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                                Abstract 

   This paper deals with the three dimensional analysis of foundation structures with 
elliptic cross sections when the surface layer is excited by a sinusoidal disturbing force 
from the bedrock. First, the effect of earth pressure on an elliptic cylinder is inves-
tigated, and then the analysis of the frequency response for the displacement of the 
elliptic cylinder is discussed. 

   Our analysis using the elliptic cylindrical coordinates showed that the investigations 
in the circular cylindrical coordinates are a special case of our analysis and that not 
only the difference in the direction of vibration but also the shape of the foundation 
structures has a great effect upon the frequency response of foundation structures in a 
semi-infinite elastic stratum. 

1. Introduction 

   So far various theoretical and experimental studies have been made with re-
spect to the aseismic design of bridge piers. At present, however, a reasonable 
method of  aseiemic design has not yet been established. This is mainly due to 
the fact that the physical properties of the surface layer around the foundation 
structures are still indistinct.  For this reason, the surface layer has often been 
treated, for convenience' sake, as an idealized mechanical system represented by 
the linear or non-linear spring constant or the modulus of foundation. These 
coefficients, however, have no relation with the shapes of the cross section of the 
structures, and they neglect the effects of dynamic earth pressure acting on the 
foundation structures. It is clearly the complicated behaviour of the ground 
around the structures during an earthquakes that makes the seismic response 
analysis of underground structures difficult. Accordingly it would not be too 
much to say that the seismic response of a foundation structure is best analyzed 
if we can correctly estimate the influence of the dynamic earth pressure on the 
underground structure. 

   From these points of view, Prof. Tajimi developed an analysis of the fre-
quency response of foundations by treating the surface layer as a homogenious 
isotropic elastic medium. From his study, however, we can not learn the effect 
of the difference in the cross section of the foundation structures because the 
object of his analysis is confined to circular cylinders and the effect of the length 
of foundation structures on the frequency response. 

   In this paper we examined what influence the variation of the cross section 
from circle to thin plate has on the frequency response of foundation structures. 

 2. Response Analysis of Surface Layer and Elliptic Cylinder 

 (1) Equation of Motion for the Surface Layer 
   Assumptions about the surface layer are the same as those made in the analy-

sis by Prof. Tajimi as follows:-(1) The surface layer is a homogeneous isotropic 
elastic medium and is supported by the bedrock. (2) Viscous damping is not
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                                 taken into account. (3) Vertical displace-
                                 ment is neglected because it is small 

 in comparison with the displacement of 
                                    the horizontal component. 

                                    An elliptic cylinder in a surface layer 
                                 of thickness H, the bottom of which is 

                                 supported by the bedrock, is shown in 
 Fig.  1 (a). Its elliptic cross section with 

                                 major axis 2a and minor axis 2b is shown 
 in  Fig.1 (b). Transformation from the 

                                 cartesian coordinates (x, y, z) into the 
                                 elliptic cylindrical coordinates  (E,  g,z) 

                                 leads to 

 0  x=k  cosh  e  cos  g  (a)  
y=ksinh  e  sin  g  (1) 

 f(t)  z  =2 
                                   where  k=,,hz2_b2, and 2k is the length               

• b 

 Ake of the interfocal line of ellipse.                                     By use of eq. (1), the coordinate  ED 

                               of the surface of the elliptic cylinder is  MIRA obtained as eq. (2). 
         a X                                     e

o =tanh-, ln a+b  (2)                    a —b 
 If eo  =0, the bthe coor2adinateED tends to the 

                                 interfocal line 2k. When the input ground 
                                      motion ug  =uceifrit imparted from the 

              (b) bedrock excites the system in the direc-
  Fig. 1 Model of Rigid Foundation tion of the minor axis, or the direction 

         Structure and Cross Section of the y axis of ellipse, the equations 
of motion of the elastic surface layerare written as follows: 

 ()+2p)me        ad-2p mvath.+ 2pa(lateo-,)( a224,  at,  (3) 

                      ths2u,,  (2+2p) mv —2pa(kblaz,)a+2pp(aat,— uow2ehocos (4) 
where 1, dilatation  d and rotations  ii5t, .(1;„,  toz are represented by 

 1=  kkosh'e  —  cos2,2 

  all  agu,)au,         +  
, 24)e  Paepa ?,az  (5)    duea(1u,) 1 

 2th"a
z'Paeal  

Besides, the relations between 0 and coordinates  E,  g are 
        ax __  k  sinhe  cos*    cost)—  The la

>)  (
6)  b  cos

)/                          (at  e =e0) 
                 1 

 sin8—  axk cosh esin72  1The  la
)?  —   (7) 

 a  sin)?                         (at  e =50)
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Before solving eqs. (6), (7) the boundary conditions for the surface layer are set  up 
as follows: 

(i)  22=0 :  24=0, (ii)  p=sr/2 :  U,=0, 
(iii) continuity of horizontal displacements of the surface layer and   (8) 
the elliptic cylinder at  e=e©, (iv)  e=00:  ac=a,=.n„ 

(v)  z  =0 :  122=0, (vi)  z=H :  res=7,2=0. 
   On the other hand, the boundary conditions for the surface layer which 

vibrates in the direction of the major axis are given as well as in the direction 

of the minor axis as follows: 

(i)  22=0 :  u„=0,  (ii)  2)=22/2 :  te=0, 
 (iii) continuity of horizontal displacements of the surface layer and    (9) 

the elliptic cylinder at  e=e0, (iv)  e=.:  aE=ec,=z-e„=0, 

(v)  z=0:  uz=0, (vi)  z=  H  :  2-22=r„:=0. 
   The boundary conditions (v) of eqs. (8), (9) are always satisfied because of 

the assumptions stated previously. Using the boundary conditions (8), the equa-
tions of motion for the surface layer, eqs. (3) and (4), can be solved in the 
following way. 

   Applying the divergence operation to eqs. (3), (4), we obtain 
            a24a24  (2±2

9)1724"-az3-1°at2   (10) 

Similarly, applying the curl operation to eqs. (3), (4) we obtain 
          o3(255.)a2(2352) 

pp.2(2th2)+ az2= P (10 

in which 
      a3  r = +-      P

ee Pay' 
The solutions of eqs. (10) and (II) are clearly separable with respect to the variables 

 e,  :7,z and  t. Making use of the potential functions  0 and  r, the solutions for 
the displacements satisfying the boundary condition (iv) of eq. (8) may be 
obtained as follows: 

    1 aD ournu 
              H  ue=1Dea i)2–)sinrielsil'(m=1,3,5,  ) 02) 

— 

     1  (aoan.MrZh oe  u, 1+aesin2He,  (m=  1,  3, 5,  )  (13) 

Substituting eqs.  (12), 03) into eqs. (10),  (II) gives, by virtue of eq. (5), 

 4=1720  sin 2X  (rn=  1,  3,  5,  )   (14) 
 2/0'2= rr  sin  m217  oho,  (m=1,  3,  5,  )   (1.5 

Therefore eqs. (10),  01) become 

 1720+d-',,0=0   (161 
 +  824-=  0   (17) 

in  which 
    rz  .2„ TC/4  am=  2H  Dr c""Pm=  2Hc"" cm= V C-(0-1)— M2, (In1'3'5' )  (10 

   Putting(P=R(e) • 002) with the aid of the separation constant  2 the partial 

differential equation  (16) may be separated into the following two ordinary differ-
ential equations:



 6  2 H. GOTO, K. TOKI and T. AKIYOSHI 

  d2R
2a_2k2  +(—  A+   cosh2e)R  0   1191   de 

  d20  
 de2^A_  am2k2         cos2y)e 0  (20) 

The solutions of eqs. (19),  (271) are the modified Mathieu function , and the Mathieu 
function,  respectively'). The modified Mathieu functions can be represented in 
terms of functions of complex variables analogous to the Hankel functions in 
circular cylindrical coordinates; i.e., 

