationship for the bottom shearing stress, defined by  Bretschneider")  : 

 rb=Pfun2,  (49) 

in which f is the so-called bottom friction factor, and  ub the velocity component 
of water particles on the bottom, which is equivalent to U presented before. The 
rate of wave energy dissipation  Ern' derived by the definition of Eq. (49) can be 
written as 

             E3 n 
            =4)pfue.  (50) 

Then assuming that the rate of energy dissipation based on the linearized theory 
equalizes Eq. (50), the following expression is obtained for the bottom friction 

 factor  : 

           f—( 377V—n)Reil.                                                  (51)                          8 

Consequently, from the comparison between Eqs. (22) and (51), the relation between 

f and  Cr can be expressed as 

           f=(7° )C1,  (52)  64V  2 

and from Eqs. (41) and (51) the relationship between  Cb and f can be written as 

 f=(  32n  )0,(   {sink kh(sinh  2kh  2kh)  (53) 
In addition, the formula of wave damping based on Eq. (50) is expressed by 

 = 1 ( 3n-V8)febReT1        110( ).  (54) 

        3. Experiments on bottom shearing stress and wave damping 

(1) Measurement of bottom shearing stress 

    There are two methods for determining experimentally the bottom shearing 
stress in the case of a laminar boundary layer. One is to find the value of  r0 
indirectly from the measurement of the velocity distribution, and the other is by 
the direct measurement of the shearing stress on a bottom surface. The latter 
was employed in the present study and a measuring device similar to that used 
by Eagleson (1959) was made. 

    (a) Characteristics of the measuring device Fig. 3 shows a schematic view 
of the measuring device. It consists of three main parts, which are a moment 
meter, a supporting rod and a flat plate. First of all, basic investigations of the 
characteristics of the device were carried out. Although the details are omitted 
here, this  investigation yielded the following  results  : (1) It is desirable to reduce 
the masses of the shear plate and the supporting rod as much as possible. (2) If
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                       Fig. 3. Schematic diagram of shear meter. 

the shear plate slips upward from the bottom, the shearing stress is overestimated 
owing to the drag force acting on the edges of the shear  plate  ; conversely, if the 
shear plate slips downward, there is no appreciable effect. (3) The larger the 
clearance  Xs under the shear plate, the smaller the experimental value of the 
shearing stress becomes, and the more the value tends to approach the theoretical 
one. (4) The less the clearance gap between the shear plate and the bottom 
surface  4b, the smaller the experimental value becomes, and the more the value 
tends to approach the theoretical one. (5) The thinner the shear plate, the smaller 
the experimental value becomes, and the more the value tends to approach the 
theoretical one. (6) If the shear plate is made smaller and the supporting rod is 
made lighter, the experimental value becomes small and approaches the theoretical 
one. (7) The width of the shear plate b has little effect, but the influence of the 
shield pipe on the shearing stress will appear if the width is too small. 

   On the basis of these results, a shear plate which is 8.1 cm long, 5 cm wide, 
0.2 mm thick and made of stainless steel was finally chosen to be used. Further-
more, to prevent flow through the clearance under the plate, a small channel, 3 mm 
wide, running from wall to wall of the recess in the transverse direction, similar 
to that used by Eagleson, was made and filled with mercury until the meniscus 
touched the underside of the plate. In addition, the supporting rod was connected 
with the shear plate at the edge of the plate, and both the supporting rod and 
the shield pipe were made finer at the lower end, as shown in Fig. 3, so as to 
remove the influence of the shield pipe on the shearing stress measurement as 
much as possible. 

   (b) Experimental procedures The characteristics of waves and water depths 
used in the experiment are shown in Table 1, in which (1) indicates the experiment 
made in 1964 by using a plunger-type wave generator and (2) shows what was
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made in 1965 by using a flutter-type one. The shearing stress acting on the 
bottom was measured for various wave characteristics. Wave heights were recorded 
by electric resistance type wave meters in a pen-writing oscillograph. 

