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                                  Abstract 

   The highest gravity waves of permanent type on the water surface are treated 
hydrodynamically and calculated numerically for the 16 values of  LID, ranging from 
o to oo  , L being the length of the waves and D the mean depth of the uniform canal. 
Their characteristic values are tabulated and a representative wave form and the brea-
king index curve are shown graphically. 

                           Introduction 

   About ten years ago one of the authors reported a series of numerical treat-
ment of the nonlinear surface waves of permanent type, and above all calcula-
ted a few cases of extreme wave height  (1-3)*. By this method of calculation 
all the properties of permanent waves can be determined quantitatively, and 
especially the highest waves corresponding to every ratio of wave length to the 
mean depth of canal are to be studied, without encountering any  difficulty, 
though calculation is not an easy task. The highest waves of the  hydrodyna-
mical theory, however, have been thought to be unrealisable  (4), and we also 
have been thinking of them as unstable above a certain amplitude. 

   In the meantime the realisation of the theoretical extreme height is proved 
with an experimental arrangement of a slightly inclined bottom  (5), which seem-
ed to  be in a good agreement with our previous results. In addition we hap-
pened recently to see the breaking index curve  (6) of water waves composed by 
C. L. Bretschneider, which very clearly shows the occurrence of the theoretical 

 maximum height. 
   This being the  fact, irrespective of the waves of maximum height being 

unstable or not, to know the characteristics of the highest waves as accurately 
and precisely as possible is, we think, a necessary and significant task. This 
task being the solution of a nonlinear problem in an at first undefined region, 
our method in the following cannot be simple and  can not pursue an analytical 
procedure to the end. At a certain point in the process we carried over the 
solution to a numerical treatment, and a large series of numerical computations, 
almost all of which  were managed by an electronic computer, has been put into 
a consistent scheme of the characteristic numbers, which is the result aimed at 
concerning the waves of extreme height. A preliminary note being reported 
(7), the present paper is the full account of it. 

       Student of the graduate course, Faculty of Engineering,  Kyoto Univ. 
 (+) As to the numbers in parentheses, see the list of references at the end of the 

 Paper.
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1. Transfomation onto a unit circle 
   Our method of solution which has already been reported  Op will be given 

in this section again for better understandings. Its essence is a generalisation 
of the method used by T. Levi-Civita (8) and K. J. Struik (9). 

   We observe the waves on the water from the coordinates system  O-xy which 
follows after the permanent waves as fast as the waves, so that the wave form 
stands fixed relative to the axes, and water flows steadily from left to right 

(say). The origin  0 is at one wave crest, the x-axis is horizontal and 
directed to right, the y-axis vertical and upward (Fig. 1 a). 

   Let the wave-length be denoted by L and the mean depth by D. We define 
the wave velocity U by the formula  : 

 UL=  1. L/2  u(x,  y)dx  =y(L/2)—y,  (—  L/2),  (1) 

 W whese  yo is the potential function and 
 u(x,  y) is the horizontal component of 

                                   the flow velocity. The wave velocity  PM  
0  (3/4)  x 

 Sathus defined is coincident  with 
, C  AI I r,. ---- that of Stokes' waves when D tends 

                                   to infinity, and with that of the 
                                   solitary wave when L tends to 

 13.  A  13 infinity. 
 (61)  z-pone The complex potential function  : 

 t  W(z)=co=i0,  (2) 
 (-V o (t ) in which 0 is the stream function 

 c'' .n,?                                    and arbitrary constant is fixed so that 
 W(0)=0, maps the physical z-plane 

                         „rn 

 

.  (i  ionto the W-plane as shown in Fig. lb, 

                                   the same alphabetical letters indicating 
           (8)w-prome the same points of special significance. 

 I. The distance  OA of the W-plane 

                       0'is the flux through any sectional plane                                    of the flow, and when we denote it                                 by Ulf, by use of the above defined  CU
, H is a potential depth (say) and 

                                   is nearly equal to D, but differs a little 
                                     in general. 

 (e)  Creema Now we introduce the complete 
                                   elliptic integral K(k) and  IC  =K(k'), 
   Fig.  1 Conformal transformation of the first kind with the modulus k 

                                     and its complementary modulus k'  — 
41—k2, and  define the numerical value of k by the  relation  : 

 K'/K=2H/L.  (3) 

With k,  k',  K and K' thus determined we define a transformation  : 

 sn t2Kiy,k)=_.i17C 
 \UL 21 (4)                         C•
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which maps the W-plane onto the C-plane. By this mapping the one wave 
length region of the W-plane, which is shown hatched in Fig.  lb, corresponds 
to the region interior to the unit  circle about the origin of the C-plane, also 
shown hatched in Fig.  lc, the corresponding points being also indicated by the 
same letters. A special point  5 which corresponds to B and B' of W is  defi-
ned, as easily follows from (4), as 

 CB  I—  2   (1—  V  1  —1Z2).  (5) 
   The transformation (4) is the first  relation we aimed at, but as the requi-
red relation is that between the physical plane z and the unit circle region  C, 
we have to find one more relation which  connects z and W. As such one 
we have the complex velocity: 

 dW   =  v  e-19,  (6)  dz 

where v and  0 are the speed and the direction of flowing water respectively, 
 being the angle measured upwards from the horizontal direction (to the right). 

We denote  v/U by q and  Inq by r, and then (6) becomes  

1   dW  _  ge-i3  e-112  (2)  ,  (7)  U  dz 

the field quantity  Q(z) being defined by the relation: 

             (1dW \  Q(z)—"ir-1171
KUdz (8) 

Evidently  Q(z) is holomorphic at every interior point of the water region, and 
may have singular points at the boundary of the  region. 

  As z has to be a certain function of C, holomorphic at every interior point of 
the cut unit circle, we have from (7) 

 1  dW  dC  =e-14(0 i.e.dz—   1   dW   eio(c  (9) 
 U dC dz U  dC 

where  Q(C) is the transform of  S2(z) on the C-plane. On the other hand, 
differentiating (4) with regard to  C, we have 

  1  dW L 1    1  1+C  
   U dC — 2K 01 ( 2KW dn ( 2KW \ 4 v e3 
                UL 11 l UL 

Also from (4) it results that 

 cn ( 2KW \1+C do (2KW  )=kql—02 
    UL2V CUL1+rie 

and making use of these relations in the above, we have 

   1  dW L  
 U d(TK ka       1 (101                 C2+

4C(1 —C): 

Finally combining  (9) and (10), it results that 

   dz  =i  4K--   (C) dC,  al) 

 v/—k2 

               1  

 C2+7C(1 

which is the required relation between z and C. In (11), however,  Q(C) is
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presently unknown, and its determination is the essential point of our wave 
problem. When it is determined (11) can be integrated, giving  z=z(C) which 
is our final object. 