    (I),(2)(2,01) r (2n+1) (I) (2)  (I) (2) 
  Me2„+, (e, q)= (P2,41 / Al ) .X( —1)  A2,41  [J,(vpH„,'  (v2)+Jr+,(v  1)H,  (v2)], 

 r=l 

 for  (A  =  cz2,,+1  ) 
  (I),(2) (2(1+1) (1)

,(21 (1),(2)   Ne2,111(e, 4)= (s2n+1 /31`2"+”)2( —1) B27,-, [Jr(v1)11,4, (v2)—Jr+,(211)H,  (v2)], 

                                                       for  (2=b2,t,i) 
  (11,12)  r  (2n) (I),(2) 

 Mean  (e,q)=(/02,1/240""))E(-1)  A2,  J,(v,)H,  (v2),  for  (A=  a .)3) 

    (I),(2112n+2)(11)(2)(I)
,(2)   Ne2n-12 (e, q)= — (s2n,,2/B2("+2))..E'(— 1)B2rin [1,-(v0H,+2 (v2) —.1,42(v1)11,-  (v2)], 

                                                       for  (2=  b2n.2) 

                               

(2n+-2)(2n+I)(2n+2) (2n+1) i
n which the coefficients A27,A„,,,B„, and  B,„ contain parameters q 

and m. The separation constant A is shown as  an or  b„, which is a so-called 
characteristic number. 

   On the other hand, the Mathieu functions are given by 
                    en  12n) 

 cern(y,  q)=  XA,  cos2ry,  (2  =e2n) 
 r=0 

                      cr.  (2n+I) 

 q)=  XA2,+,  cos(2r+1)29,  (2=a2„,) 

 12)2+1) 

 862.+1(29,  q)=  X.82,,,  sin  (2r+  1  )y, 
 r=0 

                    co  (2in) 

 Sevt+2(q,  q)=  X.82„,  sin  (2r+  2)y,  (2=b2.,2) 

   Since the surface layer is a semi-infinite elastic stratum in this study , the 
solution of  eq.  (19) should be the modified Mathieu functions of the second kind 

 (2)(2) 

Me2„„(E, q) or Ne,,,,,(e, q) which correspond to diverging waves. Thus for the 

case of vibration in the direction of the minor axis we get the solutions of eqs . 
 OC (17) which satisfy the boundary conditions (i), (ii) and (vi) of  eq.(8): 

            (2) 

(P=C,„Ne,„+,(E,  q q  (21) 

             (2) 

 V=D.Me2nn(E, 42)ce2.+107, q2) (22) 

in which C,,,,  D. are undetermined coefficients. The coefficients242,.244," and 
  (2,+11) B

2„, consist of  q2,  m and  41,  m respectively, where  q,, q2 are shown as fol-

lows:
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 4'=a2m4k2k24(27H)2( VV:)2 e2- 
      g2„,k2kz((7C \2 2  q2=  4421/)m23.) 

Then, the modified Mathieu functions  Me;„2„),(e,  q),  Ne(2:',,(e,q), are to be replaced 
by the following monotonous decreasing functions if arguments  41, 42 are 

negative: 

                                                  cc)  (2,1+1) 
 Fek2,1(e,  —4')—(sin„./w131(2,011)2B2„1 [1,(v,)K„,(v2)—I,,,1(vI)K,,(v2)1,  (2=a2,(+1) 

 no 

                                                   (2^,+11 

 Gek2,,i(e,  —  49=  (P'  2.«IhrAi(2"1)ZA27+1  Ch(iii)K,-+[(v2)+  Ini(v1)1(;(v2)i,  (A=  b2.+1) 

in which  q'=—q if  q<0. 
   Since the solutions of eqs.  04),  05) giving dilatation  4 and rotation 2(7), are 

not complete solutions of eqs. (3) and (4), we get complete solutions by adding 
to them the solution for the horizontal transverse vibration which satisfies the 
conditions  4=2:•.-0;  i.e., the displacements  u€ and  u, expanded in the Fourier 
sine series are represented by 

    1 ,-„:„(2)   UEve(2::1, .).• q I pse2.+1(z7, 41)DIN Me2X+/(e3  42)Ce2n1-1(  q2) 
         m=1,3,57- 4 

                            410coshe ( ysin11sin MWZ et.,                        —
M72e2„,COg'21211  (24) 

       1 m2,2+),Init-    M4SGek(e—q')se2(7),41)—D mFek2,,,,i(e, —421) 
                              4uo                 ce2.0 02, go rnkirceoshew 2et)                                 ()Sill74sin SIT  •  eiwt 

       (2) • (2) 

  26,7 = .2 340,902,n-1(2, 41)+DmMe2,m(e, 42)ce2,4107, 42)          m=1,,5,-  • 

                                4uoksinhe(Vcossin M7aat( ot                           —  
inZe2mCOg)77i2H" 

      1    +2
,—911)seuz+I(Th—411)+D',„Fek2,,„,(e,  —42') 

      nes+)• 

                                4Uo
rnr,,,sie2\ 

                       nhe /)2 Mhz•                 •ce2.,1(7,—42')—cosy)}sin  z.fr • eiwt 
in which s is the maximum positive odd integer which satisfies the condition 

 e2,„>0. Cm, Dm,and D'm are the integration constants./1:44,2),,(e, 42),ATC, 
 (2)  (2) 

 (e,  41) denote the derivatives of  Me2,,,1  (e, 42),  Ne2„+,  (E,  41) with respect to  E. 

Needless to say  ue, u, in eqs.  (24),(20 satisfy all boundary conditions in  eqi (8) 

except for the condition (iii) by which the undetermined coefficients Cm,  Dm are 
to be decided. Since the analysis for the case where the arguments  4,,  42 are 
negative can be made in a similar manner only by substituting  Fek,„,,(e, —42), 

        (2(2) 

Gek2n,i(E, —41) forA41€2,,)q(E,  —42), Ne,„„,(E,  —4,), we shall henceforth represent
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the modified Mathieu functions by Mean„ q), Ne(22,21,.,(g,  q). 

(2) Frequency Response for the Rocking Vibration of a Rigid Foundation Structure 
   The vibration model dealt with in this section would correspond to caissons 

or well foundations. For the vibration in the direction of the minor axis , the f
oundation structure is assumed to be a rigid elliptic cylinder which rotates 

around the center line of the bottom, or the x axis , with angular amplitude  c„. 
   If Up is the horizontal displacement of the elliptic cylinder in the direction 

of the minor axis, then the displacements  up,e,  Up,,, in the directions of  e,  q are 
written, respectively, as follows: 

                                                   n27

sin1                     se0H asim2-   up,(=woz sine els'i=8E(-1)2mre allot  (20                      7r,i=1 ,3,5•"               in2H 
 21-1 

              800Ha cosn-(-1)2nprz .  U
p,,?=cooZ COSO el°'1--,--I •2 sin en„,  (27)                72I m=i0,5,•••  Ma 211 

Putting  eqs.  (26),  (27) equal to eqs .  (24),  (25) by use of the boundary conditions (iii) 
of  eq.  (8) gives 

 C.Rea (Co, ql)semml(q,  41) - Dm Me2t,  (en)  g2)ce2„,,(72,  qa) 
 )2(I 

             1 424 Ia)y+ 89,0H(-1)  2 ) a sin)2 (28) 
               t1722rem (01‘I7r2M2 

 (2) (2) 

  C.Ne2„+1 (e(), q ,).3ê2n+1 (r7,  41) + DmMema,(e,  q2)cemm(q,  42)              

I   4u,  (   an  y±Scooll (-1),lb cos72  (29)                 ( 
MITe2m \002 /re.'ma-                                    i2J 

By virtue of the orthogonality of the  Mathieu functions  sem+,(q,  41) and  ce0,,,q(7),  42) 
in the domain of  (0,  27(),  we have the following expressions for  C. and  Dm: 

