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                              Abstract 

   The most important problem in the earthquake response analysis of a structure is to 
 suppose reasonable earthquake excitations depending on the seismicity and the dynamic 

 characteristics of ground at the site of the structure. 
   In this paper, as one of the basic studies related to the supposition of random earth-

 quake excitations for the dynamic aseismic design of structures, the authors will deal 
 with the analytical expressions of the one-dimensional wave-transfer functions of a general 

 class of linear visco-elastic, horizontally multi-layered half-space to vertically incident 
 plane waves at the bottom boundary of the layered media through the  half-space, and 

 also discuss the properties of such wave-transfer functions in the complex plane. 
   Both the one-dimensional wave-transfer functions and the associate characteristic equa-

 tion are expressed in the successive product forms involving some kind of symbolic operator, 
 which are suitable for finding out the properties of those functions in the complex plane 

 as well as for discussing the eigen-value problems of such layered media and also for 
 carrying out the numerical calculation of the wave-transfer functions. 

   For the usually encountered linear visco-elastic layered half-space including the purely 
 elastic case, it is found that the singular points of the wave-transfer functions consist of 

 a finite number of branch points and a  denumerably infinite number of poles having posi-
 tive immaginary parts, which are zeros of the characteristic equation. And also, it is 

 found that the wave-transfer functions are finite in the neighbourhood of the branch points 
 and vanish in exponential order at infinity as far as the inner points of the layered media 
 are  concerned. These properties of the one-dimensional wave-transfer functions may 

 guarantee the validity of the residue theorem in estimating the impulsive responses as 
 well as the variances and co-variances of the random responses of the linear visco-elastic 

 multi-layered  half-space. 

1. Introduction 

 One of the most important problems in estimating the response characteris-
tics of a structure subjected to strong earthquakes is to suppose reasonable 
earthquake excitations according to the seismicity and the dynamic charac-
teristics of ground at  the site of the structure. As a rule the characteristics 
of an earthquake at a particular site arc determined depending upon the 
properties of shocks at the origin and of the propagation pass of seismic 
waves. However, it has been pointed out by many investigators that the 
spectral characteristics of earthquakes at a site are remarkably influenced 
by the dynamic characteristics of the ground near the surface , which are 
determined by the ground structure and the physical properties of the 

 media."
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 Usually, in Japan, the ground structure at the site of structures is very 
complicated and it is likely to consist of a large number of alluvial and/or 
deluvial layers. And, the physical properties of the medium of each layer 
are also complex and different from each other. From the viewpoint of 
earthquake engineering, however, it is worthwhile to note that the ground 
structures are usually of a horizontally multi-layered type and that the veloci-
ties of bodily waves in the layers near the ground surface are sufficiently 
small compared with those in the depths of the crust and that they increase 
macroscopically with the depth, hence the direction of the propagation of 
seismic waves in the layers near the ground surface is considered to be 
approximately vertical. Taking account of the above-mentioned facts as well 
as the fact that the most destructive portion of seismic waves to structures 
is composed of the SH components of the seismic waves, the dynamic model 
of ground structure through which seismic waves propagate may be primarily 
considered as an elastic or a linear visco-elastic, horizontally multi-layered 
half-space subjected to vertically incident distortional waves at the bottom 
boundary adjacent to the half-space, as introduced by K. Sezawa and K. 

 Kanai.um  -12) 
  When studying the dynamic characteristics of such a ground structure, it is 

important to consider a layered half-space in which the diffusion of wave 
energies in the strata to the subjacent half-space can occur. Hence, such a 
model of ground structure has damping characteristics even in the case of a 

perfectly elastic stratum on a  half-space.",") As to the actual ground, there 
may exist various internal damping mechanisms in addition to the above-
mentioned diffusive damping, although it is very difficult to describe them in 
explicit forms because of their variety and complexity. By assuming the 
Voigt type visco-elastic media K. Kanai obtained the amplitude magnification 
factor at the ground surface to the incident harmonic waves, namely the 
absolute value of the one-dimensional wave-transfer function at the ground 
surface to the vertically incident distortional waves in the case of one and 
two layered  half-space."'1" 

 In relation to the dynamic  aseismic design of structures, it may be reason-
able to suppose earthquake excitations as a stochastic ensemble in the future. 
As one of the most convenient and practical models of such a stochastic 
ensemble the quasi-stationary random process which is defined as the product 
of a deterministic function of time and an ergodic stationary random process 
was introduced by V. V.  Bolotin.", And, the general characteristics of the 
non-stationary responses of linear systems to the quasi-stationary random 
excitations and the simulation techniques to produce such excitations have 
been studied by several investigators including the  authors.'*'-"' Concerning 
the problem of how to suppose such a quasi-stationary random process  depend-
ing upon the seismicity and the dynamic characteristics of the ground at the 
site of a structure, knowledge of the stationary and non-stationary random 
responses of the linear visco-elastic multi-layered media excited by a random 
incident waves propagated through the linear visco-elastic half-space seems to 
be useful for suggesting the spectral density or the auto-correlation function 
associated with the stationary random process and the deterministic function
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of time giving the envelope of the quasi-stationary random  process .'"•")021,2°' 
For this purpose, of course, it is desirable to express the dynamic characteris-
tics of such ground in the form of the wave-transfer function of each part in 
the multi-layered media to the incident waves through the half-space . 

  In connexion with the above-mentioned problem, I. Herrera and  E. Rosen-
blueth have already obtained the general expressions of the one-dimensional 
wave-transfer functions of the linear visco-elastic horizontally multi-layered 
half-space to the vertically incident waves at the bottom boundary adjacent 
to the half-space in the matrix forms for the case of an arbitrary number of 
layers and arbitrary linear visco-elasticity of each layer, and they have also 

presented an approximate formula in the integral form to evaluate the average 
values of the so-called pseudo-velocity response spectra of the movements at 
the ground surface of such a layered half-space excited by random incident 

 waves  2I' In this paper, the authors also deal with the similar problem as 
treated by I. Herrera and  E. Rosenblueth, namely, the analytical expressions 
of the one-dimensional wave-transfer functions of a general class of the linear 
visco-elastic multi-layered half-space to incident waves to the layered media, 
and also study the properties of the one-dimensional wave-transfer functions 
in the complex plane. The main difference between the wave-transfer func-
tions obtained by I. Herrera and E. Rosenblueth and those of the present 

paper is in their formal expressions, that is, in the former the wave-transfer 
functions were expressed in the matrix forms, while in the latter they are 
expressed in the successive product forms in terms of the scalar quantities 
including some kind of symbolic operator, which may be more suitable for 
finding out the properties of the wave-transfer functions in the complex plane 
as well as for discussing the associated eigen-value problem and also for 
carrying out the numerical evaluation of the wave-transfer functions than the 
matrix forms. 

2. Fundamental equations and basic wave-transfer characteristics in the linear 
   visco-elastic media 

 It is well-known that the fundamental equation of the wave propagation in 
a homogeneous isotropic linear visco-elastic medium is expressed as 

          

(  01\ 0I 6 \\ 82arrec6.)17•17u+karnvv•u p or, u+F 0  —(2.1) 
in which  u is a displacement vector, r is time and  p(6/6r) and  A(0/6r) are the 

generalized  Lame's constants represented by the rational function type dif-
ferential operator, with respect to  r, having constant coefficients. And, p is 
the density, F is a body force vector, the symbol designates the scalar pro-
duct, and  P means the gradient operator defined as 

                            5   = el+e2+ e,•(2 .2)                   axi6x, ax, 

where  xa and  et denote the  i  th Cartesian co-ordinate and its associate unit 
vector, respectively. The strain and stress tensors may be expressed in the 
following  forms  :
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 e=21(aou+u,3) •-•(2.3) 

                 cr=2uH,5)e+2()y•uE  --  (2  .  4)                   07Or 

in which E is the  3x3 unit matrix and 8 denotes a vector differential operator 
with respect to spatial co-ordinates and the symbols aCpu and  u019 in eq. 

 (2.3) mean respectively the following  3x3  matrices  : 

               8,5�)u-Cu.„,)=[-6aux:),                                                                             •-- (2 .5) 

                u08-Cut,,,)=R8uoxiij=(80u)T,i, 1=1,  2,  3 

where  ut is the i th component of the displacement vector and 7' means the 
transposed matrix. The boundary conditions prescribed on the surface S 
enclosing the medium are given by the following forms according to the force 
and displacement types of boundary conditions,  respectively  : 

           force  type  ;  an=p on  SI,  Si  F1S,  =  o                                                                                    ---(2.6) 
             displacement  type  ;  u=q on  529  51  US2 

where  it is the unit vector of the outward normal on the sub-surface  5, of  5, 
and p and q are the prescribed distributed force vector and displacement 
vector on the sub-surfaces  SI and  52, respectively. To obtain the unique solu-
tion of the general dynamic problems, the initial conditions are to be given 
at all points of the medium including the boundary surface S as  follows  : 

                    0              u =d and0—
ru=v at  r  =To in  VUS  ---  (2.7) 

in which d and v are the initial displacement and velocity at  r-ro, respec-
tively and V represents the medium inside S. However, in determining the 
transfer functions by using the Fourier or Laplace transformations, it is not 
necessary to prescribe explicitly the initial conditions, otherwise they can be 
set to zero for all points of the medium. 

