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Abstract

One of the most important problems in the field of earthquake engineering is to sup-
pose reasonable earthquake excitation patterns for the dynamic analysis of structures. In
particular, in the response analysis of a structure for moderately intense earthgquakes, it
may be plausible to suppose a statistical model of earthquake excitations taking into ac-
count the seismicity and the dynamic characteristics of the ground at the site of the
structure.

In this paper, as one of the basic studies related to such artificial earthquake excitations
as are used in the dynamic aseismic design of structures. the statistical characteristics of
the response spectra of a quasj-stationary random excitation, which is defined as the pro-
duct of a deterministic time-function and an ergodic stationary random process, are dis-
cussed.

The expressions of the mean value and the upper and lower limits of the response
spectra of the guasi-stationary random excitations are obtained as the products of the root
of the maximum value of energy spectral density of a modified quasi-stationary random
process, which is approximately equal to the maximum value of the root mean square of
the envelope of the output responses of a single-degree-of-freedom, damped oscillator ap-
plied to the quasi-stationary random excitations with a finite duration time, and the re-
levant multiplication factors which are expressed in terms of the characteristic values of
the Rayleigh distribution and the amplitude probability distribution of the maximum value
of the normalized random variable associated with a pseudo-stationary envelope of the
non-stationary output response of the oscillator.

The analytical expressions of the energy spectral density and power spectral density of
the modified quasi-stationary random process are presented for a case where the envelope
of the quasi-stationary random process is expressed as the product of an arbitrary deter-
ministic time-function and a cutoff operator in time domain, while the spectral density of
the ergodic stationary random process is given by the product of a rational function and
a band-limiting operator. The iterative method of evaluating the maximum value of the
energy spectral density of the modified quasj-stationary random process is also discussed.

On the other hand. the multiplication factors which give the mean value and the upper
and lower J)imits of the response spectra, together with the above-mentioned maximum
value of the energy spectral density, are determined semi-experimentatly by means of the
simulation method in a case where the envelope is given by a step-function multiplied by
the cutoff operator and the spectral density is a rational function multiplied by a band-
limiting operator.

1. Introduction

In the earthquake response analysis of a structure for moderately intense’
earthquakes, it is important to suppose a reasonable statistical model of the
earthquake excitations by taking into consideration the seismicity and the
dynamic characteristics of the ground at the site of the structure, as well as
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the measure of aseismic safety and the spectral characteristics of the structure
to be designed."® Even though many statistical models of earthquake excita-
tions for the dynamic analysis of structures have been proposed by various in-
vestigators,” ~® the authors dare to deal with the relevant problems in this
paper, for its importance in earthquake engineering, mainly from the basic
aspect of finding the statistical characteristics of the response spectra of the
quasi-stationary random excitation, which is defined as the product of a deter-
ministic time-function and a stationary random process." *:'*-*  Of course, to
suppose a definite quasi-stationary random process as a model of earthquake
excitations which is usable in the response analysis of a structure, it is neces-
sary to determine reasonably, from a comprehensive point of view, the deter-
ministic time-function which gives the envelope of the quasi-stationary random
excitations, as well as the stationary random process which provides the sta-
tistical properties of the quasi-stationary random excitations according to the
various data related to the seismicity and dynamic characteristics of ground at
the site, as well as the measure of aseismic safety and the dynamic properties
of the structure. This paper, however, is not concerned with the method of
constructing a model of earthquake excitations but deals with a method of sta-
tistical analysis of the response spectra of quasi-stationary random excitations
which are prescribed rather a priori.

In order to discuss strictly the statistical properties of the response spectrum,
which is a spectral representation of a non-stationary input excitation in terms
of the maximum values of the output responses of a single-degree-of-freedom
oscillator with continuously varying frequency parameter suddenly subjected to
the input excitation, the probability distribution of the maximum value of the
output response in a finite time domain should be found. However, it is very
difficult to obtain the analytical expression of the probability distribution of the
maximum output response of a dynamic system subjected to a non-stationary
random process, even in the case of a single-degree-of-freedom oscillator sub-
jected to simple random excitations.® ¥

Since the purpose of this paper is to find the statistical properties of the re-
sponse spectra of a general class of quasi-stationary random excitations, which
are applicable to the supposition of a model of earthquake excitations corres-
ponding to the specific seismicity and dynamic characteristics of the ground at
the site of a structure, the methods of analysis can not be based only on pure-
ly analytical means; they should mainly be based partially analytical and
partially experimental techniques.

In this paper it is assumed that the envelope of the quasi-stationary random
excitations is given by the product of an arbitrary, deterministic, continuous
time-function and a cutoff operator containing the duration time of excitations
as a parameter and that the spectral density of the elemental stationary random
process is expressed by the product of an arbitrary rational function and a
band-limiting operator. The expressions of the mean value and the probable
upper and lower limits of the response spectra of the quasi-stationary random
excitations are considered by supposing the Gaussian character and the bound-
edness of the amplitude probability distribution of the random excitations.
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2. Response spectra of quasi-stationary random excitations

The fundamental equation of a single-degree-of-freedom linear oscillator sub-
jected to an arbitrary acceleration excitation is given by

(;:2 +2h0 4 +0t)n(0) = f2) o))

in which 7, f(r) and %(z) are time, the acceleration excitation and the relative
diplacement of the oscillator, respectively, and ® and k are the natural angular
frequency and the critical damping ratio, respectively.
By introducing new frequency and damping parameters defined as
h .
W= _=— = —h? 2)
Viem o =wy/1-h (
where
0sh«l, —o<Lw o

and the cutoff operator, associated with 2 finite time domain R',, given by

D(p; Roo)=5() —s(p—7) @)
R'4:=(0, 73

where s(y) is the step-function, the following complex-valued function of 7, «’
and /' is defined :

At o, h’)=S:D(/1: R f(rexp(—h'|o'|(t — p))exp(—jo' p)dp

T “)
={. fuexp(= 1w/ | (c — )exp(~ jo )

By making use of this function the relative displacement »(z), the relative
velocity ?1'(1; »(r) and the absolute acceleration drz-v(r) —f(t) of the oscillator

subjected to the acceleration excitation f(r) under the zero initial conditions
can be expressed in the following forms:

()= %[Al sin(@’'zt +¢p)

14
R(A) , ®

¢ep=arg A=tan™’

—ddf77(7:)=\/1+h’2|A|sin(w'T+(pv)
or= v tasg(o) = eottan ()~ TESIED ©
Taldrfgv(r)—f(r)=w'(1+h’2)|Alsin(w’f+<oA)

_ of - UN_. L A=KDHIA)+20'R(A)
pa=@p+2tan 1( _)atan l(l—h’z)R(A)—Zh’I(A) )
where the symbols R(A) and I(A) denote the real and imaginary parts of the
complex-number A, respectively.
From egs. (5)~(7) the upper bounds of the maximum values of the relative
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displacement, the relative velocity and the absolute acceleration in the infinite
time domain are obtained respectively as:

RD (@, hy=supln()| = - suplAGr ; @', 1)) ®
RV (w, k) =sup 5;_-77(7) §1/1+h"2s;1plf1(f s, B 9
AA(w, ) =sup ‘;l;n(r)—f(r) </ (LHRDsupl A ; o, 1)) (10)

where
T=Rlooa=[07 OO)

If the absolute value of the complex-valued function A(r; ', I') is a slowly
varying time-function compared with the sinusoidal function sinw’z, each right-
hand side of egs. (8)~(10) may be approximately equal to the least upper
bound, that is, the upper limit of the relevant response of the oscillator.

The velocity response spectrum of an acceleration excitation which is a kind
of spectral representation of the non-stationary input excitation is defined by
the following equation :'"+'®

Sv(w, h):s;uplj(r;w, mi an

where » and k are the original frequency and damping parameters, respective-
ly and

J(; w, W) =I{A(7 ; &, hexp( jor))
=|A(r ; w, h)|sin(wr+arg Az ; o, ©)) (12)

~ g:f(‘u)e)tp(fh!w\(‘r—.u) Ysin w(z — uwddu

which is the output response of the linear system having the impulsive response
g(t) =exp( —hlw|)sin wr, subjected to an input excitation f(r) under the zero
initial condition.

From eqs. (11) and (12) the upper bound of the velocity response spectrum
is obtained as follows:

Sy(w, h)gsrup[A(T s, B

. (13)
AT 0, i) = qof(/l)exp(_hlwl(f—_u))exp( — jwp)de

Similarly as in the previous case, if the function |A(r; w, £)| is a slowly vary-
ing time-function compared with sinwr, the function |A(7:w, k)| gives the
envelope of the function /(r:w, &) defined by eq. (12) and the right-hand
side of the first equation of (13) may be approximately equal to the upper
limit of the response spectrum defined by eq. (11).

The maximum values of the relative displacement, the relative velocity and
the absolute acceleration of the linear oscillator are approximately expressed
respectively as follows, by making use of the above defined velocity spectrum
and the frequency and damping parameters defined by eq. (2):
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RD(w, h, 1) (—j,sp(w’, W, ) (14)
RV (w, h, t) =11+ RSu(w’, ', 74) (13)
AA(w, h, ta)=w' (L +-DSv(w’, 1, T4) (16)

In a case where the damping parameter % is sufficiently small compared with
unity the following approximations are valid :

h=h, =, Vi+h?=1 an
hence eqs. (14)~(16) are reduced respectively to the following forms :
RD(w, )= ) Sy(w, 1) as)
RV (w, h)=Sv(w, h) (19)
AA(w, h)=wSv(w, k) (20)

The right-hand sides of eqs. (18) and (20) are called the displacement response
spectrum and the acceleration response spectrum of the acceleration excitation
J(1), respectively.!”.1®

Now, a quasi-stationary random process is defined as the product of a deter-
ministic time-function and a stationary random process as follows :

J@ =al)¢( 2n

where ¢(r) is a sample function of a stationary random process with zero
mean and a(zr) is an arbitrary deterministic time-function which gives the en-
velope of a quasi-stationary random process if a(r) is a slowly varying time-
function compared with ¢(7).

To estimate definitely the effect of the duration time 7, of the random ex-
citations on the response spectra, the random process expressed by the product
of the quasi-stationary random process defined by eq. (21) and the cutoff oper-
ator defined by eq. (3) are considered hereafter, namely

D(t; Riax)f(t)=D(z; R'er)a(0) ¢ () (22)

Of course, the time-function defined by the above equation is also a sample
function of the quasi-stationary random process having the deterministic func-
tion D(r; RYw)a(r). From eqs. (10) and (11), the velocity response spectrum
of the quasi-stationary random excitation defined by eq. (22) is expressed as
follows :

Sy(w, h, T4) =SLT1p|j;(f cw, b T (23)
Je(ts o, hy 10) = |A(T; 0, b, to)|sin(wr+arg Au(r; w, b, 72)) (249)
As(t; o, b, ) =S:'"f(,a)exp(—hlwl(f—,u))exp(—jw/l)dp (23)

To=min(z, 7o) (26)
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3. Energy and power spectral densities of the modified quasi-stationary random
process

In connection with egs. (24) and (25) the modified quasi-stationary random
process &(u, T; @, b, T4) associated with the quasi-stationary random process f(o)
=a(7)¢(r) is defined by the following equation :

E(u, T @ b, ta)=D(u; Roe)D(p; R'oerdexp(—hlwl(t—u))f(2)
=D(u; Ror.)exp(—hlol(z—w) f(1)

The energy spectral density Sz:(t; w, k, 7s) of the modified quasi-stationary
random process defined by eq. (27) is given by the ensemble average of the
squared absolute value of the Fourier transform of &(u, 7; w, &, 74) as follows :%

Ski(t; 0, h, ) =E|A:(z; w, h, T2)|? (28)

27

where

Az o, bt =\" G 5 0, b Toexp(-jopdu

—o

- Esz(;e)exp(# hlol(r = pm))exp(— jow)dun

In eq. (28) the symbol E denotes the ensemble average.

The power spectral density Swa:(r; o, h, t4) of the modified quasi-stationary
random process is defined by the following equation in the similar form intro-
duced by D. G. Lampard :¥'®

Sre(t; w, b, 1) =Se:"" (7 0, h, T4) (29)

where . denotes the ith order partial differentiation with respect to z.

The energy and power spectral densities which are defined as the real-valued
functions of @ and 7 by eqs. (28) and (29), respectively, are available to the
general class of non-stationary random process, and the former is a real positive-
valued function but the latter is not always positive for the non-stationary
random processes containing the quasi-stationary random process.®’ Integrating
eq. (29) with the zero initial condition the energy spectral density is expressed
as follows;

Se:(t; @, h, 12) =S:SH,=(T L w, by T)dT (30)

It should be noticed that the frequency parameter @ contained in the modified
quasi-stationary random process £(u, 7; @, k, T4) iS essentially independent of the
frequency parameter of the Fourier transform. Hence if these parameters are
distinguished from each other, the inverse Fourier transform of eq. (28) gives
an integral of the co-variance of the modified quasi-stationary random proczss.
In particular, the value of this integral at zero, which means the integral of
the variance over the time domain R'sr, or the integral of the energy spectral
density with respect to the frequency parameter of the Fourier transform devid-
ed by 27, gives the mean value of the total energy of the modified quasi-
stationary random process.?!

In general, supposing that random time-functions f(r) belong to a non-
stationary random process the co-variance of the modified non-stationary random
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process as given by eq. (27) is expressed as follows:

KE(,'JJ- #2)
=D(,a1 N Rlorm)D(,uzi Rlorm)exp(—2h|w|T>eXp(}l[(l)|(/lri‘,uz))Kf(,au pn) (3L

Transforming the variables g, and g into v and « by the equations,
Y= — s, K=
the energy spectral density of the modified non-stationary random process is
expressed as follows :»
See(t; 0, h, 1)) =exp(— Zhla)lt)g "dr exp (Zh]wlfc)g d))Kj<U+/C, £)
-exp(h|w|p)exp(— jop) (32)

where
K,(+k, ) =E(fo+r) F(x)) (33)

is the co-variance of the non-stationary random process f(r).

