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                                  Abstract 
  One of the most important problems in the field of earthquake engineering is to sup-

 pose reasonable earthquake excitation patterns for the dynamic analysis of structures. In 
 particular, in the response analysis of a structure for moderately intense earthquakes, it 
 may be plausible to suppose a statistical model of earthquake excitations taking into  ac-

 count the seismicity and the dynamic characteristics of the ground at the site of the 
 structure. 

   In this paper, as one of the basic studies related to such artificial earthquake excitations 
 as are used in the dynamic aseismic design of  structures, the statistical characteristics of 

 the response spectra of a quasi-stationary random excitation, which is defined as the pro-
 duct of a deterministic time-function and an ergodic stationary random process, are dis-
 cussed. 

  The expressions of the mean value and the upper and lower limits of the response 
 spectra of the quasi-stationary random excitations are obtained as the products of the root 

 of the maximum value of energy spectral density of a modified quasi-stationary random 
 process, which is approximately equal to the maximum value of the root mean square of 

 the envelope of the output responses of a single-degree-of-freedom, damped oscillator ap-
 plied to the quasi-stationary random excitations with a finite duration time, and the re-
 levant multiplication factors which are expressed in terms of the characteristic values of 
 the Rayleigh distribution and the amplitude probability distribution of the maximum  value 

 of the normalized random variable associated with a pseudo-stationary envelope of the 
 non-stationary output response of the oscillator. 

  The analytical expressions of the energy spectral density and power spectral density of 
 the modified quasi-stationary random process are presented for a case where the envelope 

 of the quasi-stationary random process is expressed as the product of an arbitrary deter-
 ministic time-function and a cutoff operator in time domain, while the spectral density of 

 the ergodic stationary random process is given by the product of a rational function and 
 a band-limiting operator. The iterative method of evaluating the maximum value of the 
 energy spectral density of the modified quasi-stationary random process is also  discussed. 

  On the other hand, the multiplication factors which give the mean value and the upper 
 and lower limits of the response spectra, together with the above-mentioned maximum 

 value of the energy spectral density, are determined semi-experimentally by means of the 
 simulation method in a case where the envelope is given by a step-function multiplied by 
 the cutoff operator and the spectral density is a rational function multiplied by a band-

 limiting operator. 

1. Introduction 

 In the earthquake response analysis of a structure for moderately  intense' 
earthquakes, it is important to suppose a reasonable statistical model of the 
earthquake excitations by taking into consideration the seismicity and the 
dynamic characteristics of the ground at the site of the structure, as well as
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the measure of aseismic safety and the spectral characteristics of the structure 
to be  designed."  -3' Even though many statistical models of earthquake excita-
tions for the dynamic analysis of structures have been proposed by various  in-
vestigators,4'the authors dare to deal with the relevant problems in this 

paper, for its importance in earthquake engineering, mainly from the basic 
aspect of finding the statistical characteristics of the response spectra of the 

quasi-stationary random excitation, which is defined as the product of a deter-
ministic time-function and a stationary random  process)]  ,3'  oa'  04' Of course, to 
suppose a definite quasi-stationary random process as a model of earthquake 
excitations which is usable in the response analysis of a structure, it is neces-
sary to determine reasonably, from a comprehensive point of view, the deter-
ministic time-function which gives the envelope of the quasi-stationary random 
excitations, as well as the stationary random process which provides the sta-
tistical properties of the quasi-stationary random excitations according to the 
various data related to the seismicity and dynamic characteristics of ground at 
the site, as well as the measure of aseismic safety and the dynamic properties 
of the structure. This paper, however, is not concerned with the method of 
constructing a model of earthquake excitations but deals with a method of sta-
tistical analysis of the response spectra of quasi-stationary random excitations 
which are prescribed rather a priori. 

  In order to discuss strictly the statistical properties of the response spectrum, 
which is a spectral representation of a non-stationary input excitation in terms 
of the maximum values of the output responses of a single-degree-of-freedom 
oscillator with continuously varying frequency parameter suddenly subjected to 
the input excitation, the probability distribution of the maximum value of the 
output response in a finite time domain should be found. However, it is very 
difficult to obtain the analytical expression of the probability distribution of the 
maximum output response of a dynamic system subjected to a non-stationary 
random process, even in the case of a single-degree-of-freedom oscillator sub-

jected to simple random  excitations.,)  05)  '161 
  Since the purpose of this paper is to find the statistical properties of the re-

sponse spectra of a general class of quasi-stationary random excitations, which 
are applicable to the supposition of a model of earthquake excitations corres-

ponding to the specific seismicity and dynamic characteristics of the ground at 
the site of a structure, the methods of analysis can not be based only on pure-
ly analytical  means  ; they should mainly be based partially analytical and 

partially experimental techniques. 
  In this paper it is assumed that the envelope of the quasi-stationary random 

excitations is given by the product of an arbitrary, deterministic, continuous 
time-function and a cutoff operator containing the duration time of excitations 
as a parameter and that the spectral density of the elemental stationary random 

process is expressed by the product of an arbitrary rational function and a 
band-limiting operator. The expressions of the mean value and the probable 
upper and lower limits of the response spectra of the quasi-stationary random 
excitations are considered by supposing the Gaussian character and the bound-
edness of the amplitude probability distribution of the random excitations.
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2. Response spectra of quasi-stationary random excitations 

  The fundamental equation of a  single-degree-of-freedom linear oscillator sub-

jected to an arbitrary acceleration excitation is given by 

 drz  +2hw  dr  +m2)72(r)—f(r) (1) 
in which z-, f(r) and  v(r) are time, the acceleration excitation and the relative 
diplacement of the oscillator, respectively, and  to and h are the natural angular 
frequency and the critical damping ratio, respectively. 

 By introducing new frequency and damping parameters defined as 

         h' —
1/1co'h2 (2) 

where 

 0�h<1,  --00<co<00 

and the cutoff operator, associated with a finite time domain given by 

 D  (p  ;  RI  or)  =  s  (p)  —  s(p—  z)                                              (3) 
 Rio,—  CO,  7) 

where  s(p) is the step-function, the following complex-valued function of r,  co' 
and h' is  defined  : 

 A(r  ;  ,  h')  =5  D(N;  or).1(P)exp(  —  WI&  (r  —  P))exp  (—  jof  p)d  p 
 (4) 
              = 

0f(p)exp( —— p))exp( — ja0t)dp 

 By  making  use  of  this  function  the  relative  displacement  v(r), the relative 
                                        d2 velocity-dv(r) and the absolute acceleration

drv(r)— f(r) of the oscillator        dr 
subjected to the acceleration excitation f(r) under the zero initial conditions 
can be expressed in the following forms: 

           1          v(r) -- IAlsin(oir+(pD) 

                  1(A)  
     5,913— arg A= tan'tR(A)(5) 

        -dv(r)=1/1+h"lAlsin(coir+<pr)         d
r 

                        1(A)-111 
         coy=COD+ arg( j— h')=h,tan-11R0)h,R(A1(A)) (6) 

         d2 
        dr—-v(r)— f(r)—etil (1+ h'2) IA I sin(air +soA) 

               ' 

          C9,4= COD + 2tan-I( 1  )_tan-:(1—h'2)1(A)+2h'R(A)                    h'  (1—  h'2)R(A)-2171  1(A)  (7) 

where the symbols R(A) and  1(A) denote the real and imaginary parts of the 
complex-number A, respectively. 

 From eqs. (5)—(7) the upper bounds of the maximum values of the relative
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displacement, the relative velocity and the absolute acceleration in the infinite 
time domain are obtained respectively  as  : 

 RD(co, h)= sup Iv(r)] 5_ 1,sup fiLl(r ;co' , h')[(8) 

 T 

 RV(co,  h)  =sup d-v(r)Si/1+ h"suplA(r ;hOt (9) 
                       2, drr 

          AA(to, h)--d r'                   sup'v(r)—fir)5co'+ h")stipiA(r ;co', h')[00) 

                              T where 

 T  =  Rio.=  CO,  Do) 

If the absolute value of the complex-valued function  A(r  ;  a', h') is a slowly 
varying time-function compared with the sinusoidal function  sino/r, each right-
hand side of eqs.  (8)—(10) may be approximately equal to the least upper 
bound, that is, the upper limit of the relevant response of the oscillator. 

 The velocity response spectrum of an acceleration excitation which is a kind 
of spectral representation of the non-stationary input excitation is defined by 
the following equation  :"'  os) 

 h)=supIJ(r  ;  co,  h)1  (11) 

 T where  co and  h are the original frequency and damping parameters, respective-
ly and 

 J(r  ;  co,  h) —1(A(7  ;  co,  h)exp(  jar)) 
 =  lA(r  ;  a,  h)Isin  (art  +  arg  A(r  ;  a, h))  (12) 

 =  Sr  Ap)exp(—  (7—  II))sin  co(r—ti)dp 
which is the output response  of the linear system having the impulsive response 

 g(r)  --exp(-1110r)sin  cor, subjected to an input excitation f(r) under the zero 
initial condition. 

 From eqs. (11) and (12) the upper bound of the velocity response spectrum 
is obtained as  follows  : 

 Sy(w,  h)SsuplA(r  ;  (0,  h)I 
 (13) 

 A(T  ;  co,  h)=C'f(R)exp(—hlollr  —  itflexp(  —  jwit)dp 

 0 Similarly as in the previous case, if the function  IA(r  ;  co,  h)1 is a slowly vary-
ing time-function compared with sin  on-, the function  1A(r  ;  a,  h)1 gives the 
envelope of the function  J(r  ;  a, h) defined by eq. (12) and the right-hand 
side of the first equation of (13) may be approximately equal to the upper 
limit of the response spectrum defined by eq.  (11). 

  The maximum values of the relative displacement, the relative velocity and 
the absolute acceleration of the linear oscillator are approximately expressed 
respectively as follows, by making use of the above defined velocity spectrum 
and the frequency and damping parameters defined by eq.  (2)  :
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 RD(w, h,  rd)4 1,ST(01, le, TO(14) 
 (1) 

 RV(w, h,  rd)=r-t/1+  It'Sv(of,  ,  rd)  (15) 

 AA(co, h,  rd)co'  (1  +h"),Sr(co'  , h',  rd) (16) 

In a case where the damping parameter  h is sufficiently small compared with 
unity the following approximations are valid  : 

 h'(=vh,  co'  4co,  V1+10  ±41 (17) 

hence eqs. (14)—(16) are reduced respectively to the following  forms  : 

 RD(co,  h)4   Sy(w, h) (18) 

 RV(co,  h)(Sv(co, h) (19) 

                AA(co,  h):--zoBv(o), h) (20) 

The right-hand sides of eqs. (18) and (20) are called the displacement response 
spectrum and the acceleration response spectrum of the acceleration excitation 
f(r),  respectively:7'48' 

 Now, a quasi-stationary random process is defined as the product of a deter-
ministic time-function and a stationary random process as  follows  : 

 f  Cr)  =  a(r)(P(r) (21) 

where  ch(r) is a sample function of a stationary random process with zero 
mean and a(r) is an arbitrary deterministic time-function which gives the en-
velope of a quasi-stationary random process if a(r) is a slowly varying time-
function compared with  cb(r). 

 To estimate definitely the effect of the duration time  rd of the random ex-
citations on the response spectra, the random process expressed by the product 
of the quasi-stationary random process defined by eq. (21) and the cutoff oper-
ator defined by eq. (3) are considered hereafter, namely 

 D(r  ;  121,,,,,)f(r)=D(r  ;  Rioria(r)0(r) (22) 

Of course, the time-function defined by the above equation is also a sample 
function of the quasi-stationary random process having the deterministic func-
tion  D(r  ;  Rior„)a(r). From eqs. (10) and (11), the velocity response spectrum 
of the quasi-stationary random excitation defined by eq. (22) is expressed as 
follows 

 Sy(W,  h,  rd)  —sUpl  if  (2-  ;m,h,  rd) (23) 

 L(7  ;cv,h,  rd)=1At(r  ;  m,  h,  rd)Isin(wr+arg  A;(7;  m,  h,  rd)) (24) 

 A;(r  ;  tom, h,  rd)  =  C-07(p)exp(—h1(01  (r—p))exp(—  frop)dp (25) 
 =  min(7 ,  rd) (26)
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3. Energy and power spectral densities of the modified quasi-stationary random 

   process 

 In connection with eqs. (24) and (25) the modified quasi-stationary random 

process  E(y, r  ;  w,  h,  rd) associated with the quasi-stationary random process  f(r) 
 =a(r)y(r) is defined by the following  equation  : 

 e(p,  r;  w,  h,  rd)=D(p;  R'or)D(p;  R'orjexp(—  kw]  (r  —  p))f(p)                                                   (27) 
 =  D(p  ;  Riorniexp(—hiad(r  —  p))f(p) 

The energy spectral density  Sez(r  ;  w, h,  Id) of the modified quasi-stationary 
random process defined by eq. (27) is given by the ensemble average of the 
squared absolute value of the Fourier transform of  E(et,  r  ;  w,  h,  rd) as follows  :3' 

 SF,;(r  ;  co,  h.  rd)=-ElAgr  ;  w, h,  ro)12 (28) 

where 

 ile(r  ;  w, h,  rd)—S  E(p,  r;  w,  h,  rd)exp(—  juip)d,u 
 77(

p)exp(  —  (r—p))exp(—flop)dp 

In eq. (28) the symbol E denotes the ensemble average. 
 The power spectral density  SFT;(r  ;  w,  h,  rd) of the modified quasi-stationary 

random process is defined by the following equation in the similar form intro-
duced by D. G. Lampard  :3' 

 Siff(r  ;  w,  h,  rd)=Sssr("(r ;  w,  h,  Id) (29) 

 where denotes the ith order partial differentiation with respect to r. 
 The energy and power spectral densities which are defined as the real-valued 

functions of  w and r by eqs. (28) and (29), respectively, are available to the 
general class of non-stationary random process, and the former is a real positive-
valued function but the latter is not always positive for the non-stationary 
random processes containing the quasi-stationary random  process.a) Integrating 
eq. (29) with the zero initial condition the energy spectral density is expressed 
as  follows  ; 

 SEgr  ;  w,  h,  rd)=S  SK;(r  ;  co,  h, rd)dr (30) 
It should be noticed that the frequency parameter  w contained in the modified 

quasi-stationary random process  ,;(4,r;  w,  h,  rd) is essentially independent of the 
frequency parameter of the Fourier transform. Hence if these parameters are 
distinguished from each other, the inverse Fourier transform of eq. (28) gives 
an integral of the co-variance of the modified quasi-stationary random  process. 
In particular, the value of this integral at zero, which means the integral of 
the variance over the time domain  Worm or the integral of the energy spectral 
density with respect to the frequency parameter of the Fourier transform  devid-
ed by  27r, gives the mean value of the total energy of the modified quasi-
stationary random  process.3' 

 In general, supposing that random time-functions  f(r) belong to a non-
stationary random process the co-variance of the modified non-stationary random
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process as given by eq. (27) is expressed as follows  : 

 K.(p,,  P2) 
 =D(pi;  R'or)D(p2;  Rior ,,,)exp(-2001r)exp(hIcol(tel-Fp2))Ki(fiti,  712) (31) 

Transforming the variables  at and p2 into  v and K by the equations, 

 L=111—/12,  K  p2 

the energy spectral density of the modified non-stationary random process is 

expressed as follows  :3' 

 SK.!(r  ;  (0, h,  rd)—exp(-2havIr)Crmtlx  exp  (2hIcolx)r—chilCi  (v+K, K) 

 0 

 •exp(h  I  colii)exp  (  —  jwv) (32) 

where 

 Kt(v+K,  x)—E(f(v+K)  f(K)) (33) 

is the co-variance of the non-stationary random process  f(r). 
 As the co-variance of a non-stationary random process is expressed as the 

inverse Fourier transform of the one-dimensional total spectral density  Sf(co,  K) 
of the process, namely 

                       1                  K
f(V+ K, K) =S(co''K)exp(joiv)cial      27r(34) 

eq. (32) can be rewritten as follows  :31 

            (0,ra) =ex_p(_—_21/1wirT,  SE;(r  ;exp(2h1ohic)5 doiS f (cot,,r) 
                         27r 

 •1t:  exp{(hlwl—  j(tv—al))v). 

                 exp(-2hRorr)r  ",exnahltol mj(0)—(09)r.}-1(35) 
 22r  J  hicol—j(w—(1Y) 

                    •rcIK,Sf(a)1, K)exp{(hIcol+ j(ca— al))K} 
Here, by considering that the random functions f(r) belong to a quasi-stationary 
random process, the co-variance and the one-dimensional total spectral density 
of the modified quasi-stationary process are expressed in the following forms 

 respectively  : 

 Kt(v  K)--a(v+  K)a(K)Rd,(v) (36) 

 Sf(co,  K)=  Kf(V+r,  IC)exp(—  jeov)dv 

              1              —27ru(K)exp( jcwc)Cdpexp(—JpK)A(j(co— p)).54.(p) (37) 

 1 

 =  2
7r  a  (K)  exp(  jpic)  A(  jp)S,b  (co  —  fe)dp 

in which  Ro(r) and  So(w) are the auto-correlation function and the power 
spectral density of the stationary random process  0(r) respectively and  A(jo) 
is the Fourier transform of the deterministic function a(r). Among these 

quantities the following relations are  valid:
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     S0((a)=5- 14(2)exp(- jobOdA, Ro(2)- 221r_-,(p)exp( jp2)dp (38) 
 A(  ja)=  r_2(K)exp(-joiK)dx (39) 

By making use of eq. (37) the second integral contained in eq. (35) can be 
expressed as 

 5r:Sf(co'  , /c)exp{(h1(0 I +j(6)—(0))x}dx 

          1 

        = dpSo(p)A(j(01  -  p))1::  clKa(K)exp{  (h  Ito  I  +.i(co  -  p))KI (40) 
Moreover the second integral of the above equation is written in the following 
form by using of eq.  (39): 

         5r;cka(K)exp{(hicol+p))/c} 
                 2r 3 _.il(j(L._)ex                   rdv(0p{ (hI +i(1.,-Ft))  —                          +./()--p)(41) 

Hence the energy spectral density of the modified quasi-stationary random pro-
cess defined by eq. (27) is expressed as  follows: 

 SET(r  ;  w, h,  rd)  = 1-(p)tc(ft)I2dp                     2r(/'''r'cu,h'r(42) 
where 

      c(p, r ;  w, h,  rd)-exp(-hlwir)B(p  ;  w.  h,  Dm) (43) 

      B(p;  co, h, 7,0 -iroma(c)exp{ (h.I to I-i(o)-tt))K}dic 
 cexp{(hicol +co))r„}-                                                 (44) 

 2tr _21(J4mew hlwl  +Au/  —(0) 
                   1 c—iopexpf(hicolp-wO)rml -'do! 

