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     Flow Behaviours Near the Brink of Free Overfall 

                  By Hiroji NAKAGAWA 

                     (Manuscript received January, 31, 1969) 

1. Introduction 

 It makes great contribution not only to improvement of design procedures 
for hydraulic structures but to establishment of distribution plan for water-
resources, to elucidate the hydraulic behaviours of the flow passing over the 
controlling devices such as the overflow spillway. 

 Regarding the research of the flow over the spillway, Jaeger" successfully 
derived a head-discharge relationship on an assumption about the variation of 
the streamline curvatures.  Iwasa2) also analyzed two-dimensional flow passing 
over the round crested weirs by means of the potential flow theory on the 
orthogonal curvilinear co-ordinates and clarified the controlling mechanism by 
the method of the singular point. 

 As for the free overfall the boundary conditions can be determinative only 
at the terminal section unlike for the round crested weir, so that the flow 
behaviours in this  case have been confirmed only by the experimental pro-
cedure, or the theoretical solution of the flow to be obtained would be restricted 
to the terminal section. Through the experimental study conducted by  Rouse' 
and the analytical one by  Jaeger" which are well known, the investigation of 
the controlling mechanism is not enough to describe exactly the actual pheno-
mena at the fall. 

 Hereupon, the author tries to clarify the controlling mechnism of free over-
fall by one-dimensional analysis with an aid of experimental research and to 
develop more exact method of analysis of the flow characteristics of free 

 overfall, based on the universal law obtained by experimental investigation. 

2. Controlling characteristics of free overfall 

 When the principle of the energy conservation is applied to the steady flow 
for uniform rectangular channel, the following equation of the flow profile is 
obtained in terms of the Cartesian co-ordinate system, 

              ;22 q 2 42dA 
          Binh —  h cos8-dx           dh124Ph'2gledx 

       dx 2  cos  0—gahti:(2.I) 

where the pressure coefficient  2 is given as 

                                     cos.3`,                    A—1 C(p                         + z)t tdz  (2  .  2) 
and the energy coefficient a is expressed by
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                   a-----11(-V-U-)2U dz (2.3) 
                   q• 

q is the discharge rate of the flow per unit width of the channel, v is absolute 
value of velocity,  U is mean velocity, and u is a component of velocity in x-
direction. 
 Eq. (2. 1) is approximately applicable to the curvilinear flow near the brink 
since it includes a correction factor for the effect of non-hydrostatic pressure 
condition. Neverthless, this equation is unavailable without knowledge of 
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G and F designate the experiments on free overfall and bottom slit, respectively. 
The value of  d2/dx obtained by substitution of the observed values of the 
flow depth h, a and A in Eq. (2.  I) are plotted in Fig.  2.3. It is apparent 
from the figure that dA/dx takes the negative value which rapidly decreases 
towards the brink. 

 When the flow depth is smaller than the critical depth for parallel flow 
 Vae/gcos  8 as seen for the free overfall, the drop-down effect can be proved 

by the fact that the denominator on the right hand side of Eq. (2. 1) is 
necessarily negative and the numerator becomes positive. The normal depth 
and the critical depth are given by setting the numerator and the denominator 
on the right hand side of Eq. (2. 1) equal to zero, respectively, or 

           n2Q2riAQ2da              sin 0__Rv3B2h2  -h  cos  07  dx  2gB2h2 dx (2.4) 
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                                      e
B22                                     h3             A cos(I— g=0 (2.5) 

The normal flow profile and the critical flow profile computed from Eq.  (2.  4) 
and  (2.5) by use of a, 2, da/dx and  dl/dx given in the above figures are 
shown in Fig. 2. 4, together with the flow profiles which are obtained by the 
numerical integration of Eq. (2.  I) and by depth measurement. By the fact 
that these flow profiles intersect at a point P, it is proved that this point is 
a singular point, and it must be located at the section of a short distance up-
stream from the brink. The actual flow profile shown between the critical 

point and the brink does not belong to any type of flow profiles for mild bed 
slope designated as Ml, M2 or M3 due to rapid change of the falling nappe. 