As the co-variance of a non-stationary random process is expressed as the
inverse Fourier transform of the one-dimensional total spectral density S,(w, &)
of the process, namely

K (vtr, )= E%Sls,w, ©exp(io'y)de’ 36

eq. (32) can be rewritten as follows :®

exp(—2h|wlt)
2r

Se:(rs w, b, te) = S’"‘d exp(Zhlw[/c)S dw'S (@', £)

{7 ay exp{(hlol - jw—w))v)

=§§P£_—2hlwl7>s doy XL} —j(@—w))Ta} 1
- hlo|—jlo—w)

@35

ST"'dch,(a) r)exp{(hlw|+j(w—o))x}

Here, by considering that the random functions f(r) belong to a quasi-stationary
random process, the co-variance and the one-dimensional total spectral density
of the modified quasi-stationary process are expressed in the following forms
respectively :

K;(v+k, £)=a+r)a(x) Ry(v) (36
Sy(w, 1) = S:K,(u +x, K)exp( — jov)dy
- ppa@exp(on)|” duexp(~ju) AGiw=pSsGd (3D
= 5 " expCiun) AGOS)w—p)dp
in which R,(r) and Sy(w) are the auto-correlation function and the power
spectral density of the stationary random process ¢(zr) respectively and A(jw)

is the Fourier transform of the deterministic function a(r). Among these
quantities the following relations are valid:
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Se@ =" RiDexp(~jodd,  RiD= 5\~ Ssexplubdn  (38)

Ajw) = S:a(@eXp(— jor)dx (39)

By making use of eq. (37) the second integral contained in eq. (35) can be
expressed as

{5/, Dexp(thlol+jw—a))r}de
o |7 auSu 0 A — )| dra(expl (hlol +i@—p)e)  40)

Moreover the second integral of the above equation is written in the following
form by using of eq. (39):
{arawexp{(hlol +jCw— )}

1= . exp{(h|lw|+j—p)ta}—1
= g} A - Rlwl+ 70— 1) “b

Hence the energy spectral density of the modified quasi-stationary random pro-
cess defined by eq. (27) is expressed as follows:

See(t; w, h, T4) = 21” STWS(,@) lcCe, 75 w, hy Td)|2dp (42)

where
c(u, 7 @, h, 1) =exp(—hlo|[t)B(y; o, h, Tw) (43)

Bu; 0, b, ) =" ale)exp{ (hlo| —j(@—)x)ds

_1{ / exp{(hlo|+j(@ —o)Ta}-1,
- 1 = - exp((hlwi_.j(wgﬂ‘w’))rm}"l. ;
- ZnS_wA(]w) hlo|—j(w—p—0") dw

in which it is noted that the following relation is valid :
B* (#; w, h, Tm,)=B<(U, £y h, Tm) (45)
where superscript * denotes the complex-conjugate.

By making use of egs. (29) and (42) the power spectral density of the modifi-
ed quasi-stationary random process is expressed by
1

Swe(ei 0 bt = o | duSe(d D leC 75 0, b, 21
=" 46)

= L7 4uS,o R Gt 0, by et T 0, 1 70)

Since from egs. (26), (43) and (44) the following equations are obtained ;
My, T, b T, T 0, hy T

= exp(~2hla}0) (a(Dexp{ (hlol - j@—m)r}| alexp((hlo|+ jw—w)r}de

~ hlal[{ aeexp{(hlo| - i p)x}dl

2), 0st<ra (4T
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Oy T o, TR (e, T, kT
2
= —hlw|lexp(—24|w|T) S:da(/c)exp{(hla)l—j(wﬂ/z))M) =0, T>Ty (48)

and
Ry, T w, b, Ta)c* (e, T @, b, T2))
=a(r) S:a(ﬁ)exp(—hlwl(f—IC))COS(CU—#)(‘L’—.{)dIC

—hlw) S;a(/c)exp{—hlwl (t—k)—jlw —y)x}dfzﬁ, 05r<ry (49

the power spectral density of the modified quasi-stationary random proczss de-
fined by eq. (27) is expressed as follows:

Sue(t; w, b, 7)) = 711_ g‘f Se(p) (a(z)Rb(pe, T; w, k)

~hiwl|b(y, T o, W)|*)dpu, 0=r<y (50)
Sus(z; 0, b )= — NIRRT by, 241w, R0

for h=0, T>Ty (6

where

b, 71 @, ) = a(wexp(— (hlo] + jlo—m) e =0} dr

=S:a(r—rc)exp{—(h|w|+j(w—‘u))/:}d/c (52)
_ 1 f= . . 1—exp{— (hlo|+jlw+v—pu))T)
= 2ng,md”A(J”)e"p<7”T) T Mol + i@ Fv—p)

In deriving eqs. (47) and (48) the following identity is considered:
S:a(rc)exp{-h\wl(rfx) —jlw—p)x}dr ’
- S;a(fc)exp{ —hlw|(t—k)—jlw— ) (t—k)}dk *
By making use of the equations which are

Rb(p, v w, B) = i:a(r—x)exp(—hlw\rc)cos(a)—,u)xdf:

by, T; @, h)12=S:d/c.S:dxza(r—x.)a(f—xg) G
-exp(—hlo| (e +k:))exp(—j(o— ) (ki = £2))
and
2171_ Sm So(p)cos pur=Ry(x), 2171' r) Se(p)sin px=0
7 o (54)

o 87 SutwrexpCiute — k) ydu=Rotr, — 52

—co

the power spectral density of the modified quasi-stationary random process is
also expressed in the following forms :

Sae(t; o, by ru)=2(a(r)§;a(r—x)e)cp(—h[m}x,)Rd.(x)cos wkdk
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—hlwlS:a’/c,S:d/cza(r—x.)a(r—m)exp(—h\w\ (k1 + £2))

'R\n(lcl*Kz)exp("‘jo)(/cl_EZ)))) 0=t<7q (55)

Sa:(t; w, h, 74) = —2h|wiexp(—2k|w]| (r«-rd))S:"d/c.gzdd:cza(rd—x,)a(td—fcz)
'eXP(_h|CU|(’Cl+'Cz))R¢(’Ci_'fﬂ)eXP(—jw(lfl—lfz)); T> Ty (56)

Between the quantities defined by eqs. (43) and (52), the following identity is
valid in the time domain (0, 74):

leCu, T5 @, Ay T [2=10(y, 75 0, WP, 0<7r<174 56D
Hence for the time domain (0, ) the energy and power spectral densities of

the modified quasi-stationary random process are expressed as follows:

Saei 0, bt = 5§ SuGlbGe 1w, Wy 0S TS, (58)

Suecr s w, b 20 =20 S, Rb(, 7 w0, Wy

—2h|w|Sz:(t ; w, h, Tdp, 0=7<74 (39

From eqgs. (29) and (59) the following differential and integral equations are
obtained :

(%-+2h|w|)5m(r; , h, t)=f(z; 0, M), 0s7t<y (60)
(1420001 dr)Suece s 0, by w0 =f(e1 00 ), OST<r, (61)

where

fos @ ) =“(;)§°° Se(u) Rb(u, ;5 @, Wyd (62)

Solving eq. (60) under the zero initial condition the energy spectral density of
the modified quasi-stationary random process for the time domain (0, 4] can
be expressed by the following convolution integral associated with the time
domain [0, 7J.

Sze(t; w, h, 1) =exp(—2h|wlt)*f(t; w, h)

_—_g;exp(—2h|a)|(r—/c))f(x; w, h)dr, 077y (63)

And also, by solving eq. (61) or from eqs. (29) and (63) the power spectral
density of the modified quasi-stationary random process for the time domain
(0, 7¢) is written in the following form:

Sre(t; w, h, 74) = (3(z) —2hlw|lexp(—2h|w|t))xf(; w, k)
=f(7; w, h) —2h|lw|exp(—2hlw|c)*f(1; w, h) (64)

=f(r; w, h)—2hia)|S:exp(—2h\w|(f—x))f(f:; w, h)dk
where 4(7) is Dirac’s delta-function.

On the other hand, by substituting the first equation of (53) in eq. (62) the -
non-homogeneous term of eqs. (60) and (61) is given by the following equation :



Response Spectra of Quasi-Siationary Random Excitations 55

fr; o, h)—acr)X a’#&(#)& a(x)exp(—hlo|(r—x))cos(w —p) (r—x)dk

_a(® S (65)

dra(z—r)exp(— hlw|x) E dp5¢(p)cos(w—,u)fc
=2a(r) (a(r)*exp(— klw|t)cos wt R, (7))

In the above, the energy and power spectral densities of the modified quasi-
stationary random process defined by eq. (27) are obtained as the functions of
time 7 and parameters w, 2 and 7. cohtaining the deterministic function a(r)
and the power spectral density Sy(w) or the auto-correlation function R,(zr) of
the stationary process ¢(r) by which the original quasi-stationary random process
is defined as in eq. (21).

As shown in egs. (13) and (23), the maximum absolute value of the Fourier
transform s;lplA;(r ; @, h, 7)| of the modified quasi-stationary random excitation

is approximately equal to the response spectrum of the acceleration excitation
D(r; R'or)a(t)¢(r) if |Au(r; w, h, 74)] is a slowly varying time-function com-
pared with sinwr. In this sense the energy spectral density Sz (r; o, &, 74),
defined as the ensemble average of the squared absolute value |A¢(r; w, &, 7%,
and the power spectral density Sg:(r; o, &, 7.), defined as the time derivative
of Sz:(r; w, h, ta), may be related to the average value of the response spectra
ESy(w, h, t2) of the quasi-stationary random excitations.

4. Expressions of the mean value and the upper and lower limits of the response
spectra of the quasi-stationary random excitations

From egs. (23) and (28) the mean value of the response spectra of the quasi-
stationary random excitations defined by eq. (22) is approximately expressed in
the following form when the absolute value of the Fourier transform |Ae(t; w,
h, t2)| of the modified quasi-stationary random process is a slowly varying time-
function compared with the sinusoidal function sin wr :

ESy(w, h, ts)=E sup| J¢(t; @, h, T)|=F strlplAg(r; W, h, r,{)l (66)

Since the time-function J;(r; @, h, 74) defined by eq. (24) is the output response
of 2 linear system, the probability density distribution of the peak amplitude
of J;(t; w, h, 7o) may be given by the following formula if the stationary ran-
dom process ¢(r) which defines the quasi-stationary random process as in eq.
(22) is Gaussian ;2

o _1A]2\[ A o*| Al
P<|A|»T>—CXP( 2K”)L“‘€K” XP(‘z(l p*)Kn)

o 142 ol 4|
+'\/1—92 2K”<K.n ) f(‘/za_ z)}{”)] 6D
in which
KJ 2 (= 2
-, -_—— —v2
-, et 1/,,50‘3 y (68)

and |A| denotes the peak amplitude, K, and K, are the variances of J and
J= %], respectively, and K, is the co-variance between / and J at time <.
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By introducing the non-dimensional peak amplitude defined by
14l

z= 6
S= Ky (69)
the probability density distribution of { is given by
P D =pVEL i )VEs
- _ ¢ e T e & N
—exp( 5 )[C exp( 5 )+E‘/- 2-(5’ l)erf(v_z»/J (70)
where
0 Ky
- 7
¢ V1-p* VKKiy—(Kr)? o

1f |A| is the envelope of a random time-function J¢ the amplitude probability
density distribution of |A¢] may be approximately given by the probability
density distribution of the peak amplitude |Af of /.. Hence, the mean and the
square mean and the variance of |A¢| are obtained respectively by using the
probability density distribution of the peak amplitude given by eq. (67) or (70)
as follows :

EVA] =14 pUAd; Dl A =Ko T D =VEZED ()
Bl A= {1 Al p(1 A 5 ©dl Al = Koo{ 0B s a0 = KwE D s

V1A ={ (Al ELAd) (Al Dl Ad = Koo (€ ~EDF( 5
=K,V =KrA{EE - (EDD)?} (74)

in which the mean, the square mean and the variance of the non-dimensional
random variable £ are expressed as the even functions of the dimensionless
quantity ¢ defined by eq. (71) as follows:

EQ =4 T VIFE as)
E(ZH=2(1+¢tan™'§) (76)
V(C)=4_Eﬂ+$(2 tan"'6— 5 5) an

It is clearly a contradiction that when |4| becomes large eq. (77) takes a nega-
tive value. This may originate from the inconsistency that when || is large
and ¢ is small, the probability density given by eq. (70) becomes negative. The
zero of eq. (77) £, at which the variance of { vanishes and the corresponding
normalized co-variance g, are calculated respectively as follows :

&= 11.261, Oo= +0.785 (78)
Therefore it is necessary to limit the range of & or p for which the probability
density distribution given by eq. (70) can be adopted, for instance,

|£i<1.0 i.e., Iolé;}zﬂo.m a9



Kesponse Spectra of Quasi-Stationary Random Excitalions 57

1t the random variable |A4;| is bounded the bounded, positive number 2 exists,
which satisfies the following equation :

suplAe| =E|Ad| + 2V/VIAd, 220 (80)

The quantity 2 means the maximum value of the mormalized random variable
associated with |A;]. If the absolute value of the minimum |4 of the normaliz-
ed random variable is not greater than 4, namely

iz|alie.,  ([Aed —ElA¢) mor=| (| Ae) — E| A¢l) minl (81)

the following inequality is valid :
=1 (82)
With regard to the envelope of the peak amplitude eq. (81) accordingly eq. (82)
seems to be valid.
On the other hand, the following upper and lower bounds for the mean value
of response spectra exist.

sup sup|As| =sup sup{A;|=ESy=F sup|A¢|=sup E|A;| (83
T £ E T T T

Here, defining the following functions of time 7, which depend on the probability
density distribution of the envelope |A4¢, by the equations,

oy Bl _ EXD o SYIAL _ VO
Gl D =ZCa=—mE d(p(l4d ) ]/EAfz JE(:Q) 84

and rewriting 1=2(p(J4¢|: 7)), eq. (83) is reduced to the following form by
making use of eq. (80):
sup({d\ (p(|4¢l ; D) +2(p(|Ael 5 )de(p(|Ae) 5 ) IVE A
=ESv(w, h, ) = E suplds| =sup di (p(|Ael ; D)V ElAsl* (85)

In particular, supposing that all the functions d,, d; and 2 do not depend on
time 7, eq. (85) becomes

(dl+d22)51]-1P1/EfA5|_22,ESV(w. h, 1) = E sup| A¢l 2d, supy/E| A¢[? (86)

Hence there exists a positive number I which satisfies the following equation :

ESv(w, h, 72) =(d. +1d2)s¥p\/75|Af|i, i=>7>0 <)

Strictly speaking, for the quasi-stationary random process, which is a kind of
non-stationary random process, neither d, nor d; are independent of time .
Substituting eqs. (75)~(77) in each equation of (84), d, and d, are obtained as
the even functions of the dimensionless quantity ¢ as follows :

C1+ET
1+&tan~'¢

(1A 5 o) =Y —di®

1- % +eltan-te— 7 ¢) @

dy (p(| Ael 5 T))=\/ T+étan-1¢ =dy(&)

From the above equations the ratio of 4, to d, is given by
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4—7 4 \
S +&(-tane—)
oAU 5 ) =Yg el <Y 4D =\/ I --%w@ ®9)

Therefore, for the validity of eq. (87) it is necessary that the dimensionless
quantity ¢ defined by eq. (71) be independent of time .

