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Abstract

This paper deals with the three dimensional analysis of foundation structures with
elliptic cross sections when the surface layer is excited by a sinusoidal disturbing force
from the bedrock. First, the effect of earth pressure on an elliptlic cylinder is inves-
tigated, and then the analysis of the frequency response for the displacement of the
elliptic cylinder is discussed.

Our analysis using the elliptic cylindrical coordinates showed that the investigations
in the circular cylindrical coordinates are a special case of our analysis and that not
only the difference in the direction of vibration but also the shape of the foundation
structures has a great effect npon the frequency response of foundation structures in a
semi-infinite elastic stratum.

1. Introduction

So far various theoretical and experimental studies have been made with re-
spect to the aseismic design of bridge piers. At present, however, a reasonable
method of aseiemic design has not yet been established. This is mainly due to
the fact that the physical properties of the surface layer around the foundation
structures are still indistinct. For this reason, the surface layer has often been
treated, for convenience’ sake, as an idealized mechanical system represented by
the linear or non-linear spring constant or the modulus of foundation. These
coefficients, however, have no relation with the shapes of the cross section of the
structures, and they neglect the effects of dynamic earth pressure acting on the
foundation structures. It is clearly the complicated behaviour of the ground
around the structures during an earthquakes that makes the seismic response
analysis of underground structures difficult. Accordingly it would not be too
much to say that the seismic response of a foundation structure is best analyzed
if we can correctly estimate the influence of the dynamic earth pressure on the
underground structure.

From these points of view, Prof. Tajimi developed an analysis of the fre-
quency response of foundations by treating the surface layer as a homogenious
isotropic elastic medium. From his study, however, we can not learn the effect
of the difference in the cross section of the foundation structures because the
object of his analysis is confined to circular cylinders and the effect of the length
of foundation structures on the frequency response.

In this paper we examined what influence the variation of the cross section
from circle to thin plate has on the frequency response of foundation structures.

2. Response Analysis of Surface Layer and Elliptic Cylinder

(1) Equation of Motion for the Surface Layer

Assumptions about the surface layer are the same as those made in the analy-
sis by Prof. Tajimi as follows:—(1) The surface layer is a homogeneous isotropic
elastic medium and is supported by the bedrock. (2) Viscous damping is not
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Fig. 1 Model of Rigid Foundation
Structure and Cross Section

taken into account. (3) Vertical displace-
ment is neglected because it is small
in comparison with the displacement of
the horizontal component,

An elliptic cylinder in a surface layer
of thickness H, the bottom of which is
supported by the bedrock, is shown in
Fig.1 (a). Its elliptic cross section with
major axis 2z and minor axis 26 is shown
in Fig.l (). Transformation from the
cartesian coordinates (z, ¥,z) into the
elliptic cylindrical coordinates (&,7,2)
leads to

x=kcosh £ cosy

y=ksinhg siny + e (1)

z=z
where k=yg2—p?, and 2k is the length
of the interfocal line of ellipse.

By use of eq.(1), the coordinate &,
of the surface of the elliptic cylinder is
obtained as eq.(2).

Eo=tanh"%=—%~ln2ig
If £,=0, the coordinate &, tends to the
interfocal line 2k. When the input ground
motion #g =use**t imparted from the
bedrock excites the system in the direc-
tion of the minor axis, or the direction
of the » axis of ellipse, the equations

of motion of the elastic surface layer are written as follows:

- 29 .
(A+2p) 2;; -2 %)'+2# a(lzgo;) = (% —uow?e“"'sim?) ------ (3)
2 :

G
where /, dﬂatatlon 4 and rotations @, @&», ®. are represented by

!=Rycosh?€ —cos?y

_ 0Clue) | 8(uy) s _ _ _OUy

4= 12 7 29y 26 ez 5 (5)

o gy 0k _ aClue) J

s e 1%y

Besides, the relations between & and coordinates &, » are
0% 0y _ ksinhfcosy

0o0="laE = log A T )
bcosy _
= / - (at 5—50)
ing=—0Y _ _ 9% _ kcoshésing
S0 =05 = " oy 3
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Before solving egs. (6),(7) the boundary conditions for the surface layer are set up
as follows:

(1) »=0 : u=0, (i) p=7/2 : u,=0,

(iii) continuity of horizontal displacements of the surface layer and
the elliptic cylinder at £=&,, (iv) é=co! g¢=0g,=7¢,=0,

(v) 2=0 : u,=0, (Vi) 2=H | rs2=1,:=0.

On the other hand, the boundary conditions for the surface layer which
vibrates in the direction of the major axis are given as well as in the direction
of the minor axis as follows:

(1) »=0 : %,=0, (ii) p=n/2 : u:=0,

(ili) continuity of horizontal displacements of the surface layer and
the elliptic cylinder at £=¢&, (iv) =00 ge=ge,=71¢,=0,

(v) 2=0:u.=0, (vi) 2=H : 1s2=1,:=0.

The boundary conditions (v) of eqs. (8), (9) are always satisfied because of
the assumptions stated previously. Using the boundary conditions (8),the equa-
tions of motion for the surface layer, eqs.(3) and (4), can be solved in the
following way.

Applying the divergence operation to egs. (3), (4), we obtain

2 2

(14_2#)724_,_#};;:_:,) %tfi ................. )

Similarly, applying the curl operation to egs.(3),(4) we obtain
e ~

1726, + a.gi;‘”) =0 62%2;;“) .................. an
in which

pi= 12?953"*"]2;7
The solutions of egs. () and (1) are clearly separable with respect to the variables
&7,z and t. Making use of the potential functions @ and ¥, the solutions for
the displacements satisfying the boundary condition (iv) of eq.(8) may be
obtained as follows:

10D _o¥ N, mnz ., _ -
u= (% o JsinGiE et (m=1,3,5, ) e (2
__ 1 (a0 oY\ mmnz ., 135
Un=—7 <3’? + 3 )sm o ¢ t, (m=1,3,5, 5 S TPRPIRTD 3
Substituting eqs. (12, 19 into eqs. (0), () gives, by virtue of eq. (5),
A=V20 Sin:’g;{z eiwl, (m=1,3) 5) ...... ) ................. (]4)
2B sinTpr el (m=1,3,5 ) e (19
Therefore egs. (10}, (i) become
70+at.®=0 e 19
V'.’w*+ ﬁzmw‘=0 ................. (m
in which
v 77 @ N\
= ZZTH v_‘z Emy ﬁ’”=_27;{&" Em=y (_a_‘;’g.) —m?, (m=1,3,5, Y v 8