             Table 1 Characteristics of waves and water depths used in the 
                       measurement of bottom shearing stress. 

     (1) Experiment made in 1964 (2) Experiment made in 1965 

 Water h (cm) Wave WaveT_TWater h (cm) Wave  T(sec) Wave H(cm)  d
epth periodT(sec)                      height"'"crnidepth period  height 

 8.  2-29.  3  0.  85  0.  63-3.  64  7.  0  0.  99-1.  50  0.  26--0.  31 
  9. 0-34. 3 0. 95 0.  48---3. 64 10. 0 0.  99-1. 49 0.  21-'0. 95 
  9.  0^-29.0  1.  10  0.  77-3.  75  15.  0  0.  95-2.  5  0.  39-3.  49 
  11.  0-34. 1 1. 30 0.  65-3. 03 20. 0 0.  88•3. 0 0.  61-'6. 45 
 25.0  1.  01-2.  0  4.  67-6.  84 
                                                30. 0 1.  01-2. 58  O.  81-10. 0 

   (c) Results of experiment and considerations In order to estimate exactly 
the shearing stress from the measurement of the force acting on the shear plate , 
a correction for the forces acting on the plate other than the shearing force is 
necessary. The external force F is assumed to be equal to the sum of three 

 forces  : the shearing force, the force resulting from pressure gradients acting on 
both sides of the plate and the virtual mass force. Since, however, flow under 
the shear plate is prevented by injecting mercury into the small channel , it is 
doubtful whether the virtual mass force acts on the  plate  ; therefore , the virtual 
mass force is neglected in this case, and the experimental values are examined on 
the basis of the linearized theory, assuming that the effect of the convective terms 

presented before is omitted. 
   Denoting the surface area of the shear plate by A, and the thickness by d, 

the shearing force acting on the plate can be written from Eq. (18) as 

 ro  A  _  p   AkcfiH   {sin(  r)  cos(-1-)}  (55)  2  
sink  kh 

and the force resulting from pressure gradients can be expressed as 

               pgkHAd         Ad -cos( -7) ,  (56)                  ax  2  cosh  kh 

so that the horizontal force F per unit area acting on the shear plate is written as 

                      F'             F=
A=+ (C + D)2 H sin( - r + e')  (57) 

in which 

 iikcd  D=  pgkd  
 2  sinh  kh '  2  cosh  kh  ' 

 (58)  tan-1(1   
 C  '  C  =21M'
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   Therefore, the relationship between the maximum measured horizontal force 

per unit area  F„,.x and the maximum shearing stress  ro max can be expressed from 
Eqs. (55) and (57) as 

              2  
 To  max  = '2Fmax.  (59)                      1 + (1 + 2f3d)2 

   Fig. 4 shows the relation between  ro  max/pgH and  h/L0 with a parameter of 
the wave period, in which  Lo is the deep water wave length. The  experfipental 

data were corrected by applying Eq. (59). In this figure, arrows at each experi-
mental value indicate the range of scatter, and circular points are the corresponding 

mean values. It may be seen from the figure that experimental results agree well 
with the theoretical values computed from the linearized theory. 

   The comparison between the theoretical bottom friction coefficients and the 

experimental values obtained from the direct measurement of shearing stresses is 
shown in Fig. 5 against the wave Reynolds number of  Rey,. The experimental 

values shown in (a) of this figure are the data obtained by correcting on the basis 
of Eq. (59) for the horizontal force due to pressure gradient, and the values shown 

in (b) are the uncorrected data. Eagleson's data are also shown in the same 
figures. They are very much larger than the authors' results and considerably 

scattered. A possible reason for this is that the shear plates used by Eagleson 
were much larger than those used by the authors, so that the forces other than 

the shearing force predominatingly acted on the shear plate, and that therefore 
the correction method for these forces was inadequate. It may be seen from these 

figures that the experimental values corrected  Cr agree well with the theoretical 