In connection with the validity of eq. (87), the behaviour of the time-function
§ is examined in the following, for the output response of the linear system,
which has the impulsive response g(r) =exp(—h|w|t)sin wr, to quasi-stationary
random excitations.

In general, for an arbitrary time-invariant linear system subjected to the
quasi-stationary random excitations defined by eq. (22), each element of the
co-variance matrix associated with the output response / and its time derivative
J is expressed as follows :¥

Krr(ri, w) =C(Je(z0), Je(ra)) = Zlﬂ (lX(w‘ s TSN XH (' 5 T)de’  (90)

KJJ("-'U Tg) =C(]£<T1), Jer'W (1)) =K'V (11, T2)

- 2177 S:X(cu’ 5 TS (@) X V¥ (W' To)dw’ ©n
Kis(ty, 1) =C(Jer M (1), Je(22)) = Kooy V' (7, 72)
N 217'-' S:X,m(w/ s TSe( @) X ¥ (@' o) de’ (92)
Kys(ry, 1) =C(Jez"W (11, Jer'" (12)) =Ko Vs (24, T2)
= 2171; STWXT‘”(Q)’ )8, (@) X V¥ (@' To)dw’ )
where
X(w';1)=G('; )exp( jo'T) o

G ) =|"_Dlu; R'w)a(wg(—wexp{—j(r—pa'Ydp

; (95)
~\""a(wg(r—wexp{- j(r— W' Ydu
in which g(z) is the impulsive response of the linear system, "' or 7,!" de-
notes the partial differentiation with respect to z or 7: and the superscript *
means the complex-conjugate.
Substituting r,=7,=7 in egs. (90)~(93), the variances of / and J and the co-
variance between J and J at time ¢ are obtained as follows:

Kyy=Kss(z, )= 21’1_ Scj (X (@ D|*Se(w)dw’ : (96)

Kri=Ksy=K;i(z,0)=Ku(z, )= 21# Sc_n X ; DX M* (' ; 1)Se(@)dw’

= 217;: S‘j R(X (o' ; DX V¥ ; ©))Sy(w)dw’ S

Ky=Ky(r, )= 2]; g” X0 (@ 3 ) Sy () da (98)
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Substituting g(z) =exp(—hlw|t)sin wr in eq. (95), eq. (94) and its time deriva-
tive are expressed in terms of the notations given by egs. (43) and (44) as

follows :

X :1)=—- é {exp(jwr)c(w', v ; w, h, T4)

—exp(—jwr)c*(~w', T o, b, Ta)}

XM (' r)=%{exp(jwr)c(w’. 75w,k Ta)
+exp(— jur)*(—w', 7; @, h, T}
- ;—-{exp(jwr)c,‘“(a)’, 5w, h, Ta)
—exp(—jowr)e:'"*(—w', 7 w, h, T2)}
where

(W', ;5 w, k1) =—hlwlexp(—hlolt)Blw’; w, k, 7)
+a(n)exp{—jw—w')t}, 0 r<1q
=—hlw|c(w’, t; @, h, 1) +a(t)exp{—j(w—w )t}

"', 7t @, b Te) = — hlwlexp(—hlw|t) Blow'; w, h, td)
= —hlolc(o’, 7; 0, k, T2, T>7y

and

c(—w', 150, h 1) =c*,7; —, h, 1)

99)

(100)

(101)

(102)

(103)

By expressing each integrand in eqs. (96)~(98) in terms of the notations
defined by eqs. (43), (101) and (102) and by taking into account the relations,

S¢*(w’)=5¢(w’), So(w')=sw(—w'>

eqs. (96)~(98) are written in the following forms respectively:
KJJ= 2171_ S»mYu(a)’ 5 z-)&,(m’)da)’

Yoilow ;)= é (el t; w, h, T2)|?
~R{expQjwt)c(w’, 7; o, by td)e(—w', 75 0, h, T })

Ki=Ku= 5 " Yosw': 98, dw
Yoo ;)= —h‘;llc(a}’, 75, h T)|?
+h|£v|R{exp(2jwr)c(w’, T w b )=, T 0 h )
+ %I{exp(Zja)r)c(a)’, T,k ta)c(—w, T w, N, 1))
and
K=

2171_ STmYJJ(w’ 1 )Sy(w!)dw'

(104)

(105)

(106)

(107)

(108)

109
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Yure' s ©) =g oA+ e@, < @, b Tl
; @* (A -1 R{expjor)c(e’, t; w, b t)c(—e', T; @, b, T}
—ho|le{expljor)c(w’, T; @, h, t)c(—a’, T; @, b, Ta) } 110)

In particular, in the case where the envelops of the quasi-stationary random
process -a(t) =1, eqs. (43), (101) and (102) reduce to the following forms re-
spectively :
exp{(hlo| —jl@—0 )T} -1

Mol 7o) i
exp{(hlw| —j(w—w))t}—1
ho|—jlo—o')

c(w', T; w, b, 7d) =exp(—h|w|t)

V(@' 7; 0 h, 1) = —hlolexp(—hlo|t)

+exp{—jlw—w1} 0=7<14 112)
' rs - _ exp{(hlw| —j(w—w))7ta}— 1
'V, T; @, h, 1) = —h|o|lexp(—hlo|T) hol— (o=
T> 7Ty (113)

In another special case where the damping parameter £=0, eqs. (43), (101)
and (102) become respectively :

(o', 7; @0, 72)= S:“ﬂ(#)exp{—j(wfw’)#}dﬂ

= 2177:5 A( )l expﬁ(g)](‘:) _0)»)— V)Tm}d (114)
"', 7; 0,0, 7)) =a(@Dexp{—j(w—0)7}, 0=t<7. (115
(o', 7; 0,0, 75)=0, T>1Ta (116)

Since the non-stationary character of the output response seems to be remar-
kable in the case where a(r)=1 and k=0, the behaviour of ¢ as a function of
time is examined for this special case. In this case egs. (105), (107) and (109
are evaluated respectively as:

. 0+ . w—
8N~ Tw SIN™= 5~ Tm

Koy b 15080y, ) — COSE—Tn)(* do' (11D

2 ®* T o'—w'?
sinaLwlz' sin® 5 /T
KJj=w7mn(ir;rm)S°jw 7%2 S 2 (118)
sin " sinw_w/r
2 71— 2 — oo 1 m ”
K= ;)ﬂ (1 coi wtm*s¢(w))+w 608(72: r,,.)S_m 2 e 2 dw' (119)

in which the symbol * indicates the convolution integral defined in the full
frequency domain (—ece, ).
By making use of the limiting formulae,

lim L 12608 0Tn_ i) . (120)

2
Im—co T @
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. w+o . w0—0
SIn=—%—7n SIN=—5—7Tn

_ Sin wta

o L |
! i w’—w'? 4w

Tp—CO

{dlw+o)+i(w—w)} (121)

in which &(w) denotes Dirac’s delta-function, eqs. (117), (118) and (119) can
be approximately expressed as follows for a sufficiently large n:

/Tm €OS @(2T—Tm)SIn Wtm
K= {Tp o8 0(roc .)s¢(w) (122)
K, —Sin@Qr— 2@&“1 DTng, (@) (123)

m 2 —im i m
KJJ=<%+C0’S"OAIQ£; Jsin @t )w’&(w) (124)

Substituting egs. (122)~(124) in the first equation of (68) and eq. (71) the

normalized co-variance p and the dimensionless quantity & are determined re-
spectively as:

sin w(2r —7n)Sin ot
o= 7% Tn)SiD ¢ o (125)
Vit —cost (21 —7n) Sin® wrn
_sin w(2r—tn)sin @7
vV 0iTat —sin? @,

I3 , Tw=min(z, T4) (126)

From the above equations it is found that for the time domain (0, z.) both
o and £ are non-negative hence the random process is divergent, on the other
hand, for the time domain (z4, o) both p and ¢ sinusoidally oscillate hence the
random process is stationary in a sense. Also it is found that if ¢, becomes
sufficiently large, both p and £ decreases proportionally to z.~'.

For the special case where the envelope a(r) of the quasi-stationary random
excitations is the step function and the stationary random process ¢(r) is
Gaussian and white, the quantities o and € can be determined by solving the
Fokker-Planck equation. The impulsive response and the transfer function of
the linear dynamic system considered are given by

g(1) =exp(— hlw|t)sin wr 127

0]
GO =Famals+ d+ h)w? (128)

Hence the differential equation governing the output response / of the dynamic
system subjected to the input excitation $(r)¢(r) becomes

(2, +2mol L +a+idet)]=ws@o) (129)

in which s$(r) is the step-function and ¢(r) is the Gaussian stationary random
process with the white power spectral density Sy(w)=c2.
Transforming the variables / and /=d/dr] into the new variables y, and y.

by the equation,
{ P _ - 1 {]}
- as
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where

A
=(-htjw (131

e
the Fokker-Planck equation governing the joint probability density distribution
S5y, 92,5 T) is obtained as follows:
of _ 3 3] cw?l 8 9 \?
Solving the above partial differential equation by means of the Fourier trans-
form technique under the zero initial condition, the co-variance matrix associat-
ed with J and J is determined as follows :20

(1 exp(247)) (l~exp(21+).z)‘r)A

1
Ky Ki| @ (1 -1 PR,
K;, Kl 4 _

K Ku)” 412 **J)-}da exp(h+ 1)) Q—L(I—exp(ﬂg‘r))
(133)

Substituting eq. (131) in eq. (133) each element of the co-variance matrix is
expressed as

- e 1 2 _
- P cos 2w+ —h---sin2|w|r1] (134-a)
V4R 1+ ht 1
Kyy=Ky, = iexp(— 2h|w|7)sin? wr (134-b)

2

2
K,J.:C“‘;’l[l—(l + h)exp(—2hlw|r)

. {1 - fhzcos Za)z'—l—f-ﬁzsin 2|wer (134-¢)
By making use of the above equations, ¢ and £, which are defined by the first
equation of (68) and eq. (71) respectively, are determined as follows:
2h/1+ h? exp( 2h|w|T)sin® wr
/1+exp( 4h|al|1’) 201+ h)exp(— 2h1w|r)( l—fh2cos Za)z')

+4h2(1+h2)exp(—4h|w|r)sm‘wf for h>0 (135)
2h1/1+h2 exp( 2hlw]T)sin? wr
\/1+exp( 4hlwle) —2(1 + h)exp(~ 2hlalo) (1~ hh1c032wr)
for h>0 (136)

In particular, in the case where the damping parameter h=0, p and ¢ are de-
termined as the limiting values of egs. (135) and (136) when 2—0 and are re-
spectively given as

sin® wr
- for h=0 137
o= \/cu‘zf2 —CoS? Wt SInE WT as7)
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. sin® wt

§=‘1/w2’;:gi—n2 a.)T for h=0 (138)
In the time domain [0, z,) the above equations coincide with egs. (125) and
(126) which are obtained for a sufficiently large zn.=min(z, 7o). Then it is
suggested that in the case where h=0, eqs. (125) and (126) are approximately
valid in the full time domain [0, »~=) if the envelope a(7) of the quasi-stationary
random excitations is a slowly varying time-function and the power spectiral
density of the stationary random process ¢(z) is comparatively flat. Also from
eqs. (135)~(138), it is suggested that as far as the envelops a(t) is a slowly
varying time-function, both p and ¢ decrease exponentially for the case where
h>0, while they decrease in the order of 7,~' for the case where h=0 as 7n
increases.

As mentioned above, if the envelope a(r) of the quasi-stationary random
excitations is a weak function of time and 7. is sufficiently large, quantities p
and ¢ may both be approximately regarded as zero where the damping para-
meter & is zero or not. Hence, if the maximum response of the linear system
subjected to the quasi-stationary Gaussian random process occurs in such cir-
cumstances, egs. (86) and (87) are approximately valid. Even if the envelope
a(r) is a strong function of time, p and £ may be approximately regarded as
zero at the time 7n.r when the maximum response occurs, because 7,,. is a
kind of stationary point of p or & from the macroscopic point of view. Hence
it is found that the mean value of response spectra and their upper and lower
bounds can be expressed in the forms given by eq. (87) and both sides of eq.
(86), respectively.

Substituting p=£¢=0 in eqgs. (67) and (70) the probability density function of
the envelope of output response and its non-dimensional expression are ob-
tained respectively as:

= A 1A
qu: )7 KJJ exp(— 2KJJ> (139)
and

- NS

B =Lexp(~ 3 ) (140)

both of which are called the Rayleigh distribution. By substituting €=0 in eq.
(88) the quantities ¢, and 4. are reduced to the following constants which are
characteristic values associated with the Rayleigh distribution :

ElA) V= Vv ViA:] T
di= = , do="- == = - -
e 2 A=Ay D

On the other hand, the maximum normalized random variable 1 referred to
|4:| and the equivalent ccefficient X which gives the mean value of the response
spectra of the quasi-stationary random excitation mainly depend on the bound-
edness of the probability distribution of the stationary random process ¢(7).