   As the wave form is symmetrical about the vertical line through the crest 
i.e. y-axis, it can easily be verified that the  function  -i12(z)=1"-i0 has conju-

gate complex values at every pair of symmetrical points z=x+iy and  z=  -  x+iy. 
To this pair of points, on the other  hand, corresponds a pair of two points 
of the W-plane, situated symmetrically about the  0-axis, by the due choice 
of the origin of W stated above. But now these two points becoming, by the 
transformation (4), a pair of conjugate points in the  c-plane, we know  that 

 -if)({) has a pair of complex conjugate values at every pair of conjugate points 

in the unit circle  C  I Above all it takes real value on the real axis because 
of the horizontal velocity at points under crest or trough, or at the bottom, 
and all along the cut  -1c.0<0 the values of the two sides coincide by reason 
of the symmetry of a wave. Thus the function -112(C), and consequently 

 Q(C) itself, is not only  holomorphic in the cut unit circle,  but also in the unit 
circle without cut. 

   The precise functional form of 12(C) has to be determined by the condition 

prescribed on the boundary  C,  =  1, which corresponds to the free surface condi-
tion of the physical plane. Along the streamline which constitutes the free 
surface of water a constant atmospheric pressure prevails, and by Bernoulli's 
equation we have 

 q2+ 2gy-const,  (12)        U2 

or differentiating this along the arc s of the streamline, 

   q—dqU2  +-gsin = 0,  (13)   ds 

where 0 is the inclination of free surface (velocity). 
   When we take dz along the free surface this is equal to  dseli and has to 

correspond to  dC=iei'da on the unit circle  C-e1.-cosa+isina, a being the arc 
length of the unit circle. The correspondence is given by (11), and by use 
of the expression (7) we easily arrive at the relation: 

 ds- - da   04)        4K 

            q. 1- kasi n2( 
 2 When we take this relation into (13), which is the surface condition in the 

physical plane, it can now be transformed into a condition on the unit circle 
 C =1 in the  c-plane : 

    dq sinG(a)     '  05)       da 
        V1-a\ 

                                                         s 

               2) 

where p is defined by 

   gL gH    P-Os) 
     4KU22.KU2 

(15) is the boundary condition, which is necessary, as cited above, for the deter-
mination of  12(C), and p is the eigenvalue which has to be determined simulta-
neously with  Q(C). From p the wave velocity U follows at once.



               On the Highest Water Waves of Permanent Type 5 

   Thus far our mathematical formulation is completed, and Stokes' waves 
and the solitary wave are easily seen to be the two extreme cases (k=0 and k=1) 
of our present formulation. 

   Now we have sufficient conditions for  12(C), and the problem of finding  Q(C) 
is reduced to the determination of 

 Q(el.7)0(a)-1-ir(a)   (17) 

on the unit circle, by the well-known formula of Shwarz-Poisson: 

  12(C)=ia+ 217C 118(6)ee::—+CC  da=b—i fir r (a) elf—1?da' •••08) 
where a and b areconstants to be fixed. The determination of 0(a), r(a) is 

then reduced to a nonlinear problem as follows: 
   For the sake of simplifying the actual computations we use Q(a) defined by 

  Q(a)= (3P)(6) (3P)— (g) i.e. 1nQ(a) r (a)13In (3P)  (19)    1/2 

instead of q(a), or r(a), then (15) is changed into 

   d(23 =sinfi (a) /—lesin2(
2a), 

and when integrated it becomes 

  Q'(a)—Q'(0)4sin0(61)-—- da',   0))                °k2 sin2(2                      rif ) 
which we use in place of (15). If we assume  0(a) the corresponding value of 

Q(a) follows from (20), and  r(a) is then fixed by (19) except an additive cons-
tant. This knowledge about  r(a) is sufficient to determine the conjugate 

harmonic 0(a), which has to be identical with the previously assumed 0(a). We 
know then that this nonlinear problem is to be solved by an iteration procedure, 
details being deferred to the next section. 

   After 0(a), r(a) have been determined, the eigenvalue p is fixed by means 
of any one equation which contains q(a), for by use of the relation  q(a)=(3p)31 
Q(a) we can bring p into an equation as a sole unknown quantity. Here we 
take as such an equation the expression of wave length. As the wave form 
is given by 

                           cow   dz —L
4K-- -  da,  4(0  \11  —  k'sin2(  ) 

which is nothing but (14), we take its real part and integrate it to 

 Lfa  cost/(a)          
    10 da,    2 4K 

               

-  0(6)  \  —  k2sin2( a ) 
                         2 from which the equation aimed at follows at once: 

 (3p)q  =_1 r coo (a) do.; (22)         2Kj 
            Q(0)\/1—k,sin2(2) 

 i.e.  p can be obtained by mere quadrature.
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 2. Calculation scheme for the highest waves 

   Our  problem here is to calculate the highest waves, and for this purpose we 

employ an auxiliary function: 

 (MO  =  i  -31 In  (.1  C  ),   (20 
 i.e. 

 110(ei°)--.700(a)+  frp  (61")  =  6  +  31   /rtsin(  (r�a�0)  (24) 
which has the characteristic behavior of 12(C) in the neighborhood of the singul-
ar point  C=1, which corresponds to the angular crest. In reality  00(0 jumps 
at  a  =0  (C=  1) from -30° to +30°, and  q  (a)  =roc) vanishes continuously at  a  =0 
(C=1). 
   With this auxiliary function we  assume for the exact form of  12(C) the follow-
ing: 

 12(C).=.(20(C)+12,(C),  Do(e10=  0.(a)+irr(6),   (25) 
 i.e. 

 (.9.)  OD  (a  )  Or  (a),  r  (a)  =  (a)  +  rr  (0)  (26) 
As  q(a-0)=0 now our principal equation (20) becomes 

 Q3(,)  r  sin(80(d)  +  '(at))    du',  (7,?) 

 „si  1—  lesin2(  2 ) 
and to treat this equation efficiently we  introdUce further functions  t(a),  t  ,(a) 

 by the definition 

 InQ  (a)  -  t(a),  t,(a)=t(a)—  ro(a).   (22) 

By the definitions (19) and (26) we have now 
                            1    t (a) r (a) — -13in (4), t, (T) = r,(a)-3M(3P), 

and see t(a),  t (a) being free of the eigenvalue, which is undetermined present-
ly. Now (27) reduces to 

 t(a)  - 31f osin (0 0(6,20 r (a' )) da',         J                1- k-stm( 2 ) 
and then finally 

   t, (a,1 in1., sin(00(a90 r(a?)da'a      )3 .111/ 1-lesin2(2)sine2A.  
   On the other hand by Villat's formula for conjugate functions we have 

 0,.(a)  =  const.  +-1  fr,  (a')  —  rr(a)}  cot  -a2 ado',  2
r, 

and  r  JO being an even function of a this formula can easily be reduced to 

   0 r(cr) = const. —                   sinarr(d)--tr(u)  dc,                 rz
0 cosy-cosa 

