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On the Highest Water Waves of Permanent Type

by
Hikoji YAMADA and Tadahiko SHIOTANT*
(Manuscript received sept. 3, 1968)
Abstract

The highest gravity waves of psrmanent lype on the water surface are treated
hydrodynamically and calculated numerically for the 16 values of L/D, ranging ({rom
o to o , L being the length of the waves and D the mean depth of the unifocrm canal
Their characteristic values are tabulated and a representative wave form and the brea-
king index curve are shown graphically.

Introduction

About ten vears ago one of the authors reported a series of numerical treat-
ment of the nonlinear surface waves of permanent type, and above all caicula-
ted a [ew cases of extreme wave height [1-3)*. By this method of calculation
all the properties of permanent waves can be determined quantitatively, and
especially the highest waves corresponding to every ratio of wave length to the
mean depth of canal are 1o be studied, without encountering any difficulty,
though calculation is not an easy task. The highest waves of the hydrodyna-
mical theorv, however, have been thought to be unrealisable (4), and we also
have been thinking of them as unstable above a certain amplitude.

In the meantime the realisation of the theoretical extreme height is proved
with an experimental arrangement of a slightly inclined bottom (5), which seem-
ed to be in a good agreement with our previous results. In addition we hap-
pened recently to see the breaking index curve (6) of water waves composed by
C. L. Bretschneider, which very clearly shows the occurrence of the theorelical
maximium height.

This being the fact, irrespective of the waves of maximum height being
unstable or not, to know the characteristics of the highest waves as accuratelv
and preciselv as possible is, we think, a necessary and significant task. This
task being the solution of a nonlinear problem in an at first undefined region,
our method in the following cannot be simple and can not pursue an analytical
procedure Lo the end. At a certain point in the process we carried over the
solution to a numerical treatment, and a Jarge series of numerical computations,
almost all of which were managed by an electronic computer, has been put into
a consistent scheme of the characteristic numbers, which is the result aimed at
concerning the waves of extreme beight. A preliminary note being reported
(73, the present paper is the full account of it.

(*) Student of the graduate course, Faculty of Engineering, Kyoto Univ.
(+) As to the numbers in parentheses, see the list of references at the end of the
paper.
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1. Transfomation onto a unit circle .

Our method of solution which has already been reported (3) will be given
in this section again for better understandings. Its essence is a generalisation
of the method used by T. Lévi-Civita (8) and K. J. Struik (9).

We observe the waves on the water from the coordinates system O-xy which
follows after the permanent waves as fast as the waves, so that the wave form
stands fixed relative to the axes, and water flows steadily from left to right
(say). The origin O is at one wave crest, the x-axis is horizontal and
directed to right, the y-axis vertical and upward (Fig. 1 a).

Let the wave-length be denoted by L and the mean depth by D. We define
the wave velocity U by the formula :

UL= [ u(xp)dvmg(L/2)=p(=L/2), e ()

whese ¢ is the potential function and
u(x, y) is the horizontal component of
the flow velocity. The wave velocity

Y
,HA) 7,],0, 5 thus defined is coincident  with
_é.CLf""'f"’;V" Théiry Jeve that of Stokes’ waves when D tends
' to infinity, and with that of the
—J’U l solitary wave when L tends to
8 sk “A’I E—" infinity.
@) z-p[bne The complex potential function :

W(z)=p+ip, - (2)

in which ¢ is the stream function
and arbitrary constant is fixed so that
W(0)=0, maps the physical z-plane
onto the W-plane as shown in Fig. 1b,
the same alphabetical letters indicating
the same points of special significance.
The distance 0OA of the W-plane
is the flux through any sectional plane
of the flow, and when we denote it
by UH, by use of the above defined
U, H is a potential depth (say) and
is nearly equal to D, but differs a little
in general.
Now we introduce the complete
elliptic integral K(k) and K'=K("),
Fig. 1 Conformal transformation of the first kind with the modulus £
and its complementary modulus &' =
J1—7%2, and define the numerical value of %2 by the relation :

K /K=2H/L. e, (3)

With k&, *, K and K’ thus determined we define a transformation :
2K - =

sn (UL W, k)- : ot (4)
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which maps the W-plane onto the -plane. By this mapping the one wave
length region of the W-plane, which is shown hatched in Fig. lb, corresponds
to the region interior to the unit circle about the origin of the (-plane, also
shown hatched in Fig. l¢, the corresponding points being also indicated by the

same letters. A special point ¢ which corresponds to B and B’ of W is defi-
ned, as easily follows from (4), as
Ce=1— (1 JI— k2> .................. (5)

The transformation (4) is the first relation we aimed at, but as the requi-
red relation is that between the physical plane z and the unit circle region ¢,

we have to find one more relation which connects z and W. As such one
we have the complex velocity:

aw _ s

daz ¢ ©

where v and § are the speed and the direction of flowing water respectively,
¢ being the angle measured upwards from the horizontal direction (to the right).
We denote »/U by ¢ and /ng by r, and then (6) becomes
1 dw
U dz
the field quantity £2(z) being defined by the relation:
Q@ =0+ir=iln{—, ‘fg ).

Evidently £2(2) is holomorphic at every inlerior point of the water region, and
may have singular points at the boundary of the region.

As z has to be a certain function of {, holomorphic at every interior point of
the cut unit circle, we have from (7)

=geil=gi2w

_}_ 4W _dQ ~-10(0y 4 = L aw R AF i
U a de =e i.e. dz U dc e gr, (9)
where Q) is the transform of 2(z) on the ¢- plane On the other hand,
differentiating (4) with regard to {, we have

1 dWw _ L 1 G148
Ua T 2K [, (ZRW Y 4y (KW O

UL
Also from (4) it results that
2KW 1+C 2KWN _ 7 R(A=0)
d =,/ R T6)"
o > ”( ) AR Te

UL N UL ,
and making use of these relations in the above, we have
1AW L L "
U dg "AK l/Cz_[_ Q- C)Z
Finally combining (9) and (10), it results that
dz — i 41}{ - __‘1_ e OGE, a
1/ ci+ TE(I—C)Z

which 1s the required relation between z and (. In (11), however, 2() is
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presently unknown, and its determination is the essential point of our wave
problem. When it is determined (11) can be integrated, giving z=2z({) which
is our final object.