The numerical values of 2 and I may be roughly estimated from the Rayleigh

distribution by supposing the exceeding probability, for instance, 1=2=23.05 is
obtained corresponding to the value of the exceeding probability 5x10-3. How-
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ever, the values of 4 and I seem to be affected not only by the bounded pro-
bability distribution of the stationary random process ¢(r) but also by the
system parameters w, & and the various parameters describing the envelope
D(r; R'yra(r) of the quasi-stationary random process.

Since it is difficult to analytically determine the functional forms of Z and 1
at the present stage, the following semi-experimental method of evaluating the
values of 2 and 7 is adopted :

First, the energy spectral demsity E|A4:;(r; o, k, 72)|* of the modified quasi-
stationary random process is formally expressed as the product of the non-
negative function of & only and that of w, # and 7, as follows:

See(t; w, h, 1) =E|Ac(r; o, b, T2) %, Ss(w)=0 (142)
=D(r; w, h, 1)S: (@), D(; @ b 7)=0

Then defining the random time-functions by the equations,

Ji(z; o, h, 7a) =$‘1§'(f+% (143)
and
At @, b T) = jﬁ%ﬁ (144)
the following relations are obtained by making use of egs. (24) and (142) :
J:(t; w, b, 1) =|As(T; 0, b, To)|sin(wr+arg Ac(t; w, b, 7)) (145
E|A(c; o, b, w)[=S5.(0) (146)

In the sense that the square mean E|A,|? does not depend on time 7, the random
process defined by eq. (144) is considered as the almost stationary random pro-
cess, hence hereafter the random function |A,| is called the pseudo-stationary
random function associated with |Ag|.

From eqs. (66) and (144) the smaller upper bound of the mean value of the

response spectra than in eq. (83) is obtained as follows:
ESy(w, h, t4) =E sup|Ae(t; 0, 2, T2)|
by
<supyvD(zr; w, A, n)Es'tI}plA.(r s @,y Td)| 147
T
Assuming the pseudo-stationary random process |A4,| to be ergodic and station-
ary the right-hand side of eq. (147) may be expressed as
supy/D(z; 0, h, 7) Ex supl Ai( 5 @, b, 70|
=supvD(z; &, h, ) Er sgpIAs(r ; 0, h, o)l (148)
T 5
in which subscripts £ and T denote the averaging operators with respect to
ensemble and time, respectively.
By applying the averaging operators to the similar expressions associated

with [A,| as in eq. (80) and by taking into consideration eq. (82) and the
ergodicity of |A4.|, the following equation is obtained ;

EE 517-}P|A31 =ET|AS| +2au'\/‘7’l;m

o (149)
=E, s;:lpﬁA.I =Ez|Ad + 207/ V| A
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where
Jov=Eple=Erdz>1 (150)

Hence eq. (147) can be rewritten @4 follows:
ESy(@, b, 70) <supy/D(z; @, by t){ Exl Ail +Aowv/ V[ AT}
= supvm{EpLAal +2av/Val A}

151)

Since both quantities ¢ and ¢ may be regarded as zero for the pseudo-
stationary random process |A|, the Rayle1gh distribution given by eq. (139) or
(140) can be applied to the amplitiide probability density distribution of |4,|.
Hence by making use of eq. (141), the upper bbund of the mean value of re-
sponse spectra given by eq. (151) {8 expressed as follows ;

ESy(w, h, ) gsup\/D(r P o, E Ta) (VT +}au‘/1 —%)VEEM:JE
VT, xm,,/ 1= )Vsup Eal4: (152)

(‘/ T 2awn/1— -;1—)1/51? Sze(r; w, b, 2)

similarly, the lower bound of the mgan value of response spectra is obtatined
as follows :

ESv(w, b, Z'd)_z__sup‘\/ﬂ(f i, h, z'a)ﬁ\/EﬂlA:P
153)

1/1’:1/511{) SE(:(‘L‘ @, h Td)

Therefore there exists the quantity.4, so that the mean value of the response
spectra of the quasi-stationary randesm process is expressed as

ESy(w, h, 74) = (‘/Tn+i,\/1~ %) VS;ID See(r; 0, hy a)
25,210

In general, both quantities Z,, and 2 are the positive functions of w, % and
Ta. Ze iS mot substantially smaller than 2. However, if D(r; w,h 72) is a
slowly varying time-function compated with the fluctuation of [Ai|, Z.. may be
approximately regarded as the least upper bound of 2, that is,

M, by t) % 2an(w, b, 2) (155)
because the following approximate eguation is valid :
suplA¢| =supv/ Delip( Al |
=§ngTREﬂA4+}r¢V;DED

154)

(156)

Eqgs. (155) and (156) may be vahd)m the case where the envelope a(r)D(r;
R'er,) of the quasi-stationary randam excitations is a slowly varying time-
function having sufficiently large :duration timeé 7, and the damping para-
meter h is positive, even if it is only slightly positive. On the contrary, in the



66 T. KOBORI and R. MINAI

case where the envelope is a strong function of time or the damping parameter
is zero, 2 may be considerably smaller than Aa.

In the following, the upper and lower limits of the response spectra of the
quasi-stationary random excitations are considered in the case where eq. (156)
is wvalid.

The upper and lower limits of the response spectra having the bounded pro-
bability distribution may be expressed respectively as;

sup Sy=ExSy+ v/ VaSv

S @57
igf Sy =E387+g1/VESV
in which s and g are the maximum and minimum values of the normalized
random variable associated with Sy, respectively.
The variance of the response spectra VzSy contained in eg. (157) can be ap-
proximately expressed in the following form similar to eq. (66) :

VaSv=Ez(Svt) — (ExSv)? (158)
= Ex(suplA:)*~ (Ex sup|4)?
Substituting eq. (156) in eq. (158) and by taking into consideration the ergodic
property of the pseudo-stationary random process |4 the variance of Sv is
written as

VS, =sup DVAV| Al =V1(1 —%)St%p DE|A,J?
. 159
—{1- % \v3 e (1= T \v3
-(1-Z vz sup El4d= (1-7 )V2sup S

Hence by making use of egs. (150), (154), (157) and (159), the upper and
lower limits of the response spectra of the quasi-stationary random process are
expressed as follows;

Sl%p Sv= (\—/ZE"'- /1— z Ao+ p\/ﬁ))Vsqu Ske (160)
iEva=(\/7‘+}/l— 7; (ia,+g\/ﬁ))1/s1_}'p5m (161)

in which

SUpSV_EESV I
£ _supi E/I>0

Y Y o
) iEva—EDS"= inf - E1_ (163)
E=TUVRS, vVi

As shown in eqgs. (162) and (163), the quantities z and p which have been in-
troduced in eq. (157) as the maximum and minimum values of the normalized
random variable associated with Sy are also considered as the maximum and
minimum values of the normalized random vaiable 1 associated with the pseudo-
stationary random process |A;| defined by
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1ol E14) 16

In general, the quantities g and p depend on the statistical properties of the
original quasi-stationary random process f(r)=a(r)¢(r) as well as the para-
meters w, h and 7a4.

As shown in egs. (154), (155), (160) and (161) the mean value and the upper
and lower limits of the response spectra of the quasi-stationary random excita-
tions having finite duration time are obtained as the products of the root of the
maximum value of energy spectral density of the modified quasi-stationary
random process and the relevant multiplication factors, which are expressed in
terms of the characteristic values of the Rayleigh distribution and the pro-
bability distribution of the maximum value of the normalized random variable
associated with the pseudo-stationary random process. In egs. (155), (160) and
(161), the quantities Z.,~E2, VA, & and p are the deterministic functions of o,
h and r, which are explicitly concerned with the probability distribution of the
bounded random variable 2 defined by eq. (164). The quantity 2 which appears
in eq. (154) is also the deterministic function of @, % and 7, and is approxi-
mately equal to 1., under certain conditions previously mentioned. However,
it is generally the equivalent coefficient associated with the Rayleigh distribution
which is determined so as to give precisely the mean value of response spectra
as shown in eq. (154) even in the case where 1., gives an upper bound of re-
sponse spectra or the probability distribution of |A,| deviating from the Rayleigh
distribution.

Since it seems to be difficult to analytically determine the functional forms
of these quantities their definite expressions must be determined experimental-
ly by using the so-called simulation method, that is, based upon the results of
numerical analyses of the responses of a single-degree-of-freedom, linear system
subjected to the quasi-stationary random excitations which are appropriately gen-
erated by making use of a simulation procedure. In this simulation method
for estimating the functional forms of the quantities Au., V2, f, p and Athe as-
sumed ergodic property of the pseudo-stationary random process |A:| may be
conveniently used to obtain the required data based upon a rather small number
of sample functions of the simulated random processes.

On the other hand, the maximum value of the energy spectral density sup See

of the modified quasi-stationary random process which is contained in eqs.
(154), (160) and (161) may be evaluated almost analytically on the basis of
egs. (42)~(44) or eqgs. (63) and (65).

5. Maximum value of the energy spectral density of the modified quasi-stationary
random process

Since the power spectral density Sz (7 ; w, A, 72) of the modified quasi-stationary
random process is not positive in the open time domain (rg, =), the time Twmes
at which the energy spectral density Swe(r; w, k, 1) of the modified quasi-
stationary random process takes the maximum value exists in the right-closed
interval (0, r4], namely

0<Tme: =74 (1 65)
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If 7ma- exists in the open interval (0, z,) it may be a stationary point of See(7;
w, h, ta), that is, a zero of Sze(r; w, h, 7o) such that’

Sger') (Tmaz ; @, B, 72) =Sne(Tmaz ; 0, by ) =0
Suec'® (Tmax 3 @, B, Ta) =Saeet? (Tmaz ; @, B, 14) <O

(166)

because both Sg:(r; w, , 72) and Sae(z; w, b, 7a) in the open domain (0, 7o) may
be the continuous, differentiable functions of time as shown in egs. (58) and
(59). However, if tme is equal to 7 the power spectral density Sw:(z; @, &, 70
is not zero at 7mer Since it is generally discontinuous at 7. as shown in egs.
(B0) and (B1).

For convenience in evaluating the maximum value of the energy spectral
density Sze(Tme:; ®, k, 7) the following two cases are considered separately ; the
first is the case where the envelope of the original quasi-stationary random
process is time-invariant, namely a(z) =1 and the second is the case where the
envelope is time-variant, that is, a(z)®1. Thus in the first case the quasi-
stationary random excitations are given by the form D(zr; Rl ¢(x) while in
the second case they are expressed in the form D(r; Rlora(m)¢ (D).

5.1 The case of ltime-invariant envelope, a(r) =1

In this case the Fourier transform of the envelope a(r) of the original quasi-
stationary excitations is given by

A(jo) =2ré(w)Ca(r) =1 (167)

where (@) denotes Dirac’s delta-function. Substituting eq. (167) in eq. (44),
the complex-valued function ¢(u, 7; w, , 7o) and its absolute square are obtain-
ed as follows:

. - _ exp{(hlw|+j(g—@))tn)—1
c(y, 7; w, by to) —exp(—hlo|r) FPER S (168)
Ic(ﬂ’ T, W, h, Td>|2
=exp(—2h|a)[1)exP(2h|w|T"') —2exp(klofra)cos(u=)Tnt]l 140y

(ho)*+ (u—w)?

Hence from eq. (42) the energy spectral density in the time domain (0, 7.] is
expressed as follows by considering the relation tm=7 which is valid in this
time domain :

Sue(t; @, b, To) = 217'r S :fi,LzS¢(,u)

1+exp(—2h|w|} —exp(—klolt){exp(jlw—p7) +exp(—jl@—p)}
ho)?+ (w—p)?

0=7=74 aro)
On the other hand, by substituting a(z) =1 in eq. (563) the functions Rb(y, 7;
o, B) and {b(y, 7; w, h)|? are determined respectively as follows:
1 ¢ . .
Rb(u, 7 ; @, ) == ‘exp(—hlo|x){exp(i(w—w)r) +exp(~j(w— ) }ds

=h|w|{l—exp(—hlwlr)cos(cu——,.c)r}+ (w—p)exp(—hlo|t)sin(w— )t a7
(hw)* + (@ — p)*
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15Cu, 73 @, 1= b d, exp(—hlal 0 + 20)dexp(~ j(@—pw)

1 expilw?hl?iw]% #))T}S exp{— (hlo|+ j(w—p))va}dv,

_1+exp(—2hw|r) —2 exp(—Ak|w|r)cos(w— )T
(ho)?+ (0—p)*

Substituting eqs. (171) and (172) in eq. (50) the power spzctral density in the
time domain (0, r.) is expressed as follows:

Q72)

1 co
Suses 0, b= §” B8 Grase e
- {h|w| (exp(— h|wir)cos(@w— )t —exp(—2h|w|7))
+ (@—pexp(—hlolDsin(w— ),  0=r<z (173-2)

On the other hand, the spectral density in the time domain (7, o) is express-
ed as follows by making use of egs. (51) and (172):

_ hlolexp(—2hlo|(z—7a))
el 15

. 1+exp(—2h|w|rs) —2 exp(—~|w|ts)cos(@w—p)Ta
(hw)?+ (@ —2)*

Sae(r; w, b, 7e) =

=0, we<r (173-b)

It is easily seen that the values of the two functions given by egs. (173-a) and
(173-b) do not coincide with each other at the boundary point 7=r.