 Now, examine what type of flow profiles will appear around the singular 

point in case of the free overfall. Neglecting the variation of the velocity 
correction factor at the singular point, which is approved from Fig.  2.  1 to be 
very small, and using the non-dimensional parameters refering to the flow 
depth at the singular point,  he, Eq. (2. 1) can be expressed as follows: 

 beg  cos0 (b' +2h' )4"d 
                                               h'cos()'                                         A                      sing—        dh' 

ah'2h,'"b'h'dx                                                           (2
.6)  dx'  

                          ticos0(1— h'',  ) 
where,  h'  x'  x  /he and  b'  =  B  /  he. Transferring the origin of coordinates 
to the singular point and designating the new co-ordinate as  (x',  h'), Eq.  (2.6) 
approximates to the following linear differential equation. 

 dh'  Jinx'  +t222h1 
               dx'aux' + a,2h1(2.7) 

where the numerical constants  all,  alb a21 and  an are given as 

 all=0,  =3,1e  cos  0, 

 a21=
r           c1e(ddx2,i)413d22                     )hn:g„cos01 +b2,— cos 0( 

             22,n2gcosti(I+2 )"(/35+2b)—cos"dxpi2(d         b'' )c 
                                   / Thus, putting  k=n2gcos  0(1+ 2)3 /'ache", the slopes of the critical flow profile 

and the normal flow profile at the singular point can be given by, 

        Slope of the critical flow  profile=—  =0                                                            a
zz 

        Slope of the normal flow profile 

                     141 +b'2)( dx'dA )+cos0( d2 
  aA 

                                                                                                       e 

 _21_,d'z <0  a22 k-i2)—cosA                               e(3+—cost? 
The negative slope of the normal flow curve can be verified by the fact that 

 (d2/  dx0, and  (d22/  dx"), become negative as shown in Fig. 2.3.
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 The discriminant of the characteristic equation of Eq. (2. 7) ban be given as 

 D  —  (a11+a22)2-4(aila22—anan) 

               3b' 
                   2 °s)—c0. dx'( (12)}2 

              ctit                 — 12,1, coszk cos 0(1 + \ 
 b'\dx'e±( dx12/el>0(2.8) 

And then, 

 6/Lin22 —  anan  =32,  Cos  Oig dx(12'b'(I+ 2)+coso( de2d2)}-<0 (2.9)                                                           2c 

From Eq. (2. 9) the singular point for the free overfall becomes a saddle 

point which constitutes the starting point for pursuit of the flow profile. 
 From the above mentioned it has been ascertained that the flow depth at 

the fall can be determined by Eq. (2. 1) and its ratio to the critical depth is 
dependent on the discharge rate, bed slope and roughness, as discussed 

 later.5' 

3. Theoretical analysis of free overfall 

 (1) Fundamental equation for velocity distribution 
 The water flow under the action of gravity is expressed by the following 

equations of motion and continuity in vector form, 

 g.  grad H=  Vx  curl  V+  re  V (3.1) 

           div  V=0 (3.2) 

where 

                       2vg pg                 + -Hze0s0+12(3.3) 

 v: absolute value of the velocity, g: acceleration of gravity,  p  :  local pressure, 
V: velocity vector,  z: the vertical distance from the channel bottom to a point 
under consideration,  Q: the vertical distance from datum line to the channel 
bottom, and  e: the kinematic viscosity of eddy. 

  Using the orthogonal curvilinear co-ordinates for two-dimensional flow which 
consist of the s-axis along the streamline and n-axis normal from the stream-
line in vertical plane, Eqs. (3.  1) and  (3.2) are represented by 

 g   8H   rev  (3  .  4)  H
I  as 

               g  6H                      (Hm) (3 .5)  H
2 an 11,112 an 

                        H1112  as0   (H2v)-0  (3  .  6) 

where the metrical coefficients  H, and  Hp are given as, respectively, 

                      Hi_ I(  ax  \ 2 ± (  az  \2                        V O
s / Os I
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                 112— Al(Saix2)2±(06: )2 
and,  H, and  1/2 having dimension of the length, n and  s should be given as 
non-dimensional quantities so that the value of  n becomes zero at the channel 
bottom and unity on the free surface. 

  From the fact that  OH/Ds becomes zero as confirmed later by experiment, 
Eq. (3. 4) results in the following equation in this case. 

 g  OH 
                    H Os 

or  H(n) (3.7) 

Selecting a refering section in the upstream channel at which the hydrostatic 
distribution of pressure prevails and the velocity distribution is known, the 
hydraulic elements at this section are represented by 

 s  =so 
 H,=h,  (3

.8) 
 v  =v0(n) 

 p=  pg(h0—  z)  cost 

The total head of the flow can be expressed by 

 H(n) vo2
g2(n)+  h, cost/+Q0 (3.7') 

As  112v in Eq. (3. 6) becomes independent on s at the  refering section, the 
following equation can be obtained. 