And moreover, in this formula we can replace r, by  t by reason of the second 
relation of (29), and determine the undetermined constant  by the condition  0,(0)
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=0. Thus we arrive finally at 

 0,.(a)--  -sing  1  t1(69-tl(g)  da'   (31) 
 r  0  case'-case 

   We have reached the  point to determine  2'  ,(a) and  11,(c), by the simultaneous 
nonlinear integral equations (30) (31). When their solutions are obtained, we 
have  0(a),  Q(c) by the relations 

 0(a)=00(o)±0.(a),  Q(a)=  grom  +tic.)  ,   02) 

the eigenvalue p by (22), and then the wave velocity and the flow velocity on 
the surface by 

 U1   (33) 

 gL  J  4p  ic 

and 

 r  (a)  =ro(a)  +1)(a)  +  3 In  (3p),  q(o)=(3p)3Q(6).  (341 

   The correspondence between  a and a surface  point is determined by the sur-
face profile  (x,  y) as functions of a, which are obtained by integrating (21): 

 x(a) _  +  r   y(a)   _ 1  .0(.9+  isin0(a9  du' , os     L  L  4K(3p)J  Q(a'  )\/1-k2sin2(-q2 
or by means of (3), 

    x(a)  y(a)   1   f  °  cos8(a1)+isin0(a1)  du'.  (30                21C(3p)% 
 Q(a')  \^11-  k2sin2V) 

Also by Bernoulli's theorem (12), with the undetermined constant fixed to zero 
now, and by the definition (16) of p we obtain 

 42+4pKili-  =0.   G37) 
By means of this equation we are again able to obtain  y/H from q2, or rewritten 

as 

  Q3(a)+ 4--le(3P)1/2 Y(a)  =0,  (37)1 

 Y(0)/  H from  (22(a). This form of Bernoulli's theorem is nothing but the relation 
(27), for differentiating both sides of (27) by a and integrating again from  a  =0 
to a after multiplication by we obtain just (37'). Putting  a=  sr we get 
an important formula from this: 

 A 3 
  H  4K'(3p)%(22 (r), 08) 

which gives the height A of the crest above the trough, c. f. Fig. la. We have 
seen that there are two ways of obtaining y/H (or y/L). We can then use 
one of them for the proilfe calculation and the other as a check of the legitimacy 
of the numerical computation. 

   Let  /7 be the height of the crest above the mean water surface,  c.  f Fig. la. 
Then the definition of mean level surface is written as
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   h L=1o(  —  y(a))(  —  dx(a)), 
  2 and expressing y(a) in the integral by  Q2  (e), by means of (37'), and  dx(a) by 

means of the real part of (36), we easily find 

        3  It coS0(a)Q(u)tin  (39) 
 If 8KK'(3p)1/3In/-C22'                      1— flint' —2) 

which enables us to calculate the position of mean surface. 
   Finally we require the mean depth  D. Referring to Figs. la and  lc, it is 

evident that 

 h+  D =  AO  —  dy(e),   (40) 

where  e is the point on the real axis of the  (-plane,  1-.�.?;>0. On this range of  e 

 fi(C)  I  c=:=0  I  I 

is imaginary,  i.  e.  c.1=0. Let us  :denote r  r(5). Then by the formula 

(11) of dz we obtain 

 dz  (C) I =L e—(e)                                   de;  4K ye2e _ex, 

 4 integrating both sides of this between  5-0 to 1, and using it in (40) we find 

 h+D _ 1  e-° (E0_   de,   (41)      1-12.1C'JD
\/e,+k2                        /-—4—(1-5)2 

where the relation  L  I2KH  =1/  Ift is used. 
   We take in the decomposition  : 

 r(C)=TD(C)+r,(C)—ro(C)+  31  In(3P)+Ii(C),   (40 

the notation being understood at once. By means of this decomposition we 
have 

 e-:  (E) =  6-0(e)(3p)-3/4e-tit)—(3p)-V3(  12  E reIth, 
and using this in (41) it results that: 

 h+  D  _ e-2,(E)   d5 .  (43)            2
.1C(3p)% / 1—e\1/4/                 el2)Ve+1?'(1-2el 

We thus have to calculate  1'1(5) for the purpose of obtaining D/H. 
   The imaginary part r, of a holomorphic function  IMO is being given on a 

unit circle  •=el° as the function  rr(a), we can use the Schwarz-Poisson formula 

(18) to obtain  fl,(C) 

27ri-eirtself:                            oc  ch(c)=b —Tr(a)-da  (44)                                         wt°--p 

At C=0 this gives a complex value:
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 9,(0)=b-f-imaginary value.   (44)' 

From physical considerations however it is evident  O(C)ic,0=0, and the assumed 
form of  Ho(C) assures the fact:  Bo(C)  1(.0=0. Then  ti,.(C)  r=o must vanish, 
and then b in (44') also  vanishes. Thus we have 

   0,(C)+ir,(C)=---1-  2rirv. (a)  e  ±C  da 
    1e4-C                      t= i3inop)-Li d,,                                               era 

i.e. 

   0,(C)+iti(C) -2
ri-„EKG!) e±C-da, 

and putting  (=g we finally have 

   We) 1P(a) 64."-cda —1Iti(a)  1—E2 da,  (46)     2r—e  r1+v-2ecosa 

which gives  t,(e) by means of  t  Ka). Using (46) in (43)  we know the value 

 (h+D)/H, and subtracting the known value (39) of  h/D, we arrive at the requi-
red value of D/H. 

3. Numerical Computations (1) 

   Along with the preceding section we calculate  MO,  (1(0 of the highest 
waves for the following values of the parameter k  : 

 k=  [sinO°  sin20°  ,  sin60'  ,  [sing(/'  sin87°  ,  sin89.5°  ,  sin90°  ; 

the values in brackets are the cases which we have already calculated and repor-
ted (1-3), the main characteristics of these being indicated in Table 6 at the 
end of this paper, along with our new calculations. Table 1 shows their velo-
cities and profiles of the free surface. The case where k=sin  900=1 is also 
reported  (2), but owing to its principal significance for the waves in shallow 
water, as will be seen in the following section, we have calculated it again here. 