Putting #=R (&) - ®(y) with the aid of the separation constant 1 the partial
differential equation (1§ may be separated into the following two ordinary differ-
ential equations:
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‘25}5 +( +—2LCOSh25)R O e 19
2?4.(,2— 2k COSZ?])@=O .................. ©0)

The so]utlons of egs. (9, €0 are the modified Mathieu function, and the Mathieu
function, respectively®., The modified Mathieu functions can be represented in
terms of functions of complex variables analogous to the Hankel functions in
circular cylindrical coordinates; i.e.,

n,(2) @Bnif)y o= 4 (amt)) 1 (1), (3

Megnﬂ (57 Q):(sz(/fL >,.AS|(_1) Azm []’(vl)Hr-\ﬂ (7)2) +]7+ <UI>H ( Z)J)
for (A=agmu)
(1y,(2) (1, 2) 1,2y
Neznn &= (Szml/B|‘2”+")2( 1) Bz,ﬂ []”(z}l)Hy-” (v2) ]ﬂl(’)l)H ()],
for (A=byns)
(l) , (@) )y, (2

(E) q) @2"/140( ”))2( 1) AZr ]r( [)Hr ’ (Un), for (]=a.,n)

h,( r _(3nt2) {1, () ), (2)
Neamz (5) 4)“‘ - (SZ'H-Z/BZ(Z’”Z))Z(_ -[) B27+2 I:]'(UI)H7+2 (2)2) —],-4,2(Z)|)H, (02>:|)
for (2=b2n+2)
. . - (2n+2) (2n+)) (2n+2) @n+) .
in which the coefficients A,, , A » Bysy and B,,, contain parameters ¢
and m. The separation constant 2 is shown as as or b, which is a so-called

characteristic number.
On the other hand, the Mathieu functions are given by

hd 2n

cean(y, 61)=4_‘3(‘]A2, )coszm, (A=azm)
o (ant)y

cemu () §) = 3, A,,4, cos(2r+1)y, (A=azmn)
r=d
o= (anily

Seann (9, §) = %BZH, sin(27+ 1)y, (A=byni)
@ (2n+2)

833,.4,2(7], q)=232,+2 sm(2r+2)1;, (A=b2n+2)
7=y

Since the surface layer is a semi-infinite elastic stratum in this study, the
solution of eq. (9 should be the modified Mathieu functions of the second kind

Me;ii,(g, q) or Ne;il,(g, g) which correspond to diverging waves. Thus for the

case of vibration in the direction of the minor axis we get the solutions of egs.
(18, 17 which satisfy the boundary conditions (i), (i) and (vi) of eq.(8):

[§
O=CrlNepy (&, 0)SCon (9, @) e @)

)
!lf=DmMez,,+.(5,qz)cezm,(yi, g:) e @3
(2n+))

in which Cw, D, are undetermined coefficients. The coefficients A,.,, and

@nt1y . .
4w Consist of g, m and g¢),m respectively, where g¢,, ¢, are shown as fol-

lows:



Vibrational Analysis of Foundation Structures With Elliptic Cross Sections in Elastic Ground 63

o= A () () e
e B ()

2)
Then, the modified Mathieu functions Me;:il (¢, 9), Ne,,., (& q), are to be replaced

by the following monotonous decreasing functions if arguments ¢, ¢, are
negative:

Fekina($ =q") = Gsunes /7By S8y 11 L (00) Ko (00) = Ly (0) Kr0) ), (=)

Gekpnni (€, —q") =<p'm./ﬂA.lwn>§A§f$f“[f,<voz«fﬁ.<vz) + L (0 Er(02)]s (A=bann)

in which ¢’=—¢ if ¢<0.

Since the solutions of egs. (14, 05 giving dilatation 4 and rotation 2&. are
not complete solutions of egs.(3) and (4), we get complete solutions by adding
to them the solution for the horizontal transverse vibration which satisfies the
conditions 4=2#.=0; i.e., the displacements u¢ and %, expanded in the Fourier
sine series are represented by

s . 2
ue=3 g {Coler (80 5eim (0, 01~ Do Moy (6, 00) e (7, 02)

_ 4uek coshg ‘o
MaE?m (w )Slm}} ZH el o
+2 ”%{C'mGékznﬂ(f) —q1")5emn () —q))— D' mFekn (€, —q3")
, O dugk
« Cloni () —qa) — uch;;shg (wg > smy] sin—&7 ST MTZ . giet
s 1 (2) . - (2
u»=Z_!l a5 " {C’"Neznﬂ(f’ q1)86mu (7, @) +DmMey (5, q2) 21 (9, G2)
_ 4wuek sinhg "
MAE?m (a)g ) COSY)] sing7r- 2H e 9

+§ —[C’mGekgnn(E, —dq) )Sezfu—](v; —q )+D Fekam(& l]z')

3
i
%
~~

duyk h .m
. ngnn(ﬁ» —{q2 ) L';mr%lzll 6 (wg ) COSY)] smf}?— .« glot

in which s is the maximum positive odd integer which satisfies the condition

. . o (2% . (2
€2wm>0. Cmy Dm C'w and D’m are the integration constants. Me,,., (&, ¢2)s Neg,

2
(&, ¢)) denote the derivatives of Me;il, GXDF Ne;,,:, (¢, q) with respect to &.

Needless to say u, u, in egs. @), @) satisfy all boundary conditions in eq.(8)
except for the condition (iii) by which the undetermined coefficients Cm, D, are
to be decided. Since the analysis for the case where the arguments ¢, ¢, are
negative can be made in a similar manner only by substituting Feksm. (€, —q2),

Gekynn (¢, —q)) for Mez(:((f, —q2), Ne;i)ﬂ(g, —q.), we shall henceforth represent
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the modified Mathieu functions by Me,o (€, ), Newo (¢, ).