In the special case where the power spzctral density Sy(w) of the stationary
random process is white, that is,

Sy(w) =c? 174)

the energy spectral density of the modified quasi-stationary process given by
eg. (170) can be reduced to the following form ;

See(r; w, by ta) =, —L,—1,) 175)

and
e Al
L=l T Gt et anm
b=} T G a2 20, k0 a7

in which two zeros of the common denominator of the integrands are given by
h=w+jhwl, h=*=0—7jhlu| a7

Supposing the variable g to be a complex number, the integrand in eq. (176)
is analytic in the full complex plane except for two poles A, and 2, and the
integrands in eqs. (177) and (178) are analytic except for a relevant pole A or
A in the lower and upper half-plane respectively, provided that r and & are
positive. When |x| tends to infinity, the order of each integrand in eqs. (176)
~(178) is 0(x® in the relevant complex plane. Hence by applying the residue
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theorem the definite integrals given by egs. (176)~(178) can be easily evaluat-
ed as follows:

1+ exp(—2h|ow|7T) _ exp(—2h|w|T)
Ii= Tl ) L=1I= T el h>0 (180)

Substituting eq. (180) in eq. (175) the energy spectral density in the time
domain (0, 74) is given by

(1 —exp(— 2h|w|r))
2h|w|

Hence the maximum Tme, iS clearly 74 and the maximum value of the energy
spectral density is obtained as follows:

supSze(r; 0, h, t0) _cd-exp(= 2h|a)|z'¢)) h>0 (182)
Ly 2h|w|

Sp(rt; w, by 1) = 077 (18D

In particular, for the case where the damping parameter 2=0, the maximum
value of the energy spectral density is obtained by taking the limit 2—0 in eq.
(182) as follows:

sup Sze(r; w, 0, T4) =7ac? (183)
In another special case where the damping parameter 2=0 the energy and

power spectral densities given by egs. (42), (173-2) and (173-b) are expressed
in the following forms respectively :

S I o ST EVOREL L

(w—p)?
0=t (184)
. 1= sin (w—,u)f _ sin wr wt
S 0,0, 7= Su( BT, L5, ()
0§f<rd (185-2)
Sei(r; ©, 0, 72) =0, 7a<t  (185-b)

From eq. (185-2) it is found that for an arbitrary power spectral density
S,(w) the power spectral density Sge(z; o, h, r2) of the modified quasi-stationary
random process is not always positive and hence the energy spectral density
Sze(r; o, h, 7s) does not always increase in the time domain (0, 7.}, even in the
case where the envelope a(r) is time-invariant and the damping parameter %
is zero. This phenomenon may occur in the case where the power spectral
density S,;(w) is sharp, 7 is comparatively small and a certain relation holds
between the frequency parameter w, the predominant frequency w, of Sy(w)
and time z. From eq. (51) it is generally shown that the power spectral density
See(t; 0, b, 72) in the domain (ry, o) is identically zero, hence the energy
spectral density Swe(r; @, h, ts) is constant in this time domain as far as the
damping parameter % is zero.

If thn=min(r, 7s) tends to infinity in egs. (184) and (185-2) the following re-
lations are obtained ;

SEE(T; w, 0, Td) - Tms(b ((D), Tm —> OO (186-2)
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Sne(r, w, 0, 72) — Sp{w) =0, T— o0, 0Z7r<r,y (186-b)
by making use of eq. (120) and the limiting formula,

. 1 sinwtwm .
lim — 7=="""=5(w)
roaon T ®

Hence the maximum value of the energy spectral density is expressed in the
following form in the case of zero damping and sufficienily large ra.

sgp Sre(r, w, 0, T0) — 1Sy (@), Ty — O (187)

In the case where 13»#>0 and S,(w) is a sufficiently fiat spectrum in the
wide frequency range, the maximum value of energy spectral density may be
approximately evaluated by the following procedure: by substituting a(r) =1
and the approximate expression of the auto-correlation function R,(2) =S,(w)d(})
in eq. (55) the power spectral density in the domain (0, ro) is approximately
expressed as

Sre(t; w, b, 74) =2S¢(co)(-éf —hlw[S;eXP(—2h|w|’C)dﬁ) (188)

=Sy(@)exp(—2hlw|t) >0

Hence the maximum value of the energy spectral density is approximately
given by the value at 74, namely

sup See(r; w, h, t4)=Sm:(ta; 0, 1, T4) (189)

On the other hand, by considering the condition 1»%4>0 and by making use of
eq. (181) the energy spectral density in the time domain (0, 72) can be approxi-
mately evaluated by the following equation ;?*

Se:(r; w, by 1a) :SLGI)_)SG_O dy

271' o0
L+exp(~2hlwir) —exp(—hlw|t){exp(j(@— 1) +exp(—jlw—p)D)}
(hw)?*+ (w—u)?
_L—exp(=2hlo|r)
- 2h|w|

Sp(w), 0<hgl, 0=r<Zeg (190)

In particular, for the case where #=0 the above equation reduces to the fol-
lowing form :

See(t; @, 0, 1) =78, (w) asn

Egs. (190) and (191) are also obtained by integrating eq. (188) with the zero
initial condition.

From egs. (190) and (191), the maximum value of the energy spectral density
is approximately given by the following formulae for the case of the flat power
spectral density S,(w) and zero or slight damping parameter.

supSze(z; w, b, 7)) = L TEXR(=2HlOlTOg (g g gy (192)
. 2lw|

sup Sr:(t; w, 0, 7a) =14Sy(®), h=0 (193)
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Finally, in the case where a(r)=1 and S;(w) is expressed as a rational func-

tion given by
1+ 2
Se(@) = c’};———{l " E_(Zi?zai

ay

Saz 2 (194)

the analytical expressions of the energy and spectral densities of the modified
quasi-stationary random excitations and the iterative method to estimate the
maximum value of the energy spectral density are considered.

The zeros of the algebraic equation,

1+ 227 =0 (195)

are given by

fr(1+2v) _
exp{ T Loow=01, 271 (196)

and these zeros consist of the following two sets of complex conjugate numbers;
Ay, By oeeeee LAY, Qly*, 2By, oo , ATy®) 197

in which the first and the second sets are supposed to be in the uppsr and the
lower half-plane, respectively?®.

Denoting
U= WA oy, £=1,2, - , Oy i=1,2, - (198)
pp =0l g, y=1,2, e , B 1=1,2, e 199
the power spectral density Sy(w) given by eq. (194) is written as follows:
Sy (@) = ¢ (@) gs* (@) (200)
B

o (@—p'p)
pu(@) =cl eyl ——— (201)

H ((l) 123 41;)

where ¢y(0) and ¢s*(@) are analytic, bounded and non-zero in the lower and
the upper half-plane, respectively.

Here, in obtaining the definite expression of the energy spectral density in
the time domain (0, 7)), eq. (170) is rewritten in temrs of the following three
integrals :

Swe(t: @, h, 1)) = (1 +exp(—2h|w|?)) ], —exp(—hlwlr) (Jo+]5) (202)
=5} G b @
e
Js= %Sm expghcjf?ai (Z)ngﬁ Ly @

Since when |z| tends to infinity each integrand in egs. (203)~(205) is of the
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order of 0(x™® in the full plane, lower half-plane and upper half-plane, re-
spectively, and all the singular points of these integrands are poles, the inte-
grals given by egs. (203)~(205) can bz evaluated by making use of the residue
theorem. Here, for the sake of simplicity, it is assumed that all xf’s are
simple roots and w+ jk|w| does not coincide with any one of pfa’s. Hence the
integrals in eqs. (202)~(205) are obtained as follows:

_Su(w+jhlo]) R(Sy (prF )
I="""0mal  tTE )it (w e
_Se(o—jhlw]) _ R(Sy(pra®))
= 2kl TR ey (e (206)
_RSu(w+jhlal) ZI RSp(pra))
2h|w| (hw)?+ (w— ¥ a)?

el IH (h) ¥ (0 — wra®)?

Jam it exp(—Alw|)Sy(w—jhlwi) 2I‘G’(Sw(ma;*))eXp(J(w —¢a®)7) 207

and

exp(—hlw|) RSy(w+jhjwl) R(Sy(pfa))exp(—j@~ pFa)t)
Jat]s= hlol —2xl Ch@)+ (@ — g a)? (208)

in which R(Ss;(ura)) denotes the residue of Sy(w) at the pole ufa,. With the
above-mentioned assumptions the residue of eq. (194) at the pole p%, is express-
ed as follows:

2
62”[1 + (#;a,) BL]
R(S,(p92)) = 20, (ﬂq%)z%—l_ﬂ_[l;(/ﬂm 208 ‘
Wp Wp / i%p @y ) J
B
cﬁwpz(ozp B») ]7|,u o= 1|t |, — ¥ g2
- S T e B0 — —— - (209
i¥p

QJIﬂ”a,, UW& — pra|? H|#"a';- ©rel®
By making use of eqs. (206)~(208) the energy spectral density in the time
domain (0, 74) is given by the following equation :

exp(—2h|o|7) .
2h|(l)i RS4((0+]MCD|)

R(S¢(/J m))
—Atexp(=2hlole) By o "y =y

R(Sy(pfa))exp(—j(w—pre, a,)f)
+2exp(— hla)lz')ZI 4 Cha )+ (W= gt
0=<r=7a 210

Similarly the power spectral density in the time domain (0, rs) given by eq.
(173-a) is expressed by

See(r; @, kb, td) ~i=

Sue(z s @y by 70) = — 2h|wlexp(—2hlw|o) ], + hlwlexp( = klwlo) (Ja+T5)
+6Xp(—hia)l‘l')<]4+]5) @21

in which J,, /. and J; are defined by eqs. (203)~(205) respectively and, /; and
/s are defined by the following equations:
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_ 1 (w—pwexp(jlw—pm1)

]‘_ang_m (hw)? + (@ — u)? Se(e)dp (212)
-1~ (w—pwexp(— jlw—w1)

Js= 271']5_0° he)? + (w—)° Se()dp 13)

The above two integrals can be evaluated by applying the residue theorem as
in eqgs. (203)~(205) as follows :

]4:]5*=M‘L|QS (@ jh|o))

R(S (ra®) (—pra®exp(jO—pa)r)
1 x ‘ (hw)2+ (0) e *)2 (214)

Substituting egs. (206), (208) and (214) in eq. (211) the power spectral density
in the time domain [0, ra) is written in the following form :

Sre(r; 0, 1, 14) =exp(—2h|w|t) RSy (@ + jhl|o|)

(hw)?+ (@ — pFa)?
+2h|w|exp(—k|lw|T)

Sy (pra)){exp(—hlw|7) —exp(—jlw—p m)f)}
’Z‘}IR ’ h)t+ (@—pFad)? 0=7r<7,

(215)

Particularly for the case where S,(@)=c* eqs. (210) and (215) reduce to eq.
(181) and its time derivative respectively.

As another special case, substituting the damping parameter ~2=0 in egs.
(210) and (215) the following equations are obtained :
. — R(S(p(g’;y,))
SE;('C s W, 0, Td) *—‘TS,[.((D) —Z‘Z‘IF‘[W

R(S,(tF e —jw— ey
+2[);I Sy (u >();}ip,f'a5§w “ )t), 0<r<r, ©16)

Swe(r s @, 0, 75) =So (@) —2;RR So(r* “*))(ZXP; af)(“‘ #a)D)  Gcrie,
@17

It is easily verified by simple manipulation that eqs. (216) and (217) agree to
egs. (184) and (185-a), respectively.

In the above, the analytical expressions of the energy and power spectral
densities associated with the time domain in which the maximum of the energy
spectral density is contained are obtained. However it is not easy to analytical-
ly determine the maximum and the maximum wvalue of the emnergy spectral
density for the general case where 1>h>0 and S;(w) is an arbitrary rational
function expressed as in eq. (194). Hence numerical estimation of the energy
spectral density given by eq. (210) in the time domain [0, 7] seems to be
generally necessary to find its maximum value.

In the case of the time-invariant envelope a(z)=1, however, if 1>h>0 and
Su(w) is a sufficiently flat spectrum over the wide frequency range the random
responses defined by eq. (24) seem to belong to the divergent process. There-
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fore the maximum .. of the energy spectral density may be approximately
estimated as the end point 7s of the duration time of such quasi-stationary
random excitations. Then in an approximate sense, the maximum value of
the energy spectral density is given by the following equation :

S'%Ip See(r; w, b, 1) =Sz (za; @, h, )
_I_E?{P_(__z}_llwh'd) R(Sp(vran))
== ol -RS,(w+jh|o]) - (1 +exp(— 2hiw\r¢))21(hw)2+ (om e

RS (e, o e
+2exp(~hlolr) BI (“(“<k3)§?—§-€§;.’jﬁ”m>f‘ )T) 218)

Of course, it is possible to determine the more accurate value of Tmes by
means of the successive approximation procedure starting from the first ap-
proximate value vV =r1q4. If 7m: iS equal to 74 the power spectral den51ty should
not be negative at r,. Hence if Sgre(ca; 0, k, 74) is negative rma, must exist in
the open time domain (0, v«) and eq. (166) should be valid, namely

SH;(Tma: ; @, h, 7q) =0, 0<LTmar <7 (219)

Substituting a(r) =1 in eq. (55) the above equation is rewritten as follows :

S:’""’exp( —hlw|r) Ry (k) cos wrdk

=hlo [T a7 de, exp(—hla) -+ ) Ryer — rdexp(— jar(e: — 1))
=h|w|5:m"dy;exp(—~2h|w|ug)s1z": dv, exp(—hlwy) Ry(w)cos wvy  (220)

On the basis of eq. (220), the following formulae for a successive approxima-
tion procedure of the maximum 7ms, may be obtained :

lntly — 2l + A7t ':‘“=T.1 n=12 - 221)

h|w|\ dys exp(— 2h|w|»2>§ "“’dv,eXp( ~hlalv) Ry cos av,
Az-('n):f, -

exp(—2|w|t") Ry (™) cos wr'™ +2h|w|(h|a)i5 dvz exp(—Zhlva;)

~S: dr exp(— hla)lx)&;(x)cos wr

Si:_ *dy, exp(— h]wlvl)R¢(u1)coswvl S:wd/cexp(—h]w]x)RA:c)cosw:c)
222)

in which the auto-correlation function R,(r) is given by the following formula :
R,(o)= 217?5_ Sy(w)exp(jwr)dw
=J‘§R(S¢(ﬂ‘a«))eXp(j#'anD (223)
==L (RR(Sy (¢ o)) exp(— Iy ar|t|)sin (Rptafz])
+IR(Sy(pa)) exp(— Ifaql7]) cos (Ryr ol 7))
5.2, The case of time-variant envelope, a(r)zt1

In general, for an arbitrary envelope a(z) of the original quasi-stationary
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random excitations it is difficult to analytically obtain the maximum value of
the energy spectral density of the modified quasi-stationary random process.
Therefore the maximum value of the energy spectral density must be found
based upon the numerical evaluation of the energy spectral density in the time
domain (0, zs). Here it is noted that the maximum 7. Of the energy spectral
density of the modified quasi-stationary random process always exists in the
time domain (0, t4). If the approximate value of Tmar iS known, the more
exact value of 7Tme; may be obtained by means of the successive approximation
procedure as in the preceding subsection.

