<table>
<thead>
<tr>
<th>Title</th>
<th>Characteristics of the Second Miyakojima Typhoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MITSUTA, Yasushi; YOSHIZUMI, Sadao</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Disaster Prevention Research Institute (1968), 18(1): 15-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1968-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/124747</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Characteristics of the Second Miyakojima Typhoon

By Yasushi MITSUTA & Sadao YOSHIZUMI

(Manuscript received May 8, 1968)

Abstract

The meteorological aspect of the characteristics of the Second Miyakojima Typhoon (No. 6618, Cora) is shown in this paper. This typhoon caused severe damage on Miyakojima Island on Sept. 5, 1966. The damage was mainly caused by severe winds which reached 60.8 m/sec at the maximum, with 85.3 m/sec as the peak gust.

1. Outline of the life history of the typhoon.

The Second Miyakojima Typhoon (No. 6618, Cora), which caused severe damage to houses and other property on Miyakojima and its adjacent islands on Sept. 5, 1966, can be traced back to a tropical depression to the northwest of Guam on Aug. 29. The depression moved southwest until turning to the northwest on 30th. It developed into a typhoon with a central pressure of 998 mb at a point about 400 km west of Guam next morning. It continued to move on in a northwesterly direction, developing rapidly to a central pressure of about 930 mb and a maximum wind speed of 50 m/sec. The track of the typhoon and its central pressure are shown in Fig. 1. This figure was made mainly from data analyzed by the Japan Meteorological Agency.

Fig. 1 ; The track of the Second Miyakojima Typhoon.

The typhoon turned and gradually headed to the west and attained its maximum intensity of 918 mb when it hit Miyakojima on the morning of Sept. 5.
The synoptic weather map of 0900 Sept. 5, when the typhoon was most intense and near Miyakojima Isl., is shown in Fig. 2. After that it moved westnorthwest crossing the East China Sea and its central pressure gradually increased. It landed on the coast of Fukien, on the mainland of China, in the morning of the 7th and rapidly filled up over the continent as shown in Fig. 1.

Fig. 2 ; The weather map at 0900 JST Sept. 5, 1966.

2. Detailed movement of the typhoon near Miyakojima Island.

Prior to studies of the meteorological environment of Miyakojima, where the disaster was most severe, a detailed analysis was made of the movement of the typhoon near the island from 1200 Sept. 4 to 0900 Sept. 6. As there are only a few island weather stations nearby, the position of the center of the typhoon is hardly fixed by the map analysis shown in Fig. 2. Therefore, the only data that could fix the hourly positions of the typhoon are the sparse direct positionings by aircraft reconnaissance (see Appendix 1) and radar observations at the Miyakojima Weather Station before 0630 JST of the 5th (see Appendix 2), from which hourly positions were extrapolated.

To extrapolate the positions the pressure field of the typhoon was assumed and its parameters were determined from the data of direct fixes. The hourly positions can thus be estimated from the hourly observational data from the island stations (Appendix 3) by using the pressure distribution functions.

The pressure field is assumed to be described by the following empirical formula by Schloemer (1954) for the purpose of simplicity without sacrificing accuracy:

\[P - P_0 = (P_n - P_0) \exp \left(-\frac{R}{r} \right) \]

(1)

where \(P \) is pressure at a point at distance \(r \) from the center of the typhoon, \(P_0 \),
the central pressure, \(P_m \) the pressure outside the typhoon and \(R \) the radius of the maximum wind zone.

As the central pressure of the typhoon did not change so rapidly in this area, \(P_m \) was chosen as the interpolated value from the data shown in Fig. 1 and Appendix 1. The other parameters \(P_m \) and \(R \) did not change so rapidly either and were calculated from the combinations of the center positions directly fixed by radar and aircraft observation and several surface observations at Miyakojima, Ishigakijima or Yonagunijima at the same time. From these parameters the hourly positions when direct fixings are lacking can be determined, using two sets of surface pressure data from the nearby islands. The results, which are smoothed to some extent, are shown in Table 1 and Fig. 3. The forward motion of the typhoon shown in this table is the averaged motion over three hours.

As is seen from the figure the forward movement of the typhoon is extremely slow; as slow as 10 km/hr or so near Miyakojima, which is just about equivalent to the speed of a bicycle. Therefore the island was under influence of the typhoon for a long time, i.e., more than 20 hours within 100 km from the center of the typhoon from 0000 of the 5th to 2200 JST of that day. The typhoon

<table>
<thead>
<tr>
<th>Time JST</th>
<th>Position Azimuth Distance (from Miyakojima)</th>
<th>Velocity Speed Direction</th>
<th>Time JST</th>
<th>Position Azimuth Distance (from Miyakojima)</th>
<th>Velocity Speed Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km</td>
<td>km/hr</td>
<td></td>
<td>km</td>
<td>km/hr</td>
</tr>
<tr>
<td>4th 12h</td>
<td>116</td>
<td>12</td>
<td>5th 12h</td>
<td>256</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>117</td>
<td>12</td>
<td>14</td>
<td>273</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>118</td>
<td>11</td>
<td>15</td>
<td>294</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>11</td>
<td>16</td>
<td>300</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>121</td>
<td>11</td>
<td>17</td>
<td>302</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>123</td>
<td>11</td>
<td>18</td>
<td>302</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>126</td>
<td>11</td>
<td>19</td>
<td>301</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>128</td>
<td>11</td>
<td>20</td>
<td>300</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>131</td>
<td>11</td>
<td>21</td>
<td>299</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>134</td>
<td>11</td>
<td>22</td>
<td>298</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>137</td>
<td>11</td>
<td>23</td>
<td>297</td>
<td>8</td>
</tr>
<tr>
<td>5th 00</td>
<td>139</td>
<td>11</td>
<td>6th 00</td>
<td>296</td>
<td>11</td>
</tr>
<tr>
<td>01</td>
<td>141</td>
<td>11</td>
<td>01</td>
<td>296</td>
<td>11</td>
</tr>
<tr>
<td>02</td>
<td>141</td>
<td>11</td>
<td>02</td>
<td>296</td>
<td>11</td>
</tr>
<tr>
<td>03</td>
<td>141</td>
<td>11</td>
<td>03</td>
<td>296</td>
<td>11</td>
</tr>
<tr>
<td>04</td>
<td>143</td>
<td>11</td>
<td>04</td>
<td>296</td>
<td>11</td>
</tr>
<tr>
<td>05</td>
<td>148</td>
<td>11</td>
<td>05</td>
<td>295</td>
<td>11</td>
</tr>
<tr>
<td>06</td>
<td>156</td>
<td>11</td>
<td>06</td>
<td>295</td>
<td>11</td>
</tr>
<tr>
<td>07</td>
<td>168</td>
<td>11</td>
<td>07</td>
<td>294</td>
<td>11</td>
</tr>
<tr>
<td>08</td>
<td>180</td>
<td>11</td>
<td>08</td>
<td>294</td>
<td>11</td>
</tr>
<tr>
<td>09</td>
<td>196</td>
<td>11</td>
<td>09</td>
<td>293</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>215</td>
<td>11</td>
<td>10</td>
<td>293</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>234</td>
<td>11</td>
<td>11</td>
<td>293</td>
<td>11</td>
</tr>
</tbody>
</table>
was nearest the Miyakojima Weather Station at 1100, when the distance was about 19 km. The track of the typhoon was not straight but weaving, with a small amplitude over about a half day period.

3. Meteorological environment of Miyakojima Island during the passage of the typhoon.

As Miyakojima is a small (about 20 km in diameter) and flat island (even the highest point on the island is not more than 110 meters above mean sea level), the weather condition over the island can be roughly described by the observed values at the Miyakojima Weather Station in the western central part of the island. (The detailed distribution of wind over the island estimated from wind disasters will be shown in another paper.)

Fig. 4 shows the time changes of hourly rainfall, wind speed and atmospheric pressure at the Miyakojima Weather Station on 4th and 5th. Between 2000 and 2100 JST of the 4th, when the typhoon was about 130 km away, rainfall of 30.2 mm/hr was recorded, that shows the passage of the first spiral rain band of the typhoon. Wind speed exceeded 20 m/sec at 2300 on 4th and reached its maximum intensity on the morning of 5th when the front of the maximum wind zone was over the island. The maximum wind speed of 60.8 m/sec (NE) was observed at 0731 and the maximum peak gust of 85.3 m/sec (NE) at 0631. These records are both first ranking ones in the Ryukyu Area. The typhoon was at about its nearest point during the period from 1000 to 1200, meanwhile the minimum atmospheric pressure of 928.9 mb was observed at 1001.
and rainfall were relatively weak during this period, and the second peak of wind and rainfall in the rear part of the maximum wind zone passed between about 1300 to 1800. But as the center of the typhoon passed along a course away from the island, typical eye phenomena could not be seen there. A strong wind higher than 20 m/sec continued and lasted until 0300 on 6th. The extremes of weather conditions in the Sakijima District are shown in Table 2 and the detailed weather record in Appendix 3.