(2) Frequency Response for the Rocking Vibration of a Rigid Foundation Structure

The vibration model dealt with in this section would correspond to caissons
or well foundations. For the vibration in the direction of the minor axis, the
foundation structure is assumed to be a rigid elliptic cylinder which rotates
around the center line of the bottom, or the x axis, with angular amplitude ®.

If u, is the horizontal displacement of the elliptic cylinder in the direction
of the minor axis, then the displacements upe, s, in the directions of & g are
written, respectively, as follows:

m-1
. : 8o asiny 2 (=1 * . mrz
u = z Slnﬁ e“ul-:i_ — 7 - 7 Sin — ,,— egf*t ..o {%‘)
Py¢ = 00 = 7 s me ZH
n-1
; 8pH  acosy o (=D * . mmz
Upyn=(oZ COSH @*¥ = 72— .2 772 -~ SIN—p547 et @n
o QD 7[2 m=1,3,5,"" m3 2H

Putting eqs. @, @) equal to egs. @), ®) by use of the boundary conditions (iii)
of eq.(8) gives

oy (66 @)5€mn1 (9 @1) — DonMeyon, (Z0r @) Cnns (7 02)

m-)

R -

2
C"'Nezrjxl-l (Eny q1) Sépny (77» ar) +DmMe;,.)+| (& q2)cemmn (n q2)

(s B DT .

By virtue of the orthogonality of the Mathieu functions sesm,, (p 1) and cezni( (3, @3)
in the domain of (0,2r), we have the following expressions for C» and D:
mi

c,,,:{ du, (_w)2+ 89:121{ (=1 T

M \ Wg m?

o $2) 2 v ()
J B Scan e e 0o

o fad fad I 2. (2
~bA B+ D A By Me,” €00 | /[ S0 BB el 00|

@0
Ne) (60 00 = (S @+ 1 A B Mo, 6o g Ve, (6000 ], (n=0)
=0, (n+0) )
— 2 3y e N 2. @
D=t () + B D VoAl 5810 e, e 00
~aB) ZCr+ DA B e G a) | /[ S BB Me)” nan |
r=0 r=y r=v (3[)

B, (6o ) = (@41 Ay B ) Me)” (G Ve (60, 0, (n=0)
r=u

=0, (n+0)
When ¢%,<0, the undetermined coefficients Cm, Dn are obtained only by replac-

2 2) .
ing the complex functions Me,()(fo,‘qg), Ne,l (é0,—¢1) by the real functions
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Fek,(&0,—q3), Gek,(£0,—4q)), respectively. Then the relations between stress and
displacement are given in the elliptic cylindrical coordinates as follows:

o¢=2 [igiai;L+ i%g;) }-}-2 { ?aug + z;; 2_717} .................. &7
Ten= [;5__(”" )-!-a;an u%)] .................. 63

When the bedrock vibrates in the direction of the minor axis, earth pressure

p(2) on the elliptic ¢ylinder per unit length is written by neglecting the compli-
cated processes of induction as

@)= fgo(oe « 8inf+ e, cosd) ds = [zx(asinp-oe+ beosy tey)dy

-2 pzw;g [C”'GB Ne,” (0, 90+ Db A" e (g, @)}sm 2 glot
m=],3,5,"" 2H
8poHl  (=1) " duy [ @ \,2 * . mrz ,,
—*élpgrgbpm[——— m N <‘E> ]6,,,(0,,, sinprrgiet oo 60

Thus we get the following overturning moment M around the center line of the
bottom of the elliptic cylinder:

H
M=f p(2)zdz

m-1
@)

=3 prate (2L )( D [CnaB) Ne) (60 00+ Db A} Mey” Gz g e

m=1,35,-¢
m-1
- B (=D 7 duy s y
= ,{-"f;f‘fb( ) ( 1) [ _72‘2 me -+ mmgz _((u_g) }Eamw"ge ¢
......... (35)
in which
_ a_ = (2 M8|[ (fa,Qa) n 2 Nel(Z)(ED’ql)
Qn=[ 5 (B E (A0 e gyt - >2<Bzr+'>m

mn _y & ) 1y M 3= tn 2 2
24, B Ser+val8, /] 2<A2,H>2(Bw>%‘;;+§g’gg

. Nel(g)<50t ‘DR N
Neog (2 +D A Bun) | “

It is clear that egs. @, 89 and (%9 for the elliptic cylinder are entirely similar
to the solutions for circular cylinders. Namely, putting a=54 in eq. 69, we
obtain

) ) 1 r=0
Azrﬂ—anl [0 57’#03

Thus replacing the Mathieu functions in egs. ), 89 with the Hankel functions,
we get the followmg solunons for the circular cylmder
m-1

m? MAE?m \ wg
......... )
and
(B @) | HO(Bnd) 57 /0 HD () () ]
‘Q’”_[ D (aina) T H\® (8 ma) :I/[ H® (@ na) H, (B'ma) 1] “
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in which ¢ is the radius of the circular cylinder, and
T a

a “‘Z:T 7 v_zE’"’ﬂ ,,,a=T ﬁg’"'f"‘:‘/( ‘,‘L) —m2, (m=1,3,5, - D)

wg

Besides, for the case of »/a=0, which corresponds to a thin plate with the
width 2e¢, we have

M=—fjpnaz (%)z(_l)l’g—lgm[_&oﬂi _.(.—1)..T+ _Auo (_‘” )]Ez w?giot

m=1,3,8,"" n? m? mnsim \ wg
......... %0
and
o 2 M ) s m 2 ® n 2 M (63} y
n= (B, A5 Mj'(,,gglgeg J1ECA S8 M,‘:Z'méiz,Zz%
Nel“(fo;&l AN
Naree ay (BCr D AmBirs) .