ones, but the uncorrected values are 30% to 40% larger than the theoretical ones. 
This is the result to be expected from the theoretical consideration of the effect 

of the convective terms, and it is concluded that the effect can be neglected within 
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the range of the present experiments. In addition, some of the authors' experi-
mental values examined by the criterion of  Collins") for the transition from 

laminar to turbulent boundary layer are shown in Fig. 6, in which the values of 

(HT-l/2) are plotted against sinh kh and the legends correspond to those in Fig. 5. 
The criteria of  Lis') and  Vincent") on the basis of the experimental values are also 

shown in the figure. Since the value of  Rer corresponding to Collins' criterion 
becomes 8.03 x  104 in this case, it can be seen from the figure and Fig. 5 that the 

authors' data are all in the region of the laminar boundary layer. Since the 

maximum value of  ReT in the experimental data is about 5 x  104, it is necessary 
to perform further experiments in a wider region involving higher values of ReT 

to clarify the wave damping characteristics in the transition from laminar to 
turbulent boundary layer. 

   (2) Experiment on wave damping 

   (a) Experimental equipment and procedures The wave channel, the wave 

generators and the wave meters used in the experiments were the same as those 
used in the experiment on shearing stresses. Characteristics of waves and water 

depths in the experiment are presented in Table 2, in which (1) and (2) indicate 
the experiments performed in 1964 and 1965 respectively. As shown in Fig. 7, 

stations for the measurement of wave height were  S-1, 15 m from the flutter-type 

             Table 2 Characteristics of waves and water depths used in the 
                       experiment on wave damping. 

     (1) Experiment made in 1964 (2) Experiment made in 1965 

 Water h  (cm)  Wave T(sec) Wave 
eriodve H(cm) Water h (cm)  WaveT(sec) Wave H(cm) depth period height depthheight 

                                        5. 6  0.  80 0.  099-0. 117 
 10.  8-24. 6 0. 80 1.  66-6. 00 9. 9 0.  99-1. 23 2. 22  -2. 89 
                                                10. 0 1. 00-1. 47 0. 27  -1. 31 
 12.  0-28. 5  1.  00 1.  53-7. 03 11. 0  0.  80  1.74 

 13.  6  0.  85-1.  53  0.  969-1.  82 
 25.9  1.  10  4.  50-6.  85  15.  0  0.  94-1.  85  0.  442-3.  98 
                                                16. 5 1. 01-1. 53 1. 33  -2. 28 
 16.  3-30.  0  1.30  2.  40-6.  05  17.  0  0.  80  4.  04 

                                                20. 0 0.  87'-2. 09 0.  497-7. 38 
 20.6 1.  15---2. 02  1.69  -3. 69 
                                                23. 1  1.  02-2.  00 2. 15  -4.50 

 25.  0  0.  97--2.  01  3.  55  ^-7.55 
 30.0 1.  00-2. 00  1.  35 -11. 2 

 35.0 1.  15-2. 02  0.  410-4. 10 
 40.0 1.  23-1. 54  1.  71  -6. 67 
 45.  0  1.  30-2.  28   2.  35  -3.  62 

 45m  

 Lrl  28m  -1 
 5-1 S-2  S-3  S-4  S-5 S-6 

 62  rAnfl  r)()(-1  
 4  -  -  4  4  -  44-4-  -  -  -  -  140.65m 

 I-15m  --I   75m   
                            Fig. 7. Stations of wave meters.
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wave generator, and S-2, S-3, S-4, S-5 and S-6 at intervals of 9 m or 7 m in the 
case of the experiment (2), and were  S-1, 9 m from the plunger-type wave 

generator and the other four stations at intervals of 7.2 m from each other in the 
case of the experiment (1). 

   Wave heights at the five or six stations were recorded at the same time. 
Owing to the limitations of the instrument, part of them were measured succes-
sively at each station, the wave period being kept constant, and then determined 
by taking an average of five to ten wave heights when the wave train was 
uniform, or twenty wave heights when the wave train was somewhat scattered. 