 ,0-1  

 C.(= rem4u0(wg-I(0)2_L 7r2 M2                     890„H (-1) 2}[ (2)  2• (2)                                       aBl", 2(.4.2„,)  Mel (Co,  42) 

        in ^^ (I) (I) (2)1irII)222 (I) 2 •  (2)    - bA,E(2r+ 1)A2r-FIB2,,, mei  ce, Q2)j/LE (A2,, 

                                       

1) T(B2i) Mel  (e))cm)    r,-0 0-11 r2() -4302 

         m(I) 2 (2) (2)    • XM:2)((,, q,) - (2(2r + 1)A.2(:+),B„,.,) Me, (1), q2)Ne,  (el), g1)], (n=0) 
                                   r=0 

   =0,  (n+0) 
 Th,-1  

 Dm=  4u0 ( ce \2+8y011 (-1) 21FLA0) zA,n,„,2A.,_(2),,,                                                1122211 ZAD22+1,2"61\tO)ql•P     tMEV,.Wg1 z2 M2 

       (I) ^2 (I) (I) (21 -=(I) 2.2(I) 2• (2)  -  aB,2(2r+1)A„„,B„.,,Ne,(Co,q 1)1/1_2(A.,,,) 2(.82„,) Me,  (Co,  q2)    ,--0r-tl r=t)  /•  •  •  (30 

 (2) 11) (I) ) M                             2_(2) (2)  • Re, (Co, 41)-(2(2r+1)A27+1B2,,,Iel  (go, 42)Ne,  (EC)  171),  (n=0) 
                                   (-AI 

=0, (n+0)  , 

When  e2„,<O, the undetermined coefficients  C„„  D,„ are obtained only by replac- 
           )(2) 

ing the complex functions Me,(E0,- q2), Ne,  (go,-q,) by the real functions
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 Fek,(E0,—  42),  Gebi  (eo,-41), respectively. Then the relations between stress and 
  displacement are given in the elliptic cylindrical coordinates as follows: 

 ce  =  a(lue)auu„) 1+2f  au, + u,2  al1 (32)  t  ladePa,7Ptme  12-g 
        au, \a( ue   r"ae1+a

721  n  (33) 
  When the bedrock vibrates in the direction of the minor axis, earth pressure 

  p(z) on the elliptic cylinder per unit length is written by neglecting the compli-
  cated processes of induction as 

    pw=fE0 (ae  • sin0+re„•cos8)ds fior  (asiti  •  Cie  +  bcosv•re„)chi 
       ••• 2 2  (11 (2)  (1)  (2) 

72Z      =pewee•••2(C„,aB,Ne,(ED, g.,)Mel(e0,42)}sin722H 

- 

       = — Eprzabi2„,{ 8",2H  (-1) 24u0  / \2122mrehot            222,1,3,5,•••2.2m2m*2,,mg)JemWmsinalle(34) 
  Thus we get the following overturning moment M around the center line of the 

  bottom of the elliptic cylinder: 

    M= p(z)zdz 

      (c.2222H 2m-1CI)(2) (1)(2)     =—.P7(0,E.(—)(-1)2fCmaHNe, (ED, q,)+D„,bA, Me, (Co, q2)1ei.t 
                   ne-I,3,5,--6 

                                                                    n•-)  

    =Eioxab (  2H y(_ 1) 21.2mr 8W0H(-1)  24212( (22 )2},..2.(02gowt     m=1,3,5,•••\\ ma)t e  m2=remcog 
 (35) 
  in which 

     m =[   a (B, (1°21'(A2,+,)2 (A2( t) )2   e  (a)  (Eo,  42)+—(Ab)Z(B2())7,1)Nb0(2)(eo,91)  
 mei (2) (eo, q2) a r=0 Nei")  (Co,  el) 

     —2A;')(2r +1)A2(,t+)IBZ„n•,]/[2(11(2,1+)(B(2,"+)2Ale' (2) (eth2)          r=0r=0 7=0IMel")(Eo, q2) 

       Ne1`2)(e0,q,) ((2r + 1) A2",+),13(:+,)21  (343)          Ne 1'2) (el)) q I)r-11 

     It is clear that  eqs.  (34),  (35) and  (36) for the elliptic cylinder are entirely similar 
  to the solutions for circular cylinders. Namely , putting  a  =  b in eq.  (4, we 

  obtain 
     sil)pt(1)fl(r=0)     ` -`27-"=-2"1= (r+0) 

  Thus replacing the Mathieu functions in eqs. (35),  (36) with the Hankel functions, 
  we get the following solutions for the circular cylinder: 

         z pre2H y_1) 2 s277,18c00H(-1) 2 ± 42/0 CO VItaco,_eiwt         /l 272 \tog1'm8 

  (37) 
  and 

    sj.=raff, (2)(a',„a)+aHI (2)(ti'ma)_21/r,(acza)11,(2)(fi'ma)_11  (38) 
        L H(2) (a' ma)H1(2) (19',„a)J/La(a' ma) H,(2)(13',,a)
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in which a is the radius of the circular cylinder, and 
 it a  Pt, 7C a(\2 

 a'nza—  2 Hcm'ma— 2 Hem,em=V
cog)—1122'  Cm  —1'  3'  5' )  ...(i

Besides, for the case of  bla  =0, which corresponds to a thin plate with the 
width 2a, we have 

 AI= _Epret2 (  2H  y 1) 2Qmf 840211(-1) 2  +   QuoCO \2m,02geit, 
   /5151,3,5,•••r2 m2 (I)g 

  (40) 

and 
          1^,25:2..2kiet(21(e0,q2)—,Cl)215;,',111ei131  )(eo,q2)  QM= (B1 r+o(A2H-1)(2) (eo,q2)AL2r,ok./1.2,m),24L-no2r.,/   

                                             k
e1                                                         M(2'(eo, 

 Nei  (2)  (e0/ 111CI))21 
 (2r +1)A„+,B„.,,  (41)       Nei (2) (ea, qi) 

   On the other hand, the equation of the rocking motion of the elliptic cylinder 
is written as 

 /Co+  kr  =  7/101100)2Hz  On+  M   (40 
in which I is the moment of inertia around the center line at the bottom of the 
elliptic cylinder. Substitution  co  —vnelco into  eq.  (42) yields 

 721-1  
            16abpH2°2(-1) 2 

  moHg— X12,„ 
                    222  m=1,36••• M3 

   3 (44              32
abpH       k

r— Ice+aiga e'm  
 rr3 

   We adopt the notations used by Prof. Tajimi in the analysis on circular 
cylinders to facilitate the comparison. For  to=0, the third term in the denomi-
nator of eq.  (43) corresponds to the static horizontal spring constant. If we let 

 X denote the ratio of this static horizontal spring constant to that for the rock-
ing vibration,  x is shown as follows: 

  32abpH3 a42 e
4 —32abpH3S2„,,        Ct0,2z                                 2xk,  (44)  as r/m1,3,5,•••  M7C3mm,3,5,••• 

   Now set 

                                (-1)m2               e2- 
    ..'antm4,Q„,     =135.m-1,3,5,••.In' 

 =  =Th+iga   (45) 
            12,

2 
   m=1,3,5,— m m=1,3,5,•••  M2 

in which  fl, f2,  g, and g2 are real values. Then from  eq.  (43),  fri-if2 in eq. 