   Formulae (30) and (31) are our present concern.  t,  (0)=0 and  0,-(0)— 
 (4(70 =0 being easily ascertained, we first calculate  0,(a) by integrating (31), 

starting from an arbitrary but appropriately chosen  tt(a). Integration is nu-
merical and then stepwise, 23 points being taken at equal intervals between  a=0° 
and 180°. Using  Ma) thus calculated in (30) we obtain the renewed values of 

 ti(a) at these 25 points (including  a=0° and  180°), one cycle of the iteration 

process being closed. With this renewed values of  ti(a) we begin the next 
cycle of iteration. Numerical integrations are all done with the modified  Simp-
son rule: 

 Jo  f(x)dx= 12{5f(0)+8f(h)—f(2h)}, 
  (47) 

    f(x)dx=  h {—f(0)+81(h)+5,j(2h)},            12
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        Table 1. Wave profile and surface velocity (1)  (k.--  0 and sin 80°) 

 k  =  O.  00000  ksin80° 

 8 q  -xIL  -ylL  ,  g  -xIL  -,yIL 

 0°  0.  5236  0.0000  0.  0000  0.  0000  0.5236  0.  0000  0.0000  0.0000 
 7.5°  0.4803  0.5409  0.0502  0.0277  0.4923  0.4435 

   15  0.  4500  0.  6729  0.  0808  0.0430  0.4698  0.5525  0.0491  0.0268 
 22.5  0.  4240  0.  7624  0.  1070  0.  0553  0.  4544  0.6277 

   30  0.  3992  0.  8317  0.1310  0.0658  0.4385  0.6893  0.07%  0.0417 
 37.5  0.3748  0.8885  0.  1534  0.0749  0.4196  0.7405 

   45  0.  3514  0.  9347  0.1747  0.  0830  0.4020  0.  7829  0.10671  0.0538 
 52.  5  0.  3292  0.  9748  0.  1953  '  0.  0903  0.3865  0.8209 

   60  0.  3075  1.  0099  0.  2152  0.0969  0.  3710  0.8567  0.1327  0.  0644 
 67.5  0.  2861  1.  0405  0.  2347  0.  1028  0.  3538  0.8896 

   75  0.  2653  1.  0673  0.2536  0.  1082  0.  3366  0.  9189  0.  1589  ,  0.0741 
 8'2.5  0.  2451  1.  0910  0.2724  I  0.  1131  0.3205  0.  9464 

   90  0.2252  1.1122  0.2907  0.1175  0.3041  0.9736  0.1864  0.0832 
 97.5  0.2054  1.1309  0.3089  0.1214  0.2863  0.9994 

  105  0.1860  1.  1473  0.  3268  0.1250  0.2680  1.0235  0.  2161  0.0919 
 112.5  0.1669  1.1617  0.3446  0.1281  0.2495  1.0466 

  120  O. 1478 1. 1744 0. 3622  O. 1310  0.  2300  1.  0697  0.  24%  I 0. 1004 
 127.  5  0.  1289  1.1853  0.  3797  0.1334  0.2093  1.0922 

  135  0.1103  1.1944  0.3970   0.1355  0.1870  1.1140  0.2894  0.1089 
 142.5  0.0919  1.2021  0.4144  0.1372  0.1632  1.1350 

  150  0.0734  1.2085  0.4316  0.  1387  0.  1371  1.1551  0.3397  0.1171 
 157.5  0.  0549  1.  2134  0.  4488  0.  1398  a  1079  1.  1739 

  165  0.  0366  1.  2167  0.  4659  O. 1406  0.0756 1. 1903  0.4080  i  O. 1243 
 172.5  0.0183  1.  2187  0.4860  0.  1410  0.0393  1.  2025 

  180°  0.0000  1.2194  0.5001  0.1412 0.0000  1.2069  0.  5000  0.1278 

for we are required to conserve the number of points for which function values 
are assigned, after any cycles of iteration. The iteration process has been 
stopped when the renewed values of  ti(a) differ from the preceding ones by 
numbers less than  10-3, taking the last  11(a) as the required one. Ordinarily 
the number of iteration cycles were less than 10. Obtained results are 
expressed in t(a) and  8(a) and tabulated in Table 2. 

   Caution is necessary regarding two points. Firstly, the indeterminate 
value at the point  at-a in (31) is to be replaced by the limiting value: 

 d(a9-11(a)  W(a)  ti(a+7.5°)-  d  (a  -  7.5°  ) 

 cosa'-cosa  a  =a' sina  O.  26180sina 

Secondly, in cases where k="1 the square root in (30) changes its value very 
rapidly when  a' approaches  Tr, and 7.  5° as an integration step becomes  too rough. 
To estimate the integral in the interval  172.50-180° we write this in the 
form:



 ei  OTable 2 Surface velocity  (k  =sin  20°
, sin 60°, sin 87°, sin  89.5°, sin  90°) 

 a 

[-"l" 
 xCCA., k=sin2o°  k=sin60°  k=sin87°  k=sin89.  5°  k=1,00000  00000 

          II  II 04.---, a to0°t 0 ! t6 t 8 tI0 t  0 
 0 ..I                      , 4. .r.  < 0°  -00  0.5236 -00  0.5236 -00  0.5236 -00  0.  5236  -30  1  0.5326  -00  0.5236 

 o iro  1_,  !  7
.5°  -0.9091  0.5018  -0.9216  0.4823  -0.9192  0.4896  -0.9171  0.4960  -0.9170  0.4964  -0.9170  0.4964  N  x :a- I ,',,_      EliA '1 ,A1 15 -O.6787 0.4800 -0.7013 0.4526 -0.6964 0.4650 -0.6924 0.4760-O.69220.4767 -O.6922 0.4766 a + r6E ,1ci x 

 p3  , o 22.5  -0.5448  0.4582  -0.5758  0.4259  -0.5684  0.4428  -0.  5625  0.4580  -0.8621  0.4589  -0.5621  0.  4588                                                                                                                                    "W! 
    o f`DI cl                   30  -0.4505  0.4363  -0.4892  0.4010-O. 4790  0.4220  -0.4710  0.4410  -0.4706  0.4421  -0.9706  0.  4420  [ 

 xr.,                   37
.5-O.3783 O.4145-O.4239 0.3773 -0.4105 0.4020 -0.4005 0.4246 -O.4000 0.4260 -0.4000 0-4259- +--_,Co.to 

(-) -  54x-                   45 -O.3202 0.3927 -0.3720 0.3545 -0.3553 0.3826 -0.3430 0.4087 -0.3424 0.4103 -0.3424 0. 41010 
V:.x., 
 x- 52.5-O. 2719  0.3709  -0.3295  0.3325  -0.3092  0.3635  -0.  2944  0.3930  -0.2937  0.3948  -0.2937  0.  3947 

 x 
 o 

 o,x060-0 .2311  0.3491  -0.2939  0.3111  -0.2698  0.3447  -0.2522  0.3775  -0.  2514  0.3796I -0.2514  0.3794 l, 
 0la

0-3      "  NCI 67.  5  -0.  1959  0.  3273  -0.  2636  0.  2901  -0.  2353  0.  3259 -0. 2148 0.  3620  -0.  2139  0.  3693  -0.  2139  0.  3641 
 x                   75  -0.  1654  0.3054  -0.2375  0.2695  -0.  2049  0.  3071  -0.  1812  0.3464  -0.  1801  0.3489  I  -0.  1801  0.3487 tf 