As the wave form is symmetrical about the vertical line through the crest
i.e. y-axis, it can easily be verified that the function —t2(z)=r—¢6 has conju-
gate complex values at every pair of symmetrical points z=x+4+1y and 2=—2x+1y.
To this pair of points, on the other hand, corresponds a pair of two points
of the W-plane, situated symmetrically about the ¢-axis, by the due choice
of the origin of W stated above. But now these two points becoming, by the
transformation (4), a pair of conjugate points in the {—plane, we know that
-1Q2(Z) has a pair of complex conjugate values at every pair of conjugate pnints
in the unit circle | <1. Above all it takes real value on the real axis because
of the horizontal velocity at points under crest or trough, or at the bottom,
and all along the cut —1<{<0 the values of the two sides coincide by reason
of the symmetry of a wave. Thus the function —:2(f), and consequently
Q) itself, is not only holomorphic in the cut unit circle, but also in the unit
circle without cut.

The precise functional form of 2({) has to be determined by the condition
prescribed on the boundary '{, =1, which corresponds to the free surface condi-
tion of the physical plane. Along the streamline which constitutes the {ree
surface of water a constant atmospheric pressure prevails, and by Bernoulli’s
equation we have

qz+ ngz y= const ................ 19
or different1ating this along the arc s of the streamline,

dq _& ing=0. .
ds -+ U* sing =0, (13

where # is the inclination of free surface (velocity).
When we take dz along the free surface this is equal to dse¢’’ and has to
correspond to d{=ie¢’’de on the unit circle {=e'"=cosoc+ising, ¢ being the arc

length of the unit circle. The correspondence is given by (11), and by use
of the expression (7) we easily arrive at the relation:
I L ida’ e A ae st et aaa it ass
ds= K . (19

qV 1—k%sin? <2)

When we take this relation into (13), which is the surface condition in the

physical plane, it can now be transformed into a condition on the unit circle

‘¢! =1 in the ¢-plane:
sm0(6)

k()

where p is defined by
p--8L ~ _&H
4KU? 2K'U?
(15) is the boundary condition, which is necessary, as cited above, for the deter-
mination of 2(¢), and 2 is the eigenvalue which has to be determined simulta-
neously with 2(2). From p the wave velocity U follows at once.
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Thus far our mathematical formulation is completed, and Stokes’ waves
and the solitary wave are easily seen to be the two extreme cases (k=0 and k=1)
of our present formulation.

Now we have sufficient conditions for Q(¢), and the problem of finding £(¢)
is reduced to the determination of

Q(eiv)50(0)+ir(a) ..................... )
on the unit circle, by the well-known formula of Shwarz-Poisson:

Q(c)=ia+ij s ,z;:jgda:u g},{J o) z,,” do, (8

2r

where ¢ and b are constants to be fixed. The determination of A(s), (o) is
then reduced to a nonlinear problem as follows:
For the sake of simplifying the actual computations we use Q(o) defined by

A= GO =5 ie. QM) =r() = FIn(3p) oo 19

instead of g(¢), or z(¢), then (15) is changed into
aQs _ . T
P —51210(0)/J1—k251n2(g),

and when integrated it becomes

Q* (o) —Q*(O) = J Sinﬁ(a") do’, = e (o)

«/1 k?sin? ( )

which we use in place of (15). If we assume 6(g) the corresponding value of
Q(g) follows from (20), and z(s) is then fixed by (19) except an additive cons-
tant. This knowledge about r(¢) is sufficient to determine the conjugate
harmonic #(¢), which has lo be identical with the previously assumed 6(s). We
know then that this nonlinear problem is to be solved by an iteration procedure,
details being deferred to the next section.

After 8(¢), (s) have been determined, the eigenvalue p is fixed by means
of any one equation which contains ¢(s), for by use of the relation ¢(s) =(Gp)*

Q(¢) we can bring p into an equation as a sole unknown quantity. Here we
take as such an equation the expression of wave length. As the wave form
is given by
. I9(v)
dz =dsei? = — L € - do, e )

4K 4(0')\/1 ksin? (2>

which is nothing but (14), we take its real part and integrate it to
L _ L cosb(a) d

5 4K’Jo = o

— b2qy

4(0)\/1 ksm2(2>

from which the equation aimed at follows at once:

1 r Cosﬁ(a) .
(3p)% = SOO) g e -
2K J‘ Q(d)x/] Ersin? (2 )

i.e. p can be obtained by mere quadrature.
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2. Caleulation scheme for the highest waves
Our problem here is to calculate the highest waves, and for this purpose we
employ an auxiliary function:

e@=idm (1) &

25(6') =6, (0) + 174 (0) =-”_6-"- +ié— lnsin( S—) (1=0=>0) -0

which has the characteristic behavior of 2(¢) in the neighborhood of the singul-
ar point {=1, which corresponds to the angular crest. In reality 6,(¢) jumps
at 0=0 ((=1) from —30° to +30°, and g(¢) =€ 0!» vanishes continuously at #=0
€=0D.

With this auxiliary function we assume for the exact form of 2({) the follow-
ing:

DO =00 +02,(0), 2r(e"*)=0,(a)+ir,(6), e 5)
i.e.

8(6)=0(0) +6:(a), t(a)=10(a) +1,(6). e ©6)
As g(6=0)=0 now our principal equation (20) becomes

Qo= [ S OA)) gy @

\/ 1- k231n< a )

and to treat this equation efficiently we mtrodljce further functions #(¢), ¢ (o)
by the definition

Qo) =t(0), ti(a)=t(o)—re(a). e @)
By the definitions (19) and (26) we have now
((0)=2(a)= 3 In(38), 1i(0)=1r(o)— SIn(BE),  wworvrsiverne &

and see t(a), t (o) being free of the eigenvalue, which is undetermined present-
ly. Now (27) reduces to

(o) = lan’ sin(ﬁo(q’_)+0,(7’)) ds’
— preine 9
\/1 k sm< o )
and then finally
sin(fo(a’ )+0,(a ))da

e eck e W,

On the other hand by VJJ]ats formula for conjugate functions we have

#,(a) =const. +f1 <r {r,(a’) ~1,(0)} cot -?’:‘{da',
27 ) o 2

and 7,(s) being an even function of ¢ this formula can easily be reduced to

#,(s) =const. — sing J" wr(a’) —z.(0) do’
0

T CosS¢’ —COSe
And moreover, in this formula we can replace r, by #, by reason of the second
relation of (29), and determine the undetermined constant by the condition #,(0)
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=0, Thus we arrive finally at
ﬁ,(a’) = — Singfl,, J“’_tl(;‘,)/_ﬂ) de'. i, B0
w Jo Cosg’—Coso
We have reached the point to determine #,(¢) and #,(¢), by the simultaneous
nonlinear integral equations (30) (31). When their solutions are obtained, we
have 6(¢), Q(o) by the relations
0(@:00(0)_‘_5'(0), Q(a)=ef.,m+:,m’ .................. (67

the eigenvalue p by (22), and then the wave velocity and the flow velocity on
the surface by