 (40 represents the dynamic spring effect due to soil reaction and  gi+ig, shows the 
dynamic effect of the earth pressure or soil reaction. By use of an expression 

 K(z) which is the horizontal amplification factor of foundation structures at an 
arbitrary height  z from the bedrock, we obtain 

                          Hzz ( cog  )2+  r z 

  (2)9902-1-uoio2cur2"          UoI1 —t° )2+X((i+ if2)(1) (46)                               )2 
 COs



   Vibrational Analysis of Foundation Structures With Elliptic Cross Sections in Elastic Ground 67 

 in which  zo=4  I/m  ws=4k,/112  I=mo(b214+Hs213)- 

   For the case of  b/a=0, the amplification factor  ,c(z) becomes 
 m-1 

                         (1)  2() 
                              m2     z —  

 (z)  = 1—  2H \tazlxl 
 2 12",   E
rn                                        in=1,3,s,•••  M 

     

I 1+  k z  (  a)  V  I  (47)       2  H  f  ma I 
where  Sl. must be computed by use of eq.  (41). 

   Thus we have analyzed the frequency response of an elliptic cylinder vibrat-
ing in the direction of the minor axis. In the same way, the amplification 
factor  IC  (z) in eq. (46) applies to the vibration of an elliptic cylinder in the direc-
tion of the major axis, though  2„ must be calculated from 

 s.2m_!--af.Bi()) \2;(2‘•,(A(tri.)1\ 2 Mei (a) (eo,qi)b`A:1))22±2, B2(,),)ke,(p (en, q2)     Lbrlzme,(2/ (e0, q  1) a Nel("(e02 

 0)  tom  to  (I)00(I) 2“` (I)  2 Ale q,)    —2A, B,E(2r+1)A,,,B„„,1/12(A„0,Z(B„„,)       r=0rfll  Me('  (E0,  41) 

 kel ta, (eo, 42)12)(I))2] 
  (4E4       Ne i                     2(2r+1)Ao,,,,B„,, 

• 

         ') (E0,go)(rro 
in which the coefficients  ,C.'„  B2,+, are functions of  gh  m and  qo,  m,  respec-
tively. The arguments  q,,  Q2 are defined as in eq.  (23). 

   Besides for the case of  b/a  —0, the amplification factor  x(z) takes the same 
form as eq. (47), except that  Q,.„ is represented by 

 s2m= (.8 ))2(A2(rn)oKriel(2)qA- , A2,141) 2rl+I)2kie,ID (2)(en, q i)          <-2Me,w(e0,gD/LI;;,`'Me,(e0,  gi) 

     ke, (2 (e0, q (I)(I) )21 
           2(2r+1)A2,..„B„.,,  (49) 

 •   

     Nei (2) (en, qLu 
in which the coefficients A(I).„„B(I),,and the arguments  q,,  q2 must be treated in 

the same manner as in the analysis of an elliptic cylinder vibrating in the direc-

tion of the minor axis. 
   With regard to the static spring constant  kr for the rocking vibration of a 

rigid body on the surface of a semi-infinite elastic medium, Prof. Timoshenko 

has presented the following relation between k, and other physical constants: 

 kr=2pb* 0t*2 Io*   (50) 
         ,/  A 

where  p&* is density of elastic medium,  v,* velocity of transverse wave in elastic 

medium,  /0* geometrical moment of inertia at the bottom section of the rigid 
body and A is the bottom area of the rigid body. For the case of vibration in 

the direction of the minor axis, we have  A=22ab,  /0=kab3/4. 
   Now supposing that  Cl*,  Co* are the coefficients including these physical 

constants when neither the densities of the surface layer  and the bedrock nor 

the velocity of the transverse wave in the surface layer are variable, the para-
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meters  X and  40,/wg are written as 

    H a   (51) 

 =c2*.4 b /  X CI* bb    1 bH  
cogVaV  4H3b (52) 

for the case of vibration in the direction of the minor axis, and 

 x  =CI*  II  b  12,    (53)  a a M=1,3,5,'••M3 
 (OS c2*,41 a  /1Va ±  (54)  cogVb4H 3a 

for the case of vibration in the direction of the major axis, in which x is the 
same as in  eq.  (44). 
(3) Frequency Response  for the Elastic Vibration of a Flexible Foundation Structure 

   Pile foundations would correspond to this case, for which the following assump-
tions are considered. (1) The foundation  structure is a flexible cylinder with an 
elliptic cross section. (2) The superstructure is not considered. (3) The bottom 
of the cylinder is rigidly fixed to the bedrock as shown in Fig. 2. 

                                   Let  up(z,  t) denote the relative displace-
                               ment of this flexible cylinder to the bedrock, 
                               then the equation of motion of the elliptic 
                               cylinder is writtenasfollows: 

                          a2upd'upa2ug  
                               pp*Irabat,+Elo az,— pp*Irabat, 

 y +p(z) (55)                              in which  p(z) is the soil reaction due to 
                               earth pressure acting on a unit length of 

                11(Z,t) elliptic cylinder analogous to that in eq. 
 (34). The deflection  U  p(z) of the elliptic 

                               cylinder can be expanded in the series of 
                               the characteristic functions  72,(1e,,z) of a 
                                    cantilever. 

 up=  U  p(z)elst  = .Z.24,72,(k,z)elst   (66) 
 P.I 

                               where A, is the undetermined coefficient 
                               and  kJ? is the characteristic value. Thus 

     Fig. 2 Foundation-Structure for the elastic vibration in the direction 
            Systems Considered                                of the minor axis the following simulta-

neous equations on the undetermind coefficients  C„„  D„, are obtained by consult-
ing the condition of continuity between the displacement  up(z,  t) of the elliptic 
cylinder in eq.  (56) and the displacements  444,  u, of the surface layer in eqs. (24), 

 (25) at  E  =  60. 

 ue=  up sin19--u,a sin)?a—sinail,2„(k,,z)ei-4      11 

      • (2)(2)  = I.C.Ne(ED/pzel(72,  at)— D.Me,  (eo,  v  2)  ce,(v,  4a)
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                        4uo
mire7,,,kcosheo  (                con2                                 Ysing} sin mHrcz eist  (57) 

 u,= up cos  0—  up  cosy2= cosv24,22,(k„z)el.t 
                                                      p=1 

       1(2)  =  E,{C„,Ne,(eo, 41Se((72,91)+D,,,A.//e,fficeo, 42)ce,(v,q2) 
        m=135,—• 

                                                           172•                      4uok sinheo co ycos)2} sin2271Henn 
                                               cog 

By virtue of the orthogonality of sin(mrz /2H)  (n=1,3,5,  ) in the region of 

 (0, H), the following expressions for C,,,and D„,are obtained: 

 C.= f2A G  +  4u0( wYiraBH)CA('()2Afe(2) (Eo, q2)—bA,I)E(2r+1)2(1co                                                                                              2„,         PPm
r2mwgLIno2+11  rI r=0 

 (I)  (2)  =  (I) 2  =  (I) 2 _(2) • (2) 

     

.132,4,Me, (go, q2)1/[,2(A2,,,,,) E(B2,,)Me,  (eo,  q2)Ne,  (eo,  qi)  —(T(2r  +1) 
 7=0  you 

        (I)(I))2(2/     •A„,,B2,,t,M,(Cu, q2)Ne,(2)(Cu,qi)1  (59) 

  D,n={2TA,G„+4u2(.0 yy-i,(1);ifn(1)2,;7_12)                               ILUYIllCD.27-10Net (e0)  41)(I) ".117                                                    — aB, .2(2r +1).112,,        rnke7,,,uogy=o you 

                                                                               

• (2)  .13  (2,trive(12) (e0, 411)7 /12(A2(2.4022(,,(1)2Me,12)  (eo, q2)Ne, (gmq,)(2r+ 1)        L
r=f)r=0 r-U 

        (1((II)23„...(2)(2)1     •A2r-F1B2r÷1MU( (Co1172)Ne(CoI 90  (60) 

where 

 G"= 5170),(1?„,z)sin  2Hdz,  (m=  1,  3,  5,  ) (61) 
               m Thus we get the soil reaction due to earth pressure acting on the elliptic cylinder 

from eq.  (34) as follows: 