 2r3001-1(w-it- wi) 

in which it is noted that the following relation is  valid: 
 B*(fe;  ru, h,  r„)-  B(0,  p, h,  r,,) (45) 

where superscript * denotes the complex-conjugate. 
 By making use of eqs. (29) and (42) the power spectral density of the modifi-

ed quasi-stationary random process is expressed by 

 Su  ;  au, h,  rd)  =  2r  1 .dpS0(,a)  Ic(p,  r  ;  w,  h,  1-.012  (46) 

                                0 

                 -1clmS (.1)R(c..")(p, r  ; co,rd)c*(fi, r  ;h,  rd)) 

Since from eqs. (26), (43) and (44) the following equations are obtained; 

 c,'"  (ft,  r;  ru, h,  ra)c*(p,  r;  ru, h, 

     exp ( - 2hlw It) (a (7) exp{ 1,01—i(co—p)>=1.C:a(K)exp{ (hi w I + (co— t))Klok 
 hiad oa(n)exp{(hladP))/c}42),  0Sr<rd (47)
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 cr")(p,  r;  w, h,  rd)c*(rte,  r;  w, h,  pc) 

      --filafiexp(-2hjailr) Sda(K)eXp{(hkOl— j(co-p))x}2�0,  r>rd (48) 
                                    0 and 

 R(c,"'  (p,  r;  m, h,  rd)c*(p,  r;  w, h,  rd)) 

               = a(r)yoa(K)exp( -kw' (r-K))cos(to- p)(r -K)c/K 
               -Ya(K)exp4col(1--/c)-Fat- p)K1A2,  0  S  r  <rd  (49) 

                               0 the power spectral density of the modified quasi-stationary random process de-

fined by eq. (27) is expressed as  follows: 

                                                   .- 

   Sdp(r ;1h, rd)= So(p)(a(r)Rb(p,  t;  w,  h) 

 -  hkolib(p ,  r;  w,  h)121cIft,  0�r<rd (50) 

                 hoilexp( - 201)1(r - rd)/'  SffE(r  ;h, rd)- - S0(p)111(12,  Id  ;  (o,  h)1261,u0 

                                         for  h�0,  r>rd (51) 

where 

 b(cs,  r;  w, h)=Y0a(K)exp{- (1'00j(w- p))(z---tc)}drc 
             =Y0a(r -E)exp{-(hlad+Rot- p))x}dK (52) 

                 11 -exp( - (hIcol +/(w+v-,e))1-1                 -2n .C„„duA(-7-1))exP(-ivy)                                          100 +/(o)-1- Lime) 

In deriving eqs. (47) and (48) the following identity is  considered: 

                                                                 2 

               i:,a(tc)exp{ - hiafi (r -- j(co-p)ic}dh- 

               =S:a(K)exp{ -/ficol (r -K)-p)(r - g)}dx2 
By making use of the equations which are 

           Rb(p, r;  w, h)-La(r - x)exp(- hladtc)cos(co- p)tcdtc 

                                             (  

rb(p,  r;(0, h)la-Crock, 5:dx2a(r - x,)a(r - K2)53) 
 •exp(-  (it,  +ic2))exp(-Rw-p)(Kt-  K2)) 

and 

 1 1  
  2>tJ_ 50(p)cos pc =R0(t), 2s „So(p)sin ja-0 

 1 

                                                 (54) 

 C_  So(p)exp(  x2))dp=  -  K2) 
the power spectral density of the modified quasi-stationary random process is 

also expressed in the following  forms: 

 So2(r  ;  to, h, rd)=2(a(r)S:a(r-K)exp(-1fiafix)Ro(K)coscoffdk
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 -  11105'  chc,CarK2a(r  -  c)a(r  -K2)exp(-  hlaO  (KI  ±  K2)) 

 

o  o 

 

•  Rcr  (K,  -1c2)exp(-  jco(Ki-x2))),  057<ra (55) 

 So;(r  ;  co, h, 7d)= 2h1(01eXP( —20.01 (7 —76))5roldffirddKaa(7d X1)a(7d 
 (Ki  +K2))gp(KI  —K2)eXP(  —:10)(K1 —K2)),  7>  7d  (56) 

Between the quantities defined by eqs. (43) and (52), the following identity is 
valid in the time domain  CO,  7d)  ;  

Ic(m,  r;  co, h,  rd)12=  lb(gt  r;  co,  h)I2,  0�r�rd (57) 

Hence for the time domain  CO,  rd) the energy and power spectral densities of 
the modified quasi-stationary random process are expressed as  follows  : 

 SE(r  ;  co, h,  rd)- 2ir _0,So(o)lb( 7  •w, h)I2dp,(58) 

     ' 

 Sire(7  ;  w, h,  rd)-a(7)5-  So(p)RV,a,  r;  w, h)dp 
 -2hloOSE:(r  ;  w, h,  rd)dp,  0�7<rd (59) 

From eqs. (29) and (59) the following differential and integral equations are 
 obtained  : 

 (A  +2hicol)SE;(7  ;  co,  It  70=AT  ;  co,  II),  0�7<rd (60) 

 ^ 

          (1 +2hIcoidr)Soc(r ;at, h,f(r ;co, h),(61) 
where 

 f(r  ;  w,  It)=41(7)5  Se,(a)Rh(ft,  r;  w,  h)dft (62) 
Solving eq. (60) under the zero initial condition the energy spectral density of 
the modified quasi-stationary random process for the time domain  CO, rd) can 
be expressed by the following convolution integral associated with the time 
domain  CO,  r). 

 SEKr  ;  w,  h,  -exp(-2h1o47)*/(7  ;  co, h) 
                                                  (63)                    --C'oexp(-2hIcoi(r —ic))f(K ;h)ok,0Sr 

And also, by solving eq. (61) or from eqs. (29) and (63) the power spectral 
density of the modified quasi-stationary random process for the time domain 

(0, rd) is written in the following  form: 

 Sitt(r  ;  w, h,  rd)  =  (5(r)  -21110  exp(-212koln)  f(7  ;  co,  h) 
 =AT  ;  w,  h)-2hIcolexp(-2hIcolr)4(z-;  w, h) (64) 

 =AT  ;  w,  h)-2hk4exp(-2hIcol  (7  —  K))/(K  ;  co,  h)dK 
where 5(r) is Dirac's delta-function. 

  On the other hand, by substituting the first equation of (53) in eq. (62) the 
non-homogeneous term of eqs. (60) and (61) is given by the following  equation  :
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   f(r ;co, h)-a()clo,Se(p)Sa(K)exp(- hl(r - E))cos(o)--p) (r - x)dtr 
   7r 

           =cgziirclxa(r-fc)exp(- hkolK)CdoSe(o)cos(co- p)Ic  (65) 
                  7r 

 =  2a  (r)  fa  (r)*exp(  -  h  [col  r)  cos  corRo(r)) 

  In the above, the energy and power spectral densities of the modified quasi-
stationary random process defined by eq. (27) are obtained as the functions of 
time r and parameters  co,  It and  rd containing the deterministic function a(r) 
and the power spectral density  So  (fp) or the  auto-correlation function  ./4(r) of 
the stationary process  0(r) by which the original quasi-stationary random process 
is defined as in eq. (21). 

 As shown in eqs. (13) and (23), the maximum absolute value of the Fourier 
transform  suplile(r  ;  co, h, rd)  I of the modified quasi-stationary random excitation 

is approximately equal to the  responge spectrum of the acceleration excitation 
 D(r;  Rlore)a(r)(1)(r) if  IAd(r  ;  w,  it,  i-41 is a slowly varying time-function com-

pared with sin  or. In this sense the energy spectral density  SoKr  ;  co,  h,  re), 
defined as the ensemble average of the squared absolute value  IAE(7  ;  w, h,  re)12, 
and the power spectral density  Safer;  w, h, rd), defined as the time derivative 
of  SEgr h,  rd), may be related to the average value of the response spectra 

 ESF(a), h, rd) of the quasi-stationary random excitations . 

4. Expressions of the mean value and the upper and lower limits of the response 
   spectra of the quasi-stationary random excitations 

  From eqs. (23) and (28) the mean value of the response spectra of the quasi-
stationary random excitations defined by eq. (22) is approximately expressed in 
the following form when the absolute value of the Fourier transform  1.49(r  ; 
h,  re) I of the modified quasi-stationary random process is a slowly varying time-
function compared with the sinusoidal function sin  on-  : 

 ESr(co, h,  rd)=E  supl  Jd(r  ;  w,  h,  rd)1*EsuplAf(r  ;  co, h,  re)I (66) 

Since the time-function  JZ(7  ;  co, h,  rd) defined by eq. (24) is the output response 
of a linear system, the probability density distribution of the peak amplitude 
of  Jf(r  ;  a),  Is,  re) may be given by the following formula if the stationary ran-
dom process  0(r) which defines the quasi-stationary random process as in eq. 
(22) is Gaussian  :20) 

        A111AI              ;r)=exp(-                            Key( 2(1- p2)K.T.7) 
              ±- PIAI2-1)erff PIAI                                                07)                    l/1-pt 'V Mr,\  KJJ.1/2 (1 - p2)KJ 

in which 

 Kee                                  2                  erf x-Ve-ock (68)            p= 
felfe.c'0 

and  I  Al denotes the peak amplitude,  Key and  ICJ are the variances of  J and 
  0  J = J respectively , and  KO is the co-variance between  I and  J at time  r.   6t
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 By introducing the non-dimensional peak amplitude defined by 

 _  IA  I  (69) 
 K^., 

the probability density distribution of  C is given by 

 p(C;  7)-  p(i/  KsJC  ;  7)1/ 
 =  exp(  —2) [C.exp( —2P2) E./ 2r(:72 — 1) err2'J^1  (70) 

where 

 C=   (71) 
 p2 

 If  'Ad is the envelope of a random time-function  Je the amplitude probability 
density distribution of  IAel may be approximately given by the probability 
density distribution of the peak amplitude  I  Al of  J. Hence, the mean and the 
square mean and the variance of  IAel are obtained respectively by using the 
probability density distribution of the peak amplitude given by eq. (67) or (70) 
as  follows  : 

       ElAel = lAcIP(IAel; 7) di Aslr.C(C: ; r)(1C-1/KnE(C) (72) 
  0 0 

 ElAs12-1  lilEl2P(IA01;  —Ks.75  C2RC  ;  r)dC=K^E(C2) (73) 

 0 

      VIM=plAel —E11101)2PCIAEI: 7)44E1--Kar(C —!IC: ; r)d: 

                                                                          o 

                       0 

 KrA =  K  n{E(V)  —  (E(C))21 (74) 

in which the mean, the square mean and the variance of the non-dimensional 
random variable C are expressed as the even functions of the dimensionless 

quantity  E defined by eq. (71) as  follows  : 

 EC!)  =  1/1+E2 (75) 

 E  (C2)  =2(1  +E  tan-'$) (76) 

                           47r                   CtV (C)=tan-le—  2 e) (77) 
                     2 It is clearly a contradiction that when  1E1 becomes large eq. (77) takes a nega-

tive value. This may originate from the inconsistency that when  1E1 is large 
and  C is small, the probability density given by eq. (70) becomes negative. The 
zero of eq. (77)  Co at which the variance of  C. vanishes and the corresponding 
normalized co-variance po are calculated respectively as  follows  : 

 E0—  ±1.261,  Po=  ±0.785 (78) 

Therefore it is necessary to limit the range of  S or p for which the probability 
density distribution given by eq. (70) can be adopted, for instance, 

                                1                  IC
I51.0 i.e., [p15-- 0.717 (79)                             —V
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 11 the random variable  I  Ael is bounded the bounded, positive number  -2 exists , 
which satisfies the following  equation  : 

 suplitEl  EIAEI  +21/VIAEI,  2>0 (80) 

The quantity  -2 means the maximum value of the normalized random variable 
associated with  lAd. If the absolute value of the minimum  At of the normaliz-
ed random variable is not greater than  ;I, namely 

 (lAel (81) 

the following inequality is  valid  : 

       iZl (82) 

With regard to the envelope of the peak amplitude eq. (81) accordingly eq. (82) 
seems to be valid. 

 On the other hand, the following upper and lower bounds for the mean value 
of response spectra exist. 

          sup supli41- sup sup(Af I �E.SvE suplA(1:dfsup ElAel (83)      TF, T 

Here, defining the following functions of time r, which depend on the probability 
density distribution of the envelope  14, by the equations, 

            E1241E(C)    d
i(PCAel ;  7))  —

i/E1 146612  ^E(C2)d2(p(IAfI; D)) —. /                                         EIAEI2E(C2)                                     vi'141V(C)(84) 
and rewriting  ;I=2(p(Ify  ;  r)), eq. (83) is reduced to the following form by 
making use of eq. (80)  : 

       sup(fdl(P(IAEI ; r))-0(P(1141 ; r))d2(P(IAel  ; r))}1/E1 Ad') 

              T 

 1--zfESv(0), h,rot E sup(P(IAel ; r))1/EiAel2(85)                              7
In particular, supposing that all the functions  d,,  d2 and  A do not depend on 
time  r, eq. (85) becomes 

      (d,+d2A)S79131/ ElAtIraESv(w, h,  rd) E splst21,PilEiAel2 (86) 
Hence there exists a positive number which satisfies the following  equation  : 

 ESv  (a),  h,  rd)  =  (di+  IC  sup^iEl (87) 

 Strictly speaking, for the quasi-stationary random process, which is a kind of 
non-stationary random process, neither d, nor  d2 are independent of time r. 
Substituting eqs.  (75)—(77) in each equation of (84),  d, and d2 are obtained as 
the even functions of the dimensionless quantity  E as  follows  : 

 dl(PCIArl;  .1/  r  /   1  +E2  21 + e t
an-E(e)  

                     \/1--c1+e tan-ie                     +e‘tane -4- e)(88) 
         d2(P(IAel ; 7)) =   =d2(E) 

From the above equations the ratio of d2 to  d, is given by
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                             \tiltE( 4 tan'E-E\I              VVIAtiVV(:)d2(E)                                         =a(e) (89)a- r6(1)(114er;
E(C)(6)1+E2 

Therefore, for the validity of eq. (87) it is necessary that the dimensionless 
quantity  t defined by eq. (71) be independent of time r. 

 In connection with the validity of eq. (87), the behaviour of the time-function 
 e is examined in the following, for the output response of the linear system, 

which has the impulsive response  g(r)--exp(-hlinly)sincor, to quasi-stationary 
random excitations. 