The barographic record at the Miyakojima Weather Station is reproduced in Fig. 5. As is clearly seen in this figure, regular pressure fluctuations over periods of about 50 minutes overlap the regular V-shaped pressure change caused by typhoon passage. These short period fluctuations have a double amplitude of 15 mb at maximum. Pressure fluctuations

Fig. 4: Hourly changes of rainfall, wind and surface pressure at the Miyakojima Weather Station during the passage of the typhoon.

Fig. 5: The barographic record at the Miyakojima Weather Station. (Zero position is changed from 0500 to 1820.)
Table 2 Weather records of Typhoon No. 6618

<table>
<thead>
<tr>
<th></th>
<th>Yonagunijima</th>
<th>Ishigakijima</th>
<th>Miyakojima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. sea-level</td>
<td>Time JST</td>
<td>Time JST</td>
<td>Time JST</td>
</tr>
<tr>
<td>pressure, mb</td>
<td>984.4</td>
<td>978.0</td>
<td>928.9</td>
</tr>
<tr>
<td>Max. wind, m/sec</td>
<td>28.2W</td>
<td>27.3WNW</td>
<td>60.8NE</td>
</tr>
<tr>
<td></td>
<td>060300</td>
<td>051316</td>
<td>051001</td>
</tr>
<tr>
<td>Max. peak gust, m/sec</td>
<td>49.8WNW</td>
<td>44.9WNW</td>
<td>85.3NE</td>
</tr>
<tr>
<td></td>
<td>060302</td>
<td>052005</td>
<td>050631</td>
</tr>
<tr>
<td>Duration of wind</td>
<td>041300-</td>
<td>041758-</td>
<td>0410-</td>
</tr>
<tr>
<td>of above 10 m/sec</td>
<td>061300</td>
<td>061213</td>
<td>0616</td>
</tr>
<tr>
<td>Total precip., mm</td>
<td>125.8</td>
<td>324.5</td>
<td>291.6</td>
</tr>
<tr>
<td></td>
<td>062030</td>
<td>070358</td>
<td>060730</td>
</tr>
<tr>
<td>Max. daily precip., mm</td>
<td>115.5</td>
<td>239.4</td>
<td>236.4</td>
</tr>
<tr>
<td></td>
<td>062030</td>
<td>0524</td>
<td>0524</td>
</tr>
<tr>
<td>Max. hourly precip., mm</td>
<td>16.6</td>
<td>22.0</td>
<td>30.2</td>
</tr>
<tr>
<td></td>
<td>060700-</td>
<td>051033-</td>
<td>042000-</td>
</tr>
<tr>
<td>Max. 10-min precip., mm</td>
<td>6.8</td>
<td>4.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>060200-</td>
<td>050355-</td>
<td>050820-</td>
</tr>
<tr>
<td></td>
<td>0210</td>
<td>0405</td>
<td>0830</td>
</tr>
</tbody>
</table>

fluctuations of this kind were first found and reported by C. L. Jordan (1962), 2) who found surface pressure oscillations over 20-40 minute periods on the barographic trace at Naha in the Ryukyus, in the case of Typhoon Emma in 1956. But the fluctuations are clearer in this case than the ones shown by him. Moreover fluctuations with the same period were also found on the anemograph (Fig. 6).
6), the raingauge (Fig. 7), the tidal record (Fig. 8) and other ther traces. Detailed studies of these unusual phenomena will be seen in another paper by the present authors (1968). 3)

4. Concluding remarks

The Second Miyakojima Typhoon was one of the ordinary severe typhoons which can be seen once or twice every year in the northwest Pacific area, but it caused extraordinary disasters in the Sakijima District of the Ryukyus as shown in the paper by Prof. Ishizaki et al (1968). 4) The damage was mainly caused by the severe winds of first ranking intensity in this Ryukyu area. These strong winds were seen in Miyakojima because this island was just in the maximum wind zone of the right semi-circle of the typhoon and the unusual pressure oscillations found in the typhoon might have some relations with these extremely strong winds. The slow forward movement of the typhoon resulted in the long duration of the wind storm, that also increased the damage.
Acknowledgement.

This study is part of the project for the study of the disasters caused by the Second Miyakojima Typhoon directed by Prof. H. Ishizaki and sponsored by a Grant in Aid for Fundamental Scientific Research from the Ministry of Education of Japan. The authors are indebted to Prof. R. Yamamoto of the Meteorological Research Institute, Kyoto University for valuable advice in the course of study. Particular thanks are due to the various personal and authorities that helped and cooperated with us during the expedition in the Ryukyu Islands. The data shown in the appendix are mainly based on the official report of the Ryukyu Meteorological Agency.

References.

3) Mitsuta, Y. and S. Yoshizumi: Oscillations of surface pressure, wind, rainfall and other parameters during a typhoon. (to be published).
Appendix
<table>
<thead>
<tr>
<th>Date Time</th>
<th>Position</th>
<th>Surface (above) or 700 mb (below)</th>
<th>Eye</th>
<th>Wall cloud thickness</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min. press., mb</td>
<td>Max. wind Speed</td>
<td>Diam. n.m.</td>
<td>Remarks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or height, gpm and temp. deg C</td>
<td>Dist. from Quad. kt center, n.m.</td>
<td>n.m.</td>
<td></td>
</tr>
<tr>
<td>2nd 1200</td>
<td>N 20.8 E 133.9</td>
<td>920 2457</td>
<td>120 15</td>
<td>C 15 5</td>
<td>Eye filled with cloud. Max wind observed in eye 65 kt.</td>
</tr>
<tr>
<td>3rd 0600</td>
<td>22.8 E 131.3</td>
<td>938 2548</td>
<td>80 30 NE</td>
<td>C 30 5</td>
<td>Moderate feeder bands north and east extending 50 nm from center.</td>
</tr>
<tr>
<td>2300</td>
<td>23.8 E 129.0</td>
<td>— —</td>
<td>— —</td>
<td>20 18</td>
<td>Wall clouds extend from 325 deg to 130 deg. Feeder bands well defined all quadrants. Heavy precipitation N and E quadrants.</td>
</tr>
<tr>
<td>4th 0620</td>
<td>23.8 E 127.9</td>
<td>924 2417</td>
<td>120 10 W</td>
<td>C 28 5</td>
<td>Clouds at flight level 30 nm out from wall clouds. Eye filled with stratus. Light turbulence in wall clouds. Max surface wind observed inside of eye.</td>
</tr>
<tr>
<td>1105</td>
<td>23.8 E 127.4</td>
<td>920 2374</td>
<td>130 10 S</td>
<td>C 30 5</td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td>23.9 E 126.8</td>
<td>— —</td>
<td>85 84</td>
<td>C 34</td>
<td>Low level cloud top 42,000 ft 08 nm thick north semicircle and 14 nm thick south semicircle. Feeder band all quadrants. Max of 1500 ft observed wind 120 kt xx from center N quad.</td>
</tr>
<tr>
<td>Time</td>
<td>Radar Time</td>
<td>Pressure</td>
<td>Wind Direction</td>
<td>Wind Speed</td>
<td>Cloud Type</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>2225</td>
<td>24.0</td>
<td>125.8</td>
<td></td>
<td></td>
<td>E 35x32</td>
</tr>
<tr>
<td></td>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
<td>(E-W)</td>
</tr>
<tr>
<td>5th 0700</td>
<td>24.6</td>
<td>125.2</td>
<td></td>
<td></td>
<td>E 30x20</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td></td>
<td></td>
<td></td>
<td>(E-W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>24.8</td>
<td>125.1</td>
<td>927</td>
<td>80</td>
<td>E 30x20</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td></td>
<td>2378</td>
<td></td>
<td>(NE-SW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>25.0</td>
<td>124.8</td>
<td></td>
<td></td>
<td>E 37x26</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td></td>
<td></td>
<td></td>
<td>(NW-SE)</td>
</tr>
<tr>
<td>6th 0634</td>
<td>25.5</td>
<td>123.6</td>
<td></td>
<td></td>
<td>E 35x20</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td></td>
<td></td>
<td></td>
<td>(NE-SW)</td>
</tr>
<tr>
<td>1102</td>
<td>25.6</td>
<td>122.9</td>
<td></td>
<td></td>
<td>E 30x25</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td></td>
<td></td>
<td></td>
<td>(N-S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2; Position and size of the eye of Typhoon No. 6618 obtained by radar at Miyakojima Meteor. Obs.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time JST</th>
<th>Position deg</th>
<th>Diameter of eye km</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th</td>
<td>11h</td>
<td>N 24.0</td>
<td>E 127.3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>24.0</td>
<td>127.2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>24.0</td>
<td>127.1</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>24.1</td>
<td>126.9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>24.1</td>
<td>126.8</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>24.1</td>
<td>126.6</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24.1</td>
<td>126.5</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>24.1</td>
<td>126.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>24.1</td>
<td>126.3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>24.1</td>
<td>126.3</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>24.1</td>
<td>126.2</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24.2</td>
<td>126.0</td>
</tr>
<tr>
<td>5th</td>
<td>00</td>
<td>24.2</td>
<td>126.0</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>24.2</td>
<td>125.9</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>24.2</td>
<td>125.8</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>24.1</td>
<td>125.7</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>24.4</td>
<td>125.7</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>24.3</td>
<td>125.5</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>24.4</td>
<td>125.5</td>
</tr>
</tbody>
</table>