In connexion with the above-mentioned procedure, the analytical expressions
of the energy and power spectral densities which are given respectively by
egs. (63) and (64) together with eq. (65) may be available because the con-
volution integrals associated with the finite time domain which are contained
in eqgs. (63), (64) and (65) may be suitable for the numerical evaluations. Then
if the analytical expression of the auto-correlation function Ry(z) is given, both
the energy and power spectral densities can be expressed in the formula con-
taining the double convolution integral according to egs. (63)~(65).

In the following, the power spectral density S,(w) of the stationary random
process is supposed to be expressed as the product of the rational function
given by eq. (194) and the band-limiting operator defined by

B(w; we, @) =D(w; R'om) +D(w; R -wy-w1)

W= Wc— Wy, Wy =We+ Wy, we> wp>0

(224)

where the operators appearing in the right-hand side are the cutoff operators
associated with the frequency variable, defined as in eq. (3), and w., wy denote
the center frequency and half band-width of the cutoff operator, respectively.
Then, Sy(w) is expressed as

Se(w) =Blw; we, a)Sy’' (@) (225)
Sy (@) = gu@) p* () (226)

in which ¢u(@) is the complex-valued function defined by eq. (200).

In evaluating R,(z) in eq. (65) the following two cases are considered ac-
cording to the order of ¢¢(w) or Sy/(w) when |w| tends to infinity ; namely,
supposing 6 to be a2 non-negative integer of the order of ¢y(w) and S,/ (w) as
|o| tending to infinity, expressed as

0{gps (@) =0(w™®) lw| — o

0(Sy (@) =0(w) || — o0, 620 @20

then, the first is the case where § is a positive integer and the second is the
case where 0 is zero. As in the preceding subsection it is assumed that all the
poles of S,/(w) are simple and that they consist of the two sets of complex
numbers {¢fa«} and {gFa*} given by egs. (196)~(198). According to the above-
mentioned classification, the function f(z; w, #) defined by eq. (62) or eq. (65)
is expressed in the definite form available for the numerical evaluation.

Case A, 6=1

In this case the auto-correlation function R;(r) which is contained in the in-
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tegral representation of f(r; w, ) as in eq. (65) is expressed in the following
form by making use of the residue theorem and the convolution theorem of
the Fourier transform :

Ry® =5} Seexpium)du=y-{" Blus wo oSy tdexpju)de

|t|)*% sin (DbTTCOS @eT
— = SRS (uras)exp( jutae)))u2- LT COS 0T @28

=-2 (RRSy (pra)exp(— Ipfanltsin (R afz])

= 75RSy (e exp( e

+IRSy (i a)exp(— Tuan[ ) cos (Rusanle]) )52 S0 05 €OS 0T

where

2 sin weT COS W.T
?%DB((D; We, W)

Substituting eq. (228) in eq. (65) the function f(z; w, %) is obtained as follows :
flt; w, )= —Za(r)[a(r)*gexp(—hla)[z')cos ot

.({;<RRs¢f (e exp( — ot sin(Rpralt))

2 sin wst COs wez-) ]
pa T

+IRSy (pra)exp(— Iura|t|) cos (Rufalz))) 1+
(229)

in which the first asterisk denotes the convolution integral associated with the
finite time domain [0, ) and the last one denotes the convolution integral as-
sociated with the infinite time domain (— oo, o).

Since the convolution integral associated with the infinite time domain is not
suitable for the numerical evaluation it is desirable to replace this convolution
by the definite integral defined in the finite domain. Denoting the convolution
integrals associated with the infinite time domain which appear in eq. (229) as

L(e; o) =2 SRS OL o5 s ysin (Rl ) (230)

L(r s pra) = 2SR COS O oy ysigfe]) cos(Risse2]) (231)

and by making use of the integral formulae,

| exo(=alel) sin blz| exp(— jurddr=I{ (exp{ - (a=j(b=w)7)
—exp{—(a+j@+)Nde  @3)
_ 2b(a+ b — )
@+ G- Ha+ G+ w7}

tmexp(—alrl)cos blz| exp(—jpr)dr=RS:(exD{ ~(a—jb—pw)7}
+exp{—(a+70b+p))r))dr (233)
_ 2a(a®+b +pd)
AP+ G- Ha+ G+ )Y
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eqgs. (230) and (231) can be rewritten by the following definite integrals defined
in the finite frequency domain, respectively.

e N_ _2R(pra) [wetws (i — | pr e ®) cos prdy

IS(T v # m) - T gwc—wb,u" +2(12(#’m) —Rz(#xdz))/—lz'*‘ |/1Kai|4 (234)
c ey 2d(pFay) (wet (g + |l ® cos prdp

L NN B s e ot @)

Hence the function f(z; @, h) is expressed in terms of the quantities given by
eqs. (234) and (235) as follows:

Sz w, ) =—2a()[a(r) *(exp(—h|w|r)cos wr
{ ’2 (RRSy (wradIs(t s pra) + IRS) (prad Io(r s prad)) }1] (236)
Case B, 6=0

In this case it is convenient to express Sy'(w) as the sum of a constant and
the frequency function, the order of which is given by a positive integer,
namely

Sv/ (@) =4S, @), ik Sy(@)=20) 237

in which S,//(w) has the order 0(w™%), 6=>1 when || tends to infinity.

If all the poles of S,/ (w) are simple and they are again denoted by {u*«} and
{¢#fa*} in the upper and the lower half-plane respectively, the auto-correlation
function R,(r) is expressed as follows :

Ro(@ = 5 " Sutexpli)du= g | Bls ey @) (@468, (@))expliurdd
= U3(e) — RS, (ra)exp(— Lot sin(Rutale])

2 sin weT COS weT (238)
P T

+IRS, (i a)exp(— Iy ol 7)) cos(RuFa ) ]) )%

Substituting eq. (238) in eqg. (65) and by making use of the notations given
by. egs. (234) and (235), the function f(r; w, k) is expressed in the following
form :

St w, h) =c2a*(r) —2c2a(z) [a(t)*(exp(—h|w|T)cos wT
. {;(RRde// (u"az,-)fs(‘l' N ﬂxdi) +IRS¢,// (ﬂ"‘r_‘n)]’c(l— N #‘d())})] (239)

In particular, for the case where both w, and w. tend to infinity, the band-
limiting operator defined by eq. (224) reduces to

Blaw; we, wp) =1 (240)
hence, eq. (225) becomes
Sy(@) =S,/ (w) (241)

In this special case the quantities defined by egs. (230) and (231) are express-
ed as

L(r; pra) =exp(—Ipfar)sin(Rufat|) (242)
I.(r; pra) =exp(— Ifalt]) cos(Rytral]) (243)



Response Spectra of Quasi-Stutionary Random Excitations 79

by making use of the following formula:

2 Sin wyr COS W.T

=6(7) 244)

lim
Wy= oo T T
Hence the function f(z; w, #) which is given by eq. (236) or eq. (239) corre-
sponding to case A or case B is expressed as follows :

Case A, o=1

f(z; w, ) =—2a(x)[a@)*(exp(—h|w|t)cos wr
. {iZ(RRqu (rra)exp(—IFao)sin(Bufar)

+IRS, (pfa)exp( — Iufar) cos(Rurat)) } 1] (245)

Case B, =0

f(; w, B) =ca?(r) —2¢a(r)La(zx)*(exp(—h|w|T)cos wr
« tZ} (RRSy (pra)exp(~Ipfar)sin(Rufac)

+IRSy (ufa)exp(— IFat) cos (Rurar)) } 3] (246)

In the most special case where B(w; ws, ws)=1and S,/ (w) =c?, S,/ (w) defined
by eq. (237) becomes identically zero and the following simple expression for
f(r; w, h) is obtained directly from eq. (246) :

f@; o ) =cd(t) @247

The analytical expression of the energy spectral density Sxe(z; w, k, 7o) of the
modified quasi-stationary random process in the time domain (0, 7.) is obtained
by substituting the function f(z; @, h) given by one of the egs. (236), (239),
(245), (246) and (247) in eq. (63). In general, to find the maximum value
of the energy spectral density Su:(tmes; @, 4, Ta), 0<Tmez =74, it may be neces-
sary to carry out the numerical evaluation of eq. (63).

If an approximate value of the maximum fm.. is found in the time domain
(0, z4), the following successive approximation procedure may be adopted in
obtaining the more accurate value of the maximum of the energy spectral
density. As in the preceding subsection, if Tma: coincides with r: the power
spectral density given by eq. (64) together with one of egs. (236), (239), (245),
(246) and (247) should be non-negative at 7s. On the other hand, if the maxi-
mum Tmer €xists in the time domain (0, z) it should be a zero of the power
spectral density. Then from eq. (64) the following equation is obtained:

2h|w|S:"'“exp{—2h|w| (Tmae—£) } (£ w, B dE=f(Tmaz ; @, 1) (248)

By making use of eq. (63), the above equation is rewritten as follows:
21| w|See(Tmuz ; @, h, Ta) = f(Tmaz 3 @, ) (249)

Hence the following successive approximation procedure to determine the maxi-
mum Tmer Of the energy spectral density is obtained:

pimtl —pim 4 frim) =12 . (250)

Sz @,k Ta) Sue(z™ s @, hy Ta)

(n) = _ _ MHEAE = — . .
A = S DG 6, by 2) T ST 5 , h) —2hlwlSne T @, B 1)
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_ e k) \ 3!

- [2h|w| (f(z“’” s @, W) —2h|0|Se: ('™ ; w, &, Tu))J

B _ W@ w, b) -1

= [2hll (f(fm o, ) —Thwlexp( = 2hla[Of ; @, h)\mm)J @D

where
. ) . . {
s o b= (a(r> f(ra'(:)), 8 )f =a:t (T)( f(fa’(:;z_h)) +a® ( f(fa!(g h))-r“

(252)

By making use of eq. (65), it is shown that the above equation may be written
in terms of the following expressions :

(J‘(TT;»)@) = 2a(e)vexp(—hjw|t)cos wrRy(7) (253)
( f(fa:(.:))""@)in =2(a(0)exp(—h|w|t)cos wrky(T)

+a, (r)*eXp(—h\wh) cos a)rRAT)] (254)

By making use of the analytical expression of Ry(r) given by eq. (236) or eq.
(239) as well as eqs. (234) and (235), the above equations may reduce to forms
suitable for numerical evaluations. ‘

Particulary for the case of a time-invariant envelope a(zr) =1, the following
formulae are obtained ;

f(r; w, ) =2S:exp( —h|w|c)cos weR, (k) dr (255)

SN (r; w, h)=2exp(—hlolr)cos wrRy(r) (256)
ST w, h) —2h|wlexp(—2h|wlt)xf(z; w, h)
:ZS:exp(—h\w\/c)cos weRy (k) dx

#2h|(U|S:dU2 exp(f2h|w|vg)gr_1:zdu, exp(—klw|vi)cos o Ry(vi) (257)

then, by substituting egs. (255)~(257) in eq. (251), the resultant equation re-
duces to eq. (222).

As another special case, if S,(w)=c? eq. (248) is written as follows by making
use of eq. (247) :

@ (4mar) = 2h]e0] {7 exp{ — 2] 0] (sTmaz =) }a2 (1)
° (258)
~2h] 0l |"""**exp(~ 210K @* oT oz~ ) di

where subscript 0 means that the quantity with it concerns to the case of the
white spectrum Sy (w)=c?.
By considering Ry (t) =c?5(r) egs. (253), (254) and (256) become respectively

(f(ra;(lc_z;, h)) - ca(r) (259)
{’_f_r_; w, W\ =, (¢) (260)

alt) /.
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S0 (5, b)) =2cta(t)a " () , (26D)
Hence eq. (251) is expressed as follows:
tal _ 2a<oz-(ﬂ))ar(l)(orln)) ~ =1
de " = [2hlo] (az(or‘"’)—2h|w|exp(—2h|w|r)*a2(r)|r=or<">)J (262)

From the above equation, it is found that if the time at which the continuous
envelope a(r) takes the maximum value is chosen as the first approximation,
the first increment of oTms: is a positive number which is inversely proportional
to hlw|. Hence if the damping parameter k is not zero and the power spectral
density S,(w) is sufficiently flat and if the envelope a(r) is a slowly varying
continuous function the second approximation of yzm.. for the white spectrum,
which is obtained by starting from the maximum of 4(r), may be used as the
first approximation " in the successive approximation procedure for the general
case given by egs. (250) and (251). However, if the damping parameter b is
zero eq. (262) reduces to
(n) :

Ao,(,..=_2;‘(3#&)), h=0 ©(263)

Since it is clearly a contradiction that a set of positive values of a(z) and
a:'"V(7) always gives the negative increment of o7aar, the above equation means
that the maximum orma: iS equal to the end point of random excitations, 7. for
an arbitrary envelope a(r) as far as the white spectrum and zero damping
parameter are concerned. ‘

In general, it is noted that the convergent value of the above-mentioned suc-
cessive approximation procedure does not always give the maximum Tm,: of the
energy spectral density in the time interval (0, za). The stationary condition
expressed by eq. (249) is only one of the necessary conditions requisite for Tmas.
From the exact point of view, in order to assure that the convergent value of
the successive approximation procedure starting from an appropriate first ap-
proximation gives the true maximum tme:, it is necessary to show not only
that the convex condition S’ (Tmar; ©, £, 74) <0 is valid but also that See(tmas ;
, h, t4) definitely gives the maximum value in the time domain (0, t«) because
several maxima may exist in this time domain.

From the above-mentioned aspects, in determining the maximum value of
the energy spectral density of the modified quasi-stationary random process,
the numerical evaluation of the energy spectral density in the time domain
(0, 74) should be preceded and the successive approximation procedure must
be considered as the auxiliary means to improve the accuracy of the approxi-
mate value of the maximum zma..