                                                                                                                                               x 

     s, 82.5  -0.1388  0.2836  -0.2149  0.2493  -0.  1777  0.2883  -0.1504  0.3307  -0.1491  0.3334  -0.1492  0.3331" 
      (et 

     a90  -0.1155  0.2618-0.1953  0.2293  -0.1532  0.  2692 -0. 1219  0.3146  -0.1205  0.3176I -0. 1206  0.3173  ta‘ 

     .o 97.  5  -O.  0951  0.  2400  -0.  1781  0.2096  -0.  1311  0.2498  -0.0953  0.2982 -0.0937 0.3015-0. 0938  0.3011;                                                                                                                                                                                                     1-tt 

                105  -0.0772  0.2182-O. 1631 0. 1901 -0. 1111  0.2300  -0.  0701  0.2812 -0.0683  0.2849  I  -0.0684  0.2845 i 
 112.5  -0.0615  0.  1964  -0.  1501  0.  1707  -0.0929  0.2097  -0.0462  0.2636  I  -0.0441  0.2676  [  -0.0943  0.2672                                                                I 

                  120  -0.0480  0.  1745  -0.1388  0.  1514  -0.0764  0.  1889 -0.0232  0.2452 -0.0208  0.2496 -0.0210  0.2491  0-9 
 127.5  -0.0363  0.  1527  -0.  1291  0.  1323  -0.0617  0.  1676  -0.0009  0.2258  0.0018  0.2306  !  0.0016  '  0.2301  41 

                135  -0.0264 0. 1309 -0. 1209 0. 1133  -0.0486 0. 1455  0.  0209  0.  2051  I  0.  0241  0.  2104  0.0239  0.2098 

al: t'  142.5  -0.0182  j  0.  1091  -0.  1141  0.0943  -0.0373  0.  1227  0.0424  0.  1827  I  0.0462  0.  1887  0.0459  0.  1879 
                150  1  -0.0116  0.0873  -0. 1087  0.0754  -0.  0278 0. 0993  0.0639  !  O. 1581  0.0685  I 0. 1650  1  0.0682  O. 1641 

 157.5  -0.0065  0.0655 -0. 1045  0.0565  -0.  0202  0.0751  0.0855 0. 1304  0.  0914 0. 1387  0.  0910 0. 1374 

                 165  -0.  0029  0.0436  -0.1015  0.0376  -0.  0146 0. 0504 0. 1076 0. 0980  O. 1157 0. 1087  O. 1150  0.10653 
 172.5  -0.00071  0.0218  -0.0997  0.0188  -0.0113  0.  0253  0.  1299  0.0553  0.1460  0.0676  0.  1425  0.06700 

                 180°  0.0000  0.0000  -0.0991  0.0000  [  -0.0101  0.0000  0.1422  0.0000  0.1726  0.0000  018281  0.00000  .
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where constants A, B and C are determined by the values F(165°),  F(172.5°) 
and F(180°). Then (48) is easily evaluated and gives an integration formula: 

 2A 1/1—k2cosz(2,)+ksin(=)   I(<)=In 2 + 4B [11 —k2cos2(2—        k'k2\ 

    ±2C                \/1--k2c2(E      k22"2 )  k  sinh-,  ( k,  sin(  26  )),   ;Itir 
Now  E  =7  .5° and  A=0, and from B, C determined as above we easily obtained 
the integral values for cases  k=sin87° and  sin89.5°  ; for cases  k=sin20° and 

 sin60Thuch caution is unnecessary. 
   The case where  k=sin90° we have already treated separately and far more 

accurately in the same line of numerical treatment (10). Our present calcula-
tion, which is rather rough in comparison, coincided well with this accurate one 
except for the one value  ti(r), and then we corrected this one value. The 
numericals given in the last two columns of Table 2 are the results thus obtain-
ed. 
   We then consider the evaluation of  p,  x(a)/L and  y(a)/L, (22) and (35). 
As the solitary wave  (k=sin90°) and its neighboring long waves are to  be 
studied in the next section we here take up cases where 

 k=sin20°,sin60°,sin87° and sin89.5°, 

For the highest waves Q(a) vanishes at the initial point  =0 , and then integrals 
are improper at  a=0.  In the neighborhood of this point 

 Q(a)--et1o=c0(0420°)  =  sin'' (2) eido, 
and making use of  ti(0)=0 we have Q(a)-1--=21/4a-V3. We then have the appro-
ximate expressions: 

 cosO(a)   =-21/46-%cos30°(1+cia+c20.2) , 
  Q(a)11—k2sin2(2q) 

  sinO(o) _ (40                       =21/20--%sin30°  (l+sio+s,a2) , 
 Q(a).  \11—  k2sin2( a2) 

where constants  c],  ce,  si and  5, are to be determined so as to secure the equalities 

of the equations at  a  =7.5° and 15°. With these expressions the necessary 

integrals between a=0° and 15° are obtained. Near the other end of the integ-

ration range integrands change abruptly because of the factor  (1  — flirt, 2) 1/2 
and we apply the integration formula (48-48") taking for  F(a): 

 IcosO/Q1  F(a) = Asin aBSi110 Csinacosa 
 sinO/Q22 

At the middle range  15°-165° the modified Simpson rule being sufficient, we 

thus complete the numerical evaluations. In reality we calculate  p only, and 
not x/L and  y/L, in these four cases of k, but the same evalution method will 

be applied in the next  section for  k=sin89°54' and  sin90`, without any notice. 
Obtained values of  p are inscribed in Table 6 at the end of the paper, under
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the heading  /a,  (=Nan), and the values of the required complete integral are 

given in the second column of Table 3 in the rows of corresponding  k-values. 
   Turning to the computation of  h/H and D/H, the former is obtained by (39) 

which requires the evaluation of the integral: 

 cose(a)Q(9)   d o. 
  Jo ,11 —k2sin2(-9 

            2 This can be treated just as well as the case of  p; a=0 not being improper now, 
caution is necessary only for the range  0=165°  —180°. Obtained values are 

given  in  Table 3. 
   To obtain the latter i.e.  Dill we require the values of  t,  (E) whose functional 

form is defined by (45). This definition can be rewritten as 

 ti(e)  — c(e)Itl(a)  da  (o<e<i),  (5c) 
                 p(e)—cosa 

        Table 3 Auxiliary integrals (1)where 
                                                        1 --E2 „N 1 +$2.                                            C(e)= IA"= 

         cosOda r cos&Qda27Ce 2e 
   k(k)  SQV1-k2sing/5V1-kisinq2 

            2o  when  e  =0 
 sin20°  4.365  2.  401 

 sin60°  5.302  3.508 t1(0)=-1j`  tl(a)da, 
 sin87°  8.942  8.  514  7r  0 

  sin89. 5°  11.  904  12.807   (50 

 (0.  17453  X  1r)  14.585  16.  689 and when e=1 
 (0.14544X  10-')  18.728  22.652                                    I 