Appendix 3; Hourly Weather Records

A. Yonagunijima

<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>ww</th>
<th>Cloud Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th 10h</td>
<td>11</td>
<td>28.9</td>
<td>N</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>- =° -</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>29.7</td>
<td>N</td>
<td>9.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td>N</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>N</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>999.9</td>
<td>29.1</td>
<td>33.2</td>
<td>82</td>
<td>02</td>
<td>8</td>
<td>Cu, Cb, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>N</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>V1625-1640</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>N</td>
<td>12.7</td>
<td>0.0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>999.3</td>
<td>27.9</td>
<td>32.4</td>
<td>86</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td>N</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>N</td>
<td>11.3</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>99.5</td>
<td>27.9</td>
<td>32.4</td>
<td>86</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>99.5</td>
<td>27.8</td>
<td>31.6</td>
<td>85</td>
<td>02</td>
<td>4</td>
<td>Cu, Sc, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>99.5</td>
<td>27.8</td>
<td>31.9</td>
<td>85</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>5th 00</td>
<td>00</td>
<td>998.9</td>
<td>27.7</td>
<td>30.9</td>
<td>83</td>
<td>02</td>
<td>10</td>
<td>Cu, Ac</td>
<td>V1590-151</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>98.1</td>
<td>27.6</td>
<td>31.3</td>
<td>85</td>
<td>02</td>
<td>10</td>
<td>Cu, Ac</td>
<td>V1530-1530</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>97.1</td>
<td>27.6</td>
<td>31.8</td>
<td>86</td>
<td>0.0</td>
<td>10</td>
<td>Cu, Ac</td>
<td>V1280-1280</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>96.7</td>
<td>27.5</td>
<td>31.3</td>
<td>85</td>
<td>12.8</td>
<td>25</td>
<td>Cu, Ac</td>
<td>V1260-1260</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>96.6</td>
<td>27.4</td>
<td>31.1</td>
<td>85</td>
<td>13.8</td>
<td>80</td>
<td>Cu, Ac</td>
<td>V1380-1380</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>96.4</td>
<td>26.7</td>
<td>31.8</td>
<td>91</td>
<td>NNW 14.7</td>
<td>1.4</td>
<td>Cu, Ac</td>
<td>V1380-1380</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Characteristics of the Second Miyakojima Typhoon

<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea level press., mb</th>
<th>Air Temp., deg C</th>
<th>Vapor press., mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed, m/sec</th>
<th>Precip. mm</th>
<th>Cloud Amount</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 995.4</td>
<td>26.9</td>
<td>32.0</td>
<td>90</td>
<td>NNW 14.2</td>
<td>0.1</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>07 95.7</td>
<td>27.2</td>
<td>31.5</td>
<td>87</td>
<td>NNW 14.7</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>08 95.4</td>
<td>27.4</td>
<td>31.9</td>
<td>87</td>
<td>NNW 15.5</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>09 95.7</td>
<td>27.3</td>
<td>31.7</td>
<td>87</td>
<td>NNW 15.7</td>
<td>0.0</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>10 95.3</td>
<td>27.5</td>
<td>31.6</td>
<td>86</td>
<td>NNW 16.2</td>
<td>0.0</td>
<td>25</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>11 94.9</td>
<td>27.9</td>
<td>31.6</td>
<td>84</td>
<td>NNW 16.5</td>
<td>0.0</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>12 994.0</td>
<td>27.9</td>
<td>31.6</td>
<td>84</td>
<td>NNW 18.2</td>
<td>0.0</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>13 92.8</td>
<td>28.1</td>
<td>31.2</td>
<td>82</td>
<td>NNW 17.3</td>
<td>0.0</td>
<td>25</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>14 92.2</td>
<td>28.4</td>
<td>31.5</td>
<td>81</td>
<td>NNW 19.2</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>15 91.8</td>
<td>28.4</td>
<td>31.5</td>
<td>81</td>
<td>NNW 20.3</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>16 91.3</td>
<td>28.1</td>
<td>31.5</td>
<td>83</td>
<td>NNW 20.0</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>17 91.5</td>
<td>28.2</td>
<td>32.2</td>
<td>84</td>
<td>NNW 19.2</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>18 991.8</td>
<td>27.8</td>
<td>31.9</td>
<td>85</td>
<td>NNW 19.7</td>
<td>0.0</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>19 91.4</td>
<td>28.0</td>
<td>31.8</td>
<td>84</td>
<td>NNW 19.8</td>
<td>0.0</td>
<td>25</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>20 91.8</td>
<td>28.1</td>
<td>32.0</td>
<td>84</td>
<td>NNW 21.0</td>
<td>—</td>
<td>02</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>21 91.3</td>
<td>27.4</td>
<td>32.4</td>
<td>89</td>
<td>NNW 20.0</td>
<td>0.3</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>22 91.0</td>
<td>27.1</td>
<td>32.6</td>
<td>91</td>
<td>NW 21.5</td>
<td>1.1</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>23 90.6</td>
<td>26.9</td>
<td>32.8</td>
<td>92</td>
<td>NW 21.5</td>
<td>1.3</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
</tbody>
</table>

6th 00

<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea level press., mb</th>
<th>Air Temp., deg C</th>
<th>Vapor press., mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed, m/sec</th>
<th>Precip. mm</th>
<th>Cloud Amount</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 989.1</td>
<td>26.8</td>
<td>32.8</td>
<td>93</td>
<td>NW 23.5</td>
<td>1.8</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>07 87.3</td>
<td>26.6</td>
<td>32.7</td>
<td>94</td>
<td>NW 23.7</td>
<td>3.9</td>
<td>63</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>08 86.4</td>
<td>26.5</td>
<td>33.3</td>
<td>96</td>
<td>NW 23.3</td>
<td>7.7</td>
<td>65</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>09 88.4</td>
<td>25.9</td>
<td>33.2</td>
<td>99</td>
<td>WNW24.7</td>
<td>12.6</td>
<td>65</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>10 85.3</td>
<td>25.9</td>
<td>32.9</td>
<td>98</td>
<td>WNW22.5</td>
<td>3.0</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>11 85.0</td>
<td>26.0</td>
<td>32.8</td>
<td>98</td>
<td>WNW24.3</td>
<td>1.0</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>12 984.8</td>
<td>26.0</td>
<td>32.3</td>
<td>96</td>
<td>WNW24.8</td>
<td>0.8</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>13 85.6</td>
<td>25.8</td>
<td>31.2</td>
<td>94</td>
<td>W 21.3</td>
<td>9.0</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>14 85.4</td>
<td>25.7</td>
<td>31.0</td>
<td>94</td>
<td>WSW22.0</td>
<td>16.6</td>
<td>63</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>15 86.7</td>
<td>25.7</td>
<td>31.2</td>
<td>94</td>
<td>W 20.5</td>
<td>15.2</td>
<td>63</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>16 87.7</td>
<td>25.7</td>
<td>30.5</td>
<td>94</td>
<td>WSW22.3</td>
<td>6.2</td>
<td>63</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>17 89.3</td>
<td>25.5</td>
<td>30.1</td>
<td>92</td>
<td>WSW15.6</td>
<td>4.9</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
</tbody>
</table>

7th 00

<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea level press., mb</th>
<th>Air Temp., deg C</th>
<th>Vapor press., mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed, m/sec</th>
<th>Precip. mm</th>
<th>Cloud Amount</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 990.4</td>
<td>26.0</td>
<td>31.3</td>
<td>93</td>
<td>WSW16.2</td>
<td>1.7</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>07 90.6</td>
<td>25.5</td>
<td>28.6</td>
<td>88</td>
<td>WSW12.5</td>
<td>2.2</td>
<td>61</td>
<td>10 Cu, As</td>
<td></td>
</tr>
<tr>
<td>08 90.1</td>
<td>27.7</td>
<td>34.1</td>
<td>92</td>
<td>SSW8.7</td>
<td>0.0</td>
<td>80</td>
<td>10 Cu, As, Ac</td>
<td></td>
</tr>
<tr>
<td>09 91.5</td>
<td>27.2</td>
<td>33.1</td>
<td>92</td>
<td>WSW5.7</td>
<td>0.3</td>
<td>80</td>
<td>10 Cu, Cb</td>
<td></td>
</tr>
<tr>
<td>10 91.4</td>
<td>27.2</td>
<td>33.9</td>
<td>94</td>
<td>N 3.5</td>
<td>0.0</td>
<td>80</td>
<td>10 Cu, Cb, As, Ac</td>
<td></td>
</tr>
<tr>
<td>11 992.7</td>
<td>27.4</td>
<td>33.8</td>
<td>92</td>
<td>S 1.4</td>
<td>—</td>
<td>10</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>12 992.7</td>
<td>27.4</td>
<td>33.8</td>
<td>92</td>
<td>SE 7.5</td>
<td>—</td>
<td>25</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>13 992.7</td>
<td>27.4</td>
<td>33.8</td>
<td>92</td>
<td>SE 8.0</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- $\theta^0409-\theta^0412$
- θ^0530
- $\theta^0848-\theta935$
- $\theta^1130-1205$
- θ^1714