 In general, for an arbitrary time-invariant linear system subjected to the 
quasi-stationary random excitations defined by eq. (22), each element of the 
co-variance matrix associated with the output response J and its time derivative 

 J is expressed as  follows:" 

 Kn(ri.  =C(h(ri)t  .1£(72))= 1 rX(co' ; rOS0(co')X*(co' ;  r2)dw' (90)                                  2zr— 

 IC^J(r„  r2)=C(Js(r1),  jer("(r2))=Kddrzt"(ri. r2) 

                    X(ail•rOS(e'"                        )X,*(w) ;r2)dw' (91)  2
r—' 

 K^^n,  --C(Jeril'(ri),  I  e(r2))  -1(Liri")  (71,  r2) 

             = S—mXy(co' ;2-1)50(00X*(0il ;  t2)tho' (92) 
 KJ^(ri,  r2)=C(Jer")(71),  Jer'"(72))  =  K  rz'n rz) 

 =  1 S X,'"  (ail  ;OS0(tot )X,")* (co'  ;  rz)tho' (93) 
                      2r _co 

where 

 X  (co'  ;  r)  G  (co  ;  r)  exp(  /wit) (94) 

 G(co'; r)  = D(p; R'ord)a(p)g(r met)exp{- j(r - p)a}dp 
                                               (95)  =ra(p)g(7-p)exp{ - j(r - p)(g'}dp 

in which  g(r) is the impulsive response of the linear system,  fin or  1-,"' de-
notes the partial differentiation with respect to r or  r, and the superscript * 
means the complex-conjugate. 

  Substituting  r1=r2=r in eqs.  (90)(93), the variances  of  ./ and  j and the co-
variance between  J and ./at time  r are obtained as  follows: 

                1 

    1C.”--KJ.,(r,r)= 2r-; r)12S0(on cle(96) 

     K^J=K^^=K^j(7, r)=K4T(r, r)  = 2rrX(of ;z-)X,'"*(ctil ; r)S0(oncla 

 1 

         27rS_R(X (co'  ; 7)X,'"; v))S0(a) do(97) 

                         - 

     ICJJ-K.J.Kr,'0=  2r S_-I X,")(co' ;  r)12Sib(a)9clail (98)
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 Substituting  g(r)=  exp(  —  h1(011-)sin  cur in eq. (95), eq. (94) and its time deriva-
tive are expressed in terms of the notations given by eqs. (43) and (44) as 

 follows: 

           1,  X( w' ;  r)=  —2texptjorr)e(to,,  r;  w, h,  Id) 

 —exp(  —  jon-)c*(—  cof  ,  r;  w,  h,  70} (99) 

 Xr")  (oil ;  r)  = {exp(  jwr)c(w',  r  ;  w, h,  rd) 

 +exp(—fror)0(—(01,  ;  w, h,  rd)} 

                      — {exp( jadr)c,", (of ,r; to,h,rd)                                                  (100)  2 

 —exp(  mjcor)c,)"*(—  ,  r;  w,  h, rd)} 

where 

 er'n  (of,  7;  w, h,  rd)=  —hIcolexp(—hlebir)B(co'  ;  (0), h, r) 
                     +  a  (1-)exp{  —  j(to  —  (W)T},  0�r<rd  (101) 

 —  —  hkac(co' ,  r;  w, h,  rd)+a(r)exp{—j(w—onr} 

 c-(1)(0',  ;  w, h,  rd)  =  —  h1(01exP(—  h1(01r)BC(01 ;  w, h,  (102) 
                   = - hilt/IC(0f , 7; (0, h, rd), 1->rd 

and 

 c(—w',  r;  (0, h,  c*((.01,  r;  —w, h,  rd) (103) 

 By expressing each integrand in eqs.  (96)—(98) in terms of the notations 
defined by eqs. (43), (101) and (102) and by taking into account the relations, 

 S0*(14,0  55(a)1),  ,S0(co')=S0(  —  ail) (104) 

eqs.  (96)(98) are written in the following forms respectively: 

              — 

 K^^=2
n_Khz(a)/ ; r)S0(o9        (d(01 (105)                                   0„, 

             1 

          ; r) =2(1c(of , r ;h, rd)12 

 —  R{exp(2:}(0r)c(wi ,  r  ;  (0, h,  rd)c(—  (01  ,  r  :  w,  12,  rd))) (106) 

 Kid —Kid = 2
n—(COE  ;  r)S0(tot)thot (107) 

 K^J((01 ; r)=2Ic(ol,;w, h, rd)12 

             + hi° R{exp (2jcor)r(ail ,  r; (0, h, rd)c( , r; w, h,  rd)}              2 

             +  2ftexp(2joyr)c(ail,  r  ;w,II, rd)c(—col,  r  ;(0, h, rd)}(108) 

and 

 1  r)  K^^=  2r  5.—Yd,t(01  ;  r)S0((01)&01 (109)
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     11. JJ (co' ; 7)- —1co2(1±122)17(th'7 ;CO,  h,  7d)12             2 

             1              +
2a0(1-h2)R{exp(2jcor)c(oY,  r;w, h, rd)c(-,  r;w,  h,  rd)} 

 -  hicolcor(exp(2jcor)c(co',  r;  w, h,  rd)c(  (0%  r;  CO, h, rd)} (110) 

 In particular, in the case where the envelope of the quasi-stationary random 
process  a(r)=1, eqs. (43), (101) and (102) reduce to the following forms  re-
spectively: 

 C(011,  r; w, h, rd)-exp(_001,0exP{Chlailj(CO-(00)/4-1                                                   (111)                                  Mad- j(a)-(11) 

   cro);h,  rd)=                            hkohoexp{ (kiwi -(09)71-1    , -  j(a)-  a)') 

 +exp{  -  -  co')r},  05red (112) 

 r„'"(aY,r; CO, h,= -hltolexp( -hlwir)exP{(kkklwelmi(w-a/prd}-1,                                               l-K(0- w') 
 rnel (113) 

 In another special case where the damping parameter  h  =0, eqs. (43), (101) 
and (102) become respectively: 

 c  (co%  r  ;  co, 0, rd) -5r:a(p)exp{-j(w-e)p}dp 
                        1(-  Acio 1-exP{ail -v)7,.}dv (114) 

                  2r J j(aail) 

 cr")  (ail,  r;  w,  0,  7d)  -a(r)ex13{  .K0)  (01Z-}  135r<rd (115) 

 cr",  (co',  ;  w, 0,  rd)  =0,  r>rd (116) 

Since the non-stationary character of the output response seems to be remar-
kable in the case where  a(r)  =1 and  h  =0, the behaviour of  e as a function of 
time is examined for this special case. In this case eqs. (105), (107) and (109) 
are evaluated respectively  as  : 

 w+ w'-i(o-co'                                                     rn 

 Kra=1 - coa)s wrm*So(a))- cos (2r - rm)0,
.sin2 do/ (117)                               to2acon2r„, 

                       sinco+ oilrainco2-  
   K-(1)sin (2r -r 2                                                 (118) 

 it(02 —(0/2 

                                               sinw+0,'sinta- ail         2  

   KA,w2(1 - cos wroi*S0((t)))+0cos (2r -7,05-2 rmdw' (119)         2rw2(02(0/2 

in which the symbol * indicates the convolution integral defined in the full 
frequency domain  (-  co). 

 By making use of the limiting formulae, 

                 1 1-coscor„,      lim-rmb(w)                                                  (120)
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                   sinco+ co'rm sine,—nif                                                 ty,            1  sinon.'W ei+ (to+ O(to — on}(121)         lim               2 wr24a,       nr„ 

in which  b(co) denotes Dirac's delta-function, eqs. (117), (118) and (119) can 
be approximately expressed as follows for a sufficiently large  : 

                Kr,Thcosa)(2r—r„,) sincorn)So (0j)  (122)                         is           \22co 

              K, j sinco (2z--r,,,)sin ',so (0)) (123)                      2 

                Kid=( 2+ cosai(21--rm)sincorm)2s0(co) (124) 

 Substituting eqs.  (122)(124) in the first equation of (68) and eq. (71) the 
normalized co-variance p and the dimensionless quantity e are determined re-
spectively  as  : 

                         sina)(2r — r„,)sin                                                  (125) 
                   P— 

i/co2r,n2—  cos2  co  (2r  —  sine  Farm 

                    sin(21-rm)sin r„. min (r, rd)  e(126) 
 1/a,2t.m2_  sins  an.. 

 From the above equations it is found that for the time domain  CO,  rd] both 
p and  e are non-negative hence the random process is divergent, on the other 
hand, for the time domain  (rd.  co) both p and  E sinusoidally oscillate hence the 
random process is stationary in a sense. Also it is found that if  r„, becomes 
sufficiently large, both p and  E decreases proportionally to  r„„-1. 

 For the special case where the envelope  a(r) of the quasi-stationary random 
excitations is the step function and the stationary random process  cb(r) is 
Gaussian and white, the quantities p and  e can be determined by solving the 
Fokker-Planck equation. The impulsive response and the transfer function of 
the linear dynamic system considered are given by 

 g  (r)  =  exp  (  —  h  I  ailr)sin air (127) 

                                               (128)  G(s)=324 -2hIcols+ (1+ h2)61,2 

Hence the differential equation governing the output response J of the dynamic 
system subjected to the input excitation  S(7)0(7) becomes 

                   d2 

 

(  +2hIco1  +  (1+  It2)0,2)./  =cos  cp  (r) (129) 
in which s(r) is the step-function and  (1,(r) is the Gaussian stationary random 
process with the white power spectral density  S,,,(a))  — c2. 

  Transforming the variables  J and  j=d/drJ into the new variables  y, and  Y2 
by the equation, 

                    j 22 1- 1 /I  (130) 
                       13/2—21OA
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where 

 AI 

          22= (—h±(131) 

the Fokker-Planck equation governing the joint probability density distribution 

 f(Y1/  Y2, r) is obtained as  follows: 

    afaath,"a 
          ar—2' ay,(Y'f) —22 ay,(Y2f )4'2ay± ay;)f (132) 

Solving the above partial differential equation by means of the Fourier trans-

form technique under the zero initial condition, the co-variance matrix associat-

ed with I and  J is determined as follows  :2') 

 11                         (1 — exp(221-0) 
                                            21+22(1—exp(11+2,2)7)f-1 "KuIC^1  e2221 

 K2jj— 4 21 —22) 1 1  
                                       (1 exp(222r)) 22_                      Ai— exp(2, +22)r) 222 

                                               (133) 

Substituting eq. (131) in eq. (133) each element of the co-variance matrix is 
expressed as 

                                e2               Kjj=4h (1 + h2)1
(0.,11 — (1 + h2)exp( — 21210 r)  

(  h2  -11.  1  +woos  2cor+  iTiesin  2  Iwir (134-a) 

                                     z 

             Ks^=K^i=c2 exp(-2hlwir)sin2coy (134-b) 

                        c2rwE               ICE=4th'  [1—  (1+//2)exp(-2hIcalr) 
 h' 

 

•  1  +woos  2on--  h2sin  2*(611 (134-c) 
By making use of the above equations, p and  e, which are defined by the first 
equation of (68) and eq. (71) respectively, are determined as  follows: 

 2h1/1  +h2  exp(  —2hIwIr)sin2  cot 
 h  P—'  V1+  exp(  —  4h1thir)  —  2(1  +  h2)exp  (  —  2hkolr)  (1  —  f+  h2cos  2wr) 

 +4h2(1+1/2)exp(-4hlwir)sin.cor for  h>0 (135) 

 2h1/1+h2  exp(-2hkorr)sin2  wr 

 +  exp  (  —  4hIcoly)  —  2(1  +  h2)exp(  —  2hIcolz-)  (1  —  f  h2cos  aor) 
                                      for  h>0 (136) 

In particular, in the case where the damping parameter  h  =0, p and e are de-
termined as the limiting values of  eqs. (135) and (136) when  h-»0 and are re-
spectively given as 

                               sin=COI 
         P=  ----for  h=0 (137)                             co'r2— cos'  ear  sin'  cat
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                                 sin=un- 
             ,for  h=0 (138) 

                          1/Orz— sin- an-

In the time domain (0,  rdJ the above equations coincide with eqs. (125) and 

(126) which are obtained for a sufficiently large  rn,  =min(r,  r,1). Then it is 
suggested that in the case where  h—  0, eqs. (125) and (126) are approximately 

valid in the full time domain  (O,  o:) if the envelope a(r) of the quasi-stationary 

random excitations is a slowly varying time-function and the power spectral 
density of the stationary random process  O(r) is comparatively flat. Also from 

eqs.  (135)—(138), it is suggested that as far as the envelope a(r) is a slowly 
varying time-function, both p and  ; decrease exponentially for the case where 

 h>  0, while they decrease in the order of  rm-' for the case  where  h=0 as  r„, 
increases. 

  As mentioned above, if the envelope a(r) of the quasi-stationary random 
excitations is a weak function of time and  rfl, is sufficiently large, quantities p 

and  ; may both be approximately regarded as zero where the damping para-
meter  h is zero or not. Hence, if the maximum response of the linear system 

subjected to the quasi-stationary Gaussian random process occurs in such cir-
cumstances, eqs. (86) and (87) are approximately valid. Even if the envelope 

 a(r) is a strong function of time, p and  E. may be approximately regarded as 

zero at the time  nut., when the maximum response occurs, because  Tn., is a 
kind of stationary point of p or E from the macroscopic point of view. Hence 

it is found that the mean value of response spectra and their upper and lower 
bounds can be expressed in the forms given by eq. (87) and both sides of eq. 

(86), respectively. 
 Substituting  p=E=O in eqs. (67) and (70) the probability density function of 

the envelope of output response and its non-dimensional expression are ob-
tained respectively  as  : 

 PCIAED=  K—exp(  —  ) (139) 
and 

                ji(:)=-Cexp2/(—1/2(140) 

both of which are called the Rayleigh distribution. By substituting  E---=() in eq . 
(88) the quantities  d, and d2 are reduced to the following constants which are 
characteristic values associated with the Rayleigh  distribution  : 

            El .4;1 V rA-                               d2—VVI—,\11— x                                                  (141)                    d,—           A/E1Ad=2 VEIA Er4 

 On the other hand, the maximum normalized random variable  A referred to 

 'Ad and the equivalent coefficient which gives the mean value of the response 
spectra of the quasi-stationary random excitation mainly depend on the bound-
edness of the probability distribution of the stationary random process  �(r) . 
The numerical values of A and may be roughly estimated from the Rayleigh 
distribution by supposing the exceeding probability , for instance,  -2=2=3.05 is 
obtained corresponding to the value of the exceeding probability  5  x10-3 . How-
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ever, the values of  I and I seem to be affected not only by the bounded pro-
bability distribution of the stationary random process  OW but also by the 
system parameters  co, h and the various parameters describing the envelope 

 D(r  ;  R'or,)a(r) of the quasi-stationary random process. 
 Since it is difficult to analytically determine the functional forms  oft and 1 

at the present stage, the following semi-experimental method of evaluating the 
values of  -A and is  adopted  : 

 First, the energy spectral density  EIA.e(r  ;  w,  h,  rd)  12 of the modified quasi-
stationary random process is formally expressed as the product of the non-
negative function of  co only and that of  co,  It and  74 as  follows  : 

 SEE(2 ;  co,  h,  rd)=E1Afet  ;  w,  h,  1-012.  S3(co)�0                                               (142) 
 =D(r  ;  co,  h,  d)S.((0),  D(r;  w,  h,  pd)�0 

Then defining the random time-functions by the equations, 

                                .1d(r ;h,rd)          18(2-;h, rd) (143)  D(
r  ;  w,  h,  rd) 

and 
                                 Ae(r  ;w,h,rd)   A

s(r  ;w,h, rd) - -Vto(144)                                   D(r ; ,  h, r 

the following relations are obtained by making use of eqs. (24) and (142)  :  

;  w,  h,  rd)=1.21.(r  ;  co,  it,  2-d)  [sin  (cor  +arg  Agr  ;  w,  12,  rd)) (145) 

 E1A,(r  ;  co,  h,  rd)12  =  S.(0) (146) 

In the sense that the square mean  El  A,12 does not depend on time r, the random 

process defined by eq. (144) is considered as the almost stationary random pro-
cess, hence hereafter the random function  1.4.1 is called the pseudo-stationary 
random function associated with  Al. 