VoL e :

veL — J4pK "
and

w@)=ra(@) +1(@)+ 3 03P, q() = (BOIHQo). wwrvvrovsinne &

The correspondence between ¢ and a surface point is determined by the sur-
face profile (x,») as functlons of ¢, which are obtained by integrating (21):

o) g 20 1 [T cosi SO g g
L A E) Qo) 1-kssine( )

or by means of (3),

W) L ;W) _ 1 ® cosb(o’) +isind(a’) 4. L.
H t H 2K/(3p)% JD Q(a')»\/l_kzs_irIz(‘%l‘) . (36)

Also by Bernoulli’'s theorem (12), with the undetermined constant fixed to zero
now, and by the definition (16) of p we obtain

2 e N O
?+4pK i 0. @7

By means of this equation we are again able to obtain y/H from ¢?, or rewriiten
as

Q (o) + _‘3‘-.1{'(3;;)% J’%t) 0. -

y(o)/H from Q*(s). This form of Bernoulli’s theorem is nothing but the relation
(27), for differentiating both sides of (27) by ¢ and integrating again from ¢=0
to ¢ afler multiplication by @', we obtain just (37’). Putting s=n we get
an important formula from this:

A 3

H = ax@pyn O
which gives the height A of the crest above the trough, c¢.f. Fig. la. We have
seen that there are two ways of obtaining »/H (or y/L). We can then use
one of them for the proilfe calculation and the other as a check of the legitimacy
of the numerical computation.

Let % be the height of the crest above the mean water surface, ¢. f. Fig. la.
Then the definition of mean level surface is written as
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h 2L =[0'<—y<a>)(—dx(a>>,

and expressing y(¢) in the integral by @ (s), by means of (37"), and dx(s) by
means of the real part of (36), we easily find

h 3 * _cosf(a)Q(s) _d
= 8K = - J—dg, e 69
H (K™ (3p)"% j\/l k251n<
which enables us to calculate the position of mean surface.
Finally we require the mean depth D. Referring to Figs.la and lc, it is
evident that
. |
h+D = AO =Jr dy(&), e )
0

where £ is the point on the real axis of the {-plane, 1.>£>0. On this range of ¢

Q) lees=8 | tas Fi7 | (s

is imaginary, f.e. 8|:=0. Let us denote r|¢: by #(&). Then by the formula
(11) of dz we obtain

d2(0) | re=idy(&) = 2% e d;
Verr ® e gy

integrating both sides of this between £=0 to 1, and using it in (40) we find

h+D J e

PN = df .................. @

H 2K’ ’
"o+ e ey

where the relation L/2KH=1/K" is used.

We take in the decomposition :

(O=ru( O+ el =2 + 5 IEBP+E), s @
the notation being understood at once. By means of this decomposition we

have
0O = gm0 (3p) Yo ta & :(31,)-%(_1_55_ >“/§e-um’

and using this in (41) it results that:

_h+D _ 11 I' et e
TH T 2K(3p)% J?(%%)%\/“‘kg(l;e)z

We thus have to calculate #,(¢) for the purpose of obtaining D/H.

The imaginary part r, of a holomorphic function 2,({) is being given on a
unit circle £=e as the function z.(¢), we can use the Schwarz-Poisson formula
(18) to obtain 2,(&) itself:

—p— L[ e+l 4,
20 =b - 5= [ wr(o) St 5-do. (t4

At £=0 this gives a complex value:
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0,0)=b+imaginary value. = e Iy

From physical considerations however it is evident #(£)]c=0, and the assumed
form of 2,({) assures the fact: 6y(L) |ta0=0. Then 6,() | must vanish,

and then 4 in (44’) also vanishes. Thus we have
00 +ied )= =5k [ e o) GEE 4 |
— i L mep- L f t.(a)_‘;%g_ do,
te.
O+ O ==t 0oy s, @

and putting {=¢ we finally have

oL [T £ g L[ =g g
W& = 5| o) g dom [ (100) [ doy 8

which gives ¢,(§) by means of #(a). Using (46) in (43) we know the value
(h+D)/H, and subtracting the known value (39) of £/D, we arrive at the requi-
red value of D/H.

3. Numerical Computations (1)

Along with the preceding section we calculate 6,(s), #(¢) of the highest
waves for the following values of the parameter £ :

k=[sin0°], sin20°, sin60°, [sin80° ], sin87°, sin89. 5°, sin90° ;
the values in brackets are the cases which we have already calculated and repor-
ted (1-3), the main characteristics of these being indicated in Table 6 at the
end of this paper, along with our new calculations. Table 1 shows their velo-
cities and profiles of the free surface. The case where k=sin 90°=1 is also
reported (2), but owing to its principal significance for the waves in shallow
water, as will be seen in the following section, we have calculated it again here.

Formulae (30) and (31) are our present concern. £,(0)=0 and 4,(0)=
#,(x)=0 being easily ascertained, we first calculate 4,(¢s) by integrating (31),
starting from an arbitrary but appropriately chosen ¢,(o). Integration is nu-
merical and then stepwise, 23 points being taken at equal intervals between ¢=0°
and 180°. Using 6,(g) thus calculated in (30) we obtain the renewed values of
t,(s) at these 25 points (including ¢=0° and 180°), one cycle of the iteration

process being closed. With this renewed values of £,(¢) we begin the next
cycle of iteration. Numerical integrations are all done with the modified Simp-
son rule:

[} rnrax=—t 570y +870h) - 1c2m), ]

[ renran= B (= sy +87hy+57 2R, [
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Table 1. Wave profile and surface velocity (1) (k=0 and sin 80°)