1. **Sea Level Press.**
2. **Air Temp.**
3. **Vapor Press.**
4. **R. H. %**
5. **Wind Dir. Speed.**
6. **Precip. mm**
7. **Cloud Amount**
8. **Remarks**
<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level pressure (mb)</th>
<th>Air Temperature (deg C)</th>
<th>Vapor pressure (mb)</th>
<th>R. H. %</th>
<th>Wind Dir. Speed (m/sec)</th>
<th>Wind Speed (kn)</th>
<th>Pre-cip. (mm)</th>
<th>ww</th>
<th>Cloud</th>
<th>Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th 01</td>
<td>1002.9</td>
<td>26.9</td>
<td>30.4</td>
<td>86</td>
<td>N</td>
<td>1.7</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td>U°C10024-0058.</td>
</tr>
<tr>
<td>02</td>
<td>1002.8</td>
<td>26.8</td>
<td>30.5</td>
<td>88</td>
<td>NE</td>
<td>2.0</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Cs, Ci</td>
<td>U°C10024-0058.</td>
</tr>
<tr>
<td>03</td>
<td>1002.6</td>
<td>26.6</td>
<td>30.6</td>
<td>88</td>
<td>NNE</td>
<td>2.6</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>1002.9</td>
<td>26.8</td>
<td>29.7</td>
<td>84</td>
<td>NNE</td>
<td>2.0</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>1001.7</td>
<td>27.0</td>
<td>29.8</td>
<td>84</td>
<td>N</td>
<td>3.5</td>
<td>─</td>
<td>05</td>
<td>5</td>
<td>Cu, Ci</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1001.7</td>
<td>27.1</td>
<td>29.8</td>
<td>83</td>
<td>NNE</td>
<td>3.5</td>
<td>─</td>
<td>02</td>
<td>5</td>
<td>Cu, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>1001.1</td>
<td>27.5</td>
<td>30.0</td>
<td>82</td>
<td>NNE</td>
<td>4.5</td>
<td>─</td>
<td>02</td>
<td>5</td>
<td>Cu, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>1001.3</td>
<td>28.3</td>
<td>31.8</td>
<td>83</td>
<td>NNE</td>
<td>5.3</td>
<td>0.2</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>1001.1</td>
<td>28.7</td>
<td>30.8</td>
<td>78</td>
<td>N</td>
<td>5.7</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1000.8</td>
<td>30.0</td>
<td>31.8</td>
<td>75</td>
<td>N</td>
<td>6.3</td>
<td>0.0</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac, Cs</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1000.4</td>
<td>30.4</td>
<td>31.2</td>
<td>72</td>
<td>N</td>
<td>7.3</td>
<td>─</td>
<td>05</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>999.9</td>
<td>30.1</td>
<td>31.2</td>
<td>73</td>
<td>NNE</td>
<td>6.7</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>99.8</td>
<td>29.6</td>
<td>31.2</td>
<td>75</td>
<td>NNE</td>
<td>7.5</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>99.5</td>
<td>29.3</td>
<td>30.9</td>
<td>76</td>
<td>N</td>
<td>7.5</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>99.5</td>
<td>29.4</td>
<td>30.8</td>
<td>75</td>
<td>N</td>
<td>8.0</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>99.3</td>
<td>29.4</td>
<td>30.7</td>
<td>75</td>
<td>N</td>
<td>8.0</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>99.3</td>
<td>29.3</td>
<td>30.6</td>
<td>75</td>
<td>NNE</td>
<td>7.7</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>99.1</td>
<td>28.9</td>
<td>30.4</td>
<td>76</td>
<td>N</td>
<td>10.3</td>
<td>─</td>
<td>05</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>96.0</td>
<td>28.6</td>
<td>30.3</td>
<td>77</td>
<td>N</td>
<td>9.2</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>96.6</td>
<td>28.5</td>
<td>30.8</td>
<td>78</td>
<td>N</td>
<td>8.4</td>
<td>─</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>95.8</td>
<td>28.1</td>
<td>31.2</td>
<td>82</td>
<td>N</td>
<td>9.0</td>
<td>0.0</td>
<td>80</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>95.7</td>
<td>27.4</td>
<td>31.9</td>
<td>87</td>
<td>N</td>
<td>9.6</td>
<td>1.6</td>
<td>80</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>95.0</td>
<td>27.4</td>
<td>31.6</td>
<td>87</td>
<td>N</td>
<td>10.3</td>
<td>1.6</td>
<td>80</td>
<td>10°</td>
<td>Cu, Ac, As</td>
<td></td>
</tr>
<tr>
<td>5th 00</td>
<td>994.0</td>
<td>27.2</td>
<td>31.5</td>
<td>87</td>
<td>N</td>
<td>10.8</td>
<td>1.2</td>
<td>80</td>
<td>10°</td>
<td>Cu</td>
<td></td>
</tr>
</tbody>
</table>
| 01 | 92.4 | 27.0 | 31.4 | 88 | N | 13.0 | 3.7 | 81 | 10° | Cu, As | |}

The table continues with similar data entries for subsequent dates and times.
Characteristics of the Second Miyakojima Typhoon

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>Cloud</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>82.1</td>
<td>26.2</td>
<td>32.7</td>
<td>96</td>
<td>WSW 24.5</td>
<td>12.3</td>
<td>63</td>
<td>10 St, Ns</td>
</tr>
<tr>
<td>03</td>
<td>83.8</td>
<td>26.1</td>
<td>32.0</td>
<td>94</td>
<td>SW 22.0</td>
<td>12.7</td>
<td>65</td>
<td>10 St, Ns</td>
</tr>
<tr>
<td>04</td>
<td>85.1</td>
<td>25.9</td>
<td>32.1</td>
<td>96</td>
<td>SSW 21.2</td>
<td>12.7</td>
<td>65</td>
<td>10 St, Ns</td>
</tr>
<tr>
<td>05</td>
<td>87.0</td>
<td>25.8</td>
<td>31.4</td>
<td>94</td>
<td>SSW 19.5</td>
<td>8.3</td>
<td>63</td>
<td>10 St, Ns</td>
</tr>
<tr>
<td>06</td>
<td>987.1</td>
<td>26.2</td>
<td>31.9</td>
<td>94</td>
<td>SSW 18.0</td>
<td>9.5</td>
<td>61</td>
<td>10 St, Ns</td>
</tr>
<tr>
<td>07</td>
<td>88.6</td>
<td>27.4</td>
<td>30.6</td>
<td>84</td>
<td>SSW 16.8</td>
<td>3.4</td>
<td>61</td>
<td>10 Cu, Ns</td>
</tr>
<tr>
<td>08</td>
<td>89.0</td>
<td>27.8</td>
<td>32.4</td>
<td>87</td>
<td>S</td>
<td>16.0</td>
<td>0.4</td>
<td>21 Cu, Ns</td>
</tr>
<tr>
<td>09</td>
<td>91.4</td>
<td>27.8</td>
<td>33.2</td>
<td>89</td>
<td>SSW 13.2</td>
<td>0.7</td>
<td>21</td>
<td>10 Cu, Ns</td>
</tr>
<tr>
<td>10</td>
<td>92.0</td>
<td>28.0</td>
<td>32.6</td>
<td>86</td>
<td>SSW 13.8</td>
<td></td>
<td>02</td>
<td>10 Cu, Sc, As</td>
</tr>
<tr>
<td>11</td>
<td>93.3</td>
<td>28.0</td>
<td>33.1</td>
<td>87</td>
<td>SSW 9.5</td>
<td></td>
<td>02</td>
<td>10 Cu, Sc, As</td>
</tr>
<tr>
<td>12</td>
<td>993.7</td>
<td>28.2</td>
<td>33.2</td>
<td>87</td>
<td>S</td>
<td>9.7</td>
<td>02</td>
<td>10 Cu, Sc, As</td>
</tr>
<tr>
<td>13</td>
<td>94.0</td>
<td>28.6</td>
<td>33.5</td>
<td>86</td>
<td>SSW 9.0</td>
<td></td>
<td>02</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>14</td>
<td>93.3</td>
<td>28.6</td>
<td>33.5</td>
<td>86</td>
<td>S</td>
<td>8.8</td>
<td>02</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>15</td>
<td>92.8</td>
<td>28.8</td>
<td>33.9</td>
<td>86</td>
<td>S</td>
<td>8.3</td>
<td>02</td>
<td>10 Cu, Ac, As</td>
</tr>
<tr>
<td>16</td>
<td>93.0</td>
<td>28.7</td>
<td>33.3</td>
<td>87</td>
<td>S</td>
<td>8.8</td>
<td>02</td>
<td>10 Cu, Ac, As</td>
</tr>
<tr>
<td>17</td>
<td>93.7</td>
<td>28.4</td>
<td>33.4</td>
<td>86</td>
<td>S</td>
<td>8.9</td>
<td>02</td>
<td>10 Cu, Ac, As</td>
</tr>
<tr>
<td>18</td>
<td>994.1</td>
<td>27.7</td>
<td>33.3</td>
<td>90</td>
<td>S</td>
<td>9.0</td>
<td>0.2</td>
<td>80 Cu, Ac</td>
</tr>
<tr>
<td>19</td>
<td>94.7</td>
<td>27.5</td>
<td>34.1</td>
<td>91</td>
<td>S</td>
<td>5.8</td>
<td>1.4</td>
<td>80 Cu, Ac</td>
</tr>
<tr>
<td>20</td>
<td>95.3</td>
<td>27.7</td>
<td>33.3</td>
<td>90</td>
<td>SSE 6.8</td>
<td>0.2</td>
<td>25</td>
<td>10 Cu, Ac</td>
</tr>
</tbody>
</table>