  From eqs. (66) and (144) the smaller upper bound of the mean value of the 
response spectra than in eq. (83) is obtained as  follows  : 

 ESd(0),  11,  14) E  suplAgr  ;  w,  h.  14)1 
 7' 

                   "‘Et1p1/ D(7 ;  w,  h,  r  d)E  suplAs(r  ;  co,  it,  7.)1 (147) 

Assuming the pseudo-stationary random process  1A,1 to be ergodic and station-
ary the right-hand side of eq. (147) may be expressed as 

 sup-t/D(r  ;  w,  h, r d)EE stplAg(r ; h, 14)1 
      Ti 

 

;  co,  h,  z-d)ET  suplAs(r  ;  ha  d) (148) 

in which subscripts E and T denote the averaging operators with respect to 
ensemble and time, respectively. 

  By applying the averaging operators to the similar expressions associated 
with  IA:1 as in eq. (80) and by taking into consideration eq. (82) and the 
ergodicity of  0,1, the following equation is  obtained  ; 

 EE  sup  I  As  I  =EA  Ail  +  Li/VTI  At  I 
 (149)                       E

Esupril,I=EEIA.1 -1-1abi/V ElAs1
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 where 

                                                 (150) 
Hence eq. (147) can be rewritten  es  follows: 

 ESF(co, h,  rc)  supt/D(r;  w,  h,  rd)fErlAsl+Aav^VTIA^11 

                   --supl/D(r;co , h,{EslAti + Arin/VEl Asp'(151) 

  Since both quantities p and  e  may be regarded as zero for the pseudo-
stationary random process  IA,, the  Rayleigh distribution given by eq . (139) or 
(140) can be applied to the  amplithde probability density distribution of  IA.I. 
Hence by making use of eq. (141), the upper bound of the mean value of re-
sponse spectra given by eq. (151)  ie.  expressed as follows; 

  d 

      ESy(co, h,  rd)sup-VD(r  ;(v2e  h, rd)   +41/1—  7r4  )1/EBIA$12 
 + Actil—H-VsurpEalAer     24(152) 

              =C 2+A.41—a—4)1/sup Sin(r ;h, rd) 
similarly, the lower bound of the mean value of response spectra is obtatined 
as  follows: 

 ESv(co, h,  rd)supt/n(r  ;  to, h, rd)V 17EBIAl2 
                                   2 

                                                 (153) 
                         =4/7, Szt(r  ;to ,  h,  rd)           2 

Therefore there exists the  quantity. A, so that the mean value of the response 
spectra of the quasi-stationary  randc*n process is expressed as 

 ESp(co, h,  rd)  =  Ir+41—Vsup(r•cor 
           24T9"h,d (154) 

 In general, both quantities  A.„ and  A are the positive functions of  co, h and 
 rd.  ;tat, is not substantially smaller than A. However, if  D(r  ;  co,  h,  Da) is a 

slowly varying time-function compared with the fluctuation of  IA.31,  A., may be 
approximately regarded as the least upper bound of A, that is, 

 A(w, h,  rt)*1.(co, h,  rd) (155) 

because the following approximate equation is  valid: 

              sup It- sum/D&MIAs I  I 
                                               2' 

 —supi/D(ErlAsl + ATA/VTIA) (156) 

 T 

 Eqs. (155) and (156) may be  validrin the case where the envelope  a(r)D(r; 
 R'or„) of the quasi-stationary  random excitations is a slowly varying time-

function having sufficiently large duration time  rd and the damping para-
meter h is positive, even if it is only slightly positive. On the contrary , in the
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case where the envelope is a strong  function  of time or the damping parameter 
is zero, A may be considerably smaller than  .lay. 

 In the following, the upper and lower limits of the response spectra of the 

quasi-stationary random excitations are considered in the case where eq. (156) 
is valid. 

 The upper and lower limits of the response spectra having the bounded pro-
bability distribution may be expressed respectively  as  ; 

                         sup  S17  EBSY  111/V  ASV                                               (157) 

 inf  Sv  =ErSv+EVVESv 
 F, 

in which  p and  E are the maximum and minimum values of the normalized 
random variable associated with Sv, respectively. 

 The variance of the response spectra  VESv contained in eq. (157) can be ap-

proximately expressed in the following form similar to eq. (66)  : 

 V  ESV=  EB(SV2)—  (EDS  02  (158) 
 EE(supiile1)2—  (EEsuplAt1)2 

 T  T 

Substituting eq. (156) in eq. (158) and by taking into consideration the ergodic 

property of the pseudo-stationary random process  IA,l the variance of  Sy is 
written as 

 VESv  sup  DVAVIA.1=  VA(1 —  4)sup DE121,12 

 T 

                                                 (159)  =(1  —  4 ) VA sup El Air= (1—  4)1/71sup Sae 
 Hence by making use of eqs. (150), (154), (157) and (159), the upper and 
lower limits of the response spectra of the quasi-stationary random process are 
expressed as  follows  ; 

                                    n             sup SI,= (112Lr+j/1—4  (Aat+  fitnirsi))1/sup  SEE (160) 

            inf Sv=  +I/1 —GlavU1/17,0)-Vsup SET (161) 

 E 

 2  44- 

in which 

 sup  Sv-  ELS  V  sup  —  
 >0 (162)  ^V

ESv  VV) 

 inf  Sv—EzSv 

              'NEST—infViC1(163) 

As shown in eqs. (162) and  (163), the quantities p and p which have been in-
troduced in eq. (157) as the maximum and minimum values of the normalized 
random variable associated with  Sv are also considered as the maximum and 
minimum values of the normalized random vaiable associated with the pseudo-
stationary random process  lAsi defined by
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 sup  As;  —  El  AR  I (164) 

  In general, the quantities  ,re and  g depend on the statistical properties of the 
original quasi-stationary random process  f(r)=a(z)0(r)as well as the  para-
meters  co, h and  rd. 

 As shown in eqs. (154), (155), (160) and (161) the mean value and the upper 
and lower limits of the response spectra of the quasi-stationary random excita-
tions having finite duration time are obtained as the products of the root of the 
maximum value of energy spectral density of the modified quasi-stationary 
random process and the relevant multiplication factors, which are expressed in 
terms of the characteristic values of the Rayleigh distribution and the pro-
bability distribution of the maximum value of the normalized random variable 
associated with the pseudo-stationary random process. In eqs. (155), (160) and 

(161), the quantities  2au  E2,  11,  p and  E are the deterministic functions of  co, 
h and  rd which are explicitly concerned with the probability distribution of the 
bounded random variable  2 defined by eq. (164). The quantity  A which appears 
in eq. (154) is also the deterministic function of  co,  h and  rd and is approxi-
mately equal to  2.„ under certain conditions previously mentioned. However, 
it is generally the equivalent coefficient associated with the Rayleigh distribution 
which is determined so as to give precisely the mean value of response spectra 
as shown in eq. (154) even in the case where 2..0 gives an upper bound of re-
sponse spectra or the probability distribution of  I  As  I deviating from the Rayleigh 
distribution. 
 Since it seems to be difficult to analytically determine the functional forms 
of these quantities their definite expressions must be determined experimental-
ly by using the so-called simulation method, that is, based upon the results of 
numerical analyses of the responses of a single-degree-of-freedom, linear system 
subjected to the quasi-stationary random excitations which are appropriately gen-
erated by making use of a simulation procedure. In this simulation method 
for estimating the functional forms of the quantities  Ag,,  VA,  p,  g and  A the as-
sumed ergodic property of the pseudo-stationary random process  I  Ad may be 
conveniently used to obtain the required data based upon a rather small number 
of sample functions of the simulated random processes. 

 On the other hand, the maximum value of the energy spectral density sup  SEE 

of the modified quasi-stationary random process which is contained in eqs. 

(154), (160) and (161) may be evaluated almost analytically on the basis of 
eqs. (42)—(44) or eqs. (63) and (65). 

5. Maximum value of the energy spectral density of the modified quasi-stationary 
   random process 

 Since the power spectral density  Sat  (z  ;  m, h,  td) of the modified quasi-stationary 
random process is not positive in the open time domain (Di,  rr), the time  rmar 
at which the energy spectral density  Sice(r  ;  m,  h,  rd) of the modified quasi-
stationary random process takes the maximum value exists in the right-closed 
interval (0,  rd), namely 

 0<rmax  �rd (165)
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If  r„,„, exists in the open interval (0,  rd) it may be a stationary point of  Sm(r  ; 
  h, re), that is, a zero of  Siri(r;  CDR h,  TO such that 

 Sw(1)(2-„,„r  ; h,  rd)–  oar.  ;  w, h,  re) =0                                               (166) 
               Srec(21(rmax ; co, h, re) =SHE.,") (rmar ; co, h,  rd) <0 

because both  SEE  ;  eu, h,  re) and  Sifter  ;  w, h,  rd)  in the open domain (0,  rd) may 
be the continuous, differentiable functions of time as shown in eqs. (58) and 
(59). However, if  /mar is equal to  rd the power spectral density  Sas(r ;  co, h,  rd) 
is not zero at  r,„ar since it is generally discontinuous at  rd as shown in eqs. 
(50) and (51). 

 For convenience in evaluating the maximum value of the energy spectral 
density  SEE(r...  ;  w, h,  rd) the following two cases are considered  separately; the 
first is the case where the envelope of the original  quasi-stationary random 
process is time-invariant, namely  a(r)  =1 and the second is the case where the 
envelope is time-variant, that is,  a(r)01. Thus in the first case the quasi-
stationary random excitations are given by the form  D(r  ;  R'ore)0(r) while in 
the second case they are expressed in the form D(r;  Riord)a(r)tgr)• 

5.1 The case of time-invariant envelope, a(r)  1 

  In this case the Fourier transform of the envelope a(r) of the original quasi-
stationary excitations is given by 

 A(  jco)  =21d(w)Ca(r)=1 (167) 

where  d(co) denotes Dirac's delta-function. Substituting eq. (167) in eq. (44), 
the complex-valued function  c(p,  r;  w, h,  rd) and its absolute square are obtain-
ed as  follows: 

                l––  c(p ,  r; to,  h, –exp(–hicult)exp{(hu+ j(pto))r„,}1 (168)  likol  +KB -00 

 r  ;  rv,  lt,  1'01' 

 –exp(-21/10 .0)exp(2hiwirm)-2  exp(hIcolvm)cos(p  –  co)r„,+  1                                                 (169)  OW'  +  00' 

Hence from eq. (42) the energy spectral density in the time domain (0,  re) is 
expressed as follows by considering the relation  r„,=r which is valid in this 
time  domain: 

 S Et(r ; co,11, rd) = 2rJc°P                  dS) 

            — 

 1  +  exp  (  –  2h  Icy  I  –  exp(  –  hi  Or)  {exp  (  Red  –  st)r)  +  exp(  –  j(co–  p)r)} 
 (hco)2  ±  (co–  p)2 

 0  r�  rd (170) 

  On the other hand, by substituting  a(r)  =1 in eq. (53) the functions Rb(p,  r  ; 
 co, h) and  !b(p,  r  ;  to, h)12 are determined respectively as  follows: 

 Rb(p,  r;  co, h) =-5:exP(– hi colK){exP (A0 ;4)0+ exP(– p)tc)i-de 
 hicol{l–exp(–  hlwir)cos(co–  /)r}  +  (to  –p)exp(–lzkolr)sin(co  –  p)r  (171) 

 (h(0)2+  (CO-  p)2
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 lb(p,  r  ;  co,  h)I2=  Ych.)21r vv'dv, exp ( —NO(PI + 2v2))exP(Thi(0)—p)vi) 
 1—expf—  (hie° —  p))r}5r 
 exp{  —  (hko +  /4)2)2}  dV2  (CO  

 1  +  exp(  —  2/2.1(01  z-)  —2  exp(—  hlwir)cos(01—P)r                                               (172) 
 (hw)2+  ((m—p)2 

Substituting eqs. (171) and (172) in eq. (50) the power spectral density in the 
time domain  (O, rd) is expressed as  follows: 

 S  (r  ;  (o,  h,  rd)  1   r  cipSdffi(p) 1                                   (hco)2+(0J- - te)2  
•  {h  co  (exp  (  —  h  I  folr)cos(0)  —  p)r  —  exp  (  —  2ki(01r)) 

 +(co—p)exp(—hlwir)sin(w—p)r),  0.r<rd (173-a) 

On the other hand, the spectral density in the time domain  (rd,  co) is express-
ed as follows by making use of eqs. (51) and (172)  : 

                   Itiodexp(-211104(r —r))5                                                                         d°'  SHE(r; co, h, rd) —dpS0(p) 

           1+exp(-20oird)-2exp(-121wIrd)cos(co—                                                rd<O
, rd Cr (173-b)                         (ha) 2 ±Te.0 fi)2 

It is easily seen that the values of the two functions given by eqs. (173-a) and 
(173-b) do not coincide with each other at the boundary point  r=ra. 

 In the special case where the power spectral density  So(co) of the stationary 
random process is white, that is, 

 So  (co)  c2 (174) 

the energy spectral density of the  modified quasi-stationary process given by 
eq. (170) can be reduced to the following  form; 

 SEE  (r  ;  co,  h,  rd)  =c2 (175) 

and              

1   ((m  076 
         27r  3- (hco)2-I- (co— p)2) 

              .4_  1 rexp{ — (h1(01—i(w—p))r}dp (177)               27rJ(hco)2+ (to— p)2 

            1  5"-eXP{ (him I + P))r}     13—r� .0, h>-0 (178)                  —(h(o)2+ (to— p)2— 

in which two zeros of the common denominator of the integrands are given by 

 21=0)-(7/41,  22-21*--(0—/h1(01 (179) 

Supposing the variable p to be a complex number, the integrand in  eq. (176) 
is analytic in the full complex plane except for two poles  2, and  22, and the 
integrands in eqs. (177) and (178) are analytic except for a relevant pole  22 or 

 21 in the lower and upper half-plane respectively, provided that r and h are 
positive. When  lyzi tends to infinity, the order of each integrand in eqs. (176) 

 —(178) is  0(p-2) in the relevant complex plane . Hence by applying the residue
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theorem the definite integrals given by eqs.  (176)—(178) can be easily evaluat-
ed as  follows  : 

           1 + exp ( — 2h1a4 r)
,/2=h= exp ( — 2h1w1v) ,h > 0  (180)         20012h10)1 

 Substituting eq. (180) in eq. (175) the energy spectral density in the time 
domain  CO,  rd) is given by 

          SRE(r ; co, h, rd)0(1 —exp(-2hkolr))(181)                                      ,05r5rz      2h1
w1 

 Hence the maximum  r„,az is clearly  rd and the maximum value of the energy 
spectral density is obtained as  follows  : 

                           c2—exp(-2hIcolz-a))
,h>0(182)              sup SEE& ;h, rd) =c2                       21210 

In particular, for the case where the damping parameter  h  =  0, the maximum 
value of the energy spectral density is obtained by taking the limit  h—•0 in eq. 
(182) as  follows  : 

                   sup  SFe(r  ;  co, 0,  rd)--rde (183) 

 T 

 In another special case where the damping parameter  h=0 the energy and 

power spectral densities given by eqs. (42), (173-a) and (173-b) are expressed 
in the following forms  respectively  : 

     Sit(z ; co, 0, rd)— 1 -J -So(12)1—cc(a)s@v0—P2co')nndp— So(to)*1 —cc'swr„,    7C.— 

 0  �r (184) 

                            sin
((al—p)rdp—1S4,(0))*sin tor 

     Sal(2-;co,  0, rd)--.1**So(p)                                 01—4) 
 1:IEr<rd (185-a) 

 SHE(r ;  0,  rd)  =0,  rd (185-b) 

 From eq. (185-a) it is found that for an arbitrary power spectral density 
 So(co) the power spectral density  S  He(r  ;  co, h, rd) of the modified quasi-stationary 

random process is not always positive and hence the energy spectral density 
 Sic(r  ;  W, h,  rd) does not always increase in the time domain  (O,  rd), even in the 

case where the envelope a(r) is time-invariant and the damping parameter  h 
is zero. This phenomenon may occur in the case where the power spectral 
density  ,S0  (co) is sharp, r is comparatively small and a certain relation holds 
between the frequency parameter  co, the predominant frequency  co, of  S#(W) 
and time r. From eq. (51) it is generally shown that the power spectral density 

 Sge(r  ;  to, h,  rd) in the domain  (rd,  00) is identically zero, hence the energy 
spectral density  SRe(t  ;  (0, h,  o) is constant in this time domain as far as the 
damping parameter h is zero. 