£=0. 00000 E=sin80°

o | 4 g : -z/L IL .8 1 g -z/L | -y/L

0°| 0.5236  0.0000 | 0.0000 0.0000 | 0.5235 ' 0.0000  0.0000 0.0000
7.5° | 0.4803 | 0.5400 | 0.0502  0.0277 | 0.4923 = 0.4435 | ‘
15 0.4500 | 0.6729 | 0.0808  0.0430 | 0.4698 ' 0.5525  0.0491 | 0.0268
225 | 0.4240 | 0.7624 | 0.1070 | 0.0553 | 0.4544 | 0.6277
30 0.3992 | 0.8317 | 0.1310 | 0.0658 | 0.4385 | 0.6893 | 0.0796 | 0.0417
37.5 | 0.3748 | 0.8885 | 0.1534 | 0.0749 | 0.4196 | 0.7405 ‘
45 0.3514 | 0.9347 | 0.1747 | 0.0830 | 0.4020 | 0.7829 . 0.1067 | 0.0538
525 | 0.3292 | 0.9748 | 0.1953 ° 0.0903 | 0.3865 | 0.8209 | |
60 0.3075 | 1.0099 | 0.2152  0.0069 | 0.3710 | 0.8567 | 0.1327 | 0.0644
67.5 | 0.2861 | 1.0405 | 0.2347  0.1028 | 0.3538 | 0.8896 |
75 0.2653 ' 1.0673 | 0.2536  0.1082 | 0.3366 ' 0.9189  0.1589 @ 0.074%
825 | 0.2451 ' 1.0910 | 0.2724 | 0.1131 | 0.3205 ' 09464
90 0.2252 1 1.1122 | 0.2907  0.1175 | 0.3041 | 0.9736  0.1864  0.0832
97.5 | 02054 | 11309 | 0.3089  0.1214 | 0.2863 | 0.994 ,
105 0.1860 | 11473 | 0.3268  0.1250 | 0.2680 | 1.0235 | 0.2161 | 0.0019
112.5 | 0.1669 | 1.1617 | 0.3446 | 0.1281 | 0.2495 | 1.0466 |
120 0.1478 1.1744 0. 3622 ‘ 0.1310 0. 2300 1. 0697 0.249 | 0.1004
127.5 | 0.1280 | 11853 | 0.3797 . 0.1334 | 0.2093 | 1.0922 | |
135 0.1103 | 1.1944 | 0.3970 = 0.1355 | 0.1870 | 1.1140 | 0.2894 | 0.1089
142.5 | 0.0919 | 1.2021 | 0.4144 . 0.1372 | 0.1632 | 1.1350 ‘
150 0.0734 1. 2085 0.4316 0.1387 0.1374 i 1. 1551 | 0. 3397| 0. 1171
157.5 | 0.0540 | 1.2134 | 0.4488  0.1398 | 0.1078 | 1.1739 |
165 0.0366 , 1.2167 | 0.4659  0.1406 | 0.0756 | 1.1903 . 0.4080 | 0.1243
172.5 | 0.0183 | 1.2187 | 0.4830  0.1410 | 0.0393 | 1.2025 ;
180° | 0.0000 | 1.2194 | 0.5001  0.1412 | 0.0000 | 1.2069  0.5000 | 0.1278

for we are required to conserve the number of points for which function values
are assigned, after any cycles of iteration. The iteration process has been
stopped when the renewed values of #(¢) differ from the preceding ones by
numbers less than 1073, taking the last #,(¢) as the required one. Ordinarily
the number of iteration cycles were less than 10. Obtained results are
expressed in f(¢) and A(¢) and tabulated in Table 2.

Caution is necessary regarding two points. Firstly, the indeterminate
value at the point ¢’ =¢ in (31) is to be replaced by the limiting value:

£(a+7.5°)=£,(s~7.5°)

t(e’)—1,(a) t)/'(a)
cosg’ —C0s¢ ag=o¢’ sine 0.26180sing

Secondly, in cases where k=1 the square root in (30) changes its value very
rapidly when »’ approaches =, and 7. 5% as an integration step becomes too rough.
To estimale the integral in the interval 172.5°-180° we write this in the
form:
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Table 2 Surface velocity (k=sin 20°, sin 60°, sin 87°, sin 89.5° sin 30°)

‘ k=sin20° ‘ k=sin60° \ k=sing?° | E=sing9.5° k=1,00000

N S A A | o | \ ) ‘ . ! o | ¢+ | e
0° oo | 0.5236] -co | 0.5236! -0 | 0.5236! -oo 0.5236 | -» | 0536 | -0 | 0.5236
7.5° | -0.9091 | 0.5018 | -0.9216 | 0.4823  0.9192 | 0.48% -0.9171 0.4960 | -0.9170° 0.494 -0.9170 | 04964
15 | -0.6787 | 0.4800 | -0.7013 | 0.4526 | -0.6964 | 0.4650 | -0.6924 0.4760 | -0.6022 | 0.4767 | -0.6922 | 0.4766
225 | -0.5448 | 0.4582 | -0.5758 | 0.4250  -0.5684 | 0.4428 -0.5625 0.4580 | -0. 3521‘ 0.4589 | -0.5621 | 0.4588
0 | -0.4505 | 0.4363 | -0.4892 | 0.4010 | -0.4790 | 0.4220 -0.4710 0.4410  -0.4706 0.4421 | -0.4706 | 0.4420

|
37.5 |1 -0.3783 | 0.4145 | -0.4238 | 0.3773 , -0.4105 | 0.4020 | -0.4005 | 0.4246 . -0. 4000 | 0. 4260 | -0.4000 | 0.4259
45 -0.3202 | 0.3927 | -0.3720 | 0.35645  -0.3553 | 0.3826 -0.3430| 0.4087 | -0.3424 | 0.4103 : -0.3424 | 0.4101

52,5 | -0.2719 | 0.3709 | -0.3205 | 0.3325  -0.3092 | 0.3635 -0.2944  0.3930 | -0,2937 | 0.3948 | -0.2037 | 0.3947