For a simple envelope a(r) and power spectral density Sy(w), the explicit
analytical expressions without the integral operators of the energy and power
spectral densities of the modified quasi-stationary random process may be ob-
tained. As such an example, the following special case is considered :

a(t) =\/?exp(— A;--r v Splw)=¢? (264)

By using the first equation of (264), eqs. (247) and (261) are written respective-
ly as follows :
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f(r; w, h) =c%a?(r) =c%r exp(—ar) (265)
93 w, ) =2¢cta(t)a,"V (r) =c2(l —ar)exp(—ar) (266)

Substituting eq. (265) in eqgs. (63) and (64) the following explicit analytical
expressions of the energy and power spectral densities are obtained :

Sre(r; w, h, td) =c? exp(—2h|w|7)*a* ()
=ﬁrm[exp(—2h|wlr)—exp(—af)—(oz—Zhla)l)rexp(—at)],
0=r<ta (267)
Sue(r; w, b, m) =t (5(1) —2h|w|exp(—2h|w|t))*a* (1)
= Ca— 2h| Dgfa(a 2h|wl)t exp(—ar) —2h|w|(exp(—2h|w|7) —exp(—a7))3,
0t <y (268)

In particular in the case where h=0, the power spectral density given by eq.
(268) is always positive. Hence the energy spectral density given by eq. (267)
is a monotonously increasing function of time in the domain {0, z4], and the
maximum ¢Tne: agrees with z,.

As regards the successive approximation procedure of the maximum ¢Tnor,
eq. (258) reduces to

oTmar €XP(— XoTmar) = a('az—;%!:l‘w]) (exp(—2h|w|¢Tmar) —€XP(—ATmar))  (269)

and egs. (250) and (262) are written in the following forms respectively:

G = ) gptm n=1,2, v (270)
_/Iar"":[Z}zlwf
( (a—2hl@|)*(1— st ™)exp(—asr'™) V7
a(a—2h|w|) g " exp(—ac™) —2h|w| (exp(—2h[w|,c™) —exp(— aof‘"’)))
@71

Starting from the first approximation which is appropriately chosen as
(1!— <o7." 1 gfd (272)

the maximum 7mar Which gives the maximum value of the energy spectral de-
nsity may be determined as the limiting value of the iterative procedure given
by eqgs. (270) and (271) because in this case both Ske(r; w, k 74) and Su(r; @,
h, t4) are simple smoothed functions in the time domain [0, 7+) as shown in
eqs. (267) and (268).

6. Probable expressions of the mean value and the upper and lower limits of
response spectra of the quasi-stationary random excitations

In section 4, the formal expressions of the mean value and the upper and
lower limits of response spectra of the quasi-stationary random excitations are
determined as eq. (154) and eqs. (160) and (16!) respectively, in which the
quantities 4, Zoes V2, f2 and g remain as unknown functions of w, # and . as-
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sociated with the original quasi-stationary random excitations f(zr). In this
section the explicit functional forms of these quantities are considered referring
to the results of response analyses of a linear system subjected to quasi-sta-
tionary random excitations.

If the duration time 7, of the quasi-stationary random excitations having a
slowly varying envelope is sufficiently large, more exactly, if the maximum
Tmar 18 sufficiently large compared with the natural period of the linear system

t= 2(:[— and if the power spectral density Sy(w) is sufficiently flat over the fre-

quency range considered, the quantities 1 and Z,, may be approximately equal
and they seem to be weak functions of w and z.. In such a case it is suggest-
ed that instead of the functions 2 and 4., the mean functions averaged in the
w—7, domain considered may be available in eqs. (154), (160) and (161), namely

/A(h) = <;A(a), h, ‘L'a) > w,T= </}m-(0), h, Ta) >0, ta= E<,}w(w, h, Td) > T (273)

in which the symbol <A>, denotes the mean value of A with respect to 2 and
subscript f means that the quantity with it depends on the original quasi-
stationary random excitations f(7).

Since the function A(h) defined by eq. (273) seems to have the properties,

A=Y, AN M>0, APk <0, h>0 274

and it also seems to converge sharply to a constant value in the vicinity of
h=0, the following probable expression of ,A(k) may be obtained;

Ah) =A(0) —={2(e2) —,2(0) Yexp{ — ja(W) h} (275)

in which the function ,a(h) indicates the degree of the convergence of 2(h)
and may have the following properties :

/d(h) >1, /m.'” h) <0, jahm) (h) >0 (276)

In addition to the above properties ;a(h) seems to converge to a constant value
as # increases from zero. Hence a probable expression of ,a(k) may be given
by

ra(h) = () +{;a(0) = ja() }exp(—gh),  B>0 @77

in which B is a sufficiently large positive number.
From eqs. (275) and (277) the following relation between (k) and ,a(h) is
obtained :

_ 1 7A(00) — [A(h)
@y == 1 108 ) oy ,2(0) @18

To determine the various constants contained in egs. (275) and (277) the re-
sponse analyses of the linear system having the impulsive response g(z)=exp
(—hlw|t)sin wr should be made for the pertinent quasi-stationary random ex-
citations and the appropriate sets of parameters (o, k, t4), and the equivalent
coefficient 2 in eq. (154) should be estimated numerically, based upon the re-
sults of the response analyses.

If a large number of random responses are obtainable for each set of para-
meters (o, k, 14), te equivalent coeflicient (A(w, /1, t«) may be evaluated from
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the following equation :

_ ES V((D, h, 1.'4) ? / T ‘

fl(w’ h’ fd) B ‘\/SEE(Tﬂmz; w, h, Td) _VTJ/V I_T (279)

On the other hand, if the size of the ensemble of random responses is small

for each set of parameters (w, %, 7s) the equivalent coefficient ,A(w, k, 7:) may

be estimated by the following procedure: First, for each pseudo-stationary

random time-function |A,| defined by eq. (144), the maximum normalized random
variable

SLTlp'(IAI-—ErIA.I)

RZ s h; = T AT
o b T =T Al @0
and the following two quantities are calculated;

Er A, VVrl Al (281)

odir{w, h, T4) ='\/T—|7:|? (W, h, 74) =—HI‘,

and, by making use of these quantities the equivalent maximum random vari-
able ;Ar(w, h, 72) associated with the Rayleigh distribution is determined as fol-
lows :

(ndu'(w, h, Td)) ~1

= _ (Ar(w, h, T)s2(®, b, Ta)\ (+dir(®, h, Ta) d:(0)
ArC, b7 = 50 . )\ AN > + o0 (282
where
o =/15 a@=YF 283)

The correction of the maximum normalized random variable by eq. (282) is
due to the deviation of the amplitude probability distribution of |A. from the
Rayleigh distribution. This deviation may be measured by the parameter ¢
defined by eq. (71). The values of d,(&), d:(¥) and o(£) given by eqs. (88)
and (89) for é=0 which corresponds to the Rayleigh distribution and £=+1 are
calculated as follows:

dy(0) = ‘/2-£=0.886, d,(j;l)==\/zi—n7~r=0.938
d2(0)=‘/42’”=o.464, d2<i1)=J2ﬁ=o.352

o0 =/ o7 052,  o(xD= N 42;7:”=0‘370

with the aid of these values it is shown that 4,(¢) is a weak function of 3
compared with ¢(£). Hence, eq. (282) may be expressed approximately by

= ke, h, T)i0r (0, b, Td)
J'IT(“)’ h; Td) = 0'(0) (284)
In the case where the duration time 7. is fixed and the response analyses are
made for various frequency parameters and a series of the discrete values of
hy i=1,2, 3, - , the equivalent function ,A(k)) may be determined by substitut-
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ing eq. (282) or eq. (284) in the last equation of (273) and by averaging with
respect to the frequency parameter.

Next, the constants ;2(0), A(e0), ;a(0), (0) and g which are contained in
egs. (275) and (277) may be determined by the following iterative procedure.
Supposing the appropriate values of A(0) and ,A(x) from the series ,A(k;) and
by substituting these values in eq. (278) the series of the values ;a(k), i=1, 2,
3, e , are obtained. Then, selecting three arbitrary points i=/, m, n the ex-
ponent B in eq. (277) is calculated from the following equation :

a,(@ i(h”) 1 _exP{ 7;370‘," _h‘)} (285)
a(h) —a(hn) — 1—exp{—B(hn—h)}
And, for several sets of two points i=m, 7, ;@(0)m, and ja(e)., are determined
from the following simultaneous equation :

{1~exp(—Bh)},a() +exp(—Bh) a(0) =a(hy), i=m, n (286)

Thus the constants 8, ;a(0) and ,a(c0) are determined through an averaging
operation as follows:

B=<Bimn>wmn,  a(0)=<AOmn>mny,  ja(0) = < a(P)ma>mn  (287)

in which subscript /mn or mn shows the quantity, with it being dependent on
the set of points selected. By substituting the quantities given by eq. (287) in
eq. (277) the new series of values ,a(h), i=1,2,3,---- , are obtained. By
making use of these values and the previously determined values of ;A(h) for
several sets of two points i=m, n, a set of ;A(0)n, and ,A()a, is obtained from
the following simultaneous equations :

Ul —exp{ — a(h) h})A(0) + exp{ — ja(RO W} A0) =A(h),  i=m,n  (288)

Then the constants ,A(0) and ,A(c) are determined by averaging ;A(0)m. and
sA(0) nn TESPECtively as follows :

jl(0)= </Z(O)mn>mn, /1(00)'“ </l(°o)mn> mn (289)
Otherwise, they may be determined by the following least square method :
e2(;2(0), jA(e)) = Z}EM(OO) —{/A(0) = A(0) Yexp{ —ja(hOh} —2(h)IE  (290)

O —0, 5,2 )=
ERION (;200), sA()) =0, a/KOO)s*(/Z(O),/l( ))=0

If the values thus obtained of ,2(0) and ,1(e0) are different from the previ-
ously assumed values beyond the prescribed allowable error the above-mention-
ed procedure must be repeated until the error is reduced within the allowable
value.

In the following, to examine the above-mentioned procedure for determing
/A(h) a numerical example obtained by the simulation method is shown. The
quasi-stationary random excitations considered are characterized by the time-
invariant envelope a(r) =1, the duration time 74=30 sec and the following power
spectral density:

Se(@) =B(w; we, )Sy' (@) (291)
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Sy (@) {“(c‘:. ):H”(T»me)iHH(:)aH (::7):: (292)
(e ) R ()
in which
w.=18.2x, ws=17.37, (rad/sec) (293)

w,=2r, w,=3.67, ws=10.4r, w,=22.0r, (rad/sec)

From each sample random response of the single-degree-of-freedom systems
having the natural frequency w=107 rad/sec and various values of damping
parameter k, the amplitude probability distribution of the pseudo-stationary

process |A;| is evaluated by using the values of the peak amplitude at 200 points
contained in the time domain T=[L-r:;, ra]=[10 sec, 30 sec). By using eqs.

(278), (280), (281) and (284) the following results are obtained :

ro| 0 0.005 | 0.01 | 0.02 | oos
O 0, 289 0. 469 0.473 ‘ 0.487 | 0.521
A7 1.76 1.73 2.03 2.33 ‘ 2.53
ar | 0,971 1.55 1.84 2.21 2.51
& — 65.9 54, 4 46.6 29

The values in the last row of the above table are evaluated from eq. (278) by
supposing ;2(0)=0.971 and ;4(0)=3.000. From the values of .gr it is found
that the amplitude probability distribution of the pseudo-stationary random
process {A. converges rapidly to the Rayleigh distribution as the damping
parameter % increases from zero. However, in the case of 2=0 the original
random response |J:| or |A¢ seems to belong to a strongly divergent process.
As shown in the table the value of .07 is considerably smaller than ¢(0)=
v (4—n)/n=0.524 and it is indicated from eq. (89) that the corresponding value
of ¢ is larger than unity. Therefore it is suggested that the correction given by
eq. (282) or eq. (284) is necessary for the case of a sufficiently small value of
the damping parameter. The corrected values ;i» are shown in the third row
of the table. )

Even though the values shown in the table are based on the data which are
obtained from a sample random time-function prescribed by w=10x rad/sec and
74=30 sec for each damping parameter, they show a sufficiently smoothed
tendency for the equivalent function ,A(k) which gives the mean value of re-
sponse spectra of the quasi-stationary random excitations. As a rule, to de-
finitely determine the function ,A(%) expressed by eq. (275), the averaged value
/A(w, , 7s) must be evaluated from an ensemble of the random variables ;A7 (w,
h, r4) for each set of parameters (w, h, 7s) and again the averaging operation
with respect to @ and 7. is required as shown in eq. (273). In this section,
however, for the purpose of obtaining the probable expressions of the mean
value and the upper and lower limits of response spectra of the quasi-stationary
random process, the applicability of egs. (275) and (277) to such expressions
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is examined by determining the unknown constants contained in egs. (275) and
(277) by using the following rough, short-cut procedure :

By using the values of ,a given in the last row of the table the function
sa(h) is determined in the following form according to egs. (285) and (286).

sa(h)=16.54+58.0 exp(—32.0h) (294)

And by making use of the above equation and the values of ;4r for £=0.005 and &
=0.05, which are given in the third row of the table, the values of 2,(0) and ,A(e)
are calculated from eq. (288) as 0.964 and 3.01, respectively. Then, by substi-
tuting these values in eq. (275) the following expression of ,A(k) is obtained:

A(h) =3.01-2.05exp{—,a(h)h} (295)
On the other hand, defining the function ,¢(k) by

_ ESV((D h Td) sEf(T'mnr s 0), 0 Td)\\
_/(](h) _(ESV((D, 0, Ta) SEE (Tmax ; W, h, Td) /(v Tq

ﬁ A0 ~/1_7 (296)
v . =1
VI L a0/1- 1

and by using eq. (295) in the numerator of the right-hand side the above
equation can be written as follows:

(k) =1.71-0.71 exp{ — ya(h) h} (297)

Although the function A(h) given by eq. (295) is determined by means of a
simulation method using a special quasi-stationary random excitations and
rather rough estimation procedure, the value ,g()=1.71 calculated from eq.
(297) seems to be satistactorily close to the value g(x)=1.56 evaluated from
the formula which is presented by G. W. Housner and P. C. Jennings based
upon the respomse spectra of past strong earthquakes. Also it is found that
the multiplication factor for A=0, which is determined as }/ —g +,2(0) }/ (4;—”)
=1.33 by using egs. (154) and (295), is little larger than the theoretical value
1.174, which is presented by E. Rosenblueth for the case of zero damping and
whith noise excitations. Hence, from a practical point of view, it is permis-
sible to suppose A(0) =1 and 2(e)=3 which correspond to the multiplication
factor for zero damping =1.35 and g(e) =1.69, respectively. As an example,
substituting these values in eq. (275) and by considering eq. (294) the follow-
ing probable expression to estimate the mean values of the response spectra
of the earthquake excitations may be obtained :

ESv(w, b, 1) = (‘/" +/1(h)‘/ 1—_ vsm(fm, o, h, 72 (298)
where -
AWy =3—2exp{—a(ih),  ah)=15+60exp{—30k}, 19h>0  (299)

As regards the maximum value of the energy spectral density of the modified
quasi-stationary random process contained in eq. (298), eq. (192) may be availa-
ble in the case where 13»Ah>0, because the strong earthquake excitations usual-
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ly have a slowly varying envelope having a sufficiently large duration time and
flat spectral characteristics over a wide frequency range®:'" and the elastic
structural system may have a critical damping ratio which is sufficiently
small compared to unity but not zero.