            (I) (2) Cl)  (2) rz   p  (z) = Eprcog2E2,,,fC„,aB, Ne,  (E0, q,)+D„,bA,  Me,  (Go, go)rm                                                }sin2H  obit 
 nr=  1,3,5,— 

                                   4240      = —Ipzrabco'se2.Q.122A,G+  sinmrzHein (62) 
 no13,5-••nuye7,,,cog

in in which 
       ra1112=(1)2 ke,(2) (e0(72)b(I)2=(I)2 gel(2)(en,qi)  (2
2=—L (B,)' + (Al)E(-1327+0      bMe,(2)(e0,  q  2) a7,0Ne,(2) (e),  q,) 

         

I)(I)(I)7(I)=(1)2 Mei(2)(go,a2      —2A,(B,12 (2r+ 1) A„.,,B„.,,[X(A2,,,,)2,E(B2,4)me01(i )) 
      Ne 1121(x"0,  41)  (E(2r+)2] 

            ‘orAnyol 227+1   (63)  Ne
l(2)(e.  q  nu 

and
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 Qi( )2( Hk)2( vvte2'q2=( 74)2( Hie )2 ea'e2--                                                        m2,  (m=  1,  3,  5,  •  •  •) 

The coefficients24(21,„), and.13:1,),., peculiar tothe Mathieu functions are the func-
tions of q2, m and  qi, m, respectively. On the other hand, the following relation 
is obtained with the aid of the natural frequency  w„  (p=  1,2,3,  ) of the elliptic 
cylinder in the air. 

 34v,,(k,,z) 
    ag,pp*rab(02,,12,,(4z)   (64) 

Now the motion ug of the bedrock is assumed to be 
 ug_  uoeiwt   (66) 

as in the case of the rocking vibration of the rigid elliptic cylinder. Substi-
tuting eqs.  (62)—(65) into eq.  (55) leads to 

 pptzabZ(02,-02)24,,,m(k,,,z) 

     =pp*zabuow2—2,ozab$2noz2.2,„[2fA,G,+ 4u0 ( \sin   mrz                                                      (66) 
                         N=1 mu2e,g2cogJ 2H 

By virtue of the orthogonality of the characteristic functions  7p(kvz), the above 
equation yields 

 w
w" )21}A„0„=u0(D.+F.)+.224,30,,(v= 1, 2, 3, • • •) (67) 

in which 

     0"= HSo"(yi(kz)}2dz 
            ir  F.= 7/i2 72. (k.z)dz 

 4  

 D.—  — ,ZQ„,G. 
                  vs=1,a,s,••• mar 

        P,2(wg)2e2,,,Q,„G.G,, 
                   m=1,3,5,••• W 

 11 

 G.= H 072 (kvz) sin-  2s" dz,  (m=1,3,5,   ) 

 Eq.(67) is the set of equations concerning the undetermined coefficients 
 A.  (v=1,2,3,  ). The normalized characteristic function  iiv(ka) of a cantilever 

is given in the following form: 
                         11                           sinhk+ sinkH  Th,(k.z)—pv{sinhka—sinka— " coshk,R+cosk,,H(cosh k.z — cos k.2)}   (69) 

in which  SC is a  constant. The coefficient  X is determined from the normaliza-
tion condition 
 —1-117o7)"{  H(kz)} dz  =  1   (70) 

We consequently get 

 gcosh k,H+coskli 
 sinhk„H+  sink,H   (71) 

When  kyHd=7/2, carrying out the integrations in eq. (68) gives
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 O,=1 

 k  H 

             4   D
m— — pk  E f2mG,  Pr  

m= 1,a  fi,••• mit 

 0   E2(——)2e2.422,,GG 
   PP*PP1,315,-."i5   (74 

 M-I M7C 
 22- sinhk,H  k,H (sink. H+13mcosk.H) - 

 Gm=  (-1) 
             (1a1)2 4- (m72 )2 (ki)2—(m2g)2 

 k21482  •  (kmH)2+  2*  271  •  k,H  —  p.  •  (T)  ] 
                  (kmH)4 —(-m271 ) 

If  k‘H  =mr/2,  G  v is represented by 

      1  
     214H-[(— 1) in;L  (19,-1)sinhk,H—  fi,(1±  kH)-1   (73) 

where the characteristic values  kvH  (v=1,2,3,  ) are given as follows: 
 k  1H=  1.  875,  k2H  =4.  694,  le,H  —7.  855,     (74) 

   The foregoing analysis was made for the case of elastic vibration in the 
direction of the minor axis. The method of analysis for the case of elastic vibra-
tion in the direction of the major axis is identical to the above-mentioned case, 
where  12,,, is the same value as in  eq.( and the arguments q1,  q2, in eq.  (23). 

   Consequently, the amplification factor  x(z) for the horizontal displacement 
at an arbitrary height z from the bedrock is represented by 

 x (z)  —  U  p(z)d-uo 1                        1+uEA,.)7,,(42)  (75) 

                                      0 

   For a special case where the foundation structure is a circular cylinder, the 
same treatment can be made as in the case of an elliptic cylinder only by replac-
ing the Mathieu functions by Hankel functions. 

   Besides, for the case of  b  la  =0 which corresponds to a thin flexible plate, the 
simultaneous equations (67) for the direction of the minor axis  become 

 —  Eil pemp=  „  ()=1,  2,  3,  )   (76) 
 P'"1 

in which 

 D,= —E220-)2 

 ( 

           nri35,... Mr mg 

 177) 
and from  eq.  (66) we get 

 p(z)  =0   (78) 
In this case takes the same form as in eq. (49) since the vibration of a flexible 
thin plate, unlike the vibration of rigid thin plate, does not restrict the motion
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of surface layer, the soil reaction p(z) due to earth pressure tends to zero. 
   The natural frequencies  cop  (p=1,2,3,  ) of the cylinder in the air and the 

fundamental natural frequency  cog of the surface layer are related to both the 

embedded part and the cross section of the cylinder;  i.  e., 

 WI  =c.* (kiHP,/1_.ad bo \3  op (koll)2"II (1 
  tog HlbI/a-\ b1' 'cog \ kIll1 cog' 

for the case of vibration in the direction of the the minor axis, and 
 ,,, =G: (k,HP ,/1_ f ao V   b0  cop 1  kpli  V (01 

 wgH/aV \ a '1 b 'cog \MI/Olg '  (8C0 
for the case of vibration in the direction of the major axis, where  Ce* is a 
coefficient including the non-dimensional physical constants  Eg/E,  p/pp*,   etc. 

(4) Characteristic Numbers al,b, and Coefficients24(2,1,.),,  B2,+, 
    The separation constants  a29,  azn„,,  b2,,,, and  13271+2 are the so-called character-

istic numbers. These characteristic numbers are the functions of the arguments 
 q,,  42 and m. Only the characteristic numbers  a],  b, are necessary in this study. 

The outlines of  al,  b, are as follows; 
   When q is extremely small, 

    1 1 1 11  ,49   a,a,=1+4—q2—q2 +           8641536'36864 1,-7- 589824 qs 

    55 265       +  
9  437  184 . 47—  113  246  208 q8+ 0(q9)  60 

   1 111149  bi=1-4— 8 g'+6442—1 536 q4—36 864 q-s+ 589824-  (le 

    55 265  
 9  437  184  171  113  246  208 q1+0(q9)   (82) 

then 
 (1)  A
,  =1 

   In1j
1+1n+1,,,,_ 11 ,   .45 -        8 /l8'192'4608 qI-I 

  m1  211+ 11 2 A_,  AS 1924 111+ 6 q128q'   (83) 

 (I) 

 A, — 1 n13n        9 21631++til16'  I 
  in  1 Ag 737 280614I1+  I 

and 
 () 
 B,  —1 

  (I) 1i
i_ 1i12 1   Ea  8 qt8 qm192q--4 608 q'-i-} 

 01 11  B5192Of!— 16q+128q2+   1 (80 
 1  —3 

             1 

 BIq3{ 
 9  216-16-+ 

  l
=1 Bo737280°I1.aI—I / 

   On the other hand, when q is rather large, the  characteristic numbers a,, 

 b, can be obtained as
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 42  92  92 a,=1+9+  (8)  a
l-9 —  a,-25 — al-49   

 92 92  d
i.  bt  1)1  —1  —q+    bi  —9 —  b,  —25 

 5 92 
 —bi—  49 

       •Relations between the character-  qistic numbers  a l, bi are conju- 0
/,' 0 \  IC                                       gate for the same values of q as 

/ \A/b                                       shown in Fig. 3. Now putting 
 CI)  (II  II)  CI) 

 A,  /A, =v,,  As  /A,  =v3, 

                                                          1)(I)                                         A(
,  A,  =vs,  gives  Fig .  3 Values of Characteristic Numbers  cii,  hi for  q 

                 a,-9 1  v
,=  ,q  v

i'   (87) 
          al— (2r+1), 1                        ( r�1),   

                                        v2,-1 
                                   tl) 

From these relations, A,(1):A,(II:  can be obtained. 