€0 -0.2311 | 0.3491 | -0.2939 | 0.3111 | -0.2698 | 0.3447 -0.2522  0.3775 | -0.2514 | 0.3796 | -0.2514 | 0.3794
67.5 | -0.1959 | 0.3273 | -0.2636 | 0.2501 | -0.2353 | 0.3250 -0.2148 | ©.3620 ! -0.2139 | 0.3643 ' -0.2139 | 0.3641
75 -0.1654 | 0.3054 | -0.2375 | 0.2695 | 0.2040 | 0.3071 -0.1812  0.3464 ! -0. 1801 | 0,348 | -0.1801 | 0.3487
82.5 -0. 1388 0. 2836 | -0.214% 0.2493 | -0. 1777 0. 2883 { -0. 1504 0.3307 | -0. 1491. 0. 3334 | -0. 1492 0. 3331
90 0.1185 | 0.2618 | -0.1963 | 0.2293 | 0.1532 | 0.2692 [ -0.1219 | 0.3146 | -0.1205 . 0.3176 | -0.1206 | 0.3173
97.5 | -0.0951 ' 0.2400 | -0.1781 | 0.2086 | -0.1311 | 0.2498 ' -0.0953 | 0.2982 | -0.0937 + 0.3015 -0.0938 | 0.3011
105 -0.0772 1 0.2182 | 0.1631 | 0.1901 | -0.1111 | 0.2300 | -0.0701 = 0.2812 | -0.0683 | 0.2849 | -0.0684 | 0.2845
112.5 | -0.0615 | 0.1964 | -0.1501 | 0.1707 | -0.0929 | 0.2097 | 0.0462 | 0.2636 | -0.0441 | 0.2676 : -0.0443 | 0. 2672
120 -0.0480 | 0.1745 | -0.1388 | 0.1514 | -0.0764 | 0.1889 | -0.0232 @ 0.2452 ‘ -0.0208 = 0.2496 ' -0.0210 | 0,2491
127.6 | -0.0363 | 0.1527 | -0.1201 | 0.1323 -0.0617 | 0.1676 | -0.0009 | 0.2258 0.0018 , 0.2306 | 0.0016 0.2301
135 -0.0264 ' 0.1309 | -0.1209 | 0.1133 | -0,0486 | 0.1455 | 0.0209 | ©.2051; 0.0241 | 0.2104 | 0.0239 | 0.2098
142.5 | -0.0182 | 0.1091 | -0.1141 | 0.0%3 | -0.0373 | 0.1227 | 0.0424 0.1827 | 0.0462 | 0.1887 | 0.0458 | 0.1879
150 -0.0116 | 0.0873 | -0.1087 | 0.0754 | -0.0278 | 0.0093  0.0639 | o. 1581 | 0. 0685 | 0.1650 | 0.0682 | 0.1641
157.5 | -0.0065 | 0.0655 | -0.1045 | 0.0565 | 0.0202 | 0.0751 0.0855 ' 0.1304 - 0.0914 = 0.1387 0.0810 | 0.1374
165 -0.0020 | 0.0436 ) -0.1015 | 0.0376 | —0.0146 | 0.0504 | 0.1076 | 0.0980 - 0.1157 | 0.1087 0. 1150 | 0.10653
172.5 | -0.0007 | 0.0218 | -0.0997 | 0.0188 | -0.0113 | ©0.0253 | O 1299‘ 0. 0553‘ 0.1460 | 0.0676 | 0.1425 | 0. 06700

180° 0.0000 ' 0.0000 | -0.0991 | 0.0000: -0.0101 | 0.0000  0.1422  0.0000 1 0.1726  0.0000 © 0. 1828 _ 0. 00000

ad K J wauvress g fo soopph sotmp WHYSIED oYl u()

1T
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where constants A4, B and C are determined by the values F(165°), F(172.5°)

and F(180°). Then (48) is easily evaluated and gives an integration formula:
\/l kzcosl( £) +ksin(i) -
2/ 2 4B
I(e) = = =5 e Jl—k:"cos2 (%)—k’

+- i? [Sm< >\/1 k2c05”<2>——’;sinh“ (_kk_’sm<2)). ............ 48"

Now ¢=7.5° and A=0, and from B, C determined as above we easily obtained
the integral values for cases k=sin87° and sin89.5° ; for cases k=sin20° and
sin60°such caution is unnaecessary.

The case where £2=sin90° we have already ireated separately and far more

accurately in the same line of numerical treatment (10). Our present calcula-
tion, which is rather rough in comparison, coincided well with this accurate one
except for the one value #,(x), and then we corrected this one value. The

numericals given in the last two columns of Table 2 are the results thus obtain-
ed.

We then consider the evaluation of p, x(¢)/L and »(o)/L, (22) and (35).
As the solitary wave (k=sin90°) and its neighboring long waves are to be
studied in the next section we here take up cases where

k=sin20°, sin60°, sin87° and sin89.5°,

For the highest waves Q(¢) vanishes at the initial point ¢=0, and then integrals
are improper at ¢=0. In the neighborhood of this point

Q(U) etlo) =grlarttla) — gink (2) etlto)

and making use of #,(0)=0 we have Q(g) i =2%5%. We then have the appro-
ximate expressions:

cpsﬁ( a)

- =2%g~%c0s30° (1 + ¢ 0+ co02), |
Qo)y/1-Aisini(. ) |
. SINGCa) . _omy-%gin30° (14510 +5307),

Q(a)«/l—kzsin?( ; ) i

where constants ¢., ¢y, $, and s, are to be determined so as to secure the equalities
of the equations at ¢=7.5° and 15°. With these expressions the necessary
integrals between ¢=0° and 15° are obtained.  Near the other end of the integ-

IR

R . . . ~%
ration range integrands change abruptiy because of the factor <1 — k?smz%>

and we apply the integration formula (48-48") taking for F(o):

cost/Q
F(a)= ‘ ] = Asin ? + Bsing+ Csingcos ?

sing/Q 2 2’
Al the middle range 15°-165° the modified Simpson rule being sufficient, we
thus complete the numerical evaluations. In reality we calculate p only, and

not x/L and y/L, in these four cases of %, but the same evalution method will
be applied in the next section for £=sin89°54’ and sin90°, without any notice.
Obtained values of p are inscribed in Table 6 at the end of the paper, under
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the heading p,(=pmin), and the values of the required complete integral are
given in the second column of Table 3 in the rows of corresponding %-values.

Turning to the computation of #/H and D/H, the former is obtained by (39)
which requires the evaluation of the integral:

Jx _Cos8(a)a) ;..

o 4/1 —k’sin3<12’—>

This can be treated just as well as the case of p; ¢=0 not being improper now,
caution is necessary only for the range ¢=165°~180°. Obtained values are
given in Table 3.