C. Miyakojima

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>Cloud</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th 06h</td>
<td>1000.1</td>
<td>27.1</td>
<td>31.6</td>
<td>88</td>
<td>NNE 6.0</td>
<td>25</td>
<td>10 Cu, Ac</td>
<td>-°-</td>
</tr>
<tr>
<td>06</td>
<td>999.8</td>
<td>26.8</td>
<td>31.5</td>
<td>89</td>
<td>NNE 7.0</td>
<td>1.0</td>
<td>25</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>07</td>
<td>99.7</td>
<td>27.3</td>
<td>31.7</td>
<td>87</td>
<td>N</td>
<td>8.3</td>
<td>25</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>08</td>
<td>98.3</td>
<td>27.5</td>
<td>31.8</td>
<td>87</td>
<td>N</td>
<td>8.7</td>
<td>25</td>
<td>10 Cu, Sc, Ac</td>
</tr>
<tr>
<td>09</td>
<td>99.3</td>
<td>28.0</td>
<td>31.5</td>
<td>83</td>
<td>N</td>
<td>9.3</td>
<td>0.0</td>
<td>25 Cu, Ac</td>
</tr>
<tr>
<td>10</td>
<td>99.0</td>
<td>28.4</td>
<td>31.5</td>
<td>81</td>
<td>NNE 11.0</td>
<td>80</td>
<td>10 Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>98.6</td>
<td>28.6</td>
<td>32.2</td>
<td>82</td>
<td>N</td>
<td>11.0</td>
<td>80</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>12</td>
<td>997.9</td>
<td>28.4</td>
<td>31.5</td>
<td>81</td>
<td>N</td>
<td>12.9</td>
<td>0.4</td>
<td>25 Cu, Ac</td>
</tr>
<tr>
<td>13</td>
<td>96.5</td>
<td>26.7</td>
<td>32.2</td>
<td>84</td>
<td>N</td>
<td>11.8</td>
<td>02</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>14</td>
<td>95.1</td>
<td>27.8</td>
<td>32.2</td>
<td>84</td>
<td>N</td>
<td>13.2</td>
<td>80</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>15</td>
<td>93.8</td>
<td>27.4</td>
<td>32.4</td>
<td>89</td>
<td>N</td>
<td>15.7</td>
<td>0.7</td>
<td>80 Cu, Ac</td>
</tr>
<tr>
<td>16</td>
<td>93.1</td>
<td>26.6</td>
<td>32.4</td>
<td>93</td>
<td>N</td>
<td>16.2</td>
<td>80</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>17</td>
<td>92.7</td>
<td>27.2</td>
<td>32.3</td>
<td>90</td>
<td>N</td>
<td>14.2</td>
<td>25</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>18</td>
<td>991.7</td>
<td>27.2</td>
<td>32.3</td>
<td>90</td>
<td>NNE 15.7</td>
<td>3.2</td>
<td>80</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>19</td>
<td>90.6</td>
<td>27.2</td>
<td>32.3</td>
<td>90</td>
<td>N</td>
<td>18.0</td>
<td>80</td>
<td>10 Cu, Ac, Cb</td>
</tr>
<tr>
<td>20</td>
<td>90.4</td>
<td>26.4</td>
<td>32.8</td>
<td>86</td>
<td>N</td>
<td>16.0</td>
<td>80</td>
<td>10 Cu, Cb, Ac</td>
</tr>
<tr>
<td>21</td>
<td>89.5</td>
<td>26.9</td>
<td>34.6</td>
<td>98</td>
<td>NNE 15.0</td>
<td>31.7</td>
<td>81</td>
<td>10 Cu, Cb, Ac</td>
</tr>
<tr>
<td>22</td>
<td>87.8</td>
<td>25.9</td>
<td>31.9</td>
<td>95</td>
<td>NNE 17.7</td>
<td></td>
<td>80</td>
<td>10 Cu, Cb, Ac</td>
</tr>
<tr>
<td>23</td>
<td>86.1</td>
<td>26.1</td>
<td>30.0</td>
<td>89</td>
<td>NNE 20.2</td>
<td></td>
<td>61</td>
<td>10 Cu, Ns</td>
</tr>
</tbody>
</table>

5th 0000

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>Cloud</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>983.3</td>
<td>25.6</td>
<td>31.5</td>
<td>96</td>
<td>NNE 23.3</td>
<td>11.1</td>
<td>63</td>
<td>10 Cu, Ns</td>
</tr>
<tr>
<td>30</td>
<td>81.7</td>
<td>25.6</td>
<td>25.5</td>
<td>63</td>
<td>N</td>
<td>63</td>
<td>10 Cu, Ns</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>80.2</td>
<td>26.0</td>
<td>30.5</td>
<td>91</td>
<td>NNE 25.3</td>
<td>61</td>
<td>10 Cu, Ns</td>
<td></td>
</tr>
<tr>
<td>0200</td>
<td>76.5</td>
<td>25.9</td>
<td>31.1</td>
<td>93</td>
<td>NNE 27.5</td>
<td>63</td>
<td>10 Cu, Ns</td>
<td></td>
</tr>
<tr>
<td>Date Time JST</td>
<td>Sea-lev press mb</td>
<td>Air Temp deg C</td>
<td>Vapor press mb</td>
<td>R. H.</td>
<td>Wind Dir Speed m/sec</td>
<td>Precip mm</td>
<td>ww</td>
<td>Cloud Amount Form</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----</td>
<td>-------------------</td>
</tr>
<tr>
<td>5th 0230</td>
<td>973.8</td>
<td>25.2</td>
<td>31.8</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0300</td>
<td>71.9</td>
<td>25.3</td>
<td>31.5</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0400</td>
<td>66.0</td>
<td>25.2</td>
<td>31.3</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0500</td>
<td>60.6</td>
<td>25.2</td>
<td>31.3</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0600</td>
<td>55.5</td>
<td>25.7</td>
<td>30.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0700</td>
<td>50.5</td>
<td>25.8</td>
<td>30.8</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0800</td>
<td>45.1</td>
<td>25.8</td>
<td>30.8</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0900</td>
<td>40.8</td>
<td>25.0</td>
<td>31.7</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1000</td>
<td>36.4</td>
<td>25.0</td>
<td>31.7</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1100</td>
<td>32.2</td>
<td>25.7</td>
<td>33.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1200</td>
<td>29.5</td>
<td>25.7</td>
<td>33.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1300</td>
<td>25.7</td>
<td>25.7</td>
<td>32.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1400</td>
<td>25.4</td>
<td>25.7</td>
<td>32.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1500</td>
<td>24.6</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1600</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1700</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1800</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1900</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>2000</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>2100</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>2200</td>
<td>24.2</td>
<td>25.4</td>
<td>31.4</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0600</td>
<td>991.0</td>
<td>24.2</td>
<td>28.5</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0700</td>
<td>992.6</td>
<td>25.6</td>
<td>32.3</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0800</td>
<td>93.7</td>
<td>26.9</td>
<td>34.6</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>0900</td>
<td>94.2</td>
<td>27.0</td>
<td>33.0</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1000</td>
<td>95.0</td>
<td>27.5</td>
<td>33.2</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1100</td>
<td>95.6</td>
<td>27.7</td>
<td>33.3</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1200</td>
<td>96.4</td>
<td>27.9</td>
<td>33.7</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1300</td>
<td>96.1</td>
<td>29.2</td>
<td>34.8</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
<tr>
<td>1400</td>
<td>96.1</td>
<td>29.2</td>
<td>34.8</td>
<td>NE</td>
<td>30.7</td>
<td>30.7</td>
<td>NE</td>
<td>30.7</td>
</tr>
</tbody>
</table>