 H,v  =h,v0(n)  (3  .  6') 

And Eq. (3. 5) becomes 

         g  01-1 ( 1evv   OH,   \ v  av2,2  
        H,  On—I)112 anmH1112  OnH2  On R (3.5') 

where R is the radius of curvature of the streamline given by the  following  : 

                  1 1   OH,  
 R  R,H2  On 

Substituting Eq. (3. 7') in Eq.  (3. 5') and simplifying, 

 On  (v02 v2)  = 2HR2v2 (3  .  9) 

Eq. (3. 5') or Eq. (3. 9) is the fundamental equation about velocity distribution 
for two-dimensional curvilinear flow. 

 Assuming that the streamline curvature can be expressed by 

 R, nm (3.10) 

where  R1 is the radius of curvature at the water surface and m is the func-
tion of s, and, substituting Eq. (3. 10) in Eq. (3. 9), the linear differential
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equation regarding v' can be obtained as 

                     at,02 8,
On an\2(R2hh.\                                                       (3,11) 

Then, the solution of Eq. (3. 11) becomes 

                                                                                    v,,2            v2= expl2K(1 -nm+1){v2(s, 1) - 5n-6ph'-exp (21cn""-')dni (3.12) 
where v(s, 1) is the velocity at free surface  (n=1) and 

 h  
 K  (3  .  13)                          /On + 1) 

 If the flow could be assumed to be irrotational, the velocity at a section 
 s=s can be obtained by solving Eq.  (3.  11) under the condition that the left 

hand side is equal to zero, as follow  : 

 v  =  v(s,  1)exp  tc{1-  zh (3.14) 
This is coincident with the expression for the distribution of the velocity at 
the fall derived by  Jaeger,°' and thus it is noticed that the integrating term 
on the right hand side of Eq. (3. 12) represents the rotational effect of the 
flow. 
 Since the integration included in Eq. (3. 12) is difficult to be solved, the pro-

blem under consideration will be discussed hereupon by approximate treat-
ment of Eq.  (3.  5'). Substituting Eqs. (3. 6') and (3. 7') in Eq. (3. 5') and 
simplifying, 

 vo  avo  av /10               + vo(3.15) 
 v  OnOnR 

This non-linear differential equation will be transformed into a linear form 
by replacing v on the left hand side of the above equation by mean velocity 

 vr„. When the curvature of the streamlines can be represented as 

               R1-``nn'm=m(s) (3.16) 

Eq.  (3.  15) may be reduced to 

           ay voOvia                                                        (3 .17)  On R
e vne+vman 

Integrating Eq. (3. 17) from  n=0 to n=1, and solving for v, 

 V  —24= hp  R 0Sn                            vordn+2v
,„ (v,2-voi2) (3.18) 

where subscript i indicates the values at  n=0. 

   (2) Velocity and  pressure distributions at the brink 

 When the control section already described in the previous section is chosen 

as the  ref  ering section and the velocity distribution at this section can be 

given by a logarithmic form,  vo(n) and H(n) can be represented as, respec-
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tively, 

 vo(n)=a+b  log  n 

     1 (3.19)  H(n) =2
g (a+b  log  n)2  +he  cos 

where a and  b are constants to be determined by experiments and Q included 
in Eq. (3. 3) is disregarded hereafter due to small change of the bed level in 
the reach under consideration. Then, from Eq. (3. 6') 

 he                H
2 (a+b  log  n) (3.20) 

Eq. (3. 18) may be transformed into 

 he v—v.---R
t (a+b  log n)—b tnm+'+ (a + b log n)2(3.21)                           m+1Im+12v„, 

From Eqs. (3. 7) and (3. 19) the velocity on the upper nappe at brink, Ye, and 
on the lower nappe,  v„ can be given,  respectively  : 

 ve=  Va2+2g(hc—hr)  cosi) (n=1) 1  (3
.22) 
 v.=N/2ghe cos(n=0)1 

where  hr is the depth normal to the channel bed at the brink. 
 Though the velocity given by Fq.  (3.  19) may take negative value for smaller 

values of n, the following analysis will be made reasonably on an assumption 
of zero velocity for this range of n. Substituting Eq.  (3.  22) in Eq.  (3.21) and 
dividing by  "Kg-he, the following may be written by use of the relationship 

 v,e,=a—b obtained from Eq. (2. 19), 

                                  he(72m+1)  nzE              ‘622+2(1—E)"V2R e(m+1)2 2 (3.23) 

where  v----a/vme,  E—hr  /he and  vme is approximately given by  V  gh,  (h0=  Vq2  1g). 
 The flow depth at the brink can be represented by the metrical coefficient 

 H2 as  follow  : 

             he=5H2dn  (3.29) 
                                                 0 Solving the above four Equations  (3.20),  (3.  21),  (3.  23) and  (3.  24) simultane-

ously, the unknown v,  H2 m and  R,/h, can be determined for given values of 
 72 and E. 