 By applying the Fourier transforms with respect to r to eqs. (2. 1), (2. 3), 
(2. 4) and (2. 6), we obtain 

 P(70)/7•1717+  (A(10)  +11(./C0))1,7•ii-EplOra+./-49  -  (2.8) 

                       1   e=2(thsyt+rioa)--- (2 . 9) 

 ii=2,u(joe)E-E),(jue)r•fiE  ---  (2.10) 

and 
 On-13 on  5,,  ii=4 on  52  ---(2A1) 

in which 
 fiCu,  eCe,  JCa  ---  (2.12) 

 /-5CP,  OCU  -  •  -  (2  13)
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           p(iw)cm(a),  A(1(00( a'                                   )V -1  -  •  -  (2.14)                                 Or 

and  w denotes the frequency parameter. In the above equations , both  It(  jw) 
and  2(  jw) are the rational functions with respect to jw and represent the pro-

perties of the linear visco-elastic medium. It is well-known that  (jeo)-1p(j(0) 
or  (jw)-12(jw) and  (jwm(jw))-1 or  (jwil(jw))-' are the operators related to the 
stress relaxation and to the creep, respectively. 

  Introducing a scalar potential  9 and a vector potential 0 and denoting their 
Fourier transforms as  C6 and  5-6, respectively, the Fourier transform of the 
displacement vector  u is expressed by 

 ii=r95+17  x-0  -  (2.15) 
where the symbol x denotes the vector product . Similarly representing the 
Fourier transform of the body force vector F in the form 

 P—vPs+vxfri,  ---(2.16) 

and, substituting eqs.  (2.  15) and (2. 16) in eqs. (2.  8)-(2. 10), we obtain the 
following set of equations  : 

 FC(A(jw)+2p(jw))(7  •F  -y5+  pw20+  Ps) 
 1-  x  Cu(  jo,)17•170+  04)20+  0  -  (2 .17) 

and 

                 21 
                     O(P14+17X0)+(17C2.-FV46)0a)-.(2.18) 

 1:1-2p(jco)g-  A(jw)y  •FTLE  -  (2.19) 
  By applying the operators  P. and  P'  X to eq.  (2.17) and taking account of 

the relations 

 .-(2 .20) 

 v•frs=v-P,  rxrx  Ev-vxf"  -(2.21) 
we obtain the fundamental equations concerning the dilatational and rotational 
waves as  follows  : 

 (2(.1w)  +2K:7(0)v  .17(g  •11)-Fio,(v  •  ii)  +  p  •  fr=o  •--(2.22) 

                ii(i(0)17•17(17xii)+pc02(rxii)+vx.P=0  (2.23) 
And also, corresponding to the above two equations, we obtain 

 (2(./(0)+2p(lw))17•I7V+pw2c6+Fs=o  -_(2.24)  24) 

 [I(  j  (0)v  •  17  0+  pco9  +  F  =  0  ---  (2.25) 
As found from eqs.  (2.  15) and  (2.  20) particularly confining the displacement 
vector  a to either of the elements  FC9 and  vxtb eqs.  (2.17)-(2.  19), we ob-
tain directly the fundamental equations of the irrotational waves and of the 
equivolumental waves, respectively. 

 Taking  xi- and  x2- axis in a horizontal plane and  x3- axis downward in the 
vertical direction, and confining ourselves to the two-dimensional problem in
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which no quantities depend on x2, the components,  OH=  (het+  Osea and  Or-cke2, 
of the vector potential 0 are concerned with the so-called  SH and SV waves, 
respectively. The scalar potential  9, of course, is concerned with P waves. 
Consequently, the following sets of equations are obtained for the three kinds 
of waves, namely 

 C(2(./(0)+2p(la)))17  •17 + pco2)-0 + Ps =0 
            1

170  i=(80+p00a)     2 •••(2.26) 

 Er-2et(lco)1+  2(j(0)17  •  NE for P waves 

          CP(/c0)17 • + pu)2}{+Er-v1° I                     3Fv3 Io 

                 (8017x (Orel+ 03e3)+F  X (Oiel + 03e3)e)a)     2 ••.(2.27) 

 11--2p(  jw)g for SH waves 

and 

           Cp( ico)p •17 +0)96 +F,2 =0 

               21                  (Joy X 02e2 +17X 02e2®a)  •  •  • (2.28) 

                                           for SV waves 

 In what follows, we will consider the one-dimensional case where the de-

pendence on the co-ordinate arises only with respect to the x3-axis. And, for 
the sake of simplicity, neglecting the body foce vector F and rewritting x3 by 
z, the sets of eqs.  (2.  26)-(2.  28) reduce to the following  forms: 

 (2(  jai)  +  2#000)ii.'2)+0,2/4---  0  

,  (A(j))  +2,u(  jo))14"1  •  •  •  (2  .  29) 

where for P waves 

and 

 PC  joi)ax(2'  +  pco2ii  =0 
               1                                        ott-zw       2a=pch-.(2.30) 

where  74-=c3izin for SH waves 
 —020(11 for SV waves 

  In the above equations,  z(i) designates the  i  th derivative with respect to z. 
 Hence, we have the following fundamental equations in the frequency domain 

for the one-dimensional wave propagation in the homogeneous, isotropic, linear 
visco-elastic  medium: 

 P(iw)u.(2,  Cm,  2)  +  peo21( jco,  z)  =0  •••  (2.31) 

 (  ja),  z)=P(jw)(2,"'(joi,  z)  •  •  •  (2-32) 

in which  P(jw) stands for either  2(jw)  +2,a(  jco) or  p(jw). 
  Now, supposing the linear visco-elastic N-layered half-space as shown in
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 (0)  t 

                      ZHFig. 1, the Fourier transform of the one-                                  dimensional wave equation in the  n-th        I _u+uIhomogeneo us isotropic medium is  express-
  (I)    Ied as  follows  : 

 2  _u2 +112/Z2 H2 
  (2) 1  p„00.0ii„z„,2,(j0),  z,) 

                                           + ponn(jco,  zn)=0  --  -(2.33) 

    ; 

                                    gn(jeo, an)C24,(7, an),  (
n-1)   n =1, 2,  N,  N  +1  ---  (2 .34) 

      n _untunzn  H
,>?„>0,  n=1, 2,  N;  (n)  I                                                        co>2N+1� ,0  --(2,35) 

      nti _un+144+1 

 (n+i)  tIn the above equations, an is the co-ordinate                               associated with the nth medium
, which has 

                              its origin at the (n-1)th boundary and is 

 (N  -I) measured downward as shown in Fig. 1.                                 And ,  un(v,  an) denotes the displacement of 
       N  _UN +UN  ZN HN the point  z ,„ and  H,, is the thickness of 
 (N)   the  nth layer. 

 W The boundary conditions in the frequen-
                              cy domain which represent the condition 

Fig. 1 Model of an N-layered  half-space.                               of the free surface and the continuity of 
displacement and stress are expressed as  follows  : 

 tit,  2,("  (  j  co,  0)=0  -  •  (2  .  36) 

 an(j  co,  H„,)=Cin+I(jco, 0) 

               Pn(jw)anz."1(jw,co)c-in-vi  2..,'"Ciw, 0) 
 n=1,  2„  N  ---  (2  .  38) 

 The fundamental system of solutions of eq.  (2.  33) is given by 

 zln'(jco,  an)  exp(—  hcan) 
 --  (2  .  39) 

 zn)=exp(  jkoz„) 

where 

                 pm Clco)R(Km)+1(2.40) 

and 

 coR(K,,)>O,  I  (A-N)�0 for  1(co)=0  -  (2  .  41) 

in which  R and I designate the real and immaginary parts, respectively. It 
is noticed that for a rational function type  P(jco), the real part  R(xn) is an 
even function of  co while the immaginary part  1(K,,) is an odd function of  co 
and also that for the actual media,  I((c,,) may always be chosen non-positive 
for all real  w by taking either of the two different branches of  K„ according 
to the sign of  (0. 