 If  r„,--min(r,  rd) tends to infinity in eqs. (184) and (185-a) the following re-
lations are  obtained; 

 SEe(r,  co, 0,  rd)  r.S0(co),  Dm—. co (186-a)
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 Sit;  (r, w, 0,  rd)  —^  Sd(w)>O,  -r  —  00,  0�r<rd (186-b) 

by making use of eq. (120) and the limiting formula, 

                                  1 sin wry,.                 li
m—d(w) 

                               w Hence the maximum value of the energy spectral density is expressed in the 
following form in the case of zero damping and sufficiently large  rd. 

                sup  Sze(r, w, 0,  rd)  rdSd(w),  rd—^  CO (187) 

  In the case where  1>h>:0 and  S„ (w)is a sufficiently flat spectrum in the 
wide frequency range, the maximum value of energy spectral density may be 
approximately evaluated by the following  procedure  : by substituting  a(r)  —1 
and the approximate expression of the auto-correlation function  R0(2)  =  Sd(co)O(2) 
in eq. (55) the power spectral density in the domain (0,  rd) is approximately 
expressed as 

 Sid&  ; w, h, rd)-2.50(w)(exp(-2hlwitc)dtc) 
                                                 (188) 

                                                           0 

 —Sd(co)exp(-2h1dolr)>L0 

Hence the maximum value of the energy spectral density is approximately 

given by the value at  rd, namely 

                  sup  Sw(r  ;  w, h,  rd),Sre(rd  ; w,  h,  rd) (189) 

On the other hand, by considering the condition  1>h>0 and by making use of 
eq. (181) the energy spectral density in the time domain  CO,  rd] can be approxi-
mately evaluated by the following equation  ;22' 

              (  SEE(r  ; w, h,.Sd2;rw)F du 
 1+  exp(  216  co  r)  —  exp(   —  h   I  co  I  r)-(exP  (  ./((1)  —  tt)r)  +  exp(  —  j(co—  p)r)} 

 (hdo)2+  (co  —  p)2 
         1 — exp ( — 2hIcoir)S

0(w),0 <h 1,0 �r �1- d(190)             2hlodi 

In particular, for the case where  h  =0 the above equation reduces to the fol-
lowing form  : 

 5,se(r  ;  0.40,  vd)=7,30(0)) (191) 

 Eqs. (190) and (191) are also obtained by integrating eq. (188) with the zero 
initial condition. 

 From eqs. (190) and (191), the maximum value of the energy spectral density 
is approximately given by the following formulae for the case of the  flat power 
spectral density  Sd(w) and zero or slight damping parameter. 

   , 

 sup  Szd(r  ;(a, h, TEO=1—exp( —k
o2So((0),  0<h�1 (192)                             2hrhlwrd 

 sup  (r  ;  0,  rdSd(w),  h  =  0 (193)
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 Finally, in the case where  a(r)  -1 and  S  0(w) is expressed as a rational func-

tion given by 

             [1+ ( )221                       Oit                  S 0 (w) - c2
IEat>E/3D (194) 

                         \oh)J 

the analytical expressions of the energy and spectral densities of the modified 

quasi-stationary random excitations and the iterative method to estimate the 
maximum value of the energy spectral density are considered. 

 The zeros of the algebraic equation, 

 1+  rr  =0 (195) 

are given by 

            expijr(1+2p)}  v  =  0,  1,  2r-1 (196) 

and these zeros consist of the following two sets of complex conjugate  numbers  ; 

 (21y,  227,   ,  AT?),  (01y*,  227*,   ,  AT  y*) (197) 

in which the first and the second sets are supposed to  be in the upper and the 
lower half-plane,  respectively"'. 

 Denoting 

 ft  at=  aii2K  K  =1,  2,    cri,  =  1,2,   (198) 

 mu  0,-  cool'  p„  =  1,  2,    $t,  1=1, 2,   (199) 

the power spectral density  S0(w) given by eq. (194) is written as  follows  : 

 S0(0)  00(0)00*(40 (200) 

 R, 
 (0)  -  te  Pi) 

               (co)-cllah(cei-80"-1  (201) 
 ll  (0)-  Pt  at) 

                                                                             ,c=1 

where  00(w) and  00* (w) are analytic, bounded and non-zero in the lower and 
the upper half-plane, respectively. 

 Here, in obtaining the definite expression of the energy spectral density in 
the time domain  CO,  red, eq. (170) is rewritten in temrs of the following three 

 integrals  : 

 SEt(r  ;  to,  h,  rd)  =  (1+  exp(-2h1thlr))  —  exp  (—  hie°  I  r)  (12  +JO (202)  

1   ((m (203) 
            27r3_(hey) 2 ±o — p)2dm 

     J 2=1rexp(14)r).9``(p)dit(204)            2r 1_ (4)2+ (oft — p)2 

        j31  r exp(- j(co— p)r).3,5(p)  d                                                (205)              2a-1—(hco)2 + (eu-11)211 

Since when  dui tends to infinity each integrand in eqs.  (203)(205) is of the
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order of  0(11-2) in the full plane, lower half-plane and upper half-plane, re-
spectively, and all the singular points of these integrands are poles, the inte-
grals given by eqs.  (203)-(205) can  be evaluated by making use of the residue 
theorem. Here, for the sake of simplicity, it is assumed that all  pra:s are 
simple roots and  to  +  jIlkol does not coincide with any one  of  'traits. Hence the 
integrals in eqs. (202)-(205) are obtained as follows: 

      So(w+jhicol)R(Se.(iiKce,% ) 
 2111col ±j t 01(02 + (a) - It' ce,)2 
       (o)-jhlcol) R (So (pter,*))  = ---iE(206) 

         2h1col(hco)2+ (wmaka,*)2 
      RS0(co+ ./121(01)R(So(ttk))        -El- 

                      j,,(hco)2 + (to mu^  ey,” 

 j,  =is*  =  eXP  hl  (pi  r)So(w-  jh101j)  4v,  ,R(So(fea,*))exp(  j(to-  pk,,*)z-)                                               (207)  21/Mol  (hco)2+  (a,  -  tr,*)2 

and 

        exp(-1/6a6MRS0(0)+jhlml) 2E/R(So(pKa,))exP(-./(ch ter")1-) (208)  /
2 h10)1  (h(0)2+  (W—  ft  at)2 

in which  R(So(p.a,)) denotes the residue of  Sci,(w) at the  pole  /tar With the 
above-mentioned assumptions the residue of eq. (194) at the pole  pqa, is express-
ed as  follows: 

 c211  [1+  (P`YP)2131 
 R(So(pqa„)) 

                     ( mg crt,)2%- 1 H ri+ liqty,12aa 
             (Op(-09\aft/J 

     Rn  8, 
 c2(1),2(0e.-  Ro)  II  I  "IQ  71'  5,12  H  ap- fl.12                       - w i2Cer:' (209) 

 aa, 

                    211mq apa„ - fea„12ISP Hitt'  ap  -  "trail? 
 g#9 

  By making use of eqs.  (206)(208) the energy spectral density in the time 
domain  (O,  Id) is given by the following  equation: 

                 1 - exp(-2h lcolr)Rs
o(o)±jhlad )  SEi(r  ;h, 70=-                      2111(01 

                (1+exp(-2hleolT))E/R(Si(p'«))                                        j,„ (hev)2+ (o-pra,)2 
                                   R(Se(p/er,))exPK- (eo- mk .i)r)  +2 exp( - hiwir)E1  (hai)2  +  (co-  it'  ai)2 

 0�-  r  5-ra (210) 

  Similarly the power spectral density in the time domain  CO,  ye) given by eq. 
(173-a) is expressed by 

 Sm(r;  m,  h,  ye)  =  -2hIcolexp(-2hitolr)Jl+hlwlexP(-hkolt)(12+13) 
 +exp(-hkolr)(J4+J,) (211) 

in which  J,,  12 and  ja are defined by eqs. (203)-(205) respectively and,  j4 and 

 J, are defined by the following equations:
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               L= 1r (co— p)exp(j(w—f)r)s r.od                                                (212)                   2rej3—(110)2+ (to— p)2 

                 7.51[°' p)exp(— j(a)— p)r)s )du 
                  2rrji(hay)+ (to— p)2#`12P 

The above two integrals can be evaluated by applying the residue theorem as 
in eqs.  (203)—(205) as follows  : 

 exp  (  —
2hlodr)so  (0)  _AI  ) 

                    R(So(gral*)) (to—iirat's)exP( i(o)— pca,*)t)                                                 (214) 
 Chwr  +(m—teerf*)2 

Substituting eqs. (206), (208) and (214) in eq. (211) the power spectral density 
in the time domain  CO,  rd) is written in the following  form  : 

 SHe(r  ;  m,h,  Td)  —exp(-2hlwir)RS0(0)-lih10)1) 

            2 exp( — hlr) ER                              R(So (firaa)(0,—pkapexPC—i()—Pkair) 

           — 

                       z.,(1.zw)2+-eri)2 
 +2hlwlexp(—h10)12-) 

 -R(So(pt  ai)){exp(-001r)—exPC—i(w—Ptai)r)}  0  � r  <rd                             (h042+ (w— tetra' 

                                               (215) 

  Particularly for the case where  S0(cu)  c2 eqs. (210) and (215) reduce to eq. 
(181) and its time derivative respectively. 

  As another special case, substituting the damping parameter  h=0 in eqs. 
(210) and (215) the following equations are  obtained  : 

     Sze(r ; co, 0, rd) =rSce((o) —2E/R(SØ(1"ra)) 
                                                                  ),.  <a)-1-`a,)2 

 +2E/R  (So  Ot  a  XexP(—./(cs—praar),  05r5rd (216)  /..  (w  —pra,)2 

     SHE (r(1), 0, n)=.50(w)                       _ 2ER R (So (fm.)) ex P(—j(WPrac)r)  OS  r  <rd  (to—fita;) 

                                               (217) 

It is easily verified by simple manipulation that eqs. (216) and (217) agree to 
eqs. (184) and (185-a), respectively. 

 In the above, the analytical expressions of the energy and power spectral 
densities associated with the time domain in which the maximum of the energy 
spectral density is contained are obtained. However it is not easy to analytical-
ly determine the maximum and the maximum value of the energy spectral 
density for the general case where  1>h>.0 and  S0  (a,) is an arbitrary rational 
function expressed as in eq. (194). Hence numerical estimation of the energy 
spectral density given by eq. (210) in the time domain  CO,  rd) seems to be 

generally necessary to find its maximum value. 
 In the case of the time-invariant envelope  a(r)  =1, however, if  1,./t0 and 

 S  0(w) is a sufficiently  flat spectrum over the wide frequency range the random 
responses defined by eq. (24) seem to belong to the divergent process. There-
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fore the maximum  r„,„, of the energy spectral density may be approximately 
estimated as the end point  rd of the duration time of such quasi-stationary 
random excitations. Then in an approximate sense, the maximum value of 
the energy spectral density is given by the following equation: 

 sup  S  Beer  ;  w, h, r d)*. SEs(r ;  w, h, Id) 

   —1 —exp(-21tkoird)RS0(co+jhlwi ) — (1 +exp( —2ht co 70) EI R(SoCte  at))      2;
110J .,(h(o)2+ (to— cea.)2 

   +2  exp(  —hlwird)EIR(So(cta,))exp(—  pra.)r)                                               (218)  (ho)2  +  (co—  ftai)2 

  Of course, it is possible to determine the more accurate value of  r„,ar by 
means of the successive approximation procedure starting from the first ap-
proximate value  r(1)—rd. If is equal  to  rd the power spectral density should 
not be negative at  rd. Hence if  SnE(rd;  w, h,  d) is negative must exist in 
the open time domain (0,  rd) and eq. (166) should be valid, namely 

 SHE  (r,,,a.  ;  w, h,  d)  —  0  ,  0  Gr.'  <2-d (219) 

Substituting  a(r)  =1 in eq. (55) the above equation is rewritten as  follows: 

 exp(—hi  wIK)R4,(K)cos  wale 

 =h1(015rom"  dc15.7"  dc2  exP(—  +  c2)).14(T,  —K2)exp  (  —fro  (K2—K2)) 
       = hirarclv2 exp( — 2h Itolv2) 5rw-112d211 eXP(— hiailvi)Ro(ul)cos wv, (220) 

                  0 On the basis of eq. (220), the following formulae for a successive approxima-

tion procedure of the maximum  r„,a, may be  obtained: 

 /4,71.o_rw_Fih.(,,),  T.(1)  _rd,  n=  1, 2,   (221) 

                            •(n)          //kcal0 exp(-2h1C011)2)rP241 exp(-001v3R00.0cos andi 
 Jr"l.—Y2          exp( —/qa,jr("OR0(r(Thi)coscorw+ 2h1coI (0,01Sr")42  exp(-2hkolv2) 

        —r)chcexp(— hi(olx)R0(x)coscox 

                0 

                                                                             rtn) 
                  •r          S(n)—P2exp( — hkolvi)R,2(.01)cos (Dv —5dK exp(col tr)Rd,(K)cosoe) 

                                                             0 

                                                 (222) 

in which the auto-correlation function  R0(r) is given by the following  formula  : 

         Ro(r)— 2
2rS(w)exp( jon)dco 

 =  IERCS  o(fcrap)  exp( 
                                                 (223) 

               —  E  (RR  (S  42(Pl  ‘ti))  exp  (  —  r  I  )  sin  (R  pt  ajri) 
                                            ^,, 

 +  IR  (So  (firceD)exp(—.1p"o‘drpcos  (Rpra,irl)) 

 5.2. The case of  lime-variant envelope,  a(r)*1 

 In general, for an arbitrary envelope a(r) of the original quasi-stationary
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random excitations it is difficult to analytically obtain the maximum value of 
the energy spectral density of the modified quasi-stationary random process. 
Therefore the maximum value of the energy spectral density must be found 
based upon the numerical evaluation of the energy spectral density in the time 
domain  (O, rd). Here it is noted that the maximum  rmax of the energy spectral 
density of the modified quasi-stationary random process always exists in the 
time domain  CO, rd). If the approximate value of  r„. is known, the more 
exact value of  rmax may be obtained by means of the successive approximation 

procedure as in the preceding subsection. 
 In connexion with the above-mentioned procedure, the analytical expressions 

of the energy and power spectral densities which are given respectively by 
eqs. (63) and (64) together with eq. (65) may be available because the con-
volution integrals associated with the finite time domain which are contained 
in eqs. (63), (64) and (65) may be suitable for the numerical evaluations. Then 
if the analytical expression of the auto-correlation function  R0(r) is given, both 
the energy and power spectral densities can be expressed in the formula con-
taining the double convolution integral according to eqs.  (63)—  (65). 

 In the following, the power spectral density  So(w) of the stationary random 

process is supposed to be expressed as the product of the rational function 
given by eq. (194) and the band-limiting operator defined by 

 B(co  ; we,  cob)  =  D(co  ;  Ri  (Doty)  +  D(w  ;  R'  -  op                                                  (224) 
 COL  =  We  Wbr  Wu  (.0e-F  coo,  we>  wo>0 

where the operators appearing in the right-hand side are the cutoff operators 
associated with the frequency variable, defined as in eq. (3), and  em,  em denote 
the center frequency and half band-width of the cutoff operator, respectively. 
Then,  So(w) is expressed as 

 So(w)  =.13(w;  coe,  wb)Sot  (co) (225) 

               Sy (0)) = (C0)54* (W) (226) 

in which  (NW is the complex-valued function defined by eq. (201). 
  In evaluating  Ro(r) in eq. (65) the following two cases are considered ac-

cording to the order of  (PO  (W)  or  So'  (W) when  I  col tends to  infinity  ; namely, 
supposing  S to be a non-negative integer of the order of  cb(w) and  So'  (w) as 

 1w1 tending to infinity, expressed as 

 0(00(0))  —0((0-3)  cc' (227) 
               0 (So' (w)) = 0 (of")  co, 5(>0 

then, the first is the case where  S is a positive integer and the second is the 
case where  S is zero. As in the preceding subsection it is assumed that all the 
poles of  So' ((o) are simple and that they consist of the two sets of complex 
numbers  {teal} and  {fece,*} given by eqs.  (196) (198). According to the above-
mentioned classification, the function  f(r  ; w, h) defined by eq. (62) or eq. (65) 
is expressed in the definite form available for the numerical evaluation. 