                                  (I)   I
n the same way  Bi(I):  can be derived with the aid of 

the following relations by putting B3(1)/B,",=u,,B;11/B,u)3,                                             =uB,")/Bs"'     

       1,1-1+ q b,-9 1 
  u,, u3= 

 u,' 

           b,—(2r+ 1)2 1                        (r�1)
,   

 u2,_, 

Now we shall normalize the Mathieu functions  cc),  (7,q,), se,  (72,q,) for the case 

of vibration in the directionofthe minor axis as follows: 

 12r1  2'1"    fo vibration              12[se,()2, q1)}241• (89) 
Then we get 

  co in °D(I) 

I(A2c.+1)2= T(B2.+1)2=1   W) 

in which the coefficients  A,',.1+), and B(2,.1)+, consist of  q2, m and q,, m, respectively. 

Even for the case of vibration in the direction of the major axis, the  eqs.  (80 
 Op) may be used in common with the vibration in the other direction, though the 

coefficients  Az„, and  B,,.+, consist of  ql, m and q5, m, respectively. The Mathieu 

functions rapidly converge by use of these normalized coefficients A,"), 

 (I) Ili CI)  II)  (I) 
 A, ,  A,  ,  and B,  ,B„B, ,   In the case of  q<0, however, the Mathieu 

functions  ael  se,(2,—q) can be treated in the same way as in the case of 

 q>  0. 

3. Consideration of Numerical Computation 

   Since the principal aim in this study is to know the effect of the shape of
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a foundation structure in elastic ground, the numerical computations have been 
made for varying shape parameters b/a,  a/H, and the ratio of wave velocity  vtivt, 
transverse to longitudinal, has been fixed at 1/3. The numerical computation of 
the amplification factor for the horizontal displacement at the top of the cylinder 
have been made only for the case where the total length of the elliptic cylinder 
is equal to the thickness of surface layer. 
1) Consideration of the Rocking Vibration of the Elliptic Cylinder 

   From  Fig.  1 (a), we set  11,=-2Hg—H. The coefficients  C,*, and  Cy* in eqs. 

 (51)—(54) are fixed to  0.02 and  1 respectively. From  eqs.(41) and  (45), it is considered 
that the quantities  f,+ in and  gid-ig2 express the dynamic effect of the horizontal 
spring constant and the effect of earth pressure due to the surface layer, respec-
tively. 

(1) When  alH=constant 
   Figs.  4,  5 and Figs.  6,7 are respectively, the plots of  fi-Fif2 and  g1+ig, for 

various values of b/a. For the vibration in the direction of the minor axis as 
shown in Fig.4, the real part  f, slowly decreases in the case of  m> rag and 
sometimes becomes negative. On the other hand, the imaginary part  ./2 sharply 
increases for  CO>  CO  g  . These tendencies are more remarkable as the cross section 
tends to a plate which is a degenerate form of ellipse. This would mean that 
the response  of the cylinder becomes much greater as the cross section becomes 
thinner because a thin rigid plate is readily subjected to the influence of the 
surface layer. 

   The imaginary part  fz is so predominant in  fl-Fif, with increasing frequency 
that  fl-Fif2 will behave like a damping factor. Namely, it follows that the 
surface layer has a damping effect upon the rigid foundation structure, because 
the phase difference  tan-,(filf1) between displacements of the bedrock and the 
cylinder tends to  7r/2 with the increase of frequency. Besides in such a case as 
the absolute value I  fl-Ftlf2 is mostly influenced by the imaginary part f2, it 
has the effect of diminishing the amplification factor in eq. (43). 

   As to the vibration, however, in the direction of the major axis shown in 
Fig. 5,  f  1-Fif2  exhibit's little damping effect, since the imaginary  part  fj increases 
so slowly with the increasing frequency of excitation in the region  bz>  wg even 
for the thin cross section and the real part  f, is a constant value independent of 
the frequency of excitation. In this case the phase difference  tan-1  (fj/f1) be-
tween the response of the structure and the disturbing force also approaches the 
value of  7r/2 with the increase of the frequency of excitation. 

 Fig.6 shows the effect upon the cylinder due to earth pressure. The real 

part  g, increases sharply when the frequency  CO of excitation is close to the nat-
ural frequency  tog of the surface layer. When  m> mg the value of g, turns from 
positive to negative and the absolute value I  g, rapidly decreases. Consequently 
in such a case, the rigid foundation structure is subjected to the earth pressure 
with an opposite phase to the bedrock motion. On the other hand when  W>  CO  g 
the imaginary part g2 also rapidly decreases and the effect of earth pressure 
approaches a constant value with the increase of the frequency of excitation. 
Regarding the vibration in the direction of the major axis shown in Fig.7, it ap-

pears that earth pressure has no relation with the difference in the cross section 
of the foundation structure but has an almost constant tendency of response. 

   We can obtain the frequency response of the rigid elliptic cylinder by making
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use of  .fl +  IL)  gi+ig2 as shown in  Fig.8 and Fig. 9. Regarding the vibration in 
the direction of the minor axis, when the natural frequency  (Os of the rigid elliptic 
cylinder is smaller than the fundamental natural frequency  rot of the surface 
layer, the peak of the resonance curve is not clear about  w,, but such a value 
of  Ws has an effect broadening the resonance peak due to the fundamental fre-

quency of the surface layer. In such a case, the elliptic cylinder sometimes 
produces a greater resonance than the thin plate which is easily subjected to 
the influence of the surface layer. As the frequency  co of the excitation be-
comes larger, the response tends to  be constant regardless of the cross sectional 
shape of the rigid elliptic cylinder. 

   As we see in Fig.  B, the natural frequency  ros for the vibration in the direc-
tion of the major axis tends to infinity as the shape of the cross section gradually 
becomes flat. In this case, the cylinder is not greatly affected by the resonance 
of the surface layer but mainly by the resonance at  m—m, . The peak of the 
resonance curve at  o=o), becomes much higher and narrower as  ws approaches 

 rug. On the other hand as  w, diverges from  wg, the peak of resonance at  CO  =  (Os 

gradually decreases and the region of the resonance due to  ar=cos becomes broader. 
Besides, the response of the cylinder becomes  independent  'of the shape of the 
cross section as the frequency of the disturbing force increases. 

(2) When  b/a=constant 
   When the parameter a/H varies, in which H is the length of an embedded 

part of the foundation structure, Fig. 10 shows that the effect of rigidity of spring 
due to soil reaction is greatly dependent upon the thickness of the surface layer. 
As the frequency of excitation increases, the real part  f, which eventually takes 
on negative values slowly decreases. On the other hand, the imaginary part  f2 
sharply increases in proportion to the frequency of the input source. This ten-
dency is remarkable for a stumpy cylinder. Thus  f1+if2 has the damping effect 
because it becomes mainly dependent on the imaginary part f, as the cross section 
of the cylinder varies from circle to thin plate. In this case such a tendency 
becomes more remarkable as the thickness of the surface layer becomes smaller. 