D. Kumejima

<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea-lev press mb</th>
<th>Air Temp deg C</th>
<th>Vapor press mb</th>
<th>R. H.</th>
<th>Wind Dir Speed m/sec</th>
<th>Precip mm</th>
<th>ww</th>
<th>Cloud Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd 03h</td>
<td>1005.1</td>
<td>26.1</td>
<td>94</td>
<td>ESE</td>
<td>4.9</td>
<td>4.9</td>
<td>---</td>
<td>8 Cu, Ac</td>
<td>9 Cu, Ci</td>
</tr>
<tr>
<td>06</td>
<td>25.9</td>
<td>28.3</td>
<td>33.0</td>
<td>NE</td>
<td>4.4</td>
<td>4.4</td>
<td>---</td>
<td>8 Cu, Ac</td>
<td>9 Cu, Ci</td>
</tr>
<tr>
<td>09</td>
<td>29.3</td>
<td>29.8</td>
<td>31.9</td>
<td>NE</td>
<td>5.3</td>
<td>5.3</td>
<td>---</td>
<td>8 Cu, Ac</td>
<td>9 Cu, Ci</td>
</tr>
<tr>
<td>12</td>
<td>29.3</td>
<td>29.8</td>
<td>31.9</td>
<td>NE</td>
<td>5.3</td>
<td>5.3</td>
<td>---</td>
<td>8 Cu, Ac</td>
<td>9 Cu, Ci</td>
</tr>
<tr>
<td>15</td>
<td>29.3</td>
<td>29.8</td>
<td>31.9</td>
<td>NE</td>
<td>5.3</td>
<td>5.3</td>
<td>---</td>
<td>8 Cu, Ac</td>
<td>9 Cu, Ci</td>
</tr>
</tbody>
</table>
Characteristics of the Second Miyakojima Typhoon

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>ww</th>
<th>Cloud Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
<td>03.0</td>
<td>27.8</td>
<td>32.2</td>
<td>86</td>
<td>NE</td>
<td>6.4</td>
<td>-</td>
<td></td>
<td>10°Cu, Ci</td>
</tr>
<tr>
<td>21</td>
<td>03.3</td>
<td>27.2</td>
<td>31.2</td>
<td>86</td>
<td>NE</td>
<td>6.9</td>
<td>-</td>
<td></td>
<td>7 Cu, Ci</td>
</tr>
<tr>
<td>00</td>
<td>1002.5</td>
<td>27.0</td>
<td>31.6</td>
<td>89</td>
<td>NE</td>
<td>6.9</td>
<td>-</td>
<td></td>
<td>8 Cu, Cc, C</td>
</tr>
<tr>
<td>03</td>
<td>01.0</td>
<td>27.0</td>
<td>31.6</td>
<td>89</td>
<td>NE</td>
<td>6.8</td>
<td>-</td>
<td></td>
<td>10°Cu, Ac</td>
</tr>
<tr>
<td>06</td>
<td>00.1</td>
<td>26.9</td>
<td>31.7</td>
<td>90</td>
<td>NE</td>
<td>7.3 (0.0)</td>
<td>-</td>
<td></td>
<td>10°Cu, Ac</td>
</tr>
<tr>
<td>09</td>
<td>00.5</td>
<td>27.4</td>
<td>31.6</td>
<td>87</td>
<td>NE</td>
<td>7.8</td>
<td>-</td>
<td></td>
<td>10°Cu, Ac</td>
</tr>
<tr>
<td>12</td>
<td>28.8</td>
<td>ENE</td>
<td>8.4</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1325…1330.</td>
</tr>
<tr>
<td>15</td>
<td>998.1</td>
<td>28.5</td>
<td>31.7</td>
<td>81</td>
<td>NE</td>
<td>8.1 (0.0)</td>
<td>-</td>
<td></td>
<td>10°Cu, Ac, Cl</td>
</tr>
<tr>
<td>18</td>
<td>27.8</td>
<td>ENE</td>
<td>9.5</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>98.9</td>
<td>27.6</td>
<td>ENE</td>
<td>9.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>997.6</td>
<td>27.5</td>
<td>ENE</td>
<td>10.5</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0713…0726.</td>
</tr>
<tr>
<td>03</td>
<td>27.3</td>
<td>86</td>
<td>E</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1617…1624.</td>
</tr>
<tr>
<td>06</td>
<td>27.2</td>
<td>E</td>
<td>13.6</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1635…1642.</td>
</tr>
<tr>
<td>09</td>
<td>97.4</td>
<td>26.1</td>
<td>32.0</td>
<td>84</td>
<td>E</td>
<td>13.4 (0.0)</td>
<td>-</td>
<td></td>
<td>2215…2230.</td>
</tr>
<tr>
<td>12</td>
<td>29.0</td>
<td>ESE</td>
<td>13.4</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2305…2331.</td>
</tr>
<tr>
<td>15</td>
<td>96.3</td>
<td>29.1</td>
<td>34.0</td>
<td>84</td>
<td>ESE</td>
<td>12.9</td>
<td>-</td>
<td></td>
<td>1415…1645.</td>
</tr>
<tr>
<td>18</td>
<td>28.0</td>
<td>ESE</td>
<td>12.6</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0800…</td>
</tr>
<tr>
<td>21</td>
<td>98.7</td>
<td>28.0</td>
<td>91</td>
<td>ESE</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. Naha

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>ww</th>
<th>Cloud Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1005.2</td>
<td>26.5</td>
<td>30.7</td>
<td>89</td>
<td>E</td>
<td>6.7</td>
<td>-</td>
<td></td>
<td>5 Cu,</td>
</tr>
<tr>
<td>02</td>
<td>995.9</td>
<td>27.3</td>
<td>30.0</td>
<td>87</td>
<td>E</td>
<td>8.5</td>
<td>-</td>
<td></td>
<td>4 Cu,</td>
</tr>
<tr>
<td>03</td>
<td>995.0</td>
<td>26.4</td>
<td>30.0</td>
<td>87</td>
<td>E</td>
<td>8.5</td>
<td>-</td>
<td></td>
<td>4 Cu,</td>
</tr>
<tr>
<td>04</td>
<td>994.7</td>
<td>26.3</td>
<td>30.1</td>
<td>88</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>10°Cu, Cl</td>
</tr>
<tr>
<td>05</td>
<td>994.8</td>
<td>26.3</td>
<td>30.1</td>
<td>88</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>7 Cu, Cl</td>
</tr>
<tr>
<td>06</td>
<td>1005.1</td>
<td>26.3</td>
<td>30.1</td>
<td>88</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>7 Cu, Cl</td>
</tr>
<tr>
<td>07</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>08</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>09</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>10</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>11</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>12</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>13</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>14</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>15</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>16</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>17</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>18</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>19</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>20</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>21</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>22</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
<tr>
<td>23</td>
<td>1004.9</td>
<td>26.3</td>
<td>30.3</td>
<td>86</td>
<td>E</td>
<td>8.0</td>
<td>-</td>
<td></td>
<td>9 Cu, Ac, Cl</td>
</tr>
</tbody>
</table>