To obtain the latter t.e. D/H we require the values of #,(¢) whose functional

form is defined by (45). This definition can be rewritten as

(&) = c(g)r _>.A(_0)___d‘, (0LELL),  eeeereeeseceen 60

o p(€)—cose
Table 3 Auxiliary integrals (1) where
1-¢ 1462
)= , p(&)= ;
n cosbdo T cosb-Qdo oné ( 2t
k(E) Q i/ l-kzsirﬁ(%) S / l-kﬂsinz[%) ......... 60’
2 0 when £=0

sin20° 4.365 2. 401

sin60° 5.302 3.508 t|(0)=—1J £(s)do,

sin87¢ 8.942 8.514 T

sin89. 5° 11. 904 12.807 L 61
(0. 17453X10't) 14. 585 16. 689 and when e=1
(0. 14544 X107°) 18. 728 22.652 ; 0
(0. 484811079 24. 40 30. 82 (O [ =t1(0) | ox0=0.
( » X107 32.07 4.8 e 6y’
( » X107 39. 74 52.93 When ¢ is not 1 but is
( » X10719) 55. 08 75.05 near it the denominator of
( » X107 85.77 119. 27 the integrand changes abru-
( » X107 124. 13 174.56 ptly in the vicinity of ¢=0,
( » X107%) 200. 85 285. 13 and we have to use an ana-
( 0.00000 ) oo oo logous integration method as

(48-48"). t,(¢) being ex-

pressed as

t/(s) = Asing + Bsin’g,

where constants A, B are to be determined by the values #,(7.5°) and # (15%),
the integral can be evaluated as

° Asing +Bsin‘e_y, _ 4 . 0y e
Clo)f| AIPEEI . o= A(e)1i(7.5') + BOKS"), 2
at the starting integration range o¢=0°~15°. The remaining range is well
managed by the Simpson rule. In such a way #,(¢) is given in the interval
&=0~1 at the points of equal distance 0.05, for the four values of k.

Finally the integral in (43) has to be evaluated. Both ends of integration
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of this integral are improper. Then near £=0 we put
1—e&\% VAL
[eu(é) <f2,§) \/cf-"i‘ lf; (1_5)3] =F(E)=A,+ B e +C £ e 69

determining the constants A,, B,, C, by the values of Fi(§¢) at £€=0, 0,05, and
0.1. Near £¢=1 we put

N -

lenv e e+ if (1-£) PO = At Bi(1=)+Ci(1—-8), e 64

determining A,;, B; C, by the values of F; at £=1.00, 0.95 and 0.9. By means
of these expressions integration is easily done, the former between £=0~0.1,the
latter between £=0.9~1, and the middle part by the Simpson rule. Making
use of these integral values D/H is easily evaluated, which is indicated, along
with k/D, in Table 6, in the reciprocal value H/D.

4. Numerical computations (2)

Here we consider the case where k=1 or is very approximate to it. Making
use of the new notations;

n/2—8=y, sin®’ =k, and K(B')=K’, e 9)

we take up the following 10 as representative cases:

#=360, 30, 1, 1072, 10~, 1078, 107's, 10-2, 106, and O (sec.).
For these values of #’ we have the values of &, %, K, K’ and L/H, listed in
Table 6 columns 2~6.

Through these ten cases differences in #,(¢) and 8,(¢) are effected by the
parameter k2 in the integral

o sin()(a’) do’
[ - —— = =, g
(o) Jo \/l—kZSin2<'g)
Replacing &2 in this integral by means of k’?=sin?$’ this integral becomes
v Sinﬁ(a’) ’ ’ ’
](a)=J CZS (o;,‘) F(ﬂ' , 0 )dU Y e 6
° 2

where
F(d', 0')=1/JI+@inﬂ’tan %)2 =l/\/ 1+ <sine9’cot%>z, ----- 6)

in which we replaced ¢ by m—¢’.
Since ¥ is so small an angle that F(¢’,¥’) is very nearly equal to 1 through
the whole integration range except in the neighborhood of ¢==, where it abrupt-

ly drops to zero. If we then assume F=1 all along the integration range,
there will be an error in the value of the integral, which is largest when #'=
360" =6". To estimate this error when #’=6" we have the following data:

lim 310009 13 [z)=1.7,
o' —n COS<~0—'—

P
-180°

F(179°,6")=0.9804, andJ (1—F)dg’ =0. 0007;
179°
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we know then an over-estimation of 0.04% at most, which changes the value
of £{¢) in the fourth decimal place, which is within the limit of accuracy of
our numerical treatment. Thus we obtain #,(¢), 6,(¢) all common to the
cases where ¥'<6’, and equal to the case of the solitary wave &’ =0, which is
already done in the preceding section. This fact much simplifies our calcula-
tion.

Turning to the calculation of p we see

q(m)=(3p)%Q(x),
and

Q(n) =¢rotm+uim =g0.1828 =1 2005
by Table 2 last column. For the solitary wave q(n—) is 1 "as is evident from
physical consideration, and we have .

(3p)%=0.8330 i.e. p=0.1927.
When % is not exactly 1 we have recourse to (22), which is to be approximated
now by

apy% 1 J'nz-s"u _cosd P wo __ cosf o
_ v . —
(3p 2K |ls  Qcos (%) 7 172.5° /l k“sm?(z) &0
The same sort of integral occurs in the calculation of wave profile:
_ xa) _ 1 Ja cosf(s’) __ dy,
TH T 2@p)%E e Q(a’)/ l—kZSin3<a—)
2) L -
(o) = l 2 . © 2
where we used the approximate value K'=
/2. In the integral of this expression Table 4 Auxiliary integral (2)
/ 1— kasmz( ) ist to be replaced by cos(—) P~
up to ¢'=172.5°, and above this angle the a SQ/l—Hsinz (1)
integral has to be evaluated by the formula 0 2
(48-48""). ¢=0 1is an improper end of 0° 0. 0000
the integral and procedure (49) has to be 7.5° 0. 4264
. s 15 0. 6835
used. In this manner two cases (¥’'=6 30 141113’370
’ i 45 L 7
and 0’) are taken up and Table 4 gives & I 8450
the results. 75 2 2100
For #=6’ the complete integral value gg %(5)?13?615
is 14.585, as seen in Table 4, and using iZO 3 488
this value in (57) we obtain 135 4,007
150 4. 840
»=0.2792. 157.5 5.372
p being known —x/H 1s calculated by 165 172.5 ?é%
means of Table 4. Obtained values are ————— e 1T T T
tabulated in Table 5, for the cases where (=60 | ¥ 0)
=6’ and 0’, being changed however in 175 8.023 | ”
—x/D, explanation being deferred a little. 5925 g g(l)‘li ”
Values of ¢(s) = (3p)% Q(o) are also given 17875 10, 368 ”
in Table 5, detailed by interpolation. The 179.5 11.%‘2 ! "
second formula of (58) then gives —3y/H, 180 I _14‘ > o
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7.5°
15
22.5
30
37.5
45
52.5
60
67.5
75
82.5
90
97.5
105
112.5
120
127.5
135
142.5
150
157.5
165
172.5
176
176. 25
177.5
178.75
179.5°
180°
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o 1‘:‘ T T T T
¥
t
-05 e I S ————tWaw 57 e Teont savface >y
Looo 'Eaug/va
-4
-1 Ct ! $ottom
) 1 L ‘ I "T x/ﬁ 47.‘5\
4 / 2 3 (3
Fig. 2 Wave profile (k=sin 89°54")