On the other hand, the equation of the rocking motion of the elliptic cytinder
is written as
[¢+kr§0=m0qu2Hg e"""-l-M ......... (w)
in which 7 is the moment of inertia around the center line at the bottom of the
elliptic cylinder. Substitution p=ge’=! into eq. 49 yields

m~1
16apr{ (=1
mng_ por ém,s, poog Om
po=— — —— — JE— B (4'3)
— T+ 32‘2pr zz\ £ Q”'
m=1,3,5

We adopt the notations used by Prof. Tajimi in the analysis on circular
cylinders to facilitate the comparison. For w=0, the third term in the denomi-
nator of eq. @) corresponds to the static horizontal spring constant. If we let
¥ denote the ratio of this static horizontal spring constant to that for the rock-
ing vibration, % is shown as follows:

3
324pr $ 2 Qm _ _ 32abpl % Oms __op
g%l,a,s,é "t w wgmz-:r a5, ME =k “
Now set
m-1
2 O - —1y
Z=:1 3,8, sz_mT ﬂél 3,5, (?’)’t2 - O
I s fiif,, — =gyigs e 5)
5 e 5 Qs
=1,3,5, m? 1,5, ME

in which fi, f» g and g, are real values. Then from eq.@3, Sfi+ife in eq.
49 represents the dynamic spring effect due to soil reaction and g, +1g, shows the
dynamic effect of the earth pressure or soil reaction. By use of an expression
«(2) which is the horizontal amplification factor of foundation structures at an
arbitrary. height 2 from the bedrock, we obtain

qu ) - ra(gitign) )
E H | 2 (Tg)

_ Qo_zizfo =
£ (2) | i l ( >+x(f.+tfz)

Ua
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in which i6=yT/m, @s=vVk,/H mo=pmabHs, [=my(b?/4+H:*/3).
For the case of b/a=0, the amphflcatlon factor £(z) becomes

m-1

5 Doy

. T _z m=1,3,5,""" m2 (_(13_ 2
f@ = | 1= FT 2 (%)
2 em
m=|,3,5)'“$m m!
_ n 2 gitig S
- TR () @

where 2. must be computed by use of eq. 4.

Thus we have analyzed the frequency response of an elliptic cylinder vibrat-
ing in the direction of the minor axis. In the same way, the amplification
factor £(2) in eq.@) applies to the vibration of an elliptic cylinder in the direc-
tion of the major axis, though 2 must be calculated from

~24,"5] '§<2r+1>Aw.le+.]/ [2@42;,) Z§<B§ll.>3 %Z'ZZ e g

Nel(Z) (‘50) d ) - 5 @ AN
Ve gy~ (@ +DAnEL)] @

(
in which the coefficients A;lil, B2,Il, are functions of ¢, m and ¢, m, respec-
tively. The arguments g,, ¢, are defined as in eq. .
Besides for the case of 4/a=0, the amplification factor #(2) takes the same
form as eq. @), except that £2, is represented by

,,,_(B“’fZ (Agn) Mo ® (£, 91) [Z(Az,i.) E(Bw * Moi (£,0)

Me ™ (¢, q1) Me @ (&0, )
. Ney® (g, q0) _ WMo NTT
Nel—LE) (60’ QQY <;_2(27/+ ]')AZV‘HBZYH) ] 49

in which the coefficients A;:,, B;:,and the arguments ¢,, ¢, must be treated in
the same manner as in the analysis of an elliptic cylinder vibrating in the direc-
tion of the minor axis.

With regard to the static spring constant k£, for the rocking vibration of a
rigid body on the surface of a semi-infinite elastic medium, Prof. Timoshenko
has presented the following relation between %, and other physical constants:

e

b0 A e E
where p,* is density of elastic medium, »¢* velocity of transverse wave in elastic
mediam, /o* geometrical moment of inertia at the bottom section of the rigid
body and A is the bottom area of the rigid body. For the case of vibration m
the direction of the minor axis, we have A=nrab, I,=nab?/4.

Now supposing that C,*, C,* are the coefficients including these physical
constants when neither the densities of the surface layer and the bedrock nor
the velocity of the transverse wave in the surface layer are variable, the para-
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meters X and ws/wg are written as

L A e T 6
%;-:ka\“/ % /l/TbH‘F% ......... 6
for the case of vibration in the direction of the minor axis, and
s B 6
Z; :Cz*é/%/l/%_}_% ......... 64)

for the case of vibration in the direction of the major axis, in which y is the
same as in eq. ).
(3) Frequency Response for the Elastic Vibration of a Flexible Foundation Structure
Pile foundations would correspond to this case, for which the following assump-
tions are considered. (1) The foundation structure is a flexible cylinder with an
elliptic cross section. (2) The superstructure is not considered. (3) The bottom
of the cylinder is rigidly fixed to the bedrock as shown in Fig. 2.
z Let #p(2, t) denote the relative displace-
i ment of this flexible cylinder to the bedrock,
then the equation of motion of the elliptic

7777 cylinder is written as follows:
Pp*nab—azu" +ELYY o prap e
ar "oz pras 5
+p(z) ......... (55)

in which p(2) is the soil reaction due to
earth pressure acting on a unit length of
elliptic cylinder analogous to that in eq.
). The deflection U,(2) of the elliptic
cylinder can be expanded in the series of
the characteristic functions y.(k.2) of a
cantilever,

up=Up(z)e’-“’t=ZIA;&‘/}p(kpZ)eu' ...... (%)
P

IR Q IR 7R 7K 7R 7R 7R where A, is the undetermined coefficient
and k.H is the characteristic value. Thus

Fig. 2 Foundation-Structure for the elastic vibration in the direction
Systems Considered of the minor axis the following simulta-

neous equations on the undetermind coefficients C., D are obtained by consult-
ing the condition of continuity between the displacement w,(z,?) of the elliptic
cylinder in eq. 6§ and the displacements %, #, of the surface layer in egs. @),

(25) at €=fg

ue=1tp sin f)=up%sin77 = %Z-sin yﬁAm,,(k,,z) etet
=1

2 1 St 2 .
=2 - _“T{CMNE, )(En, 4))891(77, D) —DmMe: )(Eo, g3)cé, (;7, qs)
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duck coshéy [ o .. ] o MAZ .
,w<w3>smn sin—pzr—e 1]

U, =1up COS 0=up%00577=LlcosnzlA,,m,(kﬂz)e“'
pe

d (2 . (D)
=’§=:’ 05 —}‘ [cmNe| )(50) QI)Sél(UJ QI) +DmMe| (501 42)(/‘9! (771 42)
duok sinh¢, (@ \? C_MRE
- T (mg> 00517]511'1 SEf gtot 9
By virtue of the orthogonality of sin(nzz/2H) (n=1,3,5, ) in the region of