Case A, 

  In this case the auto-correlation function  RU(r) which is contained in the in-



              Response Spectra of Quasi-Stationary Random Excitations 77 

tegral representation of  Ar  ;  m, h) as in eq. (65) is expressed in the following 
form by making use of the residue theorem and the convolution theorem of 
the Fourier transform  : 

         1  R
o(r)—2ge°S(p)exp(jpr)dp27r —1'B(°                                      )S( )exp(jpr)dp 

— 

                                    2   sin  amr  cos  wer           --iERSo'(aca ;)exp( iteaLIT I)* 

                                              2 sin (007 cos_wer          = —El(RS01(pkixiexp(her I ))*---
ir(228) 
         = — E (RRS0'  Ca.  ajexp  ( —  /tea,  Fri)  sin  (R  ft“,  I  r  I  ) 

                                                           72r sin cobricos coot-            ± IRS/(uK pi) exp (ptirpcos(RprI ))* 
where 

                       2  sin  (my  cos  01,.7 
                      7CzDB(0);(0c; WO 

 Substituting eq. (228) in eq. (65) the function  f(r  ;  co, h) is obtained as  follows  : 

 f(r  ;  co,  h)=  —2a(r)[a(r)*[exp  (  hl  to(  r)  cos  (or            
•  ({E  (RRS0'  CetaD  exp(—  itt's,171)  sin  (Rgra,  I  r1) 

            ± IRS/(tai)exP(— /tea/ I TI)cos(Rfead2  sin cola- cos wer\r1))1*7r  ] 
                                              (229) 

in which the first asterisk denotes the convolution integral associated with the 
finite time domain  (O, r) and the last one denotes the convolution integral as-
sociated with the infinite time domain  (—  ca,  ca). 

 Since the convolution integral associated with the infinite time domain is not 
suitable for the numerical evaluation it is desirable to replace this convolution 
by the definite integral defined in the finite domain. Denoting the convolution 
integrals associated with the infinite time domain which appear in eq. (229) as 

 Is  ;  /tap= 2  sin  cost-   cos  wor*exp(—  ktadr  I  )sin(Rfitailrl) (230) 

                      2  sin(norcoscorr          h(r ; 
Pica.) =*exp( — //tail r I) cos (Rtega. Id) (231) 

and by making use of the integral formulae, 

        exp(—alrI)sin bin I exp ( — jpr)dr =(exp{ — (a— j(b—ct))r} 

 —exp{  —  (a+  j(b+  p))r})dz- (232) 
  2b(a2+b2  p2)  

 {a2+  (b  p)2}{a2±  (b+  p)2} 

 exp(—alrl)cos  bin exP(Thire)dr—Rrexp{ —j(1)-12))r} 

                                                    0 

 +exp{—  (a+  j(b+  it))rD  dr (233) 
                2a (az + b2+ft2)           —{

a2+  (b—  p)2}{a2 (b± p)2}
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eqs. (230) and (231) can be rewritten by the following definite integrals defined 
in the finite frequency domain, respectively. 

                  2R( leapjtoe+ oo   (P2—1,1'42) cos prdp   I
s(r  ;P'ai)(234)  7: - whft4+ 2(/2 @tap—122(pra,)),•2+ Lett, I           

; prat) _21(pra,)( 0)ok+co,  (p2 +  Itta,12)  cos prdp                     z3.—cob+ 2 (12 (tttai) —R2 (Preet))P2 I tir,ti I •(235) 

Hence the function  f(r  ;  co, h) is expressed in terms of the quantities given by 
eqs. (234) and (235) as follows  : 

 f(z-  ;  co,  h)=  —2a(r)[a(r)*(exp(—hIcolp)cos  car  
•  {E  (RRS0'  (pkac)13(r  ;  feat)}  IRSo'Cu•a,)4(2-  ;  plc  ai))))] (236) 

Case B, 6=0 

 In this case it is convenient to express  So'  (w) as the sum of a constant and 
the frequency function, the order of which is given by a positive integer, 
namely 

 (w)  =  &So"  (co), i.e.,  S0"  (co)  --°1  (P)) —1 (237) 

in which  So"  (w) has the order  0(w -a),  3.1"-f1 when  lad tends to infinity. 
 If all the poles of  S,/  (co) are simple and they are again denoted by  {pKa.} and 

 {pra,*} in the upper and the lower half-plane respectively, the auto-correlation 
function 14(r) is expressed as follows  : 

             1 ce     Rv,(z) =27rS S-()exp(jpr)dp=27rB(P'"•coco )(0+0,50" (w))exp(fpr)dp 
 —  c2Cd(r)  —  E  (RRS4,"  (praDexp(—  frati  )sin  (Rptai  I  r  I) 

         + IRSC(pra,)exp(—s-I ) cos (RpEa, I) j* 2  sin cog-cos coa(238) 

 Substituting eq. (238) in eq. (65) and by making use of the notations given 
by. eqs. (234) and (235), the function  ,f(r  ;  w, h) is expressed in the following 

 form  : 

 f(r  ;  w,  h)=c2a2(r)  —  2c2a(r)[a  (r)*(exp(  —  h  I  col  r)cos  art  
•  {E(RRS,b"(Pra ,)1$(7  ;  arcr,)+  IRS/1  (pga,)1c(2-  ;  p(a))})] (239) 

 In particular, for the case where both  we and  co, tend to infinity, the band-
limiting operator defined by eq. (224) reduces to 

 B(o);  we,  cob)  =1 (240) 
hence, eq. (225) becomes 

 So(co)=Scil  (w) (241) 

In this special case the quantities defined by eqs. (230) and (231) are express-
ed as 

 /8(r  ;  przy,)=  exp(  —  sin  (Rita,  T  I) (242) 

 (r  ;  te  ,)  exp  (  —  /p^  cej  r  I  )  cos  (Rpica,  DI  ) (243)
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by making use of the following  formula  : 

                             2  sin (obi  cos  wcr     li
m(244) 

                                           (14=to,--.00 

Hence the function f(r  ;  w,  h) which is given by eq. (236) or eq. (239) corre-
sponding to case A or case B is expressed as  follows  : 

Case A,  8>1 

 f(r; w,  h)=  —2a(r)[a(r)*Cexp(—  hlw1r)cos  wr 
 •{E  (RRS,b(keta,)exp(—  litair)sin(R ,teu,r) 

 +  IRS0  (itai)exp(  —  te  air)  cos  (Retratr))))1 (245) 

Case B,  O=0 

 f(r;  w,  h)=c2a2  (r)  —2c2a(r)Ea(r)*(exp(  —  hl  w  Ir)  cos  cor  
•  {E  (RRS0"(p,, ,)exp(—  lita,r)sin(Rft,v,r) 

 +  IRS0"(ptcy,)exp  (  —  It(  raz)  cos  (  geter,r))  11] (246) 

 In the most special case where  B(w  ;  wa,  em)  =1 and  Si (w)  0, (w) defined 
by eq. (237) becomes identically zero and the following simple expression for 

 f(r  ;  a,,  h) is obtained directly from eq. (246)  : 

 f(r  ;  m,  h)  =  c1/42  (r) (247) 

 The analytical expression of the energy spectral density  SnE(r  ;  m,  h,  vet) of the 
modified quasi-stationary random process in the time domain  CO,  rd) is obtained 
by substituting the function  f(r  ;  w,  II) given by one of the eqs. (236), (239), 

(245), (246) and (247) in eq. (63). In general, to find the maximum value 
of the energy spectral density  Sne(rmax  ;  w, h,  rd),  0  <rmax  id, it may be neces-
sary to carry out the numerical evaluation of eq. (63). 

 If an approximate value of the maximum  rmai is found in the time domain 

(0,  rd), the following successive approximation procedure may be adopted in 
obtaining the more accurate value of the maximum of the energy spectral 
density. As in the preceding subsection, if  rm., coincides with  id the power 
spectral density given by eq. (64) together with one of eqs. (236), (239), (245), 
(246) and (247) should be non-negative at  Td. On the other hand, if the maxi-
mum  /mar exists in the time domain (0,  rd) it should be a zero of the power 
spectral density. Then from eq. (64) the following equation is  obtained  : 

 2hlailLym—exp{  —  2hteu  I  (rmax  n)}  f  ;  w,  OA=  f(rmar  ;  w,  h) (248) 
By making use of eq. (63), the above equation is rewritten as  follows  :  

;  a,,  h,  DO=  Arian;  m, h) (249) 

Hence the following successive approximation procedure to determine the maxi-
mum  Tina, of the energy spectral density is  obtained  : 

 1•;•••-ii  Too  +  470,),  n=1, 2,   (250) 

            S c(r'n' ;  w,  h,  rd) S In(r("' ; a),  h,  rd)       *In) 
          S!tern) (Ttn) ;CO; h, rd)  f.°'  (r' ;  w,  h)-2h1w1Sne(r(n)  ;  m,  h,  re)
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                            f_fi)(zdtn • 0)h)        =1-2hlaa —               f(rI"';co, h) —2hkol.S;(7'7" ;h, z-d)/: 
                    fr(11(Too ; h)        =[2hlaa — (fer,„, ;/0—2hIcolexp(-2hlealr)*Ar ;(0, h)1r=r(9)).](251) 

where 

 f  Cr ; '" f(r ; a(r)h)f(r •   co h))")      (r ;co, h) (a(r) a(r)))j+a(r)(  a(r) 
                                                 (252) 

By making use of eq. (65), it is shown that the above equation may be written 
in terms of the following  expressions  : 

 f(7;  W•  h))  2a(r)*exp(  —  hl  col  r)  cos  corR0  (r) (253) 
              a(r) 

              f (Z.a;(re;'h))°1—hicolt-)coscorRo(r) 
 +a,-")(r)*exp(—hlaar)cos  corRo(r)) (254) 

By making use of the analytical expression of  Ro(r) given by eq. (236) or eq. 
(239) as well as eqs. (234) and (235), the above equations may reduce to forms 
suitable for numerical evaluations. 

 Particulary for the case of a time-invariant envelope  a(r)=1, the following 
formulae are  obtained  ; 

 f(r  ;  co,  h)=-2Sroexp(  —  hicollc)  cos  coicRo(K)dic (255) 
 fr'n  ;  co,  10=2  exp(—hlthlr)cos  wrRo(r) (256) 

 R.=  ; to,  h)-2hIcolexp(  —  2hIco  I  r)  *f(r  ;  a), h) 
          —2S0exp(—hIOJIK)COSacRo(K)dx 

           —2hicol5rodv2 exp(-2hIcoiv2)5rfrzw2dvi eXV—hkolvi)cos an/1140.)1) (257) 
then, by substituting eqs. (255)—(257) in eq. (251), the resultant equation re-
duces to eq. (222). 

 As another special case, if  So(cu)=c2, eq. (248) is written as follows by making 
use of eq. (247)  : 

 a2(ornr)  =  2hIcal S'orm'rexP{ —2h1(01(orp,..— ff)}a2 (OA  (258) 
                    —2h1col

orm"rexp( —2h1(01K)a2 (or max —ic)thc 

where subscript 0 means that the quantity with it concerns to the case of the 
white spectrum  S0(co)=0. 

 By considering  Ro(r)--  c25(r) eqs. (253), (254) and (256) become respectively 

                (Ara;(rW; h))2              = ca(r) (259) 

 f(r  ;  co,  h)),"'  ea r")  (r) (260)  a(r)



              Response Spectra of Quasi-Stationary Random Excitations 81 

 P1)(r  ;  m,  h)-2cza(r)a,",  (r) (261) 

Hence eq. (251) is expressed as  follows  : 

        dor'?" =[2hIcal —2a(or'')ar'n(orb')                                                (262)                     (a2(or(ni) —2hIcalexp(-2hicalr)*a2(r)Ir=orooll 
From the above equation, it is found that if the time at which the continuous 
envelope  a(r) takes the maximum value is chosen as the first approximation, 
the first increment of  ormax is a positive number which is inversely proportional 
to  Ilk. Hence if the damping parameter h is not zero and the power spectral 
density  V0) is sufficiently flat and if the envelope a(r) is a slowly varying 
continuous function the second approximation of  or.as for the white spectrum, 
which is obtained by starting from the maximum of  a(r), may be used as the 
first approximation  rffi in the successive approximation procedure for the general 
case given by eqs. (250) and (251). However, if the damping parameter h is 
zero eq. (262) reduces to 

                              (rh")             j or(ni__ aoh-0 (263)                              2a rmGeo), 

 Since it is clearly a contradiction that a set of positive values of a(r) and 
 ar") (r) always gives the negative increment of  or.. the above equation means 

that the maximum  or,,,az is equal to the end point of random excitations,  rd for 
an arbitrary envelope a (r) as far as the white spectrum and zero damping 
parameter are concerned. 

 In general, it is noted that the convergent value of the above-mentioned suc-
cessive approximation procedure does not always give the maximum  rar of the 
energy spectral density in the time interval (0,  rd). The stationary condition 
expressed by eq. (249) is only one of the necessary conditions requisite for  rmax. 
From the exact point of view, in order to assure that the convergent value of 
the successive approximation procedure starting from an appropriate first ap-
proximation gives the true maximum  rmar, it is necessary to show not only 
that the convex condition  Sassifi(roor;  co, h,  rd) <0 is valid but also that  Sive(rmai  ; 

 co, h,  rd) definitely gives the maximum value in the time domain (0,  rd) because 
several maxima may exist in this time domain. 

 From the above-mentioned aspects, in determining the maximum value of 
the energy spectral density of the modified quasi-stationary random process, 
the numerical evaluation of the energy spectral density in the time domain 
[0,  rd) should be preceded and the successive approximation procedure must 
be considered as the auxiliary means to improve the accuracy of the approxi-
mate value of the maximum  rm.,. 

  For a simple envelope a (r) and power spectral density  S4,(w), the explicit 
analytical expressions without the integral operators of the energy and power 
spectral densities of the modified quasi-stationary random process may be ob-
tained. As such an example, the following special case is  considered  : 

 a(r)=  r exp(--(12-  r),  .34,(co)=0 (264) 
By using the first equation of (264), eqs. (247) and (261) are written respective-
ly as  follows  :



 82 T. KOBORI and R.  MJNAI 

 f(r  ;  w,  h)  c2az  (r)  =  c2z exp(—ar) (265) 

 fr"'  (r;  a),  h)=2c2a(r)ar",  (r)  c2  (1  —ar)exp(  —  ar) (266) 

Substituting eq. (265) in eqs. (63) and (64) the following explicit analytical 
expressions of the energy and power spectral densities are obtained: 

 SHe(r  ;  m,  12,  rd)=c2  exp(-2/2koir)ta2(r) 
 c2        —  

(a  —  20.0)2Cexp(  —2hladr) —exp(—ar) —  (a  —2hIcol)r  exp(—ar)), 
 05r�rd (267) 

 S  oe(r  ;  co,  h,  rd)  =  (5(r)  —2h0  exp  (  —  2h  I  r))*a2(r) 
                c2       = 

(a— 2h1c01)2Ca (a — 2h Ir exp( — ar)— 2h1w1(exp( — 2hicol r) — exp( — ar) )), 
 05r<rd (268) 

 In particular in the case where  h  =0, the power spectral density given by eq. 
(268) is always positive.  Hence the energy spectral density given by eq. (267) 
is a monotonously increasing function of time in the domain  CO,  rd], and the 
maximum  ormax agrees with  rd. 

 As regards the successive approximation procedure of the maximum  orm,, 
eq. (258) reduces to 

                    2hicol 
      armarexp(—aor,,,a,,)=a(a -2h10) (exP(-2hkolormar) —exp( —aormar)) (269) 

and eqs. (250) and (262) are written in the following forms  respectively  : 

 or'"*"  =  or'"  +  zlor'"),  n  1, 2,   (270) 

 Jor'n,=[2hIcor 
 (a  —  2h1w1)2(1  —  aornexp(  —aor("})  (a  (a  —  2100)ov  exp(  —  aor''))  —2h1a)1(exp(  —  2hlw  I  or(n))  —  exP  (  —  aor(m))  )1 

                                                 (271) 

Starting from the first approximation which is appropriately chosen as 

                        1 
                a- <or '" �r4(272) 

the maximum  v.°, which gives the maximum value of the energy spectral de-

nsity may be determined as the limiting value of the iterative procedure given 
by eqs. (270) and (271) because in this case both  SEE(r  ;  co, h,  rd) and  Snc(r  ;  co, 

 h,  rd) are simple smoothed functions in the time domain  CO,  r4) as shown in 

eqs. (267) and (268). 

6.  Probably expressions of the mean value and the upper and lower limits of 
   response spectra of the quasi-stationary random excitations 

 In section 4, the formal expressions of the mean value and the upper and 
lower limits of response spectra of the quasi-stationary random excitations are 
determined as eq. (154) and eqs. (160) and (161) respectively, in which the 

quantities A,  J,„,  VA,  in and p remain as unknown functions of  co,  h and  rd  as
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sociated with the original quasi-stationary random excitations f(r). In this 
section the explicit functional forms of these quantities are considered referring 
to the results of response analyses of a linear system subjected to quasi-sta-
tionary random excitations. 