 Since the general solution of eq.  (2.  33) is expressed as
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 Kn(l(f),  zn)=  An( .-1(0)ani Cho,  Zn)+Bn(1(v)Iin2(ja),  zn)  •  •  •  (2  .  42) 

the original general solution in the time domain is given by 

                       - 

          — 

      tl„(T,  Zn)  = 2n.{24,,(lco)+Un(jco, r, z„)+Bn(lco)-Un(lco,  r, zn)}do.)                                                            
•  (2  .  43) 

in which 

 j(.0,  r,  z.)=Ct„'(ho,  zn)exp(  exp  (j  (cot  -  icuzn)) 

                 = expir jR(K„)(- z„)lexp{./(K„)z.} 
              ROc„)•• (2.44) 

 -U„(  r,  zn)-  an'( zn)exp(  jayr)-exp(j(cor+K„z„)) 

                 =expijR(tc„)(R(Kor + z„)fexp{- /(K„)z„}  •  •  (2  45) 
By putting 

                                 co 

                   1,(K,)and In- - 1(x.) ...(2.46) 

the above two quantities  v„ and In for real  co represent the wave velocity and 
the attenuation constant in the nth medium, respectively. As found from eqs. 

(2. 44) and (2. 45),  „Un(jco,  r,  zn) and  _Un(jco, r,  z„) are the forward and back-
ward complex harmonic waves, respectively, both of which have the unit 
amplitude at the origin of the  nth co-ordinate. The two constants  A„(jco) 
and  B„(jco) in eqs.  (2.  42) and (2. 43) are to be determined according to the 
boundary conditions. 

 In the following, we will consider the basic wave-transfer characteristics of 
the one-dimensional waves in the linear visco-elastic media. At first, by tak-
ing into consideration eq.  (2.  39), the general solution in the frequency domain 

given by eq.  (2.  42) is expressed as 

 anCial, 20= - +fin( j(0,  z.)+-14,,(fro,  z.)  •  ,,  (2.47) 

in which 

 +an(jw,  z.)=  An(iw)exp(HK.zn)C,u„(7,  
•  (2 .48) 

 -t4„(i(0,  2„)=B„(jo)exp(jrnz.)C_u„(r,  zn) 

and  +11.(r,  z„) and  _u.(r,  zn) represent the forward and backward waves, 
respectively. Hence the wave-transfer function associated with the wave 

propagation in the  nth medium is obtained as follows  : 

 nam(jco,  -14,(3co,  z.) exp( - jtc„(z,,' -  zn)) • (2 .49) 

where 

 H„>z„'-�zn>0 for  .1\>n>1 
 •••  (2  50) 

 00>An/>z,�10 for  n  =  N  +1 

The quantity given by eq. (2. 49) is a complex-valued function of the real 
and its absolute value and argument represent the amplitude and phase charac-
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teristics, respectively. 
 Next, adopting the  (n  +1)th co-ordinate for both the nth and  (n+  1)th media, 

the Fourier transform of the incident waves  +un(r,  Z„+1) to the nth boundary 
through the nth medium, that of the reflected waves  -u„(1-,  2„+1) to the nth 
medium and of the refracted waves  atn+,(r,  ,  z.„4,1) in the  (n+1)th medium are 
expressed as follows  : 

 +anow,  A„(j(o)exp(—  jrnzn+1) 

 zn+1)  =  Rn(fro)exp(lican+1)  •  •  (2.51) 

 +it,,(ja),  z„,,,)=An.„,(jw)exp(—frn+Izn+I) 

Taking account of eqs. (2. 47) and (2. 51) together with  B.+1( ./(D)  —  0, the bound-
ary conditions given by eqs.  (2.  37) and  (2.  38) take the forms 

 An(jco)+Ba(i(6)-  An#K1(0) 
 —(2 .52) 

 a„(A„(i(0)—Bn(lco))—  An+I(ftn) 

where 

              (j(0)Kn         a„  ,Pflit"+1P"P"Ciaj?—R(a„)+ j 1(an)(2 . 53) 
               P.+Ilfrolicn+1 Pn+I/CnV PnA)Pn.10(0) 

 R(an)>0 for  I(co)=0  (2  .  54) 

The quantity defined by eq.  (2.  53) is called the impedance ratio, which is 

generally a complex-valued function of the real  co, and its real part is express-
ed as 

                  PP”1[R(K.+1)R( ) 1(xn-ni) I( K„,)j  •  •  •  (2  .  55) 
 + Since from eq.  (2.  41), it is found that  R(En+I)R(1/Kn)>0 and  ./(x,.+1)  /ORO 

KO for the real  w, the real part  R(an) of the impedance ratio should be posi-
tive for the real  a). 

 By solving eq.  (2.  52), the wave-transfer functions associated with the  reflect-
ed and refracted waves to the normally incident plane waves at the nth 
boundary through the nth medium are obtained as  follows  : 

                Bn( jam)an —1                              =b,,(j(a),.-=-bn•• (2.56)               41(„(ja), 0) An(jco) a,i+  1 

and 

 +iii.„i(jco,   0)  A„,i(ja))2a„                                        1 +/7
„7---(7.11• • • (2 . 57)           +fin(ja), 0)  AnCno)+ 

Similarly, considering the incident waves at the nth boundary through the 
 (n+1)th medium, the wave-transfer functions of the reflected and refracted 

waves to the normally incident plane waves are determined as 

               +12„,1(ico'0)1—b
n'—an• (2 . 58)                   _iin+,(ja), 0) an+  1 

 and 
             _ii„(ja), )2 

                      „—=-an• • -(2.59)                          -14,,+I(/(o,0=1— b             0)an+1
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In particular, for the free surface the wave-transfer function associated with 
the reflected waves to the normally incident plane waves is given as  follows  : 

                        411(j(o, 0)                      =bo' =1 •••(2.60)                             -111(jco, 0) 

3. One-dimensional wave-transfer functions of the linear  visco-elastic multi-
   layered half-space 

 Supposing the linear visco-elastic horizontally N-layered half-space as shown 
in Fig. 1 and taking the vertically incident plane displacement waves 

 iv(r)=_u,v+I(7,  OniTi(ia))  ••• (3.1) 

at the Nth boundary through the half-space as an input and the displacement 
vector of the boundaries 

 {un(7)}={14„+I(r,  0)}D{a"(jo))}, n=0,  1,  N  ••  •  (3.2) 

as an output vector, we will consider the one-dimensional wave-transfer func-
tions of the linear visco-elastic multi-layered half-space to the incident waves 
at the bottom boundary adjacent to the half-space. 

  By making use of the basic wave-transfer function associated with the one-
dimensional wave propagation and those of the reflected and refracted waves 
to the normally incident plane waves, which are obtained in the preceding 
section, the following vector-matrix relation among the Fourier transforms of 
the displacement components due to the forward and backward waves in the 

 (n-1)th, nth and  (n+l)th media is  obtained  : 

 („L){„U}={„1/},  n=1,  2,  N  •  •  •  (3.3) 
in which 

 b'n-1 —1 0 0 0 
         0 1  0  —exP(—./k„N„) 0 0  I 

      C„LJ—I      I0 0 exp( —0 —1 0                           0 0 0 1  —bn  —a. 
 0 1 1 0 0  0 

    0 0 1 

and 
 +1L-1  (fro,  11„-1)  0 

      _it„(ja), 0)  F 0      
I  +11.(jah 0) 0 

 {„  U}  = 12.0(0, HO •••  (3.5), {„1-1}—(3. 6) 
                                    ,tin(ia),11,a)  an-1(1(0) 

 An+,(fro,  co  (.10)) 
In the above equations, particularly for the cases of  n=1 and  n  =  N  the follow-
ing equations are to be  used  : 

 a01=0,  _ii.•„,(ito,  —276(./c0)  •••(3.7) 
 For an arbitrary number of layers N, the one-dimensional wave-transfer func-
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tion associated with the nth boundary displacement  ze  (r) to the incident dis-

placement waves  w(z-) at the bottom boundary adjacent to the half-space is 
defined as 

             G---(1c0)ii"CieD)n0, 1„N  ••  •  (3.  8)                      CO(
fw) 

By making use of eqs. (3. 3)-(3. 6), the following vector-matrix equation related 
to the above-defined wave-transfer functions  G.13's is obtained for an arbitrary 
N: 

 [AI{G}  —{F}  •••  (3.9) 

in which {G} denotes the  (N+1)x  1 column vector composed of  R,  Gn-,•••, 
and the (N+1)  X (N+1) matrix  [A) and the  (N+1)x  1 column vector {F} are 
expressed in terms of the determinant  nd of the coefficient matrix  („/..) in eq. 