(0.  48481  X  10-5)  24.40  30.82ti(e) e.I =ti(o)0.0=0.  
(  n  X10-9)  32.07  41.88   (591 

 (  a  X10-9)  39.74  52.93 When  e is not 1 but is  
(  x10-")  55.08  75.05 near it the denominator of  
(  x10-2') 85. 77  119.27 the integrand changes  abru-
( x10-'1)  124.13  174.56 ptly in the vicinity of  a-0,  
(  x10-51)  200.85 285. 13 and we have to use an  ana-
( 0.00000 )  oo logous integration method as 

  (48-48").  ti(u) being ex-
pressed as 

 ti(a) =  Asina + 

where constants A, B are to be determined by the values  tI(7.5°) and  ti(15°), 
the integral can be evaluated as 

   C(010  p(e)—COSa15°  Asina+Bsin,ada —11(e)t,(7.5° ) +B(e)t,(15°),   (52) 
at the starting integration range  a=0°—'15°. The remaining range is well 
managed by the Simpson rule, In such a way  t1(e) is given in the interval 

e=0-1 at the points of equal distance 0.05, for the four values of  k. 
   Finally the integral in (43) has to be evaluated. Both ends of integration
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of this integral are improper. Then near  e=0 we put 

   fence,(1-i_ENE+4_021---F^Ce )=A1 +Bie+C,e2,   
determining the constants  A1, B,,  C, by the values of  F,(5) at  5-0, 0,05, and 
0.1. Near 5=1 we put 

                         2 

 ve+ k(1—e)21-+Fi(e)=Al2-FB2(1—e)+C2(1-03,  (54)  4' 

determining  A?,  /32, C2 by the values of F2 at  e=1.00, 0.95 and 0.9. By means 
of these expressions integration is easily done, the former between  e=0-0.1, the 
latter between  e=0.9-1, and the middle part by the Simpson  rule. Making 
use of these integral values DIN is easily evaluated, which is indicated, along 
with  hID, in Table 6, in the reciprocal value  H/D. 

4. Numerical computations (2) 

   Here we consider the case where  k=1 or is very approximate to it. Making 
 use of the new notations; 

 r/2  sin04=k1, and  K(k1)=K,   (55) 

we take up the following 10 as representative cases: 

 0'=360, 30, 1,  10-2,  10-4,  10-6,  10-16, 10-26,  10-46, and 0  (sec.). 

For these values of  0' we have the values of k, k', K, K' and  LIH, listed in 
Table 6 columns  2-6. 

   Through these ten cases differences in 11(a) and Or(a) are effected by the 

parameter k2 in the integral 

 sinO(a') A•   I(a)=.1•ua          0 .0.—k2Sin2(-ff2) 
Replacing  k2 in this integral by means of  lef2=sin2^4 this integral becomes 

 /(0)=1  F(a1,01)da', (5Q          D cos(-6 
 2 where 

                      ,a, =Et\ rF(at ,09=1/V1+(sindtan2)A/1+ (sinO'cot-2-)2   4561' 
in which we replaced a' by  7r  -E'. 

   Since  0' is so small an angle that F(a',  0') is very nearly equal to  1 through 

the whole integration range except in the neighborhood of  a=rz, where it abrupt-
ly drops to zero. If we then assume  F=-1 all along the integration range, 

there will be an error in the value of the integral, which is largest when  04= 
 360"=6'. To estimate this error when  Oi=61 we have the following data: 

    lim  si"(a') 
 cos( v'  ) 

 2 

 lao° 
 F(179°  ,  6'  )  =0.9804, and j(1-F)da'=0. 0007; 

       i,9.
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we know then an over-estimation of  0.  04% at most, which changes the value 
of  t,(a) in the fourth decimal place, which is within the limit of accuracy of 
our numerical  treatment. Thus we obtain  t,(a),  Or(a) all common to the 
cases where  0/�61, and equal to the case of the solitary wave  zW=0, which is 
already done in the preceding section. This fact much simplifies our calcula-
tion. 
   Turning to the calculation of p we see 

 q(r)=(3P)3/4Q(r), 
and 

 Q(r)=ero(ti'hoo=e°."20  =  1.  2005 
by Table 2 last column. For the solitary wave  q(r) is  1,' as is evident from 

physical  consideration,  and  we  have 
 (3p)%=  0.  8330  i.e.  p=  0.  1927. 

When k is not exactly 1 we have recourse to (22), which is to be approximated 
now by 

       1 ii72.5° CO_Selee   cos0    (3p)% - a  )  da+1         2KJDOS (-2/172.5° Q11— k'—do  (57)       QCsin,C1) 

                                       2 

   The same sort of integral occurs in the calculation of wave profile: 

 x(o) 1   1°   cos0(d)  

                                             

,  da',      H r(3P)1/2  i  0 Q(a1)V1— k2sin2( a) 
          2   68) 

  y(a)  = 1                     q2(a)=. 
     H2rP' 2n(3P)1/2Q2(a), 

                                                                                            , where we used the approximate value  K'= 

 rI2. In the integral of this expressionTable 4 Auxiliary integral (2) 

V 1 —k2sinz (6) ist tobereplaced by cos(2    )     2  61,   coseda  
up to  o'=172.5°, and above this angle the a 
integral has tobeevaluated by the formula  oV\)Qevaluated a) 

 2  

 (48-4W').  a=0 is an improper end of  0°  0.0000 
the integral and procedure (49) has to be  7.5°  0.4264                 15  O.  

 used. In this manner two cases (06835'=6'  30  1.1070 
and 0') are taken up and Table 4 gives  45  1.4837 
the results. 60  2.2109   2. 2109 

  For 0=6' the complete integral value 90  2.5936 
is  14.  585, as seen in Table 4, and using 105  3.4811   3.  488 
this value in (57) we obtain 135  4.007 

 p=  O.  2792.150  4.840157.5 5.372 

   p being known —x/H is calculated by165  6.108172.5  7.325 
means of Table 4. Obtained values are   

,9'=6 tabulated in Table 5
, for the cases where( I                                                               ')(9'=0) 

 0'=6' and 0', being changed however in 175  8.023  1  " 
 —x/D , explanation being deferred a little.  176.25 8.514  u 

Values of 4(a) =  (3p)1/2 Q(a) are also given 177.5  9.201 ft178.  75  10.368  4, 
in Table 5, detailed by interpolation. The  179.  5  11.902  // 

                              180 14.  585  co second formula of (58) then gives  —y/H , —
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I  1Ti  I 

 vi:Cresd  
 -OS   
       _03.60---v-Wave111tonsurface  _0. 