 If the duration time  rd of the quasi-stationary random excitations having a 
slowly varying envelope is sufficiently large, more exactly, if the maximum 

 r„,„, is sufficiently large compared with the natural period of the linear system 
   2ir  t =

co-and if the power spectral density Sd(co) is sufficiently flat over the fre- 
quency range considered, the quantities  2 and  2,„ may be approximately equal 
and they seem to be weak functions of  co and  re. In such a case it is suggest-
ed that instead of the functions A and  A. the mean functions averaged in the 

 w—  rd domain considered may be available in eqs. (154), (160) and (161), namely 

 fA(h)=  <52(co,  h,  ra)>0),r,e4  h,  rd)>  to,ra  E<fkr(w,  h,  rd)>  uhrd (273) 

in which the symbol  <A>  o denotes the mean value of A with respect to a and 
subscript f means that the quantity with it depends on the original quasi-
stationary random excitations f(r). 

 Since the function 52(h) defined by eq. (273) seems to have the properties, 

 p2(h)>1,  Rik"'  (h)>  0,  52,,(2)  (h) <0,  h>0 (274) 

and it also seems to converge sharply to a constant value in the vicinity of 
 h=0, the following probable expression of  d2(h) may be  obtained  ; 

 2(h)  —  )(co)  —  {52(co)  —  d2(0)}exp{—  5a(h)h} (275) 

in which the function  fa(h) indicates the degree of the convergence of  f2(h) 
and may have the following  properties  : 

 fa(h)»1,  fah"'  (h)  <0,  dad?'  (h)>  0 (276) 

In addition to the above properties  fa(h) seems to converge to a constant value 
as h increases from zero. Hence a probable expression of  fa(h) may be given 
by 

 da(h)—  da(a)+  {5(1(0)  —fa(00)}exp(  —  ph),  i9>0 (277) 

in which  S is a sufficiently large positive number. 
 From eqs. (275) and (277) the following relation between  .52(h) and  fa(h) is 

 obtained  : 

                 ra(h)= —1log)(') -d (h) (278)                               h ;2(00)  —d2(0) 

  To determine the various constants contained in eqs. (275) and (277) the re-
sponse analyses of the linear system having the impulsive response  g  (r)  =exp 

 (—hicolv)sin  an- should be made for the pertinent quasi-stationary random ex-
citations and the appropriate sets of parameters  (co,  h,  rd), and the equivalent 
coefficient  A in eq. (154) should be estimated numerically, based upon the re-
sults of the response analyses. 

  If a large number of random responses are obtainable for each set of para-
meters  (co,  h, re),  to equivalent coefficient  (A(co,  12,  rd) may be evaluated from
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the  following  equation  : 

           pica), h,_1 ESv(to, h,  rd)  _1///z (279)                       ki/Ssi(r„,d.r;to, h,  re) 2I/- 4 
  On the other hand, if the size of the ensemble of random responses is small 

for each set of parameters  (w, h,  rd) the equivalent coefficient  pi(a),  h, rd) may 
be estimated by the following  procedure  : First, for each pseudo-stationary 
random time-function  IA.I defined by eq. (144), the maximum normalized random 
variable 

                             sup(1211,—E2421,1) 
          8:6(0.0,  h,  rd)—  (280) 

and the following two quantities are calculated; 

              ETIAtiVVTIAsi         ,dir(co, h, rd)=  or(co,=(281)           VETIEDO,' 

and, by making use of these quantities the equivalent maximum random vari-
able  flr(0),  h,  rd) associated with the Rayleigh distribution is determined as  fol-
lows : 

                                               (sdir(co,  h,  rd)\_ 

         (8;12,(a),re),or(o),h,raVidir(to,h,rd)\kd1(0)flr(0).rd)(282)             a(0)/1 d1(0)  c(0) 

where 

 a(0)  —  AffiCc  , d1(0) —17(283) 

                                 2 

 The correction of the maximum normalized random variable by eq. (282) is 
due to the deviation of the amplitude probability distribution of  IA,1 from the 
Rayleigh distribution. This deviation may be measured by the parameter  E 
defined by eq. (71). The values of  d1(E),  d2($) and  a(E) given by  eqs. (88) 
and (89) for  E=0 which corresponds to the Rayleigh distribution and  e=  ±1 are 
calculated as  follows  : 

 

)  =  2  =0.886, dI(±1)—f+zkr-=0.938 

                                 4 

                                             4—   d2  (0)  = 2R.=0.464, d2(±1)— V4+=0.352 

 a(0)  4r  0.524, a ( 1) = A/42z7-0.370 
with the aid of these values it is shown that  d,  (E) is a weak function of  e 
compared with ode). Hence, eq. (282) may be expressed approximately by 

                   A ( )   h, re)saT(a),  h,  rd)   (284)  c(0) 

 In the case where the duration time  id is fixed and the response analyses are 
made for various frequency parameters and a series of the discrete values of 

 hi,  i=1, 2,  3,   the equivalent function  pl(ht) may be determined by substitut-
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ing eq. (282) or eq. (284) in the last equation of (273) and by  averaging with 
respect to the frequency parameter. 

 Next, the constants  4(0),  p2(00),  fa(0),  fa(c0) and  13 which are contained in 
eqs. (275) and (277) may be determined by the following iterative procedure. 
Supposing the appropriate values of  4(0) and  f2.(00) from the series  pd(hi) and 
by substituting these values in eq. (278) the series of the values  fa(hi),  i=1, 2, 

 3„ are obtained. Then, selecting three arbitrary points  i  =  I, m, n the ex-

ponent  Bun„ in eq. (277) is calculated from the following  equation  : 

                  a(hz)—a(h„)1— exp{ —,g(h„ — h,)}  (285) 
                  a(ht)—a(h,a)— 1  —  exp{  —  49(h.  —10} 

And, for several sets of two points  i=m,  n,  fa(0),,,,, and  fa(00).,n are determined 
from the following simultaneous  equation  : 

 {1  —exp(  —  /312,)} fa(zo)  +  exp(-11hi)fa(0)—a(ht),  i=m, n (286) 

Thus the constants  19,  fa(0) and  fa(co) are determined through an averaging 
operation as  follows  : 

 fi=  <191„,„>  z„t„,  fa  (0)  =  <  fa  (0)m„>  .„,  fa(  co)  <  fa  (00),..„  > (287) 

in which subscript lmn or inn shows the quantity, with it being dependent on 
the set of points selected. By substituting the quantities given by eq. (287) in 
eq. (277) the new series of values  pa(hi),  i=1,  2,  3,  , are obtained. By 
making use of these values and the previously determined values of  pl(h,) for 
several sets of two points i=m,  n, a set of  4(0).„ and  fA(00),.„ is obtained from 
the following simultaneous  equations  : 

 (I  —  exp{  —  fa(h,)/4})4(00)+exp{  —fa  (hi)/zi}4  (0)  —12(h,),  m, n (288) 

Then the constants  4(0) and  4(:0) are determined by averaging  4(0)„,„ and 
 4(c0).n respectively as  follows  : 

 f2(0)=  <f  A(0).„>  „t„,  A(03)  =  <f  A(00),„„› (289) 

Otherwise, they may be determined by the following least square  method  : 

 e2(4(0),  IA(00))  =  Cf2(c)  —{  f2(00)  PI(0)  }exP{  fa(ht)hi}  —  fACht)  D2 (290) 

     0  
                          0,2(00—)e(d(0), d(00))=0     0.1.2(0)e2G2(0), pl(c”)) —0, 

 If the values thus obtained of 4(0) and  pi(r) are different from the previ-
ously assumed values beyond the prescribed allowable error the above-mention-
ed procedure must be repeated until the error is reduced within the allowable 
value. 

 In the following, to examine the above-mentioned procedure for determing 
 fl(h) a numerical example obtained by the simulation method is shown. The 

quasi-stationary random excitations considered are characterized by the time-
invariant envelope  a(z-)=1, the duration time  n=30 sec and the following power 
spectral  density  : 

 So  (0)=  B(co  ;  am,  co„).S01(0)) (291)
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               ii±tw\4014sjwVH1+Icovi 
        So' (co)lH•oh t l(03 )\)                                                (292) 
        w2 11±(w )2H1+(aAco321                          l±()6H1±(W)•um 

in which 

 we=  18.2z,  cob=  17.37r, (rad/sec)                                               (293) 
 oh  —2z,  oh= 3.6x,  cos  =  22.0n, (rad/sec) 

 From each sample random response of the single-degree-of-freedom systems 
having the natural frequency  co  =102r rad/sec and various values of damping 
parameter  h, the amplitude probability distribution of the pseudo-stationary 
process  IA,( is evaluated by using the values of the peak amplitude at 200 points 

                                   r 

                                ,contained in the time domain Td3rd.](10  sec, 30  sec). By using eqs. 
(278), (280), (281) and (284) the following results are  obtained  : 

 h  0  Q  005  0.01  0.02  0.05 

 sar  0.  289 0. 469  0.473  0.  497  Ali  0.521 
 dr  1.76  1.73  2.03  2.33  2.53 
 12T  I  0.971  1.55 1.84 2.21  2.51 
 65.9  j  54.4 46.6  27.9 

The values in the last row of the above table are evaluated from eq. (278) by 
supposing  pl(0)  —0.971 and  12(00) =3.000. From the values of  ear it is found 
that the amplitude probability distribution of the pseudo-stationary random 
process  lAsi converges rapidly to the Rayleigh distribution as the damping 
parameter h increases from zero. However, in the case of  h=0 the original 
random response  ILI or  AI seems to belong to a strongly divergent process. 
As shown in the table the value of  'az is considerably smaller than  a(0) 

 1/(4-70/r-0.524 and it is indicated from eq. (89) that the corresponding value 
of  e is larger than unity. Therefore it is suggested that the correction given by 
eq. (282) or eq. (284) is necessary for the case of a sufficiently small value of 
the damping parameter. The corrected values  Fir are shown in the third row 
of the table. 

 Even though the values shown in the table are based on the data which are 
obtained from a sample random time-function prescribed by  co  —107r rad/sec and 

 re=30 sec for each damping parameter, they show a sufficiently smoothed 
tendency for the equivalent function  pi(h) which gives the mean value of re-
sponse spectra of the quasi-stationary random excitations. As a rule, to de-
finitely determine the function  pl(h) expressed by eq. (275), the averaged value 

 pi(a),  h, rd) must be evaluated from an ensemble of the random variables  Ar(o), 
h, rd) for each set of parameters  (co, h,  z  d) and again the averaging operation 
with respect to  w and  rd is required as shown in eq. (273). In this  section, 
however, for the purpose of obtaining the probable expressions of the mean 
value and the upper and lower limits of response spectra of the quasi-stationary 
random process, the applicability of eqs. (275) and (277) to such expressions
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is examined by determining the unknown constants contained in eqs. (275) and 
(277) by using the following rough, short-cut  procedure  : 

 By using the values of  fa given in the last row of the table the function 
 fa(h) is determined in the following form according to eqs. (285) and (286). 

 fa(h)  =16.5  +  58.0  exp(-32.0h) (294) 
And by making use of the above equation and the values of  Ar for h=0.005 and h 
=0.05, which are given in the third row of the table, the values of  ,If  (0) and  fl(00) 
are calculated from eq. (288) as 0.964 and 3.01, respectively. Then, by substi-
tuting these values in eq. (275) the following expression of  f2(h) is  obtained  : 

 fi(h)  =3.01  —  2.05  exp{  —  fa(h)h} (295) 
 On the other hand, defining the function  fq(h) by 

                      ESv (co, h, re)  ISEi(rmar ;(0,0, rd) 
              f q (11)  NESv  (to, 0,  r4)11  Sm(rnad  ;  a),  21,  te)Ao,  re, 

                 Vit 
         2  +A(h)171 2r4 (296) 

  q(0)=1  +f2(0).0— 
 4 and by using eq. (295) in the numerator of the right-hand side the above 

equation can be written as  follows  : 

 fq(h)=  1.71  —  0.71  exp{  —  fa(h)h} (297) 

Although the function 12(h) given by eq. (295) is determined by means of a 
simulation method using a special quasi-stationary random excitations and 
rather rough estimation procedure, the value  fq  (00)  —1.71 calculated from eq. 
(297) seems to be satistactorily close to the value  4(00)=1.56 evaluated from 
the formula which is presented by G. W. Housner and P. C. Jennings based 
upon the response spectra of past strong earthquakes. Also it is found that 

the multiplication factor for  h=0, which is determined as  l2  +1,1(0)  V(44  7) 
 —1.33 by using eqs. (154) and (295), is little larger than the theoretical value 

1.174, which is presented by E. Rosenblueth for the case of zero damping and 
whith noise excitations. Hence, from a practical point of view, it is permis-
sible to suppose  2(0)=1 and  2(00)=3 which correspond to the multiplication 
factor for zero damping =1.35 and  q(00)  =1.69, respectively. As an example, 
substituting these values in eq. (275) and by considering eq. (294) the follow-
ing probable expression to estimate the mean values of the response spectra 
of the earthquake excitations may be  obtained  : 

 ES  f  (a), h,  rd)  =2gV1 — 4) VSEr(romd ; (0, h,  rd) (298) 
where 

 2(h)  =  3  —2  exp{  --a(h)h},  a(h)=  15  +  60  exp  {  —  30/2},  1>h>0 (299) 

 As regards the maximum value of the energy spectral density of the modified 
quasi-stationary random process contained in eq. (298), eq. (192) may be availa-
ble in the case where  1>  h>  0, because the strong earthquake excitations usual-
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ly have a slowly varying envelope having a sufficiently large duration time and 
flat spectral characteristics over a wide frequency  range,'" and the elastic 
structural system may have a critical damping ratio which is sufficiently 
small compared to unity but not zero. 

  It is noticed that eqs. (298) and (299) are derived by assuming that the func-
tion  /2(w, h,  rd) is a weak function of  w and  rd. This assumption may be valid 
in the case where the quantity  2r/rmax is sufficiently small compared with the 
lower limit of the frequency band of  SI  (w,  h,  rd) considered and the power 
spectral density  S0(w) is sufficiently flat over this frequency band. On the con-
trary, if is not sufficiently small compared with the frequency parameter 
considered or the power spectral density  Sd(w) is not flat over the frequency 
band, the function  fA  (en,  lz,  rd) seems to be a comparatively strong function not 
only of  12 but also of w and  id. 

  For instance in the case where the power spectral density  Sa(w) is sufficient-
ly flat over the frequency band but  r„,„,  w is not always sufficiently large in 
this frequency band, the probable expression of the function  )(oh  h,  rd) may 
be given by the following form  : 

 h,  rd)--•fil(co,  h,  r  1.2(  -x))  till(C)°)-12(0)}exp(  —  ja(w,  h,  d)h)  (300) 

 fa(0),  h,  7„,„,)  =  (1  —  exp(  —  acorm,,,))Cia(03)—  {da(Lt)—  da(0)}exp(  —  ,M))  (301) 

in which 

 )(03)>)(0)>0,  fa(0)>  (a(  00)>  0                                                  (302) 
 a>  0, p>0 

In eqs. (300) and (301)  zmo, is a function of  01,  h and  rd which depends on the 
original quasi-stationary random process  f(r). Since  ,),(a),  h,  rd) seems to de-

pend more explicity  on  rm., than  Td, the notation  fil(W,  17,  r„,„„) is used instead 
of  pl(w,  h,  rd) in eq. (300). 

 As shown in eq. (300) the function  )(a),  /4  rmos) is symmetrical with respect 
to w and In particular, for the case of  /7-0 or  h—  op, the function  )(a), 

 rp,,,,) takes a constant value which is given by  )(0) or  fl(c) in eq. (300). 
Also, for both cases of  w  =0 and the function 12(w,  h,  „,„„) gives the 
constant value  )(0). 