   In the case of vibration in the direction of the major axis as in Fig. 11, when 
 W>w, the real part f, remains nearly constant and the imaginary part  f, increases 

in proportion to  WhOg. As in Fig. 10 the imaginary part f, tends to decrease 
as the real part  f, becomes larger. 

   Anyhow from this  viewpoint it follows that in the case of vibration in the 
direction of the minor axis,  +V, has a great damping effect upon the vibration 
of a stumpy cylinder, because the phase difference  tan" (f2/f1) comes nearer to 
,r/2. Judging from Figs. 12, 13, on the other hand, even for vibration in any 
direction the dynamic effect of earth pressure is not so remarkable. 

   The real part  g1, however, becomes much larger and the imaginary part  g, 
becomes much smaller as H increases. This suggests that the dynamic effect 
of earth pressure increases because the phase difference  tan'  (g,/g,) becomes 
smaller with the increase of H. As in the case of 3. (1), the absolute values of 
both the real part  g, and the imaginary part  g2 approach constant values in the 
region of  al>  (Og as  co increases. 

   Making use of these values, the diagrams of the amplification factor at the 
top of the cylinder are shown in Figs. 14, 15 for the various values of parameter 

 a/H . In the case of vibration in the direction of the minor axis there is no
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resonance due to  at=cos but the effect of broadening the resonance region of the 
surface layer due to  CO=C0g. Such a condition is similar to the response of the 
thin plate which is easily subjected to the influence of the surface layer. It is, 
however, considerably different from the response for the case where  a/H  is con-
stant, that the response of the cylinder rapidly decreases and comes in a 
constant value when  w<Wg, no matter what resonance due to  (0=Wg is very large. 

   On the other hand in the case of vibration in the direction of the major axis 
the value of  (Os decreases and resonance due to  (0=04 increases as H increases. 
Diminution of H, however, has not so much effect upon the resonance of the 
surface layer but a great effect upon the resonance due to  co=coe. This means 
that the effect of soil reaction due to the surface layer decreases as  a/H becomes 
smaller, though the effect due to the reaction of the bedrock increases.  Thus 
the bedrock will sometimes have a great effect upon the response of the 

foundation structure for the case of the shallow embedded part of the struc-
ture. Consequently it follows that the great or small depth of the embedded part 
has a considerably different influence upon the response of the foundation struc-
ture even for the case of the foundation structure with the same cross section. 
2) Consideration of the Flexural Vibration of the Elliptic Cylinder 

   Figs. 16, 17, 18 and 19 are the diagrams of the frequency response curves 
for the different values of the parameter  EplEg, which is the ratio of the elastic 
constants of the foundation structure to that of the surface layer. The coefficient 

 Cs* shows the degree of hardness or softness of the surface layer in comparison 
with the cylinder. In these numerical computations the inner part of the cylinder 
is treated as being filled with the same soil as that surrounding the cylinder. 
The thickness of the cylinder is always kept at 2/3 of the outside half length a 
of the maior axis. For facility in making the numerical computation, the first 
and second mode are taken into account. These figures show that the fundamental 
natural frequency  on of the cylinder itself is generally smaller than  co,* of this 
system, which consists of the cylinder and surface layer, except for the extreme-
ly large value of  Ep/Eg. This tendency is very different from the case where 

 on is always greater than  on* for the case of the submerged  cylinders). Such a 
different phenomenon may be explained as follows. When the cylinder is sub-
merged, the water acts on the cylinder only as an inertia force, so that the water 
behaves as if it were the additional mass to the cylinder. Consequently the 
fundamental natural frequency  on* of the water-cylinder  system becomes smaller 
than  (01 of the cylinder in the air. On the other hand, Figs.  16-19 indicate that 
the ground surrounding the cylinder would behave rather as a spring than addi-
tional mass when the cylinder is embedded in the elastic ground. Accordingly 

 on* tends to be larger than on. This fact will possiblly ensure that in the analysis 
of the  foundation structure embedded in the kround, the ground around the 
foundation structure may be estimated as the mechanical spring without the mass. 

   Figs. 16, 17 may correspond to the diagrams for relatively hard ground. Ei-
ther in the case for the vibration in the direction of the minor axis or the major 
axis, as shown in Figs. 16, 17,  on* is about  130% larger than  (th for the case of 
the circular cylinder. The surface layer has a greater effect upon the cylinder 
than in the case for the rocking vibration, though the resonance due to  co=on* 
is not so remarkable as for the rocking vibration. This means that the flexible 
cylinder is more easily affected by the vibrational mode of the surface layer



 Vibrational Analysis of Foundation Structures With Elliptic  Cross Sections in Elastic Ground  82 

K 

                        a/H =1/8 

            iklitli----b/a =1/8 (colcat = 0.100) 
 10- \---  1/4  ( 0.200)         \

1/2  ( 0.400) 
               ‘--- —  I  (  •  0.926)                         \.

, 
                 \ \K._ 

                        \\ ‘."--TN                        ---\-----1I \            \\N11110 

5 

                       '-- ---- -\ ._\'10V                                               '..,....--'--..\I                                          -----\ ._--"\--/AII 

                              -, A\ 
 --- 

                   —  w   I I I  

0 1.0 2.0 3.0 4 .0  Wg 

                   Fig. 16 Frequency Response Curves 

                           (in the Direction of the Minor Axis; Ce —3.65) 

 K 

         lia/H.-1/8 
                    — - —b/a=1/8 (0.11/0.19=0.800) 

               ----  1/4  (  0 .800) 

 10 g    I/  2  (  
I  (0.800)  0.826) 

         %, ------------... 
              \\., : >____ \ 

              I \ 
5 • N                \--•-__1\____:,i

\ll 
               \•                                      \ 

                           -\\•.<,,,jig1\\ 
                     <S.:"  ',  i \ N 

                           A1 -.. 
                                                       --

-__ ' 

0 1.0 2.0 3 .0 4.0  COe 

                   Fig. 17 Frequency Response Curves 
                                                                  *                          (i

n the Direction of the Major Axis; Ce=3.65)



84 H. GOTO, K. TOKI and T. AKIYOSHI 

K III! 

    fillyp\ 
           11,I  a/H=1/8: 

      III                   1---b/a=1/8 (co^caa=10.3117) 10IIII; , 1----- I/4( 0.633) 
        i I I I\ \I\1/2 ( 1.268) 

                          I           

: \ --( 2.620) 

     11  \\•\I\ 
 5i;1\,,,‘         1I\‘‘'N            N%---- (‘',                 1 \ 

              

, . '--....•_-,....;—_-_-_-_-..—,,) III i \ 
           •I / \ -----....._ -----2 il 8 
       ; /1 : •    7/ \-711t‘ 

                                                                 .-----c                     N. 

0  1.0  2.0 3.0 4.0  Oh 

                      Fig. 18 Frequency Response Curves 

                             (in the Direction of the Minor Axis;  Ce*=11.55) 

              III 

  K 

       V11.  11\  
a/H=1/8  1  \ 

 In  II\  \  ---b/a=1/8  (o)//cog  =2,5141  )1  10  III  'II, ----  1/4  (  2.541)          I 11101/(2.541) 
             ii,11\----12( 2.623) 

     IP1111.I\         .111 1ilk'ilit         in:lio1  5 .111 ;0           1%,\\\\1 .‘ \           Ill/\;-'...-. ._:—2-. 