4th 00

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>ww</th>
<th>Cloud Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1001.6</td>
<td>27.5</td>
<td>30.3</td>
<td>82</td>
<td>NE</td>
<td>10.2 (0.0)</td>
<td>25</td>
<td></td>
<td>10°Cu, Cb, Ac, Ci</td>
</tr>
<tr>
<td>01</td>
<td>09.9</td>
<td>27.3</td>
<td>30.4</td>
<td>84</td>
<td>NE</td>
<td>10.0 (0.0)</td>
<td>25</td>
<td></td>
<td>10°Cu, Ac, C</td>
</tr>
<tr>
<td>02</td>
<td>00.5</td>
<td>27.3</td>
<td>30.4</td>
<td>84</td>
<td>ENE</td>
<td>13.3 (0.0)</td>
<td>80</td>
<td></td>
<td>10°Cu, Ac, C</td>
</tr>
<tr>
<td>03</td>
<td>999.5</td>
<td>27.2</td>
<td>30.2</td>
<td>84</td>
<td>E</td>
<td>12.2 (0.0)</td>
<td>25</td>
<td></td>
<td>10°Cu, Ac, C</td>
</tr>
<tr>
<td>04</td>
<td>99.7</td>
<td>27.2</td>
<td>30.5</td>
<td>84</td>
<td>E</td>
<td>11.5 (0.0)</td>
<td>25</td>
<td></td>
<td>10°Cu, Ac</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JST</td>
<td>mb</td>
<td>°C</td>
<td>mb</td>
<td>%</td>
<td>m/sec</td>
<td>mm/sec</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>99.4</td>
<td>27.1</td>
<td>30.3</td>
<td>84</td>
<td>11.0</td>
<td>ENE</td>
<td>11.0</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>06</td>
<td>999.4</td>
<td>27.1</td>
<td>30.5</td>
<td>85</td>
<td>11.3</td>
<td>ENE</td>
<td>11.3</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>07</td>
<td>99.2</td>
<td>27.2</td>
<td>30.5</td>
<td>84</td>
<td>12.7</td>
<td>NE</td>
<td>12.7</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>08</td>
<td>99.4</td>
<td>27.4</td>
<td>30.9</td>
<td>84</td>
<td>12.2</td>
<td>NE</td>
<td>12.2</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>09</td>
<td>99.5</td>
<td>27.7</td>
<td>31.2</td>
<td>84</td>
<td>13.3</td>
<td>ENE</td>
<td>13.3</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>10</td>
<td>99.5</td>
<td>28.1</td>
<td>31.7</td>
<td>83</td>
<td>13.2</td>
<td>ENE</td>
<td>13.2</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>11</td>
<td>99.5</td>
<td>28.7</td>
<td>31.8</td>
<td>81</td>
<td>14.2</td>
<td>ENE</td>
<td>14.2</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>12</td>
<td>999.1</td>
<td>29.0</td>
<td>32.2</td>
<td>80</td>
<td>12.7</td>
<td>ENE</td>
<td>12.7</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>13</td>
<td>99.7</td>
<td>28.7</td>
<td>31.6</td>
<td>80</td>
<td>13.2</td>
<td>ENE</td>
<td>13.2</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>14</td>
<td>97.9</td>
<td>28.6</td>
<td>31.6</td>
<td>81</td>
<td>13.7</td>
<td>ENE</td>
<td>13.7</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>15</td>
<td>97.6</td>
<td>28.4</td>
<td>31.5</td>
<td>81</td>
<td>14.0</td>
<td>ENE</td>
<td>14.0</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>16</td>
<td>97.6</td>
<td>28.3</td>
<td>31.0</td>
<td>81</td>
<td>14.2</td>
<td>ENE</td>
<td>14.2</td>
<td>0.2</td>
<td>10 Cu, Ac, Ci</td>
</tr>
<tr>
<td>17</td>
<td>97.6</td>
<td>27.9</td>
<td>31.1</td>
<td>83</td>
<td>13.7</td>
<td>ENE</td>
<td>13.7</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>18</td>
<td>97.9</td>
<td>27.6</td>
<td>31.3</td>
<td>85</td>
<td>14.0</td>
<td>E</td>
<td>14.0</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>19</td>
<td>98.5</td>
<td>27.5</td>
<td>31.1</td>
<td>84</td>
<td>14.2</td>
<td>E</td>
<td>14.2</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>20</td>
<td>98.3</td>
<td>27.4</td>
<td>30.9</td>
<td>84</td>
<td>13.8</td>
<td>E</td>
<td>13.8</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>21</td>
<td>99.1</td>
<td>27.4</td>
<td>31.1</td>
<td>85</td>
<td>13.7</td>
<td>E</td>
<td>13.7</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>22</td>
<td>99.7</td>
<td>27.4</td>
<td>31.1</td>
<td>85</td>
<td>14.3</td>
<td>E</td>
<td>14.3</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>23</td>
<td>99.4</td>
<td>27.3</td>
<td>31.2</td>
<td>86</td>
<td>14.2</td>
<td>E</td>
<td>14.2</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>5th</td>
<td>00</td>
<td>99.3</td>
<td>27.3</td>
<td>31.2</td>
<td>86</td>
<td>E</td>
<td>14.0</td>
<td>0.2</td>
<td>10 Cu, Ac, Cs</td>
</tr>
<tr>
<td>01</td>
<td>98.9</td>
<td>27.1</td>
<td>30.8</td>
<td>86</td>
<td>14.5</td>
<td>E</td>
<td>14.5</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>02</td>
<td>98.9</td>
<td>27.0</td>
<td>30.9</td>
<td>86</td>
<td>14.3</td>
<td>E</td>
<td>14.3</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>03</td>
<td>98.6</td>
<td>27.0</td>
<td>30.1</td>
<td>84</td>
<td>17.0</td>
<td>E</td>
<td>17.0</td>
<td>0.2</td>
<td>10 Cu, Cs</td>
</tr>
<tr>
<td>04</td>
<td>98.8</td>
<td>26.8</td>
<td>30.5</td>
<td>86</td>
<td>14.8</td>
<td>E</td>
<td>14.8</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>05</td>
<td>99.6</td>
<td>25.8</td>
<td>30.5</td>
<td>86</td>
<td>14.3</td>
<td>E</td>
<td>14.3</td>
<td>0.2</td>
<td>10 Cu, Cs</td>
</tr>
<tr>
<td>06</td>
<td>98.8</td>
<td>26.9</td>
<td>30.4</td>
<td>86</td>
<td>13.8</td>
<td>E</td>
<td>13.8</td>
<td>0.2</td>
<td>10 Cu, Ac, Cs</td>
</tr>
<tr>
<td>07</td>
<td>98.7</td>
<td>27.1</td>
<td>30.5</td>
<td>85</td>
<td>13.5</td>
<td>E</td>
<td>13.5</td>
<td>0.2</td>
<td>10 Cu, Ac, Cs</td>
</tr>
<tr>
<td>08</td>
<td>99.6</td>
<td>27.6</td>
<td>31.0</td>
<td>84</td>
<td>12.8</td>
<td>ESE</td>
<td>12.8</td>
<td>0.2</td>
<td>10 Cu, Cs</td>
</tr>
<tr>
<td>09</td>
<td>99.7</td>
<td>28.3</td>
<td>31.3</td>
<td>81</td>
<td>13.7</td>
<td>E</td>
<td>13.7</td>
<td>0.2</td>
<td>10 Cu, Cs, Ci</td>
</tr>
<tr>
<td>10</td>
<td>99.7</td>
<td>28.7</td>
<td>31.6</td>
<td>80</td>
<td>12.5</td>
<td>E</td>
<td>12.5</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>11</td>
<td>99.7</td>
<td>28.2</td>
<td>31.6</td>
<td>83</td>
<td>12.7</td>
<td>E</td>
<td>12.7</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>12</td>
<td>99.8</td>
<td>28.0</td>
<td>31.5</td>
<td>83</td>
<td>11.2</td>
<td>ESE</td>
<td>11.2</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>13</td>
<td>99.0</td>
<td>27.8</td>
<td>31.6</td>
<td>85</td>
<td>12.2</td>
<td>ESE</td>
<td>12.2</td>
<td>0.0</td>
<td>25 Cu</td>
</tr>
<tr>
<td>14</td>
<td>98.8</td>
<td>28.1</td>
<td>30.9</td>
<td>81</td>
<td>12.5</td>
<td>E</td>
<td>12.5</td>
<td>0.2</td>
<td>10 Cu, Ac</td>
</tr>
<tr>
<td>15</td>
<td>98.8</td>
<td>28.5</td>
<td>31.4</td>
<td>81</td>
<td>12.3</td>
<td>E</td>
<td>12.3</td>
<td>0.2</td>
<td>10 Cu, Ac, Cs</td>
</tr>
<tr>
<td>16</td>
<td>99.8</td>
<td>27.7</td>
<td>31.2</td>
<td>84</td>
<td>12.5</td>
<td>ESE</td>
<td>12.5</td>
<td>0.2</td>
<td>10 Cu, Ac, Cs</td>
</tr>
<tr>
<td>17</td>
<td>99.0</td>
<td>27.5</td>
<td>31.3</td>
<td>85</td>
<td>11.3</td>
<td>E</td>
<td>11.3</td>
<td>0.2</td>
<td>10 Cu, Cs</td>
</tr>
<tr>
<td>18</td>
<td>98.7</td>
<td>27.3</td>
<td>31.7</td>
<td>87</td>
<td>10.8</td>
<td>ESE</td>
<td>10.8</td>
<td>0.2</td>
<td>10 Cu, Cs</td>
</tr>
<tr>
<td>19</td>
<td>1000.1</td>
<td>27.2</td>
<td>31.5</td>
<td>87</td>
<td>10.5</td>
<td>ESE</td>
<td>10.5</td>
<td>0.2</td>
<td>10 Cu, Cs, Ci</td>
</tr>
<tr>
<td>20</td>
<td>01.0</td>
<td>27.2</td>
<td>31.5</td>
<td>87</td>
<td>10.2</td>
<td>ESE</td>
<td>10.2</td>
<td>0.2</td>
<td>9 Cu Ci</td>
</tr>
<tr>
<td>21</td>
<td>01.6</td>
<td>27.2</td>
<td>31.5</td>
<td>87</td>
<td>9.3</td>
<td>ESE</td>
<td>9.3</td>
<td>0.2</td>
<td>10 Cu</td>
</tr>
<tr>
<td>22</td>
<td>01.8</td>
<td>27.1</td>
<td>31.3</td>
<td>87</td>
<td>9.5</td>
<td>ESE</td>
<td>9.5</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
<tr>
<td>23</td>
<td>01.2</td>
<td>27.1</td>
<td>31.1</td>
<td>87</td>
<td>9.2</td>
<td>ESE</td>
<td>9.2</td>
<td>0.2</td>
<td>10 Cu, Ci</td>
</tr>
</tbody>
</table>
Characteristics of the Second Miyakojima Typhoon