 Eliminating  R,/h, from Eqs.  (3.  21) and  (3.  23), v can be represented as a 
function of  m  only  ; that is, 

 Vv2+  2  (1  —  —  N72  —  (ee/2)  ()  2-1)(m+  1)  log  n  +  (mn+  1)  k+'  v.  72m+1 

         eI2                          + ( — 1 )  log+ v 2 (3 .25)                        2 

Also, from Eqs.  (3.  20) and  (3.  24),
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 e_ a+b log  n  do  (3  .  26) 

From Eqs.  (3.  25) and  (3.  26), v and m can be solved. 
 Between  n and z the following may be written  : 

                      z=Sn he(a+b log n)               do (3.27) 

                                        0 and from this equation and Eq.  (3.  24) the relationship between n and  z/hr 
can be established. 

 The pressure distribution at the brink can be obtained by substituting Eqs. 

 (3.  25) and  (3.  27) in the following energy  equation  : 

   21gv2                           gpg                  (a+b logn)2+h,cos 8=2++ z cos 0 (3.28) 

 4. Experimental verification to theoretical analysis of free overfall 

 The experiments to verify the theoretical analysis on hydraulic behaviours 
of the free  overfall has been conducted at the Ujigawa  Hydraulis Laboratory, 
Disaster Prevention Research Institute, Kyoto University. The apparatus 
employed consisted of a rectangular lucite flume 0.25 m wide, 0.20 m deep and 
9,0 m long with a constant bed slope of 1/1,000 downward. The discharge 
rate varied from 7.5 to 2.00 liters per second. The velocity and pressure in 
the stream were measured by a tilting Pitot tube directed to the flow, in com-
bination with a direction string to detect the direction of the flow at any 

point. 

   (1) Verification to assumptions on analysis 

 (i  ) The ratio of the depth at brink to the critical depth,  e. 
 Fathy and  Shaarawi" concluded by their experimental research that the 

value of  $ for free overfall decreased as the bed slope increased and there 
was a definite value of the Froude number at the brink for a given bed slope, 
independent of the discharge rate. The experiments on the horizontal bed 
conducted by the other  investigatorseo' indicated value of  E to become 0.715 
to  0.724. By authors' experiment for five kinds of discharges it has been in-
dicated that the value of  $ is constant to be 0.711 for a bed slope of 1 in 
1,000. 

  (ii) Velocity distribution at critical point. 
 The result of velocity measurement for six runs showed that the velocity 

distribution at the critical point was practically represented by the  following  : 

                                      yr                               — 1.1 +1.0 log—12;                                                v„,, 

 (iii) Vertical distribution of energy. 
 Typical examples of the vertical distribution of the energy head which have 

been obtained by the velocity and pressure measurements are shown in Fig. 
4. 1. As evidently seen in the figure, it will be recognized that the values of 
the energy for same values of z/h are consistent for different sections on 
upstream side of the brink, and consequently the basic assumption for con-
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stant energy along a streamline as indicated by Eq.  (3.  7) is verified. 
 By the fact that the energy tends to decrease downward at any section it 

is also proved that the flow of the free overfall should be treated as the 
rotational flow. From Eqs.  (3.5) and  (3.  6'), 

   y-component of curl V=-1  6Him an(1-11.v)-g6Hg   OH                                          112v  an  hovo(n)  On 

Then, since H is dependent on n only, curl V should also be dependent on n 
only, and consequently it is understood that vorticity will be conserved along 
a streamline, as apparently indicated in Fig.  4.  2 in which the vorticity dis-
tributions at different sections are plotted against z/h. 

 (iv) Distribution of curvature of streamlines. 
 Substituting the observed values of the velocity and pressure in Eq. (3. 5') 

and approximating H2 to be equal to z/h, the vertical distribution of curvature 
of the streamlines can be obtained as shown in Fig. 4. 3. From the figure 
which indicates the linear variation of the curvature at any section, it is 

proved that the assumption represented by Eq.  (3.  16) may be satisfied. 
 (2) Verification to theoretical expression 

 As already described, the distributions of velocity and curvature at the brink
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can be determined by solving simultaneously Eqs.  (3.  25) and  (3.  26). Using 
0.711 as a value of E, the corresponding value of m is found to be -0.75 and 
this indicates a good agreement with the observed values. 