    AN\,.'`'. • - 
       .4., \\N---.------- Ali• 

 oi 
 0 10  2D 3.0 4.0  (Lig 

                      Fig. 19 Frequency Response Curves 

                           (in the Direction of the Major Axis; Ce*=11.55)



    Vibrational Analysis  of Foundation Structures With Elliptic Cross Sections in Elastic Ground 85 

than the rigid cylinder. In the case of the vibration in the direction of the 
minor axis as in Fig. 16,  ce,* also rapidly decreases because the rigidity of the 
cylinder quickly decreases with the flatness of the cross section . When the 
cylinder becomes so flexible as to be  (0,*<04 , the resonance of the cylinder owing 
to  0)=00 does not occur because of being subjected to the dominant influence 
of the surface layer. 

   On the other hand in the case of the vibration in the direction of the major 
axis, as illustrated in Fig. 17 the variation of the cross section has not so much 
effect upon the rigidity of the cylinder . In spite of such a tendency, the 
increase of  on* accompanied by the flatness of the cross section would arise owing 
to the fact that transverse vibration is predominant rather than longitudinal 
vibration in the behaviour of the surface layer , namely that the surface layer 
acts just like the spring rather than the additional mass. 

   Figs. 18, 19 are the diagrams of resonance curves in which the ratio  Ep/Eg is 
10 times as much as that in Figs. 16 and 17. In this case  (0,* is about 20% 
larger than  COI for the case of the circular cylinder. We know that the funda-
mental natural frequency  WI* of this system approaches the fundamental natural 
frequency  (01 of the cylinder in the air, when the surface layer becomes consider-
ably softer. In the case of the vibration in the direction of the minor axis, the 
resonance owing to  w= col* is not so distinct but the response of the cylinder 
becomes noticeably greater with the flatness of the cross section when  oh>tog. 
This clearly suggests that the soil reaction tends to be easily subjected to the 
influence of the shearing vibration with the flatness of the cross section for the 
vibration in the direction of the minor axis . 

   On the other hand the fundamental natural frequency  oh* of this system ex-
ceeds  3wg in the case of the vibration in the direction of the major axis as in 
Fig. 18.  In such a case where  (0/(Dg<3, the response of the cylinder takes a 
small value as the cross section approaches a circle. The difference in the cross 
section, however, has not so much effect upon the response of the cylinder as in 
the case of the vibration in the direction of the minor axis . 

4. Concluding Remarks 

   In the analysis of the present study, we have expanded the response analysis 
for a foundation structure with a circular cross section developed by Prof . Tajimi 
to a general form governing the dynamic behaviour of foundation structures with 
various cross sectional shapes. Besides, it has been shown from the numerical 
computations that not only difference in the embedded length but the difference 
in the cross section leads to  different responses of foundation structures . 

   When the foundation structure is rigid, the following conclusions are  ob-

tained:- 

(1) Different direction of vibration gives a different response of the foundation 
structure except for a circular cylinder. 

(2) In the case of vibration in the direction of the minor axis, the damping 
effect of soil reaction increases not only as the shape of the cross section becomes 
flatter but as the embedded length becomes smaller . 
(3) As the embedded length of a structure becomes greater, the effect of earth 

pressure increases, though the difference in shape of the cross section has not so
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much influence upon the earth pressure. 

(4) When the natural frequency of the foundation structure is smaller than that 
of the surface layer, resonance of foundation structure does not occur even when 
the frequency of excitation coincides with the natural frequency of the structure; 
otherwise there is resonance. 

(5) In the case of vibration in the direction of the major axis, the damping effect 
which the surface layer exerts on the vibration of the structure is remarkable 
for a stumpy structure. 

   On the other hand when the foundation structure is flexible, the following 
conclusions are  obtained:-
(1) The natural frequency of the system is generally larger than that of the 
structure in the air. When the surface layer becomes relatively soft, both natural 
frequencies approach each other. 

(2) The great resonance of the foundation structure will take place when the 
exciting frequency coincides not with the fundamental natural frequency of struc-
tures but with that of the surface layer. 
(3) As in the case of the rocking motion of a rigid structure, the flexible struc-
ture is also greatly  affected by the surface layer, with flattening of the cross 

section in the case of vibration in the direction of the minor axis. 
(4) For the case where the fundamental natural frequency of the structure becomes 
larger than the second natural frequency of the surface layer, the response of the 
structure tends to be remarkably small. 

   In these theoretical analyses and numerical computations, the superstructure 
of the foundation structure is not taken into account. It is clear, however, that 
such a problem can be treated in the same way as our analysis. When the 
seismic response of foundation structure with the elliptic cross section is analyzed 
for excitation in an arbitrary direction, we can obtain the exact method of aseis-
mic design for foundation structures in the ground. 

   Finally, it is acknowledged that the numerical computations were carried 
out on digital computer KDC-II of the Kyoto University Computation Center. 

                             Notations 

 ap(z, : relative displacement of elliptic cylinder to the bedrock at an 
              arbitrary height z from the bedrock 

a, b : half lengths, respectively, of the major and minor axis of 
              ellipse 

 k  a'  —b2  (a>  b) 
eo  : coordinate on the surface of elliptic cylinder 

 uo  : maximum displacement of bedrock 
 A, p  :  Lamê's constants 

 p  : density of surface layer 
 w : frequency of excitation 

 cog  : fundamental natural frequency of surface layer 
             : fundamental natural frequency of rigid elliptic cylinder 

            : dilatation 
 A,,  ir.)2 : rotations around  e,  72, z axes, respectively 

             : angle between  x- axis and a tangent to the hyperbola
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 Ue,  U„,  u,  : displacements in the direction of  e,  72, z, respectively 
 ae,  0,, : normal stresses in the direction of  e,  q, respectively 

 Ten  : shearing stress in the  6-72 plane  
: Laplacian 

0,  F.  : potential functions concerning displacements 
 H  : thickness of surface layer 

 or,  be  : velocity, respectively, of longitudinal and transverse waves in 
               surface layer 

 2  : separation constant 
 R  (e),  (q)  : functions of single variable,  E,  72, respectively 

 avt",  apt,  b23,1,  : characteristic numbers concerning the Mathieu  functions 
 to  

:  coefficients peculiar to the Mathieu functions 

Cm, Dm,  Cm,  m  : integration constants 
 s  : maximum odd positive integer satisfying  6,„,>0  

: angular amplitude of rigid elliptic cylinder 

Po  : maximum angular amplitude of rigid elliptic cylinder 
 Up,  e,  Up,  „  : displacements of rigid elliptic cylinder in the directions of  6,  72, 

               respectively 

p(z)  : soil reaction due to earth pressure per unit length of elliptic 
              cylinder 

 M : overturning moment of rigid elliptic cylinder around the center 
               line of the bottom 

 Mo  : total mass of rigid elliptic cylinder 
H,  : total height of rigid elliptic cylinder 

 I  : moment of inertia around the center line of the bottom of the 
              cylinder 

 k,  : spring constant for rocking vibration 

 X : ratio of static horizontal spring constant to that for rocking 
              vibration 

 r(z)  : amplification factor for rigid elliptic cylinder at an arbitrary 
               height from bedrock  

: density of bedrock 
 vi*  : velocity of transverse wave in bedrock  

: geometrical moment of inertia at the bottom surface of rigid 
             body 

A  : bottom area of rigid body 
 Vb  : Poisson ratio of bedrock 

 C,*,  c,* : coefficients containing various physical constants 

 pp*  : equivalent density of elliptic cylinder estimated to the total 
                cross section 

 E  : Young's modulus of flexible elliptic cylinder for real cross 
                section neglecting inner section 

 It  : geometrical moment of inertia for real cross section neglecting 
                inner section 

 a,,  b,  : half lengths, respectively, of the major axis and minor axis 
               in inner cross section of elliptic cylinder 

 Up(z)  : deflection of foundation structure
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: undetermined coefficient concerning characteristic function 
 72,(lepz)  : characteristic function of cantilever  

: characteristic value of cantilever 
 co,  : natural frequency of cantilever in p- th order 

 co,*  : natural frequency of the surface layer-flexible cylinder system 
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