F. Minamidaitojima

<table>
<thead>
<tr>
<th>Date</th>
<th>Sea-level press. mb</th>
<th>Air Temp. C</th>
<th>Vapor press. mb</th>
<th>R.H. %</th>
<th>Wind Dir.</th>
<th>Speed m/sec</th>
<th>Precip. mm</th>
<th>ww</th>
<th>Cloud</th>
<th>Amount Form</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd 03h</td>
<td>1003.7</td>
<td>26.6</td>
<td>31.1</td>
<td>89</td>
<td>ENE</td>
<td>8.3</td>
<td>02</td>
<td>7</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1003.4</td>
<td>26.7</td>
<td>31.3</td>
<td>89</td>
<td>ENE</td>
<td>8.7</td>
<td>02</td>
<td>9</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>03.3</td>
<td>27.1</td>
<td>31.3</td>
<td>87</td>
<td>ENE</td>
<td>8.0</td>
<td>02</td>
<td>9</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>03.6</td>
<td>27.9</td>
<td>31.8</td>
<td>85</td>
<td>ENE</td>
<td>8.5</td>
<td>02</td>
<td>7</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>03.4</td>
<td>28.1</td>
<td>31.8</td>
<td>82</td>
<td>ENE</td>
<td>9.2</td>
<td>03</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>03.5</td>
<td>28.7</td>
<td>32.4</td>
<td>81</td>
<td>ENE</td>
<td>10.2</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>03.6</td>
<td>29.9</td>
<td>32.7</td>
<td>79</td>
<td>ENE</td>
<td>9.2</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1003.5</td>
<td>29.9</td>
<td>33.7</td>
<td>80</td>
<td>ENE</td>
<td>9.7</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>02.6</td>
<td>30.0</td>
<td>33.4</td>
<td>79</td>
<td>ENE</td>
<td>9.7</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>02.3</td>
<td>30.0</td>
<td>33.4</td>
<td>79</td>
<td>ENE</td>
<td>9.0</td>
<td>02</td>
<td>4</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>02.1</td>
<td>29.4</td>
<td>33.0</td>
<td>81</td>
<td>ENE</td>
<td>9.3</td>
<td>02</td>
<td>9</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>02.0</td>
<td>29.3</td>
<td>33.0</td>
<td>81</td>
<td>ENE</td>
<td>10.2</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>02.1</td>
<td>28.5</td>
<td>32.8</td>
<td>83</td>
<td>ENE</td>
<td>8.8</td>
<td>02</td>
<td>9</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1001.9</td>
<td>27.8</td>
<td>31.9</td>
<td>85</td>
<td>E</td>
<td>9.3</td>
<td>02</td>
<td>10</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>01.8</td>
<td>27.7</td>
<td>32.0</td>
<td>86</td>
<td>E</td>
<td>9.7</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>02.4</td>
<td>27.4</td>
<td>32.2</td>
<td>88</td>
<td>E</td>
<td>9.3</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>03.2</td>
<td>27.4</td>
<td>32.2</td>
<td>88</td>
<td>E</td>
<td>9.3</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>03.5</td>
<td>27.1</td>
<td>31.9</td>
<td>90</td>
<td>E</td>
<td>8.9</td>
<td>0.3</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>02.8</td>
<td>26.9</td>
<td>31.4</td>
<td>89</td>
<td>E</td>
<td>8.7</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th 00</td>
<td>1002.6</td>
<td>27.0</td>
<td>31.4</td>
<td>88</td>
<td>ESE</td>
<td>8.8</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>03.0</td>
<td>26.9</td>
<td>31.4</td>
<td>89</td>
<td>ESE</td>
<td>8.8</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>02.6</td>
<td>26.7</td>
<td>31.8</td>
<td>91</td>
<td>ESE</td>
<td>9.0</td>
<td>0.1</td>
<td>80</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>02.2</td>
<td>25.2</td>
<td>30.5</td>
<td>95</td>
<td>E</td>
<td>8.7</td>
<td>4.0</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>02.3</td>
<td>26.5</td>
<td>31.5</td>
<td>94</td>
<td>E</td>
<td>7.8</td>
<td>0.0</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>02.3</td>
<td>26.4</td>
<td>31.3</td>
<td>91</td>
<td>E</td>
<td>7.7</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1002.5</td>
<td>26.4</td>
<td>31.8</td>
<td>92</td>
<td>E</td>
<td>7.2</td>
<td>02</td>
<td>10</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>02.8</td>
<td>26.6</td>
<td>31.1</td>
<td>89</td>
<td>E</td>
<td>7.2</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>03.4</td>
<td>27.1</td>
<td>31.8</td>
<td>89</td>
<td>ESE</td>
<td>7.7</td>
<td>0.0</td>
<td>80</td>
<td>10</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>03.7</td>
<td>27.7</td>
<td>31.4</td>
<td>85</td>
<td>ESE</td>
<td>8.8</td>
<td>0.0</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>03.7</td>
<td>27.4</td>
<td>31.4</td>
<td>86</td>
<td>ESE</td>
<td>8.3</td>
<td>0.0</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>03.3</td>
<td>28.4</td>
<td>32.6</td>
<td>84</td>
<td>ESE</td>
<td>9.0</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1003.0</td>
<td>29.0</td>
<td>32.4</td>
<td>81</td>
<td>ESE</td>
<td>7.8</td>
<td>02</td>
<td>10</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>02.7</td>
<td>28.7</td>
<td>31.8</td>
<td>81</td>
<td>ESE</td>
<td>7.5</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>02.5</td>
<td>29.2</td>
<td>32.0</td>
<td>79</td>
<td>ESE</td>
<td>8.3</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>02.0</td>
<td>28.5</td>
<td>31.4</td>
<td>81</td>
<td>E</td>
<td>8.5</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>02.3</td>
<td>28.4</td>
<td>31.0</td>
<td>80</td>
<td>E</td>
<td>7.8</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>02.5</td>
<td>28.0</td>
<td>31.0</td>
<td>82</td>
<td>ESE</td>
<td>7.0</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci, Cs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1002.5</td>
<td>27.3</td>
<td>30.7</td>
<td>84</td>
<td>ESE</td>
<td>7.8</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>03.2</td>
<td>27.1</td>
<td>30.3</td>
<td>84</td>
<td>ESE</td>
<td>7.3</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ac, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>03.6</td>
<td>27.0</td>
<td>30.9</td>
<td>86</td>
<td>ESE</td>
<td>6.8</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>04.3</td>
<td>27.0</td>
<td>30.3</td>
<td>85</td>
<td>ESE</td>
<td>6.9</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>04.7</td>
<td>27.0</td>
<td>30.9</td>
<td>86</td>
<td>ESE</td>
<td>7.0</td>
<td>02</td>
<td>10°</td>
<td>Cu, Ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5th 00</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>1003.3</td>
<td>26.6</td>
<td>29.9</td>
<td>86</td>
<td>ESE</td>
<td>7.7</td>
<td>0.5</td>
<td>25</td>
<td>10°</td>
<td>Cu, Ac</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1003.9</td>
<td>26.1</td>
<td>30.4</td>
<td>90</td>
<td>ESE</td>
<td>7.2</td>
<td>2.0</td>
<td>80</td>
<td>10°</td>
<td>Cu, Cb, Ac, Ci</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: ¥2127-¥2130-
¥2132-2139.

Remarks: ¥20137-0144.
¥20157-0304.
¥20234-¥20235-
¥2039-¥2046.
¥2047-0255.
¥0306-0309.
¥0755-0810.
¥0940-0945.
¥2255-2257.
¥2328-¥2330-
¥2331-2342.
<table>
<thead>
<tr>
<th>Date Time JST</th>
<th>Sea-level press. mb</th>
<th>Air Temp. deg C</th>
<th>Vapor press. mb</th>
<th>R. H. %</th>
<th>Wind Dir. Speed m/sec</th>
<th>Precip. mm</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 04.3</td>
<td>25.8</td>
<td>29.1</td>
<td>88</td>
<td>ESE</td>
<td>8.3</td>
<td>0.5</td>
<td>25 10^- Cu, Cb, Ac</td>
</tr>
<tr>
<td>08 04.2</td>
<td>26.9</td>
<td>30.9</td>
<td>87</td>
<td>E</td>
<td>7.5</td>
<td>-</td>
<td>02 10^- Cu, Cb, Ac, Cj</td>
</tr>
<tr>
<td>09 04.5</td>
<td>28.4</td>
<td>31.8</td>
<td>82</td>
<td>E</td>
<td>7.8</td>
<td>-</td>
<td>02 10^- Cu, Cb, Ac, Cj</td>
</tr>
<tr>
<td>10 04.7</td>
<td>29.0</td>
<td>32.4</td>
<td>81</td>
<td>E</td>
<td>7.8</td>
<td>-</td>
<td>02 10^- Cu, Cb, Ac, Cj</td>
</tr>
<tr>
<td>11 04.2</td>
<td>29.2</td>
<td>33.4</td>
<td>82</td>
<td>E</td>
<td>7.0</td>
<td>-</td>
<td>02 6 Cu, Cb, Ci</td>
</tr>
<tr>
<td>12 03.9</td>
<td>29.5</td>
<td>32.1</td>
<td>78</td>
<td>ESE</td>
<td>8.5</td>
<td>-</td>
<td>02 10^- Cu, Cb, Ci</td>
</tr>
</tbody>
</table>