(0, H), the following expressions for Cm and D, are obtained:

=[2I§A,,G,,+ dug (L)][ B‘”Z(A;:,)ZMe, (60, a2) — A, )_',‘(27'+1)A,,,

MrEim \ We

BorMe,” 6000 | /[ Ehay) EBuri) W) (6o a2 )" (0 a0~ (524 1)

Ay Bin ) Me,” (&, g)Ne, T e 69
® 4 ) =
Dn= 254,64+ (2 ) [0A)" 5B e 6o a0 —aB" Sor+ D Au,

)] (2

BouVe, (6n ) |/ [ S (B Me)” G ad Ve, o an~(Z@r+D

2
A Bon) Mo, GuadNe, o] e Ul
where
17 .
Gomgr | muka)sin- B2 —dz, (m=1,3,5) e )

Thus we get the soil reaction due to earth pressure acting on the 6111pt1C cylinder
from eq. 84 as follows:

$() == Sorwnein(CaaB, " Ne, (60, 0+ Db A, Me, (g0, qp)sin—"577 et
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< ><**>( )5“’ 42—(*1'>2<*]§->252m» 2m=(%>z—m?, (m=1,3,5, )

The coefficients AM, and Bzm peculiar to the Mathieu functions are the func-

tions of g., m and ¢,, m, respectively. On the other hand, the following relation
is obtained with the aid of the natural frequency w, (¢=1,2,3, - ) of the elliptic
cylinder in the air.

Ely- g n%gli”zL*p,*mbwzy nlluz) )
Now the motion #g of the bedrock is assumed to be

ue=wugetet @)
as in the case of the rocking vibration of the rigid elliptic cylinder. Substi-
tuting eqs. 69~69 into eq. 65 leads to

PP*”abZl. (0 —0?) Ay (k,2)
p=

2
= ps¥nabuw— z:mabgzmwgzgm[zzA G+ (L)}sin—mﬁ_ o)

m=1,3,5," Ml m®\ wg 2H

By virtue of the orthogonality of the characteristic functions 7,(k.2z), the above
equation yields

()~} a0, =u@+ P+ 54,0, w=1,23-) o &
@ n=l
in which
1 ¢#
0.= 3\, 1.k dz
1 ¢#
Fo=grf,neodz
R
o 00 =135, MT mv e 68

Ou=—-L 3 2( g ) £2,00G.G,

pp m=1,3,5,"

Gom o ko) sin-"PF—da, (m=1,3,5,--)

Eq.67 is the set of equations concerning the undetermined coefficients
A, (v=1,2,3, -+ ). The normalized characteristic function 7,(k,2) of a cantilever
is given in the following form:

n(k2) =4, [sinhkuz —sink.z— sinhk, 7 + sink, /7

—m]_] (cosh k.z—cos k,2)| -ooeres 69
in which 8, is a constant. The coefficient 8, is determined from the normaliza-
tion condition

p-4 2
- o) az=r Q0
We consequently get
f— coshkH+cosk,l )
*~  sinhk H+sinkH

When kyH3r/2, carrying out the integrations in eq. @9 gives
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If kyH=mnr/2, Gy is represented by

1 il )
G;Tku}r[(—n E(p-DsinhkH-p(+kRH) | e )
where the characteristic values 2 H (v=1,2,3, - ) are given as follows:
k|H=1875, sz:4694, k3H=7855, """""""" (74)

The foregoing analysis was made for the case of elastic vibration in the
direction of the minor axis. The method of analysis for the case of elastic vibra-
tion in the direction of the major axis is identical to the above-mentioned case,
where £, is the same value as in eq.@# and the arguments g,, ¢ in eq.@.

Consequently, the amplification factor £(2) for the horizontal displacement
at an arbitrary height z from the bedrock is represented by

K(Z) _ Up(2)+uo ‘ _ \ 14 l_éA"l Uy(k,uz) ________ 75
Uq U o=y

For a special case where the foundation structure is a circular cylinder, the
same treatment can be made as in the case of an elliptic cylinder only by replac-
ing the Mathieu functions by Hankel functions.

Besides, for the case of b/a=0 which corresponds to a thin flexible plate, the
simultaneous equations @7 for the direction of the minor axis become

—'Zw:A,‘@W:uoD., w=1,2,3, - Y o o9
r=1
in which
_ 3 2 [ o\
b.= 7%‘-:],3}5,"' mn-< wg ) QG 1
......... (77)
@"ﬁ‘= _2 EzQOG.Gﬂ J
m=1,3,6,"
and from eq.6) we get
p=0 @9

In this case 2» takes the same form as in eq.@) since the vibration of a flexible
thin plate, unlike the vibration of rigid thin plate, does not restrict the motion
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of surface layer, the soil reaction p(z) due to earth pressure tends to zero.

The natural frequencies o, (z=1,2,3, -+ ) of the cylinder in the air and the
fundamental natural frequency we of the surface layer are related to both the
embedded part and the cross section of the cylinder; i.e.,

o _~FRHEE S gy (Th VL Op _(RHN o,
=g 1= () wg_(le) e @
for the case of vibration in the direction of the the minor axis, and
o1 _ X (R H)? @ N bo .. @ _(RHAN
wg =Ce Hla ]/ 1_<‘b-> b ’ wg _(le wg’ &0

for the case of vibration in the direction of the major axis, where C.” is a
coefficient including the non-dimensional physical constants E,/E, p/p,,*,
(4} [4}]

(4) Characteristic Numbers a,, &, and Coefficients A, B4

The separation constants @, @n., O and by, are the so-called character-
istic numbers. These characteristic numbers are the functions of the arguments
4\, q; and m. Only the characteristic numbers a,, b, are necessary in this study.
The outlines of a,, b, are as follows;

When ¢ is extremely small,

1 1 1 11 49

@=ltq-—g¢'= 5 ?'~ 1536 7'V memes T seosns O
topm O TEaems THO@ e &
sarigs s 0@ e &
then
V=1
RS S S W TS TR
;I)=£jﬁq2[l+%4+ it } ......... 89
O WY N DO |
L ST |
and
B, =
;”z_%q(l_%,ﬁ.iézqz_ﬁlo,s,,qa+ ......... ]
0N S Y R I o
ey el J
B hfim ]