Table 5 Wave profile and surface velocity (2) (k=sin 89°54’, sin 90°)

2845
2672
2491
2301
2098
1879 ’
1641 |
1374

10653

06700 |

OSSP OOOL 0L O

. 00000 ‘

k=sin89°54’

k=1. 00000

|

g =D | D | q -z/D | -y/D
0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
0. 3768 0.1392 0. 0783 0. 3330 0.1629 | 0.0016
0.4718 0.2232 0.1227 0. 4169 0.2612 | 0.1436
0.5373 0.4748
0. 5888 0. 3615 0.1911 0.5203 ! 0. 4230 0.2236
0. 6319 I 0.5584
0. 6693 0. 4845 0.2469 | 0.5915 0. 5670 0. 2890
0. 7027 0. 6210 !
0. 7331 0.6027 |, 0.2962 0.6478 | 0.7054 | 0.3467
0. 7611 0.6725
0. 7872 0.7219 0.3416 | 0.6957 | 0.8449 0. 3998
0.8120 0.7175
0. 8356 0. 8469 0. 3849 0.7384  0.9911 0. 4504
0.8583 | 0.7584 ‘
0.8803 0.9832 0.4271 | 0.7779 | 1.1506 0. 4999
0.9018 0. 7969
0. 9231 1.1389 ' 0.4697 ‘ 0. 8157 1.333 0. 5497
0. 9442 . 0.8343
0. 9654 1.328 0.5137 0. 8531 1.554 0. 6012
0. 9869 0.8721
10091  1.581 0.5613 - 0.8917 | 1.850 0.6568
1.0324 1. 754 0. 5875 0.9123 © 2.063 0. 6875
1. 0575 1.995 0. 6164 0.9345 ' 2.334 : 0.7214
1. 0870 2,392 0.6513 | 0.9606 ' 2799 | 0.7623
1. 0994 2. 620 0.6662 | 0.9716 ; 3.066 © 07798
1. 1065 2.780 0.6749 | 0.9778 3.253 0.7898
1.1141 3. 005 0.6842 | 0.9845 3.516 0. 8007
1.1224 3. 386 ; 0. 6944 ‘ 0. 99219 3. 962 (). 8128
1. 1279 3.886 0.7012 | 0.9967 4.548 0. 8206
1. 1316 4.763 0. 7058 1. 0000 co 0. 8261
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which is also, indicated in Table 5, also changed in ~y/D. Wave profile
in the case ¥'=6" is shown in Fig. 2, as a representative one.

Through all the cases of &, i.e. & or ¥, p has been obtained by means of (22), or
(87), required integral values being calculated as above, and tabulated in Table 3
column 2; the values of p are in Table 6 column p,. The wave profile is not
calculated, except in the two cases given above (and the previous cases where
#=0° and 80° given in Table 1). Instead we have only calculated A/H, i.e.
the maximum, value of —»/H, which is given by (38), and for the present
cases where #¥'<6’, which reduces to

A _ 0681 .

H Gpy%n
the results are in Table 6 column A/H.

The last constants of the highest waves are # and D. These are obtainable
by means of (39), (43). In the present cases K’ is approximated by =/2 and
the formulae are rewritten as

" 0.2387 112.5° COs#-Q do 10° _ Cosf-Q
H T (3p)%K ‘S cos( —2—) * Jm 50/1 kzsm?(%yb’ } ““““““ @

h+D _ 1:/9 L1 r et
R e )

The first integral in (60) is evaluated by the Simpson rule which gives 6.426,
and the second by method (48-48"") through the interpolation formula:

c0s8(s)Q(s) =1.2005sin-Z- —0. 4368sing + 1. 1356sinacos—2Z-,

E ............... (6 1)

2 2
as 4 {ag), and then Q(¢), is common to all present cases. The integral values
t - T L N B L L§ L2 B S I T AR LR |
g A =
‘L ]
4¢ Fhect) A

% (Ffae)

1 P Y

t
€ q 2 4 6 8 1D

TS T T |

4 ¢

Fig. 3 Breaking index curve
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between s=0 and r thus obtained are listed in Table 3 column 3, and values of
h/H, calculated therefrom are in Table 6.

The integral value of (61) is independent of the parameter &, or &, because
£(6) is as well common to all the present cases as 7, (o), c.f. (46), and the

factor‘/g+k2<1 5) is in reality independent of %k, and egnal to & (1+5)

within our approxxmatlon Therefore we have
k+D h+D
/A <3p>% [aom - A7),
A 1.5211
-1 w24 -1 VT
(3p)% | (30 (}Y-+1>]ka €L &

from which we have D/H, which is tabulated in Table 6 in the reciprocal form
H/D. Making use of this value, ordinary normalisation by the mean depth D
is secured for all lengths concerning waves, which we also see in Table 6.

Conclusions
To represent our results graphically we selected three items: wave form
(x%/D, y/D), breaking index curve following C. L. Bretschneider's, and wave
velocity <U/V/_f..}%,L/H). As is already explained Fig.2 is the highest wave

profile of the case #’=6’, or in other words L/D=9.526, which seems common
in a canal experiment. Such a wave is very similar to the solitary wave ex-
cept for a finite wave length, as is known from preceding calculations, a fact

L4

1]
‘f L

S

N

20

3

g - ]

1 \

AN
N
%
i

16 ) P
y ? A
/

10

/ /6 2 3 4 & 6 789/0 /5 20 30 40 & L /00
Fig. 4 Existence region of permanent waves

which has been utilised so far.
As is easily seen

L=<L)z=1_ LU _ L E
T2 L L L L 4pK’
and then we have

A A g

A_A g D_
7°T L ApR T



Table 6 Characteristic numbers of permanent waves.