(3. 3) and its A-th order minor determinate C,A3z1iitl:IP, withr espect to the  i1-, 
 i2-,•••, 12-th rows and  jr,  j2-,•-jA-th columns and the wave-transfer function aN 
associated with the refracted waves to incident waves at the bottom bundary 
through the half-space, namely 

 aga?  0   0 
 0  ale4  0   0 

 A)= 0-(3.10)   0 az _,(27,:4+, 0 0  

0    0  aZ 

and 

    GII'P 

  G1,'                                  f 

 {G}—  -•-  (3.11),  {F}="  --(3.12) 
    Gn-'  fn-1 

 G;;; 

  For the case where  N�3, the elements of the matrix  (A) and the column 
vector  {F} are determined as  follows  : 

                           ";da-119 .41; 

                              (x]410 
               al — 1—  '1;d6 

24  24 
                ",?-4u.241C;i141.1114         (4 -1—a;" ' '4+1— 

                   '2;4 +1V 
            cvdi   , a];',-(3.13) 

and 

 fo—f  i—fN_  1=0, a/v(19X; + (2A? zo                                                           (3.14;
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For the case where  N=2, the similar expressions as in eqs. (3. 13) and (3. 14) 
are obtained. However, in this case the elements  al and  c4 in eq.  (3.  13) 
should be replaced by the following  equations  : 

                        [3)110[144% 
           al1—  +-••-(3.15)                         "iM "01'cg .17 

  Hence, for the case where N>2, denoting the determinant of the coefficient 
matrix  [A) in eq. (3. 9) and its co-factor with respect to the  (N+1)th row and 
the  (n+1)th column as  AN and  €1'4N respectively, the one-dimensional wave-
transfer functions  Cfs can be expressed as  follows  : 

                                      CF(1) 

              GA!  A
N n  0, 1„N  --•  (3.16) 

In particular, for n=0, the wave-transfer function associated with the ground 
surface to incident waves is given by 

                         pvc1)4,4÷,(-1)-VNHag+, 
                       Zn--- (3.17) 

   For the case where  N=1, the following equations are obtained instead of 
eqs. (3. 13) and  (3.  14)  : 

                    ag=1,  al=0,  al  =1  •••  (3.18) 

and 

              al ("141+"%igi)(";444+"^zign      fo _ , ••• (3 . 19)        "Ma'94 

Hence, in this case, the one-dimensional wave-transfer functions  G1', are ex-

pressed as 

 f  =fr ,  n-0, 1  (3.  20) 

  Since the expressions of the one-dimensional wave-transfer functions of the 
boundary displacements to incident waves, which are given by eq.  (3.  16) or 
eq.  (3.  20), contain the determinant of the matrices  C„LD, n=1, N and their 
co-factors and higher order minor determinants, the numerical evaluation of 
them may be complicated and tedious for the case of a large N. 

 In what follows, it is verified that the one-dimensional wave-transfer func-
tions  GV., associated with the boundary displacements to the incident displace-
ment waves are uniformly expressed in the following successive product forms 
for an arbitrary number of layers  N>1 and any number of boundaries  N>n 

 >0: 

 II  (1—b,)  II  X, 
 G;;—  ̀ ="  i=n+I  n=0,  1„ N  -••  (3  .  21) 

 where 

 nz  c'  =1  0  (1+  51-Ibi-(62bEXt2)  0  (1—  an-lb.-IX  „2)  01  -.(3.22)
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 Nic=1170(1+5,-lb,-18ibiX,2)01 ---(3.23) 
                                                         i=1 

and 

 Xi=exp(—jxiHi)  ...  (3.24) 

In the above equations, the complex wave number  Ki, 1=1,  2,  N+1 and the 
wave-transfer function  b„  i  =1,  2,  N associated with the reflected waves at 
the ith boundary to the incident waves through the ith medium are given in 
eqs. (2. 40) and (2. 56), respectively. As for  bo, it is assumed that 

 bo=  —1  (3.25) 

As found from eq.  (2.  49), the quantity  xi,  i=1,  2,  N in eq.  (3.  24) means 
the transfer function associated with the one-dimensional wave propagation in 
the ith medium along the thickness  II, of the ith layer. 

 The symbols  8:1,,  i= 0,  1,  N, appearing in eqs.  (3.  22) and (3. 23) 
denote the symbolic operators associated with the non-commutative multiplica-
tion denoted by the mark  a, and the operational conventions with respect to 
the a marked multiplication and the conventional multiplication between the 
symbols  ai's and the scalar quantities, c and d, are defined as  follows  : 

 cat=6,c 
 cod=  doc=cd 

 6,06,=b,-2  ...  (3  .  26) 
 co6,od=cd 

 c06,6,0d=cd,  j=0,  1,  N 

In particular,  S_I which appears by substituting n=0 in eq.  (3.  22) is defined 
as 

 6_,  =0  •  •  •  (3  27) 

And also, the product symbolh having the smaller upper limit q than the 
                                                i=p 

lower limit p is assumed to be unity for both the  a marked multiplication and 
the conventional multiplication, namely 

                 hc,--=1,1/q/0D,01=-=-1 for q<p•••(3.28) 
          - p i=P 

 The proof of the validity of eqs.  (3.  21)-(3.  23) can be made by the so-called 
method of mathematical induction. At first, in the case where  N=1 the follow-
ing expressions which are consistent with eqs.  (3.  21)-(3.  23) are obtained by 
making use of eqs. (3. 4), (3. 19) and  (3.20). 

             G?                     2 (1—  ,_ (1 —bp (1 + XI')                                                                           •••(3.29) 
                                 1,1da 

 14,=1-6,X,2  —(3.30) 

 Secondly, assuming the validity of the expressions given by eqs.  (3.  21)-(3.  23) 
for  Q1 and  G, we will show the validity of the expressions for  Gl+1• When 
the number of layers increases from N to N+1, we consider the feed-back 
system as shown in Fig. 2, in which the input and the output are taken as
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the incident waves to the (N+1)th  bound-  0 
ary through the half-space and the incident  0  • 
waves arriving at the Nth boundary through (N)   

                                      IGri-I the (N+1)th medium, respectively. Thus, 
considering the forward and backward gains N XN+I XN+, 0 
which are obtained respectively by making 
use of the basic wave-transfer functions  l-bm.1 
associated with the one-dimensional wave (NH) 

propagation, the reflected and refracted • 
waves to incident waves in the forms I F 

 A-  (1-bN.H)XN4.1, A =  ( I  -NO  XN+1 

      bN+IXA7+1bN+iXti+/nN\       B =(Gt .-1) ••-(3.31)B=1/4‘'N-11 

                                        0A(br4.1)XN+1  
the one-dimensional wave-transfer function—.—                                   1 II-AB I + GO) 

    is expressed in terms of  G°, and G;t7; as 
follows :Fig. 2 Formation of a feed-back system. 

                                 01,.(1—bA+t)XN*1         ,+?••-(3.32)                        G (1+b,v+IX.N+1(1-a)] 

Taking into consideration the following expressions 
 N  N 

                    2.11 (1 -bi) 17X(1 - bN)e          Go1-1 Qt
;-• •  (3.33) 

 m.do  N.de 

and 

 MAC—  (1-bN)NZW---  1  //  0(1+  f%-lb,-18ib,X,2)0  (bN  +  N2).1 

 -- .vdert‘bNol  •••(3.34) 

 ,y+1  -,vde  (1  -FONbNON+,bN+IX  Nde(l+ONbNbN÷IX  N+0.1 

which are obtained from eqs.  (3.  21)-(3.  23) and  (3.  26)-(3.  28) the one-dimen-
sional wave-transfer function  GI+, given by eq.  (3.  32) takes the form obtained 
by substituting  n=0 and replacing N by N+1 in eq. (3.21). 