   (b) Results of the experiment The measurements were made by changing 
the water depth or the length of the stroke of the generator for each wave period 
as presented in Table 2, and plotting the experimental values of wave height on 
semi-log scale  paper  ; the wave height decreased linearly with the distance x as 
seen in Fig. 8 and the following relationship already derived theoretically in 
Eq. (43) could be  verified  : 

 H  
                14,— exp — ab+,„xl,  (60) 

in which is the damping coefficient including the influences of the bottom 
and side walls of the wave channel. 

   From Eqs. (40), (43) and (60), the relationships between  ozb+w and Eb+w,  crb 
and  Eb are expressed respectively as 

 ab+wL=  Eb+zo,  abL—Cb•  (61) 

   Therefore, by drawing a fitted straight line in the figure, the wave decay 
modulus can be calculated from Eq. (61). As the value of  Eb+,,, varies widely 
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according to the manner of drawing a straight line, however, the following method 

was used. For practical purposes, the value of  cb,,, must be obtained from the 
wave heights at two stations,  Ho and H1 and the distance x between them. Wave 
heights at several pairs of stations were accordingly used for the purpose of taking 

the average. Thus, the damping coefficients were calculated by Eqs. (60) and (61) 
and then the values of  et, were obtained by applying Eq. (44). 

   Next, the comparison between the experimental results and the theoretical 

formula of wave damping already mentioned will be discussed. Transforming 
Eq. (43) by using the result of the linearized theory, the following relationship 

can be  obtained  : 

                 fiLeb,0= 1 + (j--)47E2  
                    ctosinh  2kh+2kh' (62) 

in which  c/•0=kB/sinh 2kh. Hence it is possible to examine the influences of relative 
depth, h/L, and the ratio of the water depth to the width of the water tank, h/B, 

on the wave decay modulus. 
   Fig. 9 shows an example of the experimental results, in which the influence 

of h/L on the values of  ISEEb,.w is examined by keeping the value of h/B constant. 
The curve in the figure indicates the theoretical relation. From the experimental 

results made for several values of h/B, it was found that, although the experi-
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mental values are widely scattered, the tendency of the plotted data is closely 
similar to that of the theoretical curve. But the experimental values are, as a 
whole, larger than the theoretical ones. 

   According to the small amplitude wave theory, wave steepness has no influence 
on wave damping. In order to make sure of this fact some experiments were 
carried out by changing the wave height only, the water depth and wave period 
being kept constant. The experiments showed that there is no influnce of wave 
steepness on the wave decay modulus for any value of h/L. 

   Keeping the value of h/L constant and plotting the relation between  igLcb+20 
and h/B, the effect of the side walls on the wave damping can be examined. 
Fig. 10 shows an example of the experimental results, where the experimental 
values are seen as a whole to be fairly large in comparison with the theoretical 
curves expressed by thick solid lines. The tendency seems to be remarkable, when 
the value of h/L is small and the value of h/B is large. 

   Fig. 11 shows the comparison between the experimental values of the wave 
decay modulus and theoretical ones for the two  cases  ; one is based on the linearized 
theory and the other on the non-linear theory in which the effect of the convective 
terms is taken into account. (a) indicates the former and (b) the latter. In this 
case, the data were used after taking an average of each experimental result for 
the same water depth and wave period. In this figure, the experimental results 
obtained by Watson and Martin, Grosch and Lukasik, and Eagleson are plotted in 
addition to the authors' results. It is found from the comparison that the experi-
mental values of  cb are nearly as much as 40% larger than the theoretical ones 
based on the linearized theory, but when corrected theoretically for the side wall 
effect based on the non-linear theory, the experimental values decrease by as 
much as 10% and approach more closely to the theoretical ones . The data of 
Grosch and Lukasik were obtained from the experiment on wave damping in a 
wide wave channel whose width can be neglected as far as the side wall effect is
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concerned, while Eagleson's data are values calculated from the results of the 
direct measurement of bottom shearing stresses. As mentioned previously, it may 
be seen that Eagleson's data give much larger values for  cb than those obtained by 
the authors and by Grosch and Lukasik. 