On the other hand, when g is rather large, the characteristic numbers g,

b, can be obtained as
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o \\/\ﬂ Relations between the character-
< VAR t | g istic numbers @, b, are conju-
_|O, S 0 \\ sbl 10 gate for the same values of ¢ as
/ \(/ shown in Fig.3. Now putting
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Fig.3 Values of Characteristic Numbers a, b, for ¢
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From these relations, A, :1A; 1Ag 1o can be obtained.
In the same way Bm B(“ Bm ---------------- can be derived with the aid of

o

the following relations by putting B;”/B, =, B(”/B3 4u3,Bm/Bm—u5, ...... )
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Uy=——" 3= - —_— y  rreerees N
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Now we shall normalize the Mathieu functions ce| (.92), sé: (3. ¢)) for the case
of vibration in the direction of the minor axis as follows:

1 o= 1 2z 9

TL} [ce.(:y, q;)]d)7= ?.[o [MI(%QI)] d;?=1 PO ®9
Then we get

T e N -

L n 8] . _
in which the coefficients A4,,,, and B,,)H consist of g, m and g,, m, respectively.
Even for the case of vibration in the direction of the major axis, the egs.§) ~
60 may be used in common with the vibration in the other direction, though the

o ) ) , . )
coefficients A,,., and B,,,, consist of ¢, m and g;, m, respectively. The Mathieu

. ) . L. o
functions rapidly converge by use of these normalized coefficients A, ,

[(8)] (ny (8D th

A, ,A AAAAAA and B, ,B; ,B;, , - . In the case of ¢<0, however, the Mathieu

functions ce.(y,—q), se,(,—¢g) can be treated in the same way as in the case of
¢>0.

3. Consideration of Numerical Computation
Since the principal aim in this study is to knaow the effect of the shape of
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a foundation structure in elastic ground, the numerical computations have been
made for varying shape parameters b/a, a/H, and the ratio of wave velocity /o1,
transverse to longitudinal, has been fixed at 1/3. The numerical computation of
the amplification factor for the horizontal displacement at the top of the cylinder
have been made only for the case where the total length of the elliptic cylinder
is equal to the thickness of surface layer.

1) Consideration of the Rocking Vibration of the Elliptic Cylinder

From Fig.1 (a), we set H,=2H;,=H. The coefficients C;*, and C,* in eqgs.
G)~G69) are fixed to 0.02 and 1 respectively. From egs. @) and @9, it is considered
that the quantities f,+1/; and g,+:g; express the dynamic effect of the horizontal
spring constant and the effect of earth pressure due to the surface layer, respec-
tively.

(1) When a/H=constant

Figs. 4,5 and Figs. 8,7 are respectively, the plots of f,+:f; and g,+:g, for
various values of b#/a. For the vibration in the direction of the minor axis as
shown in Fig.4, the real part f, slowly decreases in the case of w>w,; and
sometimes becomes negative. On the other hand, the imaginary part f, sharply
increases for w>wg. These tendencies are more remarkable as the cross section
tends to a plate which is a degenerate form of ellipse. This would mean that
the response of the cylinder becomes much greater as the cross section becomes
thinner because a thin rigid plate is readily subjected to the influence of the
surface layer.

The imaginary part f, is so predominant in f,+if, with increasing frequency
that f,+if; will behave like a damping factor. Namely, it follows that the
surface layer has a damping effect upon the rigid foundation structure, because
the phase difference tan~'(f,/f,) between displacements of the bedrock and the
cylinder tends to =/2 with the increase of frequency. Besides in such a case as
the absolute value | f,+if, | is mostly influenced by the imaginary part f, it
has the effect of diminishing the amplification factor in eq. @3.

As to the vibration, however, in the direction of the major axis shown in
Fig.5, fi+if, exhibits little damping effect, since the imaginary part f, increases
so slowly with the increasing frequency of excitation in the region w>w; even
for the thin cross section and the real part f, is a constant value independent of
the frequency of excitation. In this case the phase difference tan~'(f,/f\) be-
tween the response of the structure and the disturbing force also approaches the
value of z/2 with the increase of the frequency of excitation.

Fig.6 shows the effect upon the cylinder due to earth pressure. The real
part g, increases sharply when the frequency w of excitation is close to the nat-
ural frequency wg of the surface layer. When w>w; the value of g, turns from
positive to negative and the absolute value | g, | rapidly decreases. Consequently
in such a case, the rigid foundation structure is subjected to the earth pressure
with an opposite phase to the bedrock motion. On the other hand when w>wy
the imaginary part g, also rapidly decreases and the effect of earth pressure
approaches a constant value with the increase of the frequency of excitation.
Regarding the vibration in the direction of the major axis shown in Fig.7, it ap-
pears that earth pressure has no relation with the difference in the cross section
of the foundation structure but has an almost constant tendency of response.

We can obtain the frequency response of the rigid elliptic cylinder by making
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Fig. 6 Dynamic Effects of Horizontal Earth Pressure
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use of f1+1ify g +ig: as shown in Fig.8 and Fig.9. Regarding the vibration in
the direction of the minor axis, when the natural frequency ws of the rigid elliptic
cylinder is smaller than the fundamental natural frequency w, of the surface
layer, the peak of the resonance curve is not clear about ws, but such a value
of ws has an effect broadening the resonance peak due to the fundamental fre-
quency of the surface layer. In such a case, the elliptic cylinder sometimes
produces a greater resonance than the thin plate which is easily subjected to
the influence of the surface layer. As the frequency w of the excitation be-
comes larger, the response tends to be constant regardless of the cross sectional
shape of the rigid elliptic cylinder.

As we see in Fig. 8, the natural frequency ws for the vibration in the direc-
tion of the major axis tends to infinity as the shape of the cross section gradually
becomes flat. In this case, the cylinder is not greatly affected by the resonance
of the surface layer but mainly by the resonance at w=w. . The peak of the
resonance curve at @=~w; becomes much higher and narrower as ws approaches
wg. On the other hand as ws diverges from w,, the peak of resonance at w=w;
gradually decreases and the region of the resonance due to w~w. becomes broader.
Besides, the response of the cylinder becomes independent ‘of the shape of the
cross section as the frequency of the disturbing force increases.