 Finally, in order to complete the proof of the validity of eqs.  (3.  21)-(3.  23), 
it suffices to show the validity of these equations for the one-dimensional wave-
transfer function  CV' under the assumption that eqs.  (3.  21)-(3.23) are valid 
for all  GV  g in which  i<n. In general, in the case where  N>2 and  N-1> .n>0 
the following recurrence formula is obtained from eqs. (3. 9)-(3. 14)  : 

 G37_,  c_,  Gn_  •  •  •  (3.35)  at.,t+, 

The numerators and denominators of the coefficients in the above equation 
which are given by eq. (3. 13) for the case where N11,�3 and by eqs. (3. 13) and 

(3. 15) for the case of  N=2, respectively, are expressed in terms of  b„'0 and 
 X„'® as  follows  : 

                                   2X,  ag=1 , a?-1+,



         Wave-Transfer Functions of the  Visco-Elastic Multi-Layered Half-Space 41 

                      X,,X22 — b,(X12+ X22) +1 X2    a:• (3.36)                    (1 — 60(1 + X,2) (1 — X22)1 — X22 

                                                   for n=0, 1 

and 

 (1  +  b„)X.  X,,2X  „+;  —  b.(X.2  —  X  „,1)  —1 
               (1 — b.)(1—X„,) 'a(1  —b„)(1  —  X„2)  (1  —  X  n+l) 

                                              for  N-1>n>2  

•  •  -  (3 .37)  1  — 

Hence, for the case where  n=0 and  n=1, the one-dimensional wave-transfer 
functions  G.: and  G,,; are obtained respectively in the following forms by using 
the first equation of (3. 33) and by substituting eq. (3. 36) in eq. (3. 35)  : 

                      2 
                       N

(1 —bi)71Xi h(1—b,) fix,o+x,2) 
     G1_c4 Go1 + X121_,• •  •  (3.38)  a 2X

, 

                                                       for n=0 

 x12x22_btx,2_  bix22  +111=,(1 —b,)hX;(1+ X,2)       G 
(4  (1  —b)(1  +Xi2)X2 

 1I  (1  —  bi)  X,(1—b1X12—  blX22+  X  12X22)  
-  (3.39) 

                                             Ndc 
                                                       for n=1 

And for the case where  N-1>n>2, by making use of eqs.  (3.  21),  (3.  22), 
 (3.  35) and  (3.  37) the one-dimensional wave-transfer function  GI'  is expressed 

by 

                  ,(1bon—    G"' —                       (1 —±b„)X„+,(1—X,„2) 1242 

                                                     zt                                      11 (1— b)11X`-                   X
n2X„,?—b„(X„2—X„,.:)—1,_,," 
 (1  —  b„)  (I  —X.2)X,  Nit 

 17  (1  —  (1+  ai-1122-16,b,X,2) 
 (3.40)  Ndo 

 °(1+6„ --16,,X„2—b„X,1  —b.-1X2X.„^ 

 +  5„_2b.„2X  „„?(b,,-,+b.X.2—b._:b„X  .41  —  X.2X  .+1)) 

By taking into consideration eqs.  (3.  22) and  (3.26), it is found that all the 
expressions in eqs. (3. 38), (3. 39) and (3. 40) are reducible to the form given 
by eq.  (3.21). 

 Hence from the above discussions, the validity of the successive product 
forms of the one-dimensional wave-transfer functions  Grs which are given by 
eqs.  (3.  21)-(3.  28) is verified for the general cases where  N>1 and  1‘1.—>n�0. 
By using these formal expressions, for instance, the one-dimensional wave-
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transfer functions for the cases of N=1, 2, 3 are determined as  follows  : 

                  2(1 —b1) X104/(I — bDIV       G?— ,GI——(3.41)  lie 141 

 2(1—  61)(1—  62)X1X2ozlerG1(1 — b ,) (1 — b2) X2 14,1             G°—  
 241  24, 

                                  (1— b4                                         2)2/         G; —•  (3 .42) 
 24, 

 2(1  —  (1  —  62)  (1  —  b2)X,X2X3  04,1 G(1 — b1) (1 — b2) (1 — b3)X2X3et 
                  ,—     sz;4c 

 (1-62)(1  —  b3)X3  2z1/3G(1 —63)341/  
 ,de                            3azle • •  (3.43) 

in which 

 14e=  I  —  6212,  241=1  —  b  IX?  +  b1b2X22  —  b2X12X22 

 34e=  1-10(0+  bib2X22 +  b2b3X32  —  b2X12  X22  +  bib3X22  X32 
 —  6,62193X  ,2  X32  —  b  31C  i2X22X32  •  •  •  (3 .  44) 

and 

 04/-1,  14/  =1  +X12,  24/=1  —61(X12  +X22)  +  X12X22 

 ade'  =  1  —  MCI  +611)2X22  —  b2X32  —  172X12  X22  —  b2X22  X32 

 +bib2X12X32±X12X22X32  •••(3.45) 

 By making use of eqs.  (3.  21) and  (3.  28) the transfer function associated 
with the displacement of the nth boundary to that of the Nth boundary which 
is the bottom boundary of the N-layered media is expressed as 

 N-1 

           G,n_/La— H  X,,d,'                         '="+' 
4/ , n =0, I„N••(3.46)                                                                             .v 

It is noted that the transfer functions defined by the above equation do not 

depend on the property of the linear visco-elastic half-space in spite of the use 

of the wave-transfer functions associated with the linear visco-elastic multi-
layered half-space. In general, the ratio of the wave-transfer function of the 

nth boundary to that of the mth boundary is given by 

 771-1 

 G;  17  (1  —  b,)  II  X  i„de' 
                       GrAl                ' .4/form>n>0•-•(3.47) 

                                           for  n�m>0 • • • (3.48) 
                        17  (1  —  b  t)  17  X,..de' 

which is also obtained as the ratio between  G'; and  GI; defined by eq. 

 (3.  46). As found from eq.  (3.  46) the quantities given by eqs.  (3.  47) and 
 (3.  48) are the transfer function associated with the in-layered media excited 

at the bottom boundary and the inverse of such a transfer function associated 

with the n-layered media, respectively, neither of which depends on the pro-

perties of the media having numbers greater than the maximum of  n and  Tn.
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This is, of course, a property peculiar to the one-dimensional wave propaga-
tion in the linear visco-elastic media having the free surface. 

 Although it is difficult to find precisely the physical meaning of the symbolic 
operators appearing in eqs.  (3.  22) and  (3.  23), a meaning of such operators 
may be interpreted by eliminating  N4j from the second equation of  (3.  33) and 
the first equation of (3. 34) as follows  : 

                    ,v4,6,01-2,4,(GZ-1 ) .••(3.49) 
The above quantity in parentheses means the ratio of the Fourier transform 
of the outgoing waves from the Nth boundary in the (N+1)th medium to that 
of the reflected waves at the Nth boundary to the (N+1)th medium. Similarly, 
the symbolic  quantities  —O.vbNol and  bN(1—ON).1, which are multiplied by  vie, 
mean the wave-transfer function of the outgoing waves from the Nth boundary 
in the  (N+1)th medium and that of the refracted waves at the Nth boundary 
to the  (N+1)th medium subjected to the incident waves at the Nth boundary 
through the (N+1)th medium, respectively. In the above explanation, the Nth 
boundary does not necessarily mean the bottom boundary of the multi-layered 
half-space, but is considered as an arbitrary boundary. Hence, in eq.  (3.  49) 
N may be replaced by an arbitrary integer n. 

 Comparing the relation obtained by substituting eq.  (3.  49) in the first equa-
tion of  (3.  34) 

 /ale—  (1  —bN)NzJet—N-14eCb,v+  X  N2(1  —  Gn))  (3.50) 

with the equivalent expression determined by using eqs.  (3.  23) and the first 
equation of  (3.  34) as 

 N4CONbN°1—  N-14cCoalloNol+s,_,b,_,GbNooNbAx,201]  ...(3,51) 

it is found that the following relations associated with the  o marked multiplica-
tion are to be  valid  : 

 SNor3A—bN-2,  1oSN.1-1  --•  (3  .  52) 

and 

 108,6N_1082vo1  =1 for  i�N-2 

or  (6,016=1  (3  .  53) 

The operational rules shown in eq.  (3.  52) are the same as the conventions 
associated with the  o marked multiplication of the symbolic operator  5L, which 
are given by the third and the fourth equation in  (3.  26), whereas the opera-
tional rule shown in eq. (3. 53) corresponds to the set of operational conven-
tions related to the  o marked and ordinary multiplications between the symbolic 
operators  5,'s and the scalar quantities which are given by the first, second and 
fifth equations in  (3.  26). 

 In the following we will compare the one-dimensional wave-transfer functions 
of the multi-layered half-space subjected to the incident waves propagated 
through the half-space and the transfer functions of the multi-layered media 
excited at the bottom boundary, which are given by eq. (3. 21) and eq. (3. 46), 
respectively, with the corresponding transfer functions which are expressed in
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the following successive product matrices forms based on the techniques used 
by I. Herrera and E.  Rosenblueth  :2" 

                     2      =  • • • (3 . 54)  {1 — j}T  NTN-I T 2T IW 

                 2{1 0}T,„T„-, T2T ca} 

              = 

                 {1 — ATNTN-I T2T1{4}  ,  n  1,  2„  N  •  •  (3.55) 

and  

1  ••.(3.56)  N  {1 0)I
NTN-I T2T1W 

                {1 0}T„T  T2T,{4}     G;)— '                                        n=1, 2„ N•• (3.57)                  {1 O}T
NTN-I T,T,W 

in which 

 cos  nH„  sin K.H, 
 T,_  •  •  •  (3  .  58) 

 —an  sin  icnH.  an  cos  Kra. 