It is noticed that eqs. (298) and (299) are derived by assuming that the func-
tion ,A2(w, h. t4) is 2 weak function of w and rs,. This assumption may be valid
in the case where the quantity 2x/7mer 1S sufficiently small compared with the
lower limit of the frequency band of Sy (w, %, 7¢) considered and the power
spectral density S,(w) is sufficiently flat over this frequency band. On the con-
trary, if 27/tma- 1S not sufficiently small compared with the frequency parameter
considered or the power spectral depsity Su(w) is not fiat over the frequency
band, the function ;3(w, %, T4) seems to be a comparatively strong function not
only of 2 but also of w and za.

For instance in the case where the power spectral density S,(w) is sufficient-
ly flat over the frequency band but 7,.. @ is not always sufficiently large in
this frequency band, the probable expression of the function (w, %, t4) may
be given by the following form :

/Z(w, h. T4) E/](w, R, Thax) =,r/1(00) “{/1(00) —12(0))€XD( —sa(w, h, ?mn:)h) (300)
(W, 1, Twor) = (1 —€Xp( — aWTwmy.,) ) [ya(0) = { a( ) — a(0) }exp(— 3h)) 301)
in which

2(e0)>2(0) >0, 1a(0)> a(o0)>0

a>0, >0 (302)

In egs. (300) and (301) tao. is a function of w, % and r« which depends on the
original quasi-stationary random process f(r). Since ;A(w, &, 7s) seems to de-
pend more explicity on ... than ze, the notation ,2(w, %, 7ner) is used instead
of JA(w, h, te) in eq. (300).

As shown in eq. (300) the function A(w, A, Tw..) is symmetrical with respect
to w and z.... In particular, for the case of #=0 or £=o0, the function ;4(w,
h, Tmar) takes a constant value which is given by ,2(0) or ,2(e) in eq. (300).
Also, for both cases of w=0 and 7,..=0, the function A(w, A, Tu.:) gives the
constant value ,1(0).

From eqgs. (300), (301) and (302) the following inequalities which seem to be
valid in usual cases are derived :

AW, Ry Twar) >0,
/Zu»“)((!), h; Tmu.r>>0; f)‘fmrl:“)(wj h. Tnuu‘)>0 (303)
AN (o Ry The) >0 1 ja(w, By Thaes) 00 (W, R, Toar)h >0

salw, b, Twus) >0,

0, (W, By Tunr) >0, 10 s Wy By Toas) >0, oV (W, B, Thas) <0 (304
faw“)x‘m,.,(“ ((D, h, de.r) <O| /aw“lh(”(w, h- Tnm.r) <Ov ]ah”'Tmu:(“(a); hn v’m(lr) <O
102 (W, 1, Thar) <0, 181, Y (w0, R, Thar) <0, jon'P (W, B, Twar) >0

To find the necessary and sufficient condition of the conditional inequality at-
tached to the inequality ,2,'"(w, &, Twss) >0, the following function and its de-
rivative are considered :
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T, h, Tmar) =@, b, Tmar) + s (@, b, Tmas) b
= (1 —exp(— awTmas)) (ya(0) —{ () — a(0)} (1 — Bh)exp(—Bh)) (305)

70 (@, B, Trar) = (1 —€Xp(— aWTmax) ) {sa(0) — 2 (0) }(2— R B exp(—ph)  (306)
From eq. (306) the following relations are obtained :

TI}.“’((D, h, Tma.r) go for hé—g

720 (@, b, Tmas) >0 for h>729

Since k=2/8 is the mimimum of the function ,7(w, k, Tms.) for all @ and tae:
the necessary and sufficient condition in order that the function ,7(w, A, Tmar) is
non-negative for all w, 2 and tm.r is given by

307

exp(—2)
/a(OO)>,a(O)1 Texp(—2) (308)

On the other hand, since the mean value of the velocity response spectra
ESv(w, h, 7o) may be a monotonously decreasing function of the damping para-
meter . the validity of the following inequality which is obtained by differen-
taiting eq. (154) with respect to 42 may be required in usual cases:

1A
K3 /1_T_
ESvi"(w, h, 1) ](“” h, Tmaz) A/ 1 4 +Sth(“(T!nar: w, k, ta)

Skt o (trex <0 (309)
Sv(w, h, ta) 1/ n + 2o h, Tm:)}/ 1___ 2Sxe (Tmaz | W, h,_l'd)

In particular in the case where a(7) =1 and Sy(w) =¢? the maximum 7me: iS re-
garded approximately as rs. Then the first and second terms in eq. (309) are
expressed respectively as follows by making use of eqs. (182), (183), (300) and
301 :

“'((t), h Tmar)\/l‘_ i

-‘/ +/X(w h Tma.r)\/l—i
~{A(e0) = 2(0) }{1 —exp(— awr)}(sa(2) = {,a(0) —,a(0)} (1 - Bh)exp(— k)]
VR 4 {A(o0) —{ A(00) = 2(0) Yexp( — (1 —exp(— awr.))

-exp(— (1 —exp(~awra)) (o) — {a(e) ~ a(® Yexp(~ )y 1- §

Caeo) — {ra(e0) —jar(0) pexp(— Bh)]h}]\/l——‘f

(310)
and
SeeM (4 w, h, Ta) (1+2h|w|r¢)exp( 2h|wlta) —1
QSEE(fd y W, h« Td) zh(l exp( 2h|wlfd>>
@iriexp( —2hlwlr) 1
“exp(—Zhlalte 2n0 0 @1
SEEIL‘I)(Td ; @, 0, Td) _ |(U|1'd h=0 @

2535(74 > W, 70 Ta) 2’
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Particularly considering the case of =0 eq. (309) is written as follows:
3/" +,/1(0)\/1——

2 ) - ,1<o>},a(o>/ -1

1— exp( awr,)
WTqa

(313)

In order for the above inequality to be valid for all wr. the constant & should
satisfy the following inequality :

‘/-“+,1(o>\/1A7

2{;A() — [A(0) },a(O) \/1 -

a<l

(314)

Since for a comparatively large value of wrme: the factor (1—exp(—awrm.:))
contained in eq. (301) may scarcely affect A(w, %, Tme=) given by eq. (300) the
values of ,a(0), ;a(x), ,A(0) and ,A(c0) which are previously determined for
large wrnmer may also be applicable to eqs. (300) and (301). Then by substitut-
ing ya(0) =75, ;a(e)=15, 2(0)=1 and ,A(c0)=3 in eq. (314) the probable upper
limit of the constant ¢ may be determined as 0.0097.

Finally, in connexion with the upper and lower limits of response spectra of
the quasi-stationary random excitations which are expressed as in egs. (160)
and (161) respectively, both quantities z and g which are defined by eqs. (162)
and (163) are generally the functions of w, # and tm.- and they also depend on
the statistical properties of the original quasi-stationary random process f(z).
Usually the ratio of the standard deviation /VSv to the mean value ESy, which
corresponds to the ratio VV3/(v/x/(d—7)+E2), is an exponentially decreasing
function of 4 and both v/ VSy/ESy and —p/VSv/ESy are also the decreasing func-
tions of 4 though g and —y may have the tendency of increasing as % increases.

If the amplitude probability distribution of 1 is assumed to be approximately
symmetrical about the mean value EA, both guantities p\/ Vi/(V/x/(4—7) + ED
and — E\/V)/ (W7/(d—n) + EX) may be expressed as follows:

(e, h, rm,,,)=mfv_71/(\/a-§;t+m)=_H\/v_}/(\/ Z%-l»Ei)
=,6(00) —{;6(o0) — 8(0) }exp(— 7 (@, h, Tmaz) )

(315)

where
0 <,6(e0) <,6(0) (316)

substituting eq. (315) in eqs. (160) and (161) the probable expressions of the
upper and lower limits of velocity response spectra of the quasi-stationary
random excitations are obtained as follows:

sup
f SV (1i/5(w¢ h rmar)) +¢1_ 4 /1(0), h Tmaz))'\/supSEE (317)

In usual cases, 6(w, k, Twe:) given by eq. (315) seems to be a weak function
of w and Tma: for all @ and 7m.r. Consequently, from the practical point of
view this function may be replaced by a function of % only, 6(#). From this
aspect, by assuming that the normalized random variable of the response
spectrum is independent of both parameters @ and 4, its probability distribution
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is evaluated as a function of % based upon the results of numerical analyses
of response spectra of the linear systems having various frequency parameters
subjected to the quasi-stationary random excitations which were previously
described by a(r) =1, t,=30 sec and eqs. (291)~(293). By making use of the
above-obtained probability distribution associated with the velocity response
spectrum and by taking into consideration egs. (162), (163) and (315) the func-
tion ;§(h) is approximately evaluated as follows :

8(h) =0.45(1+exp{— y(Wh})

57 () =30+ 80 exp(—40k) (318)

7. Concluding Remarks

As a basic study to obtain a reasonable statistical model of earthquake excita-
tions in the dynamic response analysis of structures, the relation between the
quasi-stationary random excitations and their response spectra is discussed.
By supposing that the maximum value of the output response of a linear oscil-
lator subjected to an arbitrary excitation is approximately equal to the maximum
value of envelope of the output response, the mean value and the upper and
lower limits of response spectra of the quasi-stationary random excitations
having a finite amplitude probability distribution and a finite duration time are
considered, based on a semi-analytical method.

The mean value and the upper and lower limits of response spectra of such
quasi-stationary random excitations are expressed by the product of the maxi-
mum value of the root mean square of the envelopes of the random output
responses, which can be determined analytically as the root of the maximum
value of the energy spectral density associated with a modified quasi-stationary
random excitations, and the relevant multiplication factors which are approxi-
mately expressed in terms of the maximum value, the mean value and the
standard deviation of the maximum normalized random variable associated with
the pseudo-stationary random process having the ergodic properties and the
Rayleigh distribution and are determined semi-experimentally by means of
simulation techniques. Of course, the exact analytical approach to this problem
is to find the probability distribution of the maximum value of random output
response of a linear oscillator. However, since such an analytical approach
may be very difficult except for the extremely simple input excitations, the
semi-analytical method which is applicable to a general class of quasi-stationary
random excitations with an arbitrary envelope and power spectral density is
adopted in this paper.

The quasi-stationary random excitations considered here are supposed to be
expressed by the product of a cutoff operator which concerns the duration time
of excitations, a deterministic continuous function of time which gives the
averaged envelope of random excitations and an ergodic stationary Gaussian
random process.

The analytical expressions of the energy and power speciral densities of the
modified quasi-stationary random process are obtained in the case of the quasi-
stationary random excitations having an arbitrary deterministic envelope and
the power spectral density of the stationary random process, which is express-
ed as the product of the band-limiting operator and a rational function of the
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frequency. The successive approximation procedure of determining the maxi-
mum value of the energy spectral density of the modified quasi-stationary
random process is also discussed. On the other hand, the probable expressions
of the multiplication factors which give the mean value and the upper and lower
limits of response spectra of the guasi-stationary random excitations together
with the maximum value of the energy spectral density of the modified quasi-
staticnary random process are determined by means of the simulation technique
for the case where the envelope is a slowly varying time-function and the
power spectral density of the stationary process is sufficiently flat over the wide
frequency range. ‘

From the aspect of obtaining a reasonable model of earthquake excitations
for the dynamic response analyses of structures the study made in this paper
1s only one of the basic studies required for this purpose, hence many related
problems remain for fufure studies. For instance, there may bz problems of
how to obtain information about the seismicity and dynamic characteristics of
the ground at the site of a structure and how to apply this information to the
supposition of a model of earthquake excitations in the dynamic response
analysis of the structure. There may also be the problem of what modifications
shculd be made for a model of earthquake excitations depending upon the ex-
pected dynamic characteristics and measures of the aseismic safety of the
structure in connexion with the substantially indeterminate character of earth-
quakes which will occur in the future. Also, in relation to the coupling phe-
nomencn between structure and soil ground, the problems of where the input
excitations should be given and of what modifications should be made for a
model of earthquake excitations depending on the point of input excitations and
the dynamic characteristics of soil ground and structure may be important,
particularly for structures on soft clay or loose sand. As a rule, the supposition
of a model of earthquake excitations is not independent of the supposition of
a dynamic model of the ground-structural system. It seems that the problem
of coupling is to be solved by a reasonable supposition of a dynamic model of
the ground-structural system and that the earthquake excitations are to be
given at a2 point outside the coupling region.

In order tc develop the study made in this paper in the direction of obtain-
ing a pertinent model of earthquake excitations the envelope and the power
spectral density of the quasi-stationary random excitations which are prescribad
in rather general forms in this paper are to be reasonably determined accord-
ing to the seismicity and the dynamic characteristics of the ground at the site
of a structure. In this connexion, the random excitations of the stratified
visco-elastic medium seem tc be one of the most important problems related to
the definite supposition of a quasi-stationary random process as a statistical
mcdel of earthquake excitations.
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