 1000 71°414 
 -/   

 -/.0    Channel  t0il0,,, 
 Ck-AZO 

     .I I "TM"  4713, 
 01 2  a  * 

                    Fig. 2 Wave profile  (k  =sin 89°54') 

      Table 5 Wave profile and surface velocity (2)  (k  =sin 89°54', sin  90') 

 k=si089°541 k= 1. 00000  I 

 a 0 1 q  -xID  -y/D  q  -x113  -ylD 
   0°  0.5236  0.0000  0.0000  0.0000  0.0000  '  0.0000  0.0000 

 7.5°  0.  4964  0.  3768  I  0.  1392  0.0783  a  3330  a  1629  0.  0916 
  15  0.4766  0.  4718  0.2232  0.  1227  0.4169  0.2612  0.  1436 

 22.  5 0. 4588 0. 5373  ' 0. 4748 

  30  0.4420  0.5888  0.3615  0.  1911  '  0.5203  0.  4230  0.2236 

 37.5  0.4259  0.6319  I  05584 

 95  0.4101  0.6693  0.4895  :  0.2469  0.5915  0.5670  0.  2890 

 52.  5  0.3947  0.7027  ,  0.  6210 

  60  0.3794  I  a 7331  0.6027  0.  2962 0. 6478  0.7054  0.  3467 
 67.5  0.3641  a  7611  0.6725 

  75  0.3487  0.7872   0.7219  0.3416  0.6957  0.8449  0.3998 
 82.5  0.3331  0.8120  :  0.7175 

  90  0,3173  0.8356  a  8469  0.3849  0.7384  0.9911  0.4504 

 97.5  0.3011  0.  8583  i  0.7584 

  105  0.  2845  0.  8803  0.9832  0.  4271  0.  7779  1.  1506  a  4999 

 112.5  0.2672  0.  9018  0.7969 

  120  0.  2491  0.  9231  1.  1389  :  0.9697  0.8157  1.333  0.5497 
 127.  5  0.  2301  0.  9442  0.  8343 

 135  0.  2098  a  9654  1.  328  a  5137  ,  0.  8531  1.  554  a  6012 

 142.5  0.  1879  0.  9869  0.8721 

 150  0.1641  1.0091  1.581  05613  0.  8917  L850  a  6568 
 157.  5  a  1374  1.0324  1.759  a  5875  :  0.  9123  2.  053  0.  6875 

 165  a  10653  1.0575  1.  995  a  6164  0.  9345  2.  334  0.  7214 

 172.5  a  06700  1.0870  2.392  0.6513  0.9606  2.799  a  7623 

 175  1.0994  2.620  0.6662  0.9716  3.066  0.7798 
 176.  25  1.  1065  2.  780  0.6749  0.9778  3.  253  a  7898 

 177.5  1.1141  3.005  0.6842  a  9845  3.516  a  8007 

 178.75  1.1224  3.386   0.6944  0.9919  3.962  0.8128 

 179.5°  1.1279  '  3.886  0.7012  0.9967  4.598  0.8206 
 180°  0.00000  1.  1316  4.  763  0.  7058  1.  0000  00  0.8261
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which is also, indicated in Table 5, also changed in —y/D. Wave profile 
in the case  0'=6' is shown in Fig. 2, as a representative one. 

   Through all the cases of  k,  1.  e. 0 or 0', p has been obtained by means of (22), or 

(57), required integral values being calculated as above, and tabulated in Table 3 
column 2 ; the values of p are in Table 6 column  p,. The wave profile is not 
calculated, except in the two cases given above (and the previous cases where 
0=0° and  80° given in Table  1). Instead we have only calculated A/H, i.e. 
the maximum, value of —y/H, which is given by (38), and for the present 
cases where  0'<6', which reduces to 

   A  _0.6381  ,   (59) 
 (3p)1/2 

the results are in Table 6 column A/H. 
   The last constants of the highest waves are h and D. These are obtainable 

by means of (39), (43). In the present cases K' is approximated by  r/2 and 
the formulae are rewritten as 

 h  0.2387 it.172-5° COO• Qda[1000  COSO'Q_--d a , 1 (60 
   H(3P)%1C10 cos(2) 1 n.50V1— k2sin22 J 

                             m 

  h+D 1 1  I' e-t,  _de.   (611       (3p )1/2 r 1 / /1—eV                      V 
e 2 )El-k'2) 

The first integral in (60) is evaluated by the Simpson rule which gives  6.426, 
and the second by method (48-48") through the interpolation formula: 

 cos0(a)Q(0)=1.  2005sin   62  O.  4368sing  +I.  1356sinacosi., 

as 11(a), and then Q(a), is common to all present cases. The integral values 

      6 A 

 4  (442) 

 2 

 6 

 4 

  ;irPX-2(#'"') 
 x( 2  A 6 8  .1 2 4  g  1 2  4 6 8  10 

                       Fig. 3 Breaking index curve
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between  a=0 and  7C thus obtained are listed in Table 3 column 3, and values of 
h/H, calculated therefrom are in Table 6. 

   The integral value of (61) is independent of the parameter k, or  0', because 
 1,(f) is as well common to all the present cases as  t,  (o),  c.f. (46), and the 

 1 factor-1.-k2(12e yisin realityindependent of k,and eqnal to  2  (1+e) 
within our approximation. Therefore we have 

 h+D h+D  1 
   H (3p)% L`H 

          1 A   , _1.5211   ( 
 (3p)1/4 L \H Lk.'(3p)%6/ 

from which we have  D/H, which is tabulated in Table 6 in the reciprocal form 
 H/D. Making use of this value, ordinary normalisation by the mean depth D 

is secured for all lengths concerning waves, which we also see in Table 6. 

                              Conclusions 

   To represent our results graphically we selected three items: wave form 

 (x/D,  y/D), breaking index curve following C. L. Bretschneider's, and wave 

velocity (L           V4gK ,  L/H). As is already explained Fig. 2 is the highest wave 
profile of the case or in other words  L/D=9.526, which seems common 
in a canal experiment. Such a wave is very similar to the solitary wave ex-

cept for a finite wave length, as is known from preceding calculations, a fact 

                                                                                                               —1.^1 

 ootvii°4$  20 

    

•  1/21 
                                                                                                     oo 

 /.6   

 Pit 

 12 

 0.6 
/.0   
     / 3  4  4-  7  5  9  /0  it 20  30 40  tO  1/4  /00 

                     Fig. 4 Existence region of permanent waves 

which has been utilised so far. 
    As is easily seen 

    1  _(  U)21LP1g 
   7'2 \ L L  L L  OK' 

and then we have 

 A  _  A  g DDg 
 T2  L  4pK' T2— L  OK'   (63)



                                   Table 6 Characteristic numbers of permanent waves. 

 .9  (  .9') k  If K K'  L/H  po,„x=  pi  Pe-1/2  Anil,  =  P,  '  PI-2  9 

     

, . 