In the above matrix concerned with the nth layer,  lc, and  an are defined by 
eqs.  (2.  40) and  (2.  53), respectively, and  H, denotes the thickness of the nth 
layer. 
 Taking into consideration  b0  =  —1 and  °4,'  =1, and substituting  n=0 in eqs. 

 (3.21) and (3. 46) we obtain 

 N 

 2  II  (1  —bi)Xi 
 G2,2    -.(3.59) 

 Nhic 

 N 

                          2II(1-10X, 
 GI= •• (3.60)                                  (1— b,v) NJ' e 

Comparing each of the above equations with eq.  (3.  54) and eq.  (3.  56), respec-
tively, the following relations are  obtained  : 

 Nie=  II  (1-62)X,{1  — N_,  T2T,{1} —(3.61)  1=  I 

                               2
oN,_,.'"             A,4,, —  ,<Junv                                    co. f NJN-I T27.1{0}  --(3.62)                      t—t=1 

and by using the above equations, the following equations are obtained corre-
sponding to the first equation of (3. 34) and eq.  (3.  49). 

                 (1— bt-(1j}Tn_,  T2T1(1)    8NbNol=—1 GI(3.63) 
               Nit {1 — j}7N -1 T2TW 

 By comparing the transfer functions expressed in the successive product 
forms including the symbolic operators  ei's which are given by eqs.  (3.21)-

(3. 28) and (3. 46) and those expressed in the successive product forms in terms 
of matrices as in eqs. (3.  54)-(3.  58), it is found that the former expressions 
are simpler in carrying out the numerical calculations than the latter. 

  Finally, it is shown that the one-dimensional wave-transfer function of the
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A th and p th derivative, with respect to the time and spatial co-ordinate, respec-
tively, of the displacement of an arbitraray point in the linear visco-elastic N-
layered half-space subjected to the incident displacement waves at the bottom 
boundary can be expressed in terms of the one-dimensional wave-transfer func-
tions of the boundaries  Gn. 

 By making use of eqs.  (2.  47) and  (2.  48) concerned with the nth medium or 
the wave-transfer function associated with the wave propagation in the nth 
medium given by eq. (2. 49) we obtain 

 12.(Jw,  zn)=1_14,i(jco,  0)exp(—/Knzn) 

 +  H„)exp(—  j(zu—IL))  -••  (3  .  64) 

Defining the one-dimensional wave-transfer function as 

                              unzawO)               GivnAg(j(0, z,,) =anrfO(ico)w zn'A-Fp-0,  1,  2—(3.65) 

the following expressions are obtained by using eqs. (3. 3)-(3. 8) and (3. 24). 

   GNI AP (PI), 51)(i)1±awxAK,'”Xl Cexp(i/CIZI)(-1)aexp(—jicizi))G1 
                    (j)'+geoAKIP                              Cext)( .kizi)+ (-1),"exp(—/Kizi)DG.(3.66)                  2 

                    ( DA+ pwA ice 
                                   ex    Qv" Afi(jco, z7,)=  C{Xn2n(irenz,,)—(-1)"ex13(—./K„z.,)}GV                     1 —X2 

 —X„{exp(jx.z.)  —  (-1)Pexp(  jtc„z„)}G,v4],  n  2,  3,   N  •  (3  .  67) 

 GNA'-"Am(ja),  zN+1)=CD21=c0A„nac(-1)gexp(—  jic.v,zN+I)G?" 

 +  exp(  jicA7+1zN+1)  —  (  —  PexP  (  —lics+izN+t))  ".  (3.68) 

 In the successive product form in terms of matrices, the above one-dimen-
sional wave-transfer functions are written as  follows  : 

                             2{cosk,z,sincz,}1-?au{L}          G
ivug Cut),zi) = (l)'           2(0cis•(36 . 9)                            {1 —j}INTN-1 T2TI{O} 

         GAY( fro, zo0),(0,Kni, 2{cosff„Z„ sin KnZn} C-?DaT,,,••                                  }                               {1  —  j}TNTN-1 T2TI{O 
 n  2,  3,  N, N+1  (3.70) 

 For the case where  A= u=0, for example, the one-dimensional wave-transfer 
functions given by eq. (3. 67) or  eq.  (3.  70) for n=2,  3,  N are also expressed 
in the following  form  : 

 Ge(X0,  Z.)  =  G3,-1cos  KnZ„ 

 +  (cosectc,,H„G2—  cot  K.H.,,G7,=')  sin  wan,  n=2,  3,•, N  (3.71) 

4. Singular points of the one-dimensional wave-transfer functions and their 
   properties in the complex plane 

 In order to evaluate the impulsive responses of the linear visco-elastic multi-
layered half-space and the co-variances or the spectral densities of such a 
dynamic system subjected to stationary or non-stationary random excitations
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including the so-called quasi-stationary random excitations, not to mention the 

general characteristics of the one-dimensional wave-transfer functions, it is 
useful to study the properties of the singular points of the transfer functions 
and their behaviour at these points and infinity in the complex plane. 

 As found from eqs.  (3.  21)-(3.  28) the singular points of the one-dimensional 
wave-transfer functions  Gr  , consist of the poles which are zeros of the denomi-
nator  N4, of eq.  (3.  21) and the branch points appearing in the transfer func-
tions  bn's associated with the reflected waves to incident waves, which are 

given by eq.  (2.  56) together with eqs.  (2.  53) and  (2.  54), and the complex 
wave numbers  Kn's given by eqs.  (2.  40) and (2. 41). Of course, in the case of 
the perfectly elastic media, both  b. and  Kry contain no branch points and all 

 b„', reduce to real-valued constants and all  Kn'  s are real numbers for a real 
frequency parameter  co. Hence, in this case, the singular points of the one-
dimensional wave-transfer functions are only poles. If the differential operators 

 p„(jw),  n=1,  2,—, N,  N  +1, which represent the visco-elastic properties of the 
media, are of the rational function type, the branch points arising from  K„ and 

 bn consist of the poles and zeros of the operator  pn(j0.)• Hence, in general, 
the branch points of the wave-transfer functions are the complex numbers. 
However, for the usually encountered stable visco-elastic operators, the branch 

points may have positive immaginary parts. 
 As regards the poles of the wave-transfer functions, namely, the zeros of the 

denominator of eq.  (3.  21)„vdc, which are also generally the complex numbers 
having positive immaginary parts for the stable visco-elastic operators, the so-
called eigen-value problems associated with the relevant dynamic systems may 
be closely related to these singular points. 

 The eigen-value problem associated with the linear visco-elastic multi-layered 
half-space is prescribed by the homogeneous equation of (3. 9) tegether with 
eqs.  (3.  10) and (3. 11). The characteristic equation is given by 

 A.V  det  (A)  =  0 for  N2,--•2  •  •  •  (4.1) 

On the other hand, the following relation exists between AN and  Nde given by 
eq. (3. 23)  : 

                     (-1)N-"A 4,      AN= 
A -1 for  N>2  •••  (4,2) 

 11  0-1)3(1+  XI')  11  (1—  X,2)(1+b,vX") 
 2=1  2-2 

Since there is no common factor between the numerator and denominator of 
the above equation and since the denominator is finite in the complex plane, 
at least except infinity, because of eqs.  (3.  24),  (2.  40),  (2.  53) and  (2.  56), it is 
found that eq. (4. 1) is equivalent to 

 VAe=0  •  •  • (4.3) 

where the explicit form of  Ad, is given by eq.  (3.  23) or eq.  (3.  61). 
 In the following, at first, it is shown that the zeros of  N  At do not exist on 

the real axis. Taking into consideration eq. (2. 54) the following inequality is 
obtained from eq. (2. 56)  : 

                  I lanI2 —21e(a,,) +1 V
an+ 2R(an) +1  <1 for l(co)= 0•••(4 . 4)    I
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On the other hand, from the second inequality in eq.  (2.  41) and eq.  (3.  24), 
the following inequality is  obtained  : 

 Xn`I=IX„I=G1 for  1  (w)  =  •  (4  .  5) 

where c is an arbitrary positive real number. Then, by making use of the 
method of mathematical induction it can be verified that eq. (4. 3) has no real 
zeros. At first, for the case where  N  =1, the characteristic equation given by 
eq.  (3.  30) has no zeros on the real axis, because if such zeros exist, the equa-
tion 

 .•.(4 .6) 

should be valid, which contradicts eqs.  (4.4) and (4. 5). 
 Next, to prove the above-mentioned statement, it suffices to show that  N+Idc 

has no zeros on the real axis under the assumption of its validity for  NI. 
Based on the identity 

 N  +14c  N  cli  b  N  +IX  N+?(1—  •  •  -(4.7) 

which is obtained by using eqs.  (3.  23),  (3.  26) and  (3.  49), it can be shown 
that if  A.4, has no real zeros and if  N+ILIc has such zeros, the following equation 
should be  valid  :  

I  b  —  Gth  j  =  1 for  1  (w)  =  •  •  •  (4.8) 

Considering eqs.  (4.  4) and (4. 5) the above equation requires 

 I1-2[>1 for  1  (w)  =0  --  (4.  9) 

In terms of the Fourier transform of the incident waves,  -14+1(jw, 0), at the 
Nth boundary through the half-space and that of the divergent waves,  +14N+1 

 (jW, 0), from the Nth boundary to the half-space, eq. (4. 9) is rewritten as 

 .titiv+I(/(0, 0)  
                     0)  >1 for.1(w) =0 •• (4.10)                           _th+ruw,v .) 