 The calculated curve of the velocity distribution is shown in Fig. 4. 4, to-

gether with the velocity distribution pattern of the irrotational flow derived 
by  Jaeger  and observed values obtained by author's tests on the free  overfall 
and transversal bottom slit. It is indicated that Eq. (3. 25) gives a fairly good 
agreement with the observed values, while the solution based on an assump-
tion of the irrotational flow shows to deviate from the measurements in the 
vicinity of the channel bed due to disregard of  6H/On which takes a large 
values near the bed. 

 The correlation curve between z and n at the brink computed from Eq. 

 (3.  27) is shown in Fig. 4. 5. This curve indicates that in the vicinity of the 
bed the streamlines close together more densely and so the value of H2 has 
a tendency to decrease. From this indication it is concluded that on analyz-
ing the flow of free overfall the assumption for constancy of H2 to be equal 
to  hr as seen in Iwasaki's  study'', is inadequate. 

 The pressure distribution at the brink which is computed by use of Eq. 

 (3.  28) and  z-n relationship given in Fig. 4. 5 is indicated in Fig. 4. 6. It will 
be due to unskilled measurement of pressure in the high velocity curvilinear 
flow that the observed pressure has shown lower value than the calculated 
one throughout the depth in case of the free overfall. 

5. Conclusion 

 The flow behaviours of the free overfall have hitherto been analysed as the 
irrotational flow in view of simplicity of solution. The present paper is to
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describe the hydraulic characteristics of the free  overf  all more exactly by 
treating it as the rotational flow as verified by the experiment. The complete 
description of the flow is not obtained because of great complexity to deter-
mine the boundary conditions. Neverthless, it will expected that the investiga-
tion described herein contribute to further development of the analytical pro-
cedures on the rapidly varied flow. 

 The conclusions obtained through this study are summarized as  follows  : 

 (1) The energy coefficient and pressure  coefficient represented by one-
dimensional analysis have a tendency to decrease as the brink is approached. 

 (2) A singular point which appears at a short distance upstream from the 
brink is proved to be a saddle point at which the control of flow is achieved. 

 (3) The theoretical expressions about hydraulic characteristics of the rota-
tional curvilinear flow derived on the assumption for constant energy along 
a streamline have been verified to represent the actual phenomena at the 
brink with a fair accuracy. 

  (4) The curvature of a streamline at the brink has a tendency to increase 
exponentially toward the bed, while it decreases at the sections in upstream 
channel. 

                           Acknowledgements 

 The research has been conducted by the author with cooperation of other 
staff and students participating to hydraulics in Ujigawa Hydraulic Laboratory, 
Disaster Prevention Research Institute, Kyoto University. 

 Deep acknowledgements of the author are made to Messrs. T.  Maud and 
Y. Ichihashi for their hearty assistance. The author wishes to express his 

gratitude to the Matsunaga Science Fund. for its support of this work. 

                          Bibliography 

  1) Jaeger,  C.: Engineering Fluid Mechanics, Blackie, London, 1956. 
  2) Ishihara, T., Iwasa, Y. and Ihda,  K.: Basic Studies on Hydraulic Preformances of 

      Overflow Spillways and Diversion Weirs, Bulletin, D. P. R. I., Kyoto University, No. 
     33, March 1960. 

  3) Rouse,  H.  : Discharge Characteristics of the Free Overfall, Civil Engineering, Vol. 6, 
     April 1936. 

  4) Jaeger,  C.  : Hauteur d'eau a  Eextremite  d'un long deversoir, La Houille Blanche,  Nov.-
      Dec. 1948. 

  5) Nakagawa,  H.  : On Hydraulic Performance of Bottom Diversion Works, Bulletin No. 
      143, D. P. R. I., Kyoto University, Part III, 1969. 

  6)  Jaeger,  C.: Ibid., 4) p. 519. 
  7) Fathy, A. and Amin, M.  S.  : Hydraulics of the Free Overfall, Proc. of ASCE, Vol. 

       80, Sep. No. 564,  Dec. 1954. 
  8) Rouse,  H.: Ibid., 3). 

  9) Iwasaki,  T.: An Experimental Investigation on Hydraulics of the Free  Overfall Proc. 
      of JSCE, June 1953, pp. 241-246 (in Japanese). 

  10) Iwasaki,  T.: Ibid., 9).