 From eqs. (300), (301) and (302) the following inequalities which seem to be 
valid in usual cases are  derived  : 

/),(a),  h,  rd„,.)>  
f  Ad"'  (w, h,  r„,,,..)>  0,  ,),-„,a,."' (w,  /2,  0 (303) 

 dAhm  (w.  h,  tow,  )>  0 if  fa(co,h,  fal,"}(0),11,  7nin.r)17>  0 

 fa(w,  h,  r„,„,)  >0, 
 dad"'  (co,  /2,  7,,,„,  )>  0,  far„,„,")(0),  h,  r„,„„  )>  0,  dad"'  (w,  h, rat) <0 

  m ramrm„,") (co, h, rduff) <0,a„,")(w,  h, roan)<0,fork"'r„,„,"' (w,/2,) <0(304) 

 (o.), h,  r,,,,,) <0,  dar„„,,'''  (a),  h,  r„,„,) <0,  ,a,,12'  (w,  /2,  Tnia.r)>  0 

To find the necessary and sufficient condition of the conditional inequality at-

tached to the inequality  (21,")  (co,  h,  rou,..)>  0, the following function and its de-
rivative are considered
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 Jr  (co, h,  r...,)=fa(co, h,  r„,„.„)+  dal,'"  (to,  it,  rmax)h 
 =  (1  -exp(  -  amp  mar))  Cia(0°)  -{fa(cc)  -fa(0)}(1  -,9h)exp( (305) 

 frh"1(0),  h,  rmar)  = (1  -exp  (  -  awrmax)){xtr(00)  da  (0)  }  (2-  19h)R  exp(  -  fih) (306) 

From eq. (306) the following relations are  obtained: 

 /%1)  (co,  h,  rmar)  50 for  h  �  -2 
                                              (307) 

 frk'"  (co,  h,  rmar)>0 for  h>  2  fi 

Since  h  =2  /13 is the mimimum of the function  fr(co,h,r„,,,,,) for all  do and  rn,dr 
the necessary and sufficient condition in order that the function  fr(w,  it, rmar)  is 
non-negative for all  £a, h and  rmar is given by 

                     a(r)›.)>,a(0)  exp(  -  2)                                                (308)                                  k)1 -}exp( -2) 

 On the other hand, since the mean value of the velocity response spectra 
 ESv(w,  it,  rd) may be a monotonously decreasing function of the damping para-

meter h the validity of the following inequality which is obtained by differen-
taiting eq. (154) with respect to  12 may be required in usual  cases: 

 7C
_   ESna(" (co, h,  rd) All")  (a4 h, rrnal) 4  5.gek'1 (rmar;  a), h, rd) <0 (309) 

                                                   2,sre(7„,„.,;h, rd)     ES), (co, h,  r  d) z  +JA(tLI,  /Z,  Tmaz)  y  1—  4 

In particular in the case where  a(r)=1 and  Vey)  =c2 the maximum  rmar is re-
garded approximately as  rd. Then the first and second terms in eq. (309) are 
expressed respectively as follows by making use of eqs. (182), (183), (300) and 

 (301): 

  ,fAhoi (0),  h,  rmar)— -x4 

 1/
27r-  +./2(0), h, 

     {pl(co) -f),(0)}{1 - exp ( - aford)}(fa(00)- fda(00) - fa(0)}(1- gh)exp(- fih)] 

                       2+A (co) _ LTA (00)  —  /2(0)  }exp{  -(1 - exp ( - acord)) 

 

•  exp{  -  (1  -  exp  (  -  awrd))1./a(c°)-{fer(00)  -va(0)}exp(  $h)3h}  V  1  -  -4 
 -(fa(co)-{fa(00)-  fa(0)}exp(  -19h))h))11- 

 (310) 
and .„ 

 SEW"  Ord  ;  co, h, Do)  _  (1  +  2h1  rd)exp  (  -2h1wIrd) -1  2S
Ef  (rd  ;  co,  h,  rd)  2h  (1  exp  (  -  2hlwi  0)  

Iwird  exp(-2hIcolt-d) 1  h>0 (311) 
 1  -exp(  -  2h  I  rd)  2h' 

 SEffrW  (rd  ;  w, 0,   rd)  iwird              h =0  (312)  2S  
od(r  d  ; 0, rd) 2  '
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Particularly considering the case of  h=0 eq. (309) is written as  follows  : 

                                         — re             1 —exp(—aan-g)<27 +4(0)114  
                                              (313) 

 WTd 
 2{f2  (00)  —  f2  (0)}fa  (0)  — 7r4 

In order for the above inequality to be valid for all  wrd the constant a should 
satisfy the following  inequality  : 

                    i+(0)11— r 
      24 

 a< (314) 
 2{  (  op)  (0)}px  (0)  —  7r4 

Since for a comparatively large value of the factor  (1  —exp(—aan-,,,,,)) 
contained in eq. (301) may scarcely affect  fA(0), h,  r.) given by eq. (300) the 
values of  fa(0),  fa(oo),  1,1(0) and  f2(00) which are previously determined for 
large  tor max may also be applicable to eqs. (300) and (301). Then by substitut-
ing  .07(0) =75,  fa(00)=15,  4(0)=1 and  f2(00)=3 in eq. (314) the probable upper 
limit of the constant a may be determined as 0.0097. 

 Finally, in connexion with the upper and lower limits of response spectra of 
the quasi-stationary random excitations which are expressed as in eqs. (160) 
and (161) respectively, both quantities  p and p which are defined by eqs. (162) 
and (163) are generally the functions of  w, h and  rm., and they also depend on 
the statistical properties of the original quasi-stationary random process  }(r). 
Usually the ratio of the standard  deviation  1/VS; to the mean value  ESv, which 
corresponds to the ratio  1/172/(1/7r/(4—x)+E2), is an exponentially decreasing 
function of h and both  pi/  VSv/ESv  and  —  Lei/VSv/ESv are also the decreasing func-
tions of  h though p and  -e may have the tendency of increasing as  It increases. 

 If the amplitude probability distribution of A is assumed to be approximately 
symmetrical about the  mean value  ECi, both quantities  p^172/(1/z/(4-2r)+EÂ) 

 and  —0/1/2/(1/r/(4  —7r)  +EA) maybe expressed as  follows  : 

       fr3(ae,it, r„,„,)=p1/172 AV4—IrzEC1) — — Le1/1/1 /4 r                         V (315) 
 =f6(00)  —{f3(co)  —fel(0)}exp(—fr  (0),  it,  r.)h) 

where 
 0  <4(00)  <ftS(0) (316) 

substituting eq. (315) in eqs. (160) and (161) the probable expressions of the 
upper and lower limits of velocity response spectra of the quasi-stationary 
random excitations are obtained as  follows  : 

         sup 

 inPf  v  (1±/6(0), h,  r,,m.))k  2 +  —  f2(o),  h,  rmar)  )1/sup  S  EE (317) 
                    F. 

  In usual cases,  fd(a),  h,  r„,„2.) given by eq. (315) seems to be a weak function 

of  w and  r„,„, for all  a) and  rmar. Consequently, from the practical point of 
view this function may be replaced by a function of  It only,  fa(h). From this 
aspect, by assuming that the normalized random variable of the response 

spectrum is independent of both parameters  a) and  rd, its probability distribution
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is evaluated as a function of h based upon the results of numerical analyses 
of response spectra of the linear systems having various frequency parameters 
subjected to the quasi-stationary random excitations which were previously 
described by  a(r)  =1,  rd  —30 sec and eqs.  (291)(293). By making use of the 
above-obtained probability distribution associated with the velocity response 
spectrum and by taking into consideration eqs. (162), (163) and (315) the func-
tion  fa(h) is approximately evaluated as  follows  : 

 5(h)=0.45(1  +  exp{  —  (h)hn  (318) 

 fr  (h)  =30  +  80  exp(  —40h) 

7. Concluding Remarks 

 As a basic study to obtain a reasonable statistical model of earthquake excita-
tions in the dynamic response analysis of structures, the relation between the 

quasi-stationary random excitations and their response spectra is discussed. 
By supposing that the maximum value of the output response of a linear oscil-
lator subjected to an arbitrary excitation is approximately equal to the maximum 
value of envelope of the output response, the mean value and the upper and 
lower limits of response spectra of the quasi-stationary random excitations 
having a finite amplitude probability distribution and a finite duration time are 
considered, based on a semi-analytical method. 

 The mean value and the upper and lower limits of response spectra of such 

quasi-stationary random excitations are expressed by the product of the maxi-
mum value of the root mean square of the envelopes of the random output 
responses, which can be determined analytically as the root of the maximum 
value of the energy spectral density associated with a modified quasi-stationary 
random excitations, and the relevant multiplication factors which are approxi-
mately expressed in terms of the maximum value, the mean value and the 
standard deviation of the maximum normalized random variable associated with 
the pseudo-stationary random process having the ergodic properties and the 
Rayleigh distribution and are determined semi-experimentally by means of 
simulation techniques. Of course, the exact analytical approach to this problem 
is to find the probability distribution of the maximum value of random output 
response of a linear oscillator. However, since such an analytical approach 
may be very difficult except for the extremely simple input excitations, the 
semi-analytical method which is applicable to a general class of quasi-stationary 
random excitations with an arbitrary envelope and power spectral density is 
adopted in this paper. 

  The quasi-stationary random excitations considered here are supposed to be 
expressed by the product of a cutoff operator which concerns the duration time 
of excitations, a deterministic continuous function of time which gives the 
averaged envelope of random excitations and an ergodic stationary Gaussian 
random process. 

 The analytical expressions of the energy and power spectral densities of the 
modified quasi-stationary random process are obtained in the case of the quasi-
stationary random excitations having an arbitrary deterministic envelope and 
the power spectral density of the stationary random process, which is express-
ed as the product of the band-limiting operator and a rational function of the
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frequency. The successive approximation procedure of determining the maxi-

mum value of the energy spectral density of the modified quasi-stationary 

 random process is also discussed. On the other hand, the probable expressions 

of the multiplication factors which give the mean value and the upper and lower 

limits of response spectra of the quasi-stationary random excitations together 

with the maximum value of the energy spectral density of the modified quasi-

stationary random process are determined by means of the simulation technique 

for the case where the envelope is a slowly varying time-function and the 

power spectral density of the stationary process is sufficiently  flat over the wide 

frequency range. 

 From the aspect of obtaining a reasonable model of earthquake excitations 

for the dynamic response analyses of structures the study made in this paper 

is only one of the basic studies required for this purpose, hence many related 

problems remain for future studies. For instance, there may be problems of 

how to obtain information about the seismicity and dynamic characteristics of 

the ground at the site of a structure and how to apply this information to the 

supposition of a model of earthquake excitations in the dynamic response 

analysis of the structure. There may also be the problem of what modifications 

should be made for a model of earthquake excitations depending upon the ex-

pected dynamic characteristics and measures of the aseismic safety of the 
structure in connexion with the substantially indeterminate character of earth-

quakes which will occur in the future. Also, in relation to the coupling phe-
nomenon between structure and soil ground, the problems of where the input 

excitations should be given and of what modifications should be made for a 

model of earthquake excitations depending on the point of input excitations and 

the dynamic characteristics of soil ground and structure may be important, 

particularly for structures on soft clay or loose sand. As a rule, the supposition 
of a model of earthquake excitations is not independent of the supposition of 

a dynamic model of the ground-structural system. It seems that the problem 

of coupling is to be solved by a reasonable supposition of a dynamic model of 

the ground-structural system and that the earthquake excitations are to be 

given at a point outside the coupling region. 

 In order to develop the study made in this paper in the direction of obtain-

ing a pertinent model of earthquake excitations the envelope and the power 

spectral density of the quasi-stationary random excitations which are prescribed 

in rather general forms in this paper are to be reasonably determined accord-

ing to the seismicity and the dynamic characteristics of the ground at the site 

of a structure. In this connexion, the random excitations of the stratified 

visco-elastic medium seem to be one of the most important problems related to 

the definite supposition of a quasi-stationary random process as a statistical 

model of earthquake excitations. 

                            Acknowledgment 

 The authors wish to  express their thanks to Assistant Professor Yutaka Inoue 

for supplying the numerical data and for his discussions in the preparation of 

this paper.



              Response Spectra of  QuasoStationary Random Excitations 93 

                                References 

1) Tanabashi, R.,  Kobori, T. and Minai, R.  ; Aseismic Design and Earthquake Response 
    of Structure, Annuals of the Disaster Prevention Research Institute of Kyoto Univ., 

    No. 5, B,  March. 1962, pp. 1-32. 
2) Kobori, T. and Minai, R.  ; Aseismic Design Method of Elasto-Plastic Building Struc-

    tures, Bulletin of the Disaster Prevention Research Institute of Kyoto Univ., No. 68. 
    March, 1964, pp. 1-64. 

3) Kobori, T. and Minai, R.  ; Non-stationary Response of the Linear System to Randon 
    Excitation, Bulletin of the Disaster Prevention Research Institute of Kyoto Univ., Vol. 

    16, Part 2, No. 111, Jan..  1967, pp. 37-80. 
4) Housner, G. W.  ; Characteristics of Strong-Motion Earthquakes, Bulletin of SSA, Vol. 

    37, No. 1, Jan., 1947, pp. 19-31. 

5) Rosenblueth,  E.; Some Applications of Probability Theory in Aseismic Design, Proce-
    edings of the 1st World Conference on Earthquake Engineering, 1956, pp. 8-1-18. 

6)  Thomson, W. T.  : Spectral Aspect of Earthquakes, Bulletin of SSA, Vol. 49, Jan., 1959, 

    pp. 91-98. 
7) Bycroft, G. N.  ; White Noise Representation of  Earthquake, Proceedings of ASCE, EM 

 2, April, 1960, pp. 1-16. 
8) Bogdanoff,  J. L., Goldberg,  J. E. and Bernard, M.  C. Response of a Simple Structure 

    to a Random Earthquake-Type Disturbance, Bulletin of SSA, Vol. 51, No. 2,  April, 
    1961, pp. 293-310. 

9) Goldberg, J. E., Bogdanoff, J. L. and Sharpe, D.  R.  : The Response of Simple Nonlinear 
    Systems to a Random Disturbance of the Earthquake Type, Bulletin of SSA, Vol. 54, 

    No. 1, Feb., 1964, pp. 263-276. 
10) Housner, G. W. and Jennings, P. C.  ; Generation of Artificial  Earthquakes, Proceed-

    ings of ASCE, EMI, Feb., 1964, pp. 113-150. 
11) Tanabashi  R.  Kobori. T., Kaneta, K. and Minai,  R.; Statistical Properties of Earth-

    quake Accelerograms and Equivalent Earthquake Excitation Pattern, Bulletin of the 
    Disaster Prevention Research Institute of Kyoto Univ., Vol. 14, Part 2, Feb., 1965, 

    pp. 49-68. 
12) Goto, H.,  Toki, K. and  Akiyoshi, T.  ; Generation of Artificial Earthquakes on Digital 

    Computer for Aseismic Design of Structures, Proceedings of Japan Earthquake Engine-
    ering  Symposium. 1966, pp. 25-30. 

13) Shinozuka, M. and Sato, Y.  ; Simulation of Nonstationary Random Process, Proceedings 
    of ASCE,  EML Feb., 1967, pp. 11-40. 

 14) Bolotin, V.  V.; Statistical Theory of the Aseismic Design of Structures, Proceedings 
    of the 2nd World Conference on Earthquake  Engineering, 1960, pp. 1365-1374. 

15) Rosenblueth, E. and Bustamante, J. I.  ; Distribution of Structural Response to Earth-

    quakes, Proceedings of ASCE, EM3, June, 1962, pp. 75-106. 
16) Gray, JR., A.  H.: First-Passage Time in a Random Vibrational System, Journal of 

 Appl. Mech., March, 1966, pp. 187-191. 

17) Howsner, G.  W.; Limit Design of Structures to Resist Earthquakes, Proceedings of 
    the  1st World Conference on Earthquake  Engineering, 1956, pp. 5-1-13. 

18) Hudson. D. E.  ; Response Spectrum Techniques in Engineering Seismology, Proceedings 
    of the 1st World Conference on Earthquake Engineering, 1956, pp. 4-1-12. 

19) Lampard, D.  G. Generalization of the Wiener-Khinchine Theorem to Non-stationary 
    Processes, Journal of  Appl. Physics, Vol. 25, No.  6, June, 1954, pp. 802-803. 

20)  Kobori, T. and Minai,  R. Linearization Technique for Evaluating the Elasto-Plastic 
    Response of a Structural System to Non-stationary Random Excitations, Annuals of 

    the Disaster Prevention Research Institute of Kyoto Univ., No. 10, A, March, 1967, 

    pp. 235-260.



94 T. KOBORI and R.  MINA! 

21) Wang, M. C. and  Uhlenbeck, G. E. ; On the Theory of the Brownian Motion  II, Re-
    views of Modern Physics, Vol. 17. Nos. 2 and 3,  April-July, 1945, pp.  323-342; Select-

    ed Papers on Noise and Stochastic Process Edited by Wax, N., Dover, pp. 113-132. 
22) Caughey, T. K. ; Transient Response of a Dynamic System Under Random Excitation. 

    Journal of  Appl. Mech., Vol. 28, Dec., 1961, pp. 563-566. 
23) Solodovnikov, V. V. ; Introduction to the Statistical Dynamics of Automatic Control 

 systems, Dover, pp. 169-182.