Considering the energy fluces of the incident and divergent waves at the Nth 
boundary, the above inequality means         

1   11N+1(03 • 1p,v+lco0 (0 
                          3

-•                           0)[< raiN+., 0)12  2 R( KN+1)  2li(1cA74-1) 
                                             for  1  (w)  =  0  -  •  (4.11) 

This is a contradiction compared with the physical fact that whether the 
dynamic system is perfectly elastic or visco-elastic the energy flux of incident 
waves can not be smaller than that of divergent waves for a stationary state. 
Hence, instead of eq. (4. 9) the following inequality is valid on the real  axis  :  

11-2151 for  1  (w)  =0  -  -  (4.12) 

Therefore, all the zeros of  N4„ namely, all the  eigen-values associated with the 
multi-layered half-space should have non-zero immaginary parts for an arbitrary 
number of layers N. 

 It is noted that for the continuous dynamic system having discontinuous 
boundary surfaces as considered here, there exists a denumerably infinite
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number of complex eigen-values  {a} and the corresponding complex eigen-
functions  {,A0N(z)} in which z is the common spatial co-ordinate to the multi-
layered half-space measured downward from the free surface, namely 

 n-1 

 z=  EHH-z,,, n=1,  2,  N, N+1  --  -(4.13) 
                                        i=1 

where the summation symbol  E having the smaller upper limit q than the 
 i=  P 

lower limit p is assumed to be zero. 

 Cc=-0 for q<p  •••(4.14) 

 P 

 Taking into account eqs. (3. 66),  (3.  67) and (3. 68) in which the terms con-
cerning the incident waves are neglected, the eigen-function  y(pN(z) correspond-
ing to the eigen-value  ,a) is expressed in terms of the complex eigen-vector 

 {,CON"} which is determined as a non-trivial vector solution of the homogeneous 
equation related to eq. (3. 9) which has the singular coefficient matrix  [A] 
associated with the eigen-value  ,w1  '22 For instance, in the case where 
the multiplicity of the eigen-value  w is one, the complex eigen-vector  {,9.v"} 
is expressed in the following form  : 

 {Apvm}—{"14N.Z+^(.L(0)),  n  =0,  1,•-•, N 
 (4.15)  c')4p;'1(7 y(v)t  0 

in which  Et4N“1(./froi) denotes the co-factor with respect to the  (N+1)th row 
and the  (n+1)th column of the matrix  GC substituted by the eigen-value  ,Ao. 
Then, the eigen-function  ,c--N(z) associated with the displacement of the linear 
visco-elastic N-layered half-space is obtained by substituting  2—  p  =0,  co—,0, 
and eq. (4. 13) in eqs.  (3.  66),  (3.  67) and  (3.  68), neglecting the terms due to 
the incident waves and replacing  (Gk} by („coN") as  follows  : 

                    X, 
          ,co,v(z) — ,x,2+1 lexP(lciz)+exp(— jaciz)jvCONI 

              1                —
2—Cexp(jaciz)+exp(—jaciz)19N° 
                                                 for  HI:�z>0  .•-  (4.16) 

 -1 

 v9N(2)— LAnz_i C{,X.2exp(—J,K" EH,)exp(jvffnz)                                                                              t=1 

 —exp(M,,  E  Ht)exp(—jacnz)} ..cr' 
 t-I 

 —,,X„{exp(—jyx„  EH.)exp(jac„z) 
 i-1 

 —expOxfi  E  110exp(—jacnz)EcN"J 

                     for  n=2,  3,  N, namely,  E  —(4.17) 

 N  N 

 CO  N(Z)  exp(jx.ni  Elli)exp(mi,NAL,,z),59, for  z�-EHi  •••  (4.18)
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in which  ,x,, and denote the values of eqs.  (2.  40) and  (3.  24) when sub-
stituting by  co=yco, respectively, namely, 

 cm=i,o),V   Pm  ,X„—  exp(  —  jva„Hn)  •  ••  (4.19) 
 It is noted that for the stable multi-layered half-space the eigen-values are 

complex numbers with positive immaginary parts and that the system of eigen-
vectors, or that of eigen-functions, may be of a type of complex generalized 
orthogonal system even in the case of perfectly elastic media, not to mention 
visco-elastic media, because of the presence of the diffusive energy to the half-
space in addition to the energy dissipation due to  viscosity."),221-'25) For in-
stance, in the case where the multiplicity is one for all the eigen-values, the 
following generalized ortho-normal condition may be valid for the system of 
the complex

(eigen-vectors :1°,2,0,25)                                g0))—CACido         (A0N,}N, {pCONn}N3={AOCACi                                N„}N                                        0A(0)2-0 /.0))02{a°Nn}N=a„A .-.(4.20) 

In particular, for  2  =ti=1.), the above equation  means 

                             CA."' (iw)               C{.APAHWv,CsoN"}N)=CONahs,  {,,conn},=1 ---(4.21)  2  j ya) 

In eqs.  (4.  20) and  (4.21), the symbol  ri,/ denotes Kronecker's delta, the sub-
script N outside parentheses indicates a normalized eigen-vector,  (A,„(74  Um)) 
represents the value of the pth derivative of the matrix (A), which is defined 
by eq.  (3.  10), with respect to  fro when substituting by  w=vco, and the row 
vector  {,0,7.} denotes the adjoint eigen-vector of the column eigen-vector  {conm}, 
which are defined as a set of the non-trivial vector solutions of the following 
homogeneous  equations  : 

 (A(jSru)){,rpNn}={0},  {ysfriv.}(A(iya)))—  {O},  n  =  0, 1, , N  -••  (4.  22) 

Under the assumption  (I'  dAt1(  jvco)*0, a solution of the first equation of (4.22) 
is given by eq.  (4.15) and a solution of the second equation is expressed as 

 {,App,„}  =  {(1)4,  (j,w)},  LInn(jvco)  0,  n  =  0,  1,   N  -••  (4  .  23) 

By using the set of complex eigen-vectors which are given by eq.  (4.  15) and 
 (4.23), respectively, the operator defined by the first and second terms in eq. 
 (4.21) takes the form 

 C{igivn},  {vsoiv"})  =  C{(114N  t't  (Le0)},  ;II  (Lai)  }) 
 (ipoi)AN  Jw("C  p(0)   •  (4  .  24)  2j ,(.0 

Then, the set of the two complex normalized eigen-vectors,  {pro2e}ly and  {,,ON7.1N, 
associated with the simple eigen-value  ,co can be expressed as  follows  : 

     {],soiv7}1V—{vC01,7n) {C"IgICIv(0)} • (4.25)               N ycbivnl,(..soN"})'"C{"ILINVI(i,x0)}, {m4,“.1-10,(0)})1" 

              fidoNnI {ffiLINVA(isto)}        t iONn)31—                C{P0.871j, {v§,a7"})"2 C{") ANAntICIA0},{CI% rI(ifr(0)}31"•(4'26)
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in which the square root means either of the two branches. 
 Next, we will show that for a set of visco-elastic operators  ma  /or), n=1, 2,   

, N, N+1, all of which have real coefficients, there exists a pair of zeros, 
a and  _a, which are symmetric with respect to the  immaginary axis. Since 
all the coefficients of  Nth expressed as a function of  fro are real numbers, the 
following equations are valid for the eigen-value 

 N  At*  (LAO  N  c(-  ve)=0  •••(4.27) 

where the superscript * denotes the complex-conjugate. The above equations 
show that a set of eigen-values  (a,  -a) exists both of which have the same 
absolute value  ',col and are expressed in the following  forms  : 

 vw  R(a)+  jlGw) 
 -(4 .28) 

 -  vo)  -yok  RG(0)  (a)  ,  I  Gco)  0 

From eqs.  (4.  25), (4. 26) and (4. 28) it is found that the two sets of normalized 
eigen-vectors which correspond to the eigen-values  a and respectively, 
constitute the following two pairs of complex-conjugate  vectors  : 

 {vwNn}N for a and  {.(„0,,2*}N for 
 (•••4.29)  {

,,0A,„}  Iv for  a and  {41N„*}N for  _a 

 By making use of eq.  (3.16) and the expression 

                      f,  (1  -  bN)(1-  XN2)   •  •  (4  .  30)  1  +b
,,XN2 

the impulsive response {g} of the multi-layered half-space to the incident waves 
at the bottom boundary through the half-space is expressed as 

             27  {g}= 1 1—{G}exp( jarr)dcoI 1—-mtin;t1}  exp(jwr)dw•••31) 
 N where 

               AN
NN (-1)N+I  NA,N rdN •  •  (4 .32)  17  (1  -bi)(1+X,2)17  (1-  X.') 