(2) When b/a=constant

When the parameter a/H varies, in which H is the length of an embedded
part of the foundation structure, Fig.10 shows that the effect of rigidity of spring
due to soil reaction is greatly dependent upon the thickness of the surface layer.
As the frequency of excitation increases, the real part f, which eventually takes
on negative values slowly decreases. On the other hand, the imaginary part f
sharply increases in proportion to the frequency of the input source. This ten-
dency is remarkable for a stumpy cylinder. Thus f,+4/, has the damping effect
because it becomes mainly dependent on the imaginary part f; as the cross section
of the cylinder varies from circle to thin plate. In this case such a tendency
becomes more remarkable as the thickness of the surface layer becomes smaller.

In the case of vibration in the direction of the major axis as in Fig.11, when
o>wg the real part f, remains nearly constant and the imaginary part f, increases
in proportion to w/wg. As in Fig. 10 the imaginary part f, tends to decrease
as the real part f, becomes larger.

Anyhow from this viewpoint it follows that in the case of vibration in the
direction of the minor axis, fi+4f; has a great damping effect upon the vibration
of a stumpy cylinder, because the phase difference tan™'(f,/f) comes nearer to
#/2. Judging from Figs. 12,13, on the other hand, even for vibration in any
direction the dynamic effect of earth pressure is not so remarkable.

The real part g\, however, becomes much larger and the imaginary part g,
becomes much smaller as H increases. This suggests that the dynamic effect
of earth pressure increases because the phase difference tan~'(g./g)) becomes
smaller with the increase of H. As in the case of 3.(1), the absolute values of
both the real part g, and the imaginary part g, approach constant values in the
region of w>wg as w increases.

Making use of these values, the diagrams of the amplification factor at the
top of the cylinder are shown in Figs. 14,15 for the various values of parameter
o/H . In the case of vibration in the direction of the minor axis there is no
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resonance due to w=ws but the effect of broadening the resonance region of the
surface layer due to w=wg. Such a condition is similar to the response of the
thin plate which is easily subjected to the influence of the surface layer. It is,
however, considerably different from the response for the case where a/H is con-
stant, that the response of the cylinder rapidly decreases and comes in a
constant value when w<wg, no matter what resonance due to w=wy is very large.

On the other hand in the case of vibration in the direction of the major axis
the value of ws decreases and resonance due to w=wg increases as H increases.
Diminution of H, however, has not so much effect upon the resonance of the
surface layer but a great effect upon the resonance due to w=ws. This means
that the effect of soil reaction due to the surface layer decreases as ¢/H becomes
smaller, though the effect due to the reaction of the bedrock increases. Thus
the bedrock will sometimes have a great effect upon the response of the
foundation structure for the case of the shallow embedded part of the struc-
ture. Consequently it follows that the great or small depth of the embedded part
has a considerably different influence upon the response of the foundation struc-
ture even for the case of the foundation structure with the same cross section.
2) Consideration of the Flexural Vibration of the Elliptic Cylinder

Figs. 16,17,18 and 19 are the diagrams of the {requency response curves
for the different values of the parameter E»/E,, which is the ratio of the elastic
constants of the foundation structure to that of the surface layer. The coefficient
C.* shows the degree of hardness or softness of the surface layer in comparison
with the cylinder. In these numerical computations the inner part of the cylinder
is treated as being filled with the same soil as that surrounding the cylinder.
The thickness of the cylinder is always kept at 2/3 of the outside half length a
of the maior axis. For facility in making the numerical computation, the first
and second mode are taken into account. These figures show that the fundamental
natural frequency w, of the cylinder itself is generally smaller than @* of this
system, which consists of the cylinder and surface layer, except for the extreme-
ly large value of E»/Eg. This tendency is very different from the case where
, is always greater than o * for the case of the submerged cylinder®. Such a
different phenomenon may be explained as follows. When the cylinder is sub-
merged, the water acts on the cylinder only as an inertia force, so that the water
behaves as if it were the additional mass to the cylinder. Consequently the
fundamental natural frequency w* of the water-cylinder system becomes smaller
than @, of the cylinder in the air. On the other hand, Figs. 16~19 indicate ihat
the ground surrounding the cylinder would behave rather as a spring than addi-
tional mass when the cylinder is embedded in the elastic ground. Accordingly
w* tends to be larger than w,. This fact will possiblly ensure that in the analysis
of the foundation structure embedded in the ground, the ground around the
foundation structure may be estimated as the mechanical spring without the mass.

Figs. 16,17 may correspond to the diagrams for relatively hard ground. Ei-
ther in the case for the vibration in the direction of the minor axis or the major
axis, as shown in Figs. 16,17, w/* is about 130% larger than w, for the case of
the circular cylinder. The surface laver has a greater effect upon the cylinder
than in the case for the rocking vibration, though the resonance due to w=ew*
is not so remarkable as for the rocking vibration. This means that the flexible
cylinder is more easily affected by the vibrational mode of the surface layer
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than the rigid cylinder. In the case of the vibration in the direction of the
minor axis as in Fig. 16, w* also rapidly decreases because the rigidity of the
cylinder quickly decreases with the flatness of the cross section. When the
cylinder becomes so flexible as to be w,*<wy, the resonance of the cylinder owing
to w=w* does not occur because of being subjected to the dominant influence
of the surface layer.

On the other hand in the case of the vibration in the direction of the major
axis, as illustrated in Fig.17 the variation of the cross section has not so much
effect upon the rigidity of the cylinder. In spite of such a tendency, the
increase of w* accompanied by the flatness of the cross section would arise owing
to the fact that transverse vibration is predominant rather than longitudinal
vibration in the behaviour of the surface layer, namely that the surface layer
acts just like the spring rather than the additional mass.