E k K ‘ K’ L/H Prax =11 I po—¥%

Piin =P

94 pi-%

0° 0. 00000 100000 | 1.57080(==/2) co 0. 0000 | 1. 0000 10000 0.8381 | 1.0923
90° 0.34202 | 0. 93969 L 62003 2. 5046 1. 2937 0. 9697 1.0155 0. 8150 1. 1077
60 0. 86603 0. 50000 2. 1565 1. 6858 2. 5585 | 0. 7302 1. 1631 0.6193 | 1.2708
80 0.98481 0. 17365 3. 1534 15828 | 3. 9846 | 0. 5426 1. 3576 0.4519 | 1.4840
47 0.00863 | 0.52336x107 Y|  4.3387 1. 5719 | 5. 5204 t 0. 4449 1. 4903 0.3648 ,  1.65%6
89°30" ' 0.99995 |0.87265%10-4  6.1278 157083 7.8020 0. 3843 1.6132 0.3054 .  1.8093
¢ 8 ) 100000  0.17453x10-%  7.7371 157080 | 9. 8511 ‘ 0. 3604 1666 0. 2792 1.893
C 307 ). 100000 014544107 ¥ 10.2220 1. 57080 13.015 0. 3427 1.708 | 0. 2563 1. 979
(17 ). 1.00000 |0.48481x10- % 13.619 1. 57080 17.346 0. 3323 1.735 1. 2395 2. 044
Coor D 1.00000 | 0.48481%10°° 18.228 1. 57080 23.909 | 0. 3261 1.752 0. 2268 2,100
(17107 ) 1.00000 | 0.48481X 10" % 22, 834 1.57080 . 29.073 | 0. 3233 1. 759 0.2196 2134
(17%107% ) 100000  0.48481X 1079 32, (44 1.57080 | 40.800 | 0. 3208 1. 766 0. 2116 2,174
(1710718 100000 - 0.48481% 107%| 50,465 1. 57080 | 64. 254 0.3193 1.770 0. 2046 2. 211
(17X107%) © 100000 0.48481x 107" 73.480 1.57080 ! 93.571 l 0.3188 1. 771 0. 2008 2.232
{1773 107 %) 1.00000 | 0. 48481 107°1 119. 542 1.57080 152. 206 ! . 3185 1. 772 0. 1976 2,249
¢ 0 D 100000 0.00000 | ec 1. 57080 oo 0. 3183 1.773 0. 1927 2. 278

(continued on the following page)
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Table 6 Characteristic numbers of permanent waves. (continued)

hiH AlH

0° ! 0.0000 | 0.0000 |
20° 0.1223 0. 1823
60 r 0234 0. 3547
80 . 0.3516 | 0. 5090
87 ' 0.4408 0. 6153
89°30/ 0. 5289 0. 6942

( 6’ ) 0. 9795 07300 i

¢ 307 ) 0. 6304 07512
C 1 o 0. 6735 | 0. 7683
(0 0, 0.7089 . 0. 7823
(1"%10 7Y 0. 7309 0. 7908
(1 X10 -8 0. 7959 0. 8006
(1773 10716y 0.7813 0. 8097
(1772 107%5) 0. 7950 | 0. 8148
(173048 0. 8058 0. 8191
¢ 0 ) 0. 8261 0. 8261

AfL
0. 1412
0. 1409
0. 1386
0.1277
0.1115
0. 08897
0. 07410
0. 05771
0. 04430
0. 03371
0. 02720
0. 01962
0. 01260
0. 008708
0. 005382
0. 000000

H/D

1. 0009
0,9824
0.9744
0. 9664
0. 9609
0. 9627
0. 9670
0.9708
0. 9757
0. 9799
0. 9831
0. 9872
0. 9914
0. 9240
0. 9962
1. 0000

L/D
0. 0000
1.271
493
851

Moo

131. 62

hiD

0. 0000

0. 1201
0. 2333
0.33598
0. 4236
0, 5092
0. 5604
0.6120
0. 6571
0. 6946
0.7185
0. 7472
0. 7746
0, 7902
0. 8037
0. 8261

0. 0000
0.1791
0. 3456
0. 4919
0. 5912
0. 6683
(). 7059
0.7293
0, 7496
{). 7666
0.7774
0. 7904
0. 8028
0. 8092
0. 8160
0. 8261

AID | A/TW(!Q_)

sec?

0. 8622
0. 8578
0.8344

0. 7206

0. 5657

0. 3821
0.2757 ‘
0.1771
0. 1092

0. 06553

0. 04360
0.02326
0. 00982
0. 00474
0.00183
0. 00000

] [
1)/11(?%%5
= =)
790
414
4650
9567
5718
5906
2429
14565
08548
05608
0.02943
001222
0. 00586
0. 00224
0. 00000

copooo D~ A

)

02
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where p takes the least value p, for the highest waves. A graph of A/T?
JSi/sect as a function of D/T? ff/sec? is the breaking index curve of Bretschneider.
Our theoretical values for this curve are inserted in the last two columns of
Table 6, and indicated in Fig. 3. Small black circles in this figure are
experimental points, inscribed in the Bretschneider diagram, their origins and
weights of reliability are not discriminated here. Our diagram is almost
coincident with Bretschneider’s experimental one but for a small deflection in
the neighborhood of D/T?=1 ft/sec®.

Fig.4 gives the velocity of highest waves U/,/ffg‘{. i.e. 1/4p,, as a func-

tion of L/H, this curve bounding the existence region of permanent waves from

above. The lower bound is 1/ p,, where p, is the parameter value of waves
of infinitesimal amplitude. p, is the maximum value of p, and defined by
_ &L 2 8L HN
o= S, vn-EL tanh( 2 s 6
from which we obtain
Fid K’ ,
= a R 4
Do oK Coth<7r K ), 69
and
w-|Uy /. /&L _[2K _nK" ]’/2 ...............
pit=[ /\/4}(],,,;,. [ o tanh(TE— )} &
In this formula H can of course be replaced by D. Calculated values are

inserted in Table 6 column p, *%.

We see from this figure that wave velocity is almost constant irrespective of
its amplitude when water depth is large, i.e. wave velocity is determined almost
solely by wave length, this characteistic having been adopted in and proved
relevant to statistics of the sea. On the contrary, in the case of very shallow
channel water, such statistics of waves are expected to show some discrepancies,
for wave velocity in this case is really a function of A/H, as well as L/H.
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