 0'  0.00000  :  1.00000  '  1.  57080(  =  rj2)  00  0.0000  1.  0000  1.0000  1  0.8381  1.0923 k't 
 20°  0.34202   0.93969  1.62003  2.5046  1.2937  11.9697  1.0155  '  0.8150  1.1077 

60  0.86603  0.50000  3.1565  1.6858  2.5585  0.7392  1.1631   0.6193  1.2708 ,‘1'  a- 
 o  ,... 80  0.98481  ;  0.  17365  :  3.  1534  1.5828  1  3.9846 I  0.54'26  1.3576  0.4519  1.4840 

87  0.99863  0.  52336  X 10-  '  4.  3387  1.  5719  ,  5.  5204 I1 0.4449  1.4993 0.3648  1.6556 11P.: 89°30'  0.99996  0.  87265  X  10-  9  6.1278  1.57083  7.8020  .  0.3843  1.6132   0.3054  1.  8093 LI 
 ( 6' )  1.  00000  O.  17453x  10-  21  7.  7371  1.57080  9.  8511  0.3604  1.  666  '  0.2792  1.893  r9  ( 30" )   L00000  0.  14544  X  10-  3  10.2220  1.  57080  13.  015  0.3427  1.708  0.2563  1.979m 

 ( 1" )  .  L  00000  0.48481  X  10-  5  13.  619  L  57080  ,  17.346  ,  0.3323  L  735 0. 2395  2.044  en                    I  
(  0.01" ) 1.00001  0.  48481X  10-'  18.228  L  57080  23.  209  0.  3261  L752  0.2268  2.  100 RI                                                                                                                Z 

 (1"  X  10-1 )  1.  00000  ,  0.  48481X  10-  9,  22.834  •  1.  57080   29.073  0.  3233  L759  0.  2196  li2.  134 
 (1"  x  10'")  1.  00000  0.  48481 X  10-'9  32.  044  1.  57080  40.  800  ;  0.  3208  1.766  0.  2116  2.  174  a  

(  1"  x  10-'s)  1.  (moo  -  0.48481  X10-21  50.  465  i  1.  57080  I  64.254  0.3193  1.  770  0.  2046  2.  211  '-3 
 (1"  X10-25)  I.  00000 0.  48481  X  10-9'' 490  .  1.  57080  ' 93. 571  0.  3188  1.  771  0.  2008  2.  232 ce  I 1"g'  (1"  X10-16)  1.  00000  10.  48481  X  10-511  119.  542  1.  57080 152. 206  '  0.  3185  1.  772  0.  1976  2.  249 

 ( 0 )  L  00000  0.00000 I  00  1.57080 cc  0.3183  1.773  0.1927  2.278 

                                                                                   (continued on  the following page) 
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                             Table 6 Characteristic numbers of permanent waves. (continued) 

 ,9  099  1  h/H  A/H  AIL  HID LID  h/D  :  AID AIT2(---)DIT2(-31) 
                                                                                              sect:I sec2 

0° I1                 0.0000.                     0. 0000 0. 1412  1.0000 0. 0000  0.  0(100  0.  0000  0.  8622  00 

20°  0.  1223  0.  1823  0.  1409  0.9824  1.  271  0.1201  0.  1791  0.  8578  4.  790 

60 0.2394  0.3547  0.  1386  0.9744  2.493  0.2333  0.3456  0.  8344  2.  414)K 

                                                                                                                                                                                                    , 800.  35161 0.5090  0.  1277  0.9664  3.  85111.3398  0.9919, 0.  7206  1.9650 

, 

1  I 
87  0.4408  0.6153  0.1115  ,  0.9609  5.304  0.4236  0.5912  ,  0.5657  :  0.9567 
89°30'  0.5289  !  0.  6942  0.08897   0.  9627  7.511  0.  5092  0.6683  i  a  3821  0.  5718 

 ( 6' )  0.5795  ! 0.73(10  0.07410  0.9670  9.  526  0.5609  0.  7059  '  0.2757 0. 3906Z 
 ( 30" )  0.6304  ;  0.7512  0.  05771  0.9708  12.  635  0.  6120  0.7293  li0.1771  0.  2929  !-3 

 ( 1" )  0.6735  0.  7683  0.  04430  0.  9757  16.  924  0.  6571  0.7496  0.  1092  0.  14565  sc  
(  0.  01" )  0.7089  . IL  7823 0. 03371  0.9799  22.  74  a  6946  0.  7666   0.  06553  0.  08548  !am 

 (1"X  10  -4);0. 7309  0.  7908  0.  02720  a  9831  28.  58'-?.0. 7185 0. 7774  0.  04360  a 05608 
 (1"X10  -B)  0.  7569  0.  8006 0.  01962  0.  9872  90.28  0.  7472  (1  7904  1  0.02326  0.02993 

s.. 

 (1"X  10-15)  ;  0.7813  0.8097  0.  01260  0.  9914  63.70  0  7796  0.8028  ,  0.00982  0.01222 
 (1"  X10-25)  0.  7950  '  0.8148   0.  008708  0.9940  93.01  0.7902  0.  8099  0.0(979  0.  00586 

 (1"X  10-16)  0.  8068  0.  8191  0.005382  0.  9962  15162  I  0.  8037  0.8160  0.00183  0.00224 

 ( 0 )  0.8261  1  0.8261  0000000  L0000  cc 0.8261  0.82610.00000  0.00000 
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where p takes the least value  p, for the highest waves. A graph of  A/Ta 

 film, as a function of  D/T,  ft/sec, is the breaking index curve of Bretschneider. 
Our theoretical values for this curve are inserted in the last two columns of 
Table 6, and indicated in  Fig.3. Small black circles in this figure are 
experimental points, inscribed in the Bretschneider diagram, their origins and 
weights of reliability are not discriminated here. Our diagram is almost 
coincident with Bretschneider's experimental one but for a small deflection in 
the neighborhood of  DIT2=1  ft/sec'. 

                                                 KLi.e. 
   Fig.4 gives the velocity of highest waves UN4g-a ,Ias a func-
tion of L/H, this curve bounding the existence region of permanent waves from 
above. The lower bound is  1/V  po, where  pp is the parameter value of waves 
of infinitesimal amplitude.  pa is the maximum value of p, and defined by 

      gL  po= 4KU2-'LP=2/1-giftanh (2xL) •  (64) 
from which we obtain 

 P0=  2KKcoth(K'_)' (64)' 
and 

   A=[U/V g-L  po (65)  4K Jrnin2K  tanh(                                    sr 

In this formula H can of course be replaced by D. Calculated values are 

inserted in Table 6 column  po-%. 
   We see from this figure that wave velocity is almost constant irrespective of 

its amplitude when water depth is large, i.e. wave velocity is determined almost 

solely by wave length, this characteistic having been adopted in and proved 
relevant to statistics of the sea. On the contrary, in the case of very shallow 

channel water, such statistics of waves are expected to show some discrepancies, 
for wave velocity in this case is really a function of A/H, as well as  L/H. 
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