Figs. 18,19 are the diagrams of resonance curves in which the ratio E,/E; is
10 times as much as that in Figs.16 and 17. In this case w/* is about 20%
larger than o, for the case of the circular cylinder. We know that the funda-
mental natural frequency w* of this system approaches the fundamental natural
frequency w, of the cylinder in the air, when the surface layer becomes consider-
ably softer. In the case of the vibration in the direction of the minor axis, the
resonance owing to w=~=w* is not so distinct bui the response of the cylinder
becomes noticeably greater with the flatness of the cross section when w,>ay.
This clearly suggests that the soil reaction tends to be easily subjected to the
influence of the shearing vibration with the flatness of the cross section for the
vibration in the direction of the minor axis.

On the other hand the fundamental natural frequency w* of this system ex-
ceeds 3w, in the case of the vibration in the direction of the major axis as in
Fig.18. In such a case where w/wy<3, the response of the cylinder takes a
small value as the cross section approaches a circle. The difference in the cross
section, however, has not so much effect upon the response of the cylinder as in
the case of the vibration in the direction of the minor axis.

4. Concluding Remarks

In the analysis of the present study, we have expanded the response analysis
for a foundation structure with a circular cross section developed by Prof. Tajimi
to a general form governing the dynamic behaviour of foundation structures with
various cross sectional shapes. Besides, it has been shown from the numerical
cornputations that not only difference in the embedded length but the difference
in the cross section leads to different responses of foundation structures.

When the foundation structure is rigid, the following conclusions are ob-
tained:-

(1) Different direction of vibration gives a different response of the foundation
structure except for a circular cylinder.

(2) In the case of vibration in the direction of the minor axis, the damping
effect of soil reaction increases not only as the shape of the cross section becomes
flatter but as the embedded length becomes smaller.

(3) As the embedded length of a structure becomes greater, the effect of earth
pressure increases, though the difference in shape of the cross section has not so
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much influence upon the earth pressure. .

(4) When the natural frequency of the foundation structure is smaller than that
of the surface layer, resonance of foundation structure does not occur even when
the frequency of excitation coincides with the natural frequency of the structure;
otherwise there is resonance.

(5) In the case of vibration in the direction of the major axis, the damping effect
which the surface layer exerts on the vibration of the structure is remarkable
for a stumpy structure.

On the other hand when the foundation structure is flexible, the following
conclusions are obtained:-

(1) The natural frequency of the system is generally larger than that of the
structure in the air. When the surface layer becomes relatively soft, both natural
frequencies approach each other.

(2) The great resonance of the foundation structure will take place when the
exciting frequency coincides not with the fundamental natural frequency of struc-
tures but with that of the surface layer.

{8) As in the case of the rocking motion of a rigid structure, the flexible struc-
ture is also greatly affected by the surface layer, with flattening of the cross
section in the case of vibration in the direction of the minor axis.

(4) For the case where the fundamental natural frequency of the structure becomes
larger than the second natural frequency of the surface layer, the response of the
structure tends to be remarkably small.

In these theoretical analyses and numerical computations, the superstructure
of the foundation structure is not taken into account. It is clear, however, that
such a problem can be treated in the same way as our analysis. When the
seismic response of foundation structure with the elliptic cross section is analyzed
for excitation in an arbitrary direction, we can obtain the exact method of aseis-
mic design for foundation structures in the ground.

Finally, it is acknowledged that the numerical computations were carried
out on digital computer KDC-II of the Kyoto University Computation Center.

Notations

up(z, 1) : relative displacement of elliptic cylinder to the bedrock at an
arbitrary height z from the bedrock

a, b : half lengths, respectively, of the major and minor axis of
ellipse

k gt (@>b)

&o : coordinate on the surface of elliptic cylinder

Uo : maximum displacement of bedrock

L op : Lamé’s constants

o : density of surface layer

) . frequency of excitation

wg : fundamental natural frequency of surface layer

R : fundamental natural frequency of rigid elliptic cylinder

4 : dilatation

By, By, @2 : rotations around ¢, », 2z axes, respectively

8 : angle between x- axis and a tangent to the hyperbola
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Ue, Uny, Uz : displacements in the direction of & », 2, respectively

ge Gx : normal stresses in the direction of &, #, respectively

Ten : shearing stress in the £—y plane

42 : Laplacian

o, ¥ : potential functions concerning displacements

H : thickness of surface layer

o1, : velocity, respectively, of longitudinal and transverse waves in
surface layer

1 : separation constant

R, ® (p : functions of single variable, &, 7, respectively

Qinet, Gamy byms1, bamea 1 Characteristic numbers concerning the Mathieu functions

/12(11., B;:, . coefficients peculiar to the Mathieu functions

Cm, Dm, C'm, D'm + integration constants

s : maximum odd positive integer satisfying £,,2>0

I : angular amplitude of rigid elliptic cylinder

@0 : maximum angular amplitude of rigid elliptic cylinder

Upy ey Ups 4 . displacements of rigid elliptic cylinder in the directions of ¢, 7,
respectively

p(2) : soil reaction due to earth pressure per unit length of elliptic
cylinder

M : overturning moment of rigid elliptic cylinder around the center
line of the bottom

My : total mass of rigid elliptic cylinder

H; : total height of rigid elliptic cylinder

I : moment of inertia around the center line of the bottom of the
cylinder

Ry : spring constant for rocking vibration

be : ratio of static horizontal spring constant to that for rocking
vibration

x(2) : amplification factor for rigid elliptic cylinder at an arbitrary
height from bedrock

o05* : density of bedrock

ve* : velocity of transverse wave in bedroclk

L : geometrical moment of inertia at the bottom surface of rigid
body

A : bottom area of rigid body

Vb : Poisson ratio of bedrock

cx Cz* : coefficients containing various physical constants

op* . equivalent density of elliptic cylinder estimated to the total
cross section

E : Young’s modulus of flexible elliptic cylinder for real cross
section neglecting inner section

Iy : geometrical moment of inertia for real cross section neglecting
inner section

ag, by : half lengths, respectively, of the major axis and minor axis

in inner cross section of elliptic cylinder
Up(2) . deflection of foundation structure
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A, : undetermined coefficient concerning characteristic function

7. (Ru2) : characteristic function of cantilever

kH : characteristic value of cantilever

w, : natural frequency of cantilever in z- th order

w,* : natural frequency of the surface layer-flexible cylinder system
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