   From the above results, it is found that the effect of the convective terms on 
wave damping is approximately as much as 10% and yet the experimental values 
are as much as 30% larger than the theoretical ones. On the other hand, since 
the experimental values of  h'Lcb+w shown in Fig. 10 change linearly, on the whole, 
with the value of h/B, if a fitted straight line drawn through the experimental 
values holds true in the region near h/B=0, the value of  L,cb can be determined 
as the value of  [3Lcb+., at h/B=0. Therefore, this value can be regarded as that 
without the side wall effect. The results obtained in this manner are compared 
with the relationship of the linearized theory in Fig. 12. Even from these results, 
however, it is found that the experimental values found by the authors and by 
Grosch and Lukasik are still approximately 20% larger than the theoretical ones. 

   In addition, the value of the bottom friction factor f calculated from the 
experimental results on wave damping by means of Bretschneider's method will 
be described briefly. The following relationship of wave energy conservation is 
used in this  case  : 

 B(C,Ei—C,E2)=1{gib'B+2Erwh},  (63) 

in which E1 and  E, are the average wave energies per unit surface area over one 
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wave period at the two selected wave meters, 1 is the distance between them, and 
 Erb and  Efw refer to Eq. (50) and (37) respectively. 

   Fig. 13 shows the comparison between the values of f calculated from Eq. (63) 
and the theoretical result on the basis of Eq. (51). It is found from the figure 

that the experimental values are as a whole larger than the theoretical ones as 

presented in Figs. (11) and (12). 
   In the above description, although the reasons why the experimental values of 

wave damping appear larger than the theoretical ones are not yet perfectly clear, 
the following suggestions may be put  forward  : One of the reasons may lie in the 

application of the wave theory to the theory of wave damping, though Airy's 
wave theory was applied in the present paper, and it is necessary to analyze the 

damping characteristics of finite amplitude waves, such as Stokes' waves. Secondly, 
there may be a problem of the transition from laminar to turbulent boundary 
layers resulting from oscillatory wave motion. Although all of the  authors' data 
described above were in the laminar region according to the criterion of  Conine') 

for the transition, there are wide differences between the criteria of different 
authorities. This problem must be investigated in detail on the basis of further 

experimental work. Thirdly, the wave energy dissipation on the water surface 
resulting from wave motion must be taken into account, and two factors may be 
considered for this  reason  : One is the effect of surface tension, which was examined 

experimentally by  Keulegan") for the damping of standing waves and the other 
the relative motion between air and water as mentioned previously. The authors 
wish to investigate such problems through further detailed experiments and to 

discover the mechanism of wave damping due to bottom friction. 

                             4. Conclusion 

   As described above, the authors established a theory of the laminar damping 
of oscillatory waves based on an approximate solution of the laminar boundary 

layer equation, and measured the bottom shearing stress and the decay modulus 
of oscillatory waves. It is concluded that the influences of the convective terms 
in the basic equation on the bottom shearing stress and the wave energy  dissipa-
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tion in the boundary layer on the bottom are negligible within the range of the 
experiments, but those on the side walls of a wave channel are considerable, that 
is about 20% at maximum within the range of the  authors  experiment  ; accordingly 
the experimental values of the shearing stresses on the bottom agree well with 
the result of the linearized theory if the data are corrected for the pressure force. 
With regard to wave damping it was concluded that the experimental values of 
the wave decay modulus are approximately 40% larger than those derived from 
the linearized theory and even if they are corrected for the effect of the convective 
terms, they are still approximately 30% larger than the theoretical ones. It would 
seem that the discrepancy is due to the existence of some other energy dissipations. 
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