 ,-2 

As shown in the later part in this section, the so-called residue theorem may 
be applicable to evaluation of the infinite integral in eq.  (4.31). Therefore, 
assuming that all the eigen-values are simple and taking into consideration eqs. 

 (4.  15),  (4.  25),  (4.28) and  (4.  29), the impulsive response {g} may be expressed 
in terms of a set of complex eigen-vectors and that of complex eigen-values 
as follows  : 

 -1 

 {g}  =  (  E  +  E  )/?{G(j,w)}exp(jytor)=  -2E  I  (R{G(ja)}exp(j,,cor)) 
 ,.1 

 _j(  )R(  {"142v;,+,1(.(0)} )expop(0.0                       rdn(j,(0) 

     =(){(1j411P1(ivw)} exp(Lcor)-2ER  exp(jar))              M2i7.1.(1)(i,w)({,CoNThl    is(11( LAO
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      =2 ''.11(“vcbn"}' {PNTh}JinN13bt°n}ex(r))  -  •  •  (4  .  33)  ,=i fib?Nli)(11,(0) 

in which  R(G(jvco)) denotes the residue of a function G(jw) at  w—,20. From 
eqs.  (4.28) and  (4.33), it is found that for the stable multi-layered half-space , 
all the eigen-values shold be complex numbers having positive immaginary 

parts. 
  In the case of the linear visco-elastic multi-layered media excited at the 

bottom boundary, the fundamental equation governing the transfer functions 
 GTH,  n=0,  1,   N-1, is given by 

 CA'D{G'}—{F'}  •-•  (4.34) 

in which for  An�2 

 aga70    0 
 0  alal  0   0 

 CA)  =  0                                                                            •••(4.35)   0 a;:_ice,:a;;+, 0    

0    0 0,14:1 

and 

 0 

                                       0 
                  ---(4 .36),  •  (4.37) 

                                       0 
                  G11 

The eigen-value problem associated with the homogeneous equation of  (4.  34) 
is, of course, concerned with the one-dimensional dynamic problem of the linear 
visco-elastic multi-layered plate. As in the case of a multi-layered half-space, 
the characteristic equation given by  detCA')=0 is identical to the equation 

 NZEC'  =0  ---  (4.38) 

in which  Nil is contained as the denominator in eq. (3. 46) giving the explicit 
expressions  G';', for n=0,  1,  N and  N:�1, and is defined by eq.  (3.22) and 
eqs.  (3.  24)-(3.  28). 

 By making use of eqs. (3. 22), (3. 23) and (3. 49),  NV is written in the follow-
ing  form  : 

 Nzle'  =  N-14e(1  —  X  N2(1  —  ),  N>2  --  -(4.39) 

Substituting the second equation of  (3.  33) in eq.  (4.  39) and equating the pa-
rentheses to zero, we have 

 1_xli2(i_Gz71)_   (1  —  XN2)2C-14C+  (1  —  bN-1)XN2N-ar NZIre   =0  (4  .  40) 
 N-Die 

The above equation means that the displacement at the bottom of the multi-
layered media is zero, because  iii,(G§71-1) and  XN-1 represent the transfer 
function of the arriving waves and of the emitting waves at the bottom boun-
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dary when considering the incident waves at the (N-1)th boundary through 
the Nth medium as the input. From eq.  (3.  50) substituted by the second 
equation of  (3.33) and eq.  (4.40) the following simultaneous recurrence for-
mulae for  NJ, and  NJ/ are  obtained: 

             Ndt= bivX N2)IV-Ide— b N(1— b N-1)X N2 R-15 
                                                     for  N>1  •••(4.41) 

 IV  4'  e=  (1—  X  N2)N-,1+  (1  —b,_,)X2,2 

in which 

 b0=  —1,  04,-0..1/-1  —(4.42) 

  Although it is shown that  Nide has no zeros on the real axis,  NZre may have 
real zeros in the case of the perfectly elastic media. In fact, for the case 
where  N=1, the characteristic equation of a perfectly elastic single-layered 
medium 

                                                             /                 ef=1+.2 C12 =1+ exp(mi2(01/)=0, v, =v p1••• (4.43) 
has the following set of a denumerably infinite number of real  zeros: 

                       (2v+l)rv,                 {,w'}_{v 0, ±1, ±2,            f' --(4.44) 

or 

            {x0,, „col_ J (21)-1)rv,'(21.)-1)xv,                                           v=1 2  (4.45)          11,H' 

In the case where internal damping due to viscosity exists, however, all the 
zeros of  NS  c are complex numbers, because in eq.  (4.40) both inequalities, 

 I1—Ggr:11<1 and  IXAT2i<1 are valid for any real w except zero, and because 
zero can neither be a zero of  N  de nor  bit. The latter reason is easily found 
from eq. (4.4) and the following equations which are valid for  co-0. 

 N  -1 

                c (0) = i1,-0(1— b,), Nt17(0)—(1— b,) =217-1(1— bi) .-(4.46) 

                                                                                      2 and 

 G,;(0)=2,  GiA;(0)--1  •••(4.47) 

 As found from eqs.  (3.  16) and  (3.46), the transfer functions  GT, of the 
multi-layered media subjected to the excitations at the bottom boundary are 
expressed in terms of the co-factors of the matrix  (A) given by eq.  (3.  10) as 

 follows: 

 "3 N 

                         

,  n=0, 1, N  •  •  •  (4.48)                          ("zI
NZTA 

in which  ci'd.,= is equal to the determinant of the matrix  (A.') given by eq. 
 (4.  35). 

 As in the eigen-value problem associated with eq.  (3.9), the eigen-vectors 
 {Wivn} corresponding to the eigen-value  ,A.o', which is a zero of  NS  „ is written 

as
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 {PC-0'  =  {(2)4N  ,t1(  ye)),  n  =0,  1,   N-1 
 •••  (4.49)  ("

4NZ:MCLA00  #0, 

and the eigen-function  ,,w'N(z) is expressed in terms of  {„w  'le} as follows : 

                                                —I.KI'z)Isti           .cc/ n(z)=
±CeXPexp ( 

                 1  =
2-(exp(jwri'z)+exp(—.1,s1/ 2.)1„ci N° 

                                             for  H>x>0  •  •  (4.50) 

       1  n  -1 
 ,Wi  n(Z)  —  dc ni2  C{,X,i"exp(ThivKn'  E  exp(  jac„'z)  1=1 

                                                                                   n-1                           — exp ( j vx„'E 1-4)  exp  (  —  j,,K,,/z)1,49'Art 

 —,X,/{exp(—  jac„'EHi)exp(j ,Kniz) 
 .=1 

 —  exp  (  j „K„'  E  Hi)  exp  (  —  jx,/z))-,,co'  le) 
 1=1 

                          for  n  2,  3,  N, namely,  E.11.>,z>11,  -•-  (4.51) 
 +=H 

in which 

 ,pi N"—(4.52) 

and 

 pIC.  —  pC1) 

• 

                     pi/I:we) = exp( — jocn'lln)  (4  .  53) 
 As easily found by comparing eq. (4. 15) with eq. (4. 48), the complex eigen-
vector  {,,conn} normalized by the condition,  ,,p,,,"=1 can be obtained by sub-
stituting the complex eigen-value  pa, in the expression of  CT, given by eq. 
(3. 46) or eq. (4. 48). Similarly, the eigen-vector  jai- normalized by the con-
dition,  „c9/21-1=1 is obtained by substituting the eigen-value  ,w' in the following 
reduced transfer  functions  ; 

                             ")Nn nyIV,\I'+Irr:        Gn
n,+1=(I4N; Z-1 
 N  -2  N  -1 

                   II  (1—k)  17  X..50 
                             1-n{1  

,  n=0,  1„  N-1  -(4.54)  N-141 

which mean the transfer functions of the  (N-1)-layered media subjected to 
the excitations at the bottom boundary as shown in eq.  (3.  46) or eq.  (3.  47). 
Generally, from eqs. (3. 46) and (3. 47) the following relations are  obtained  : 

          G'""'LINt11LI7  V,-     G""""' ='—,                         G
:'")01-.7,11 c-v-m+114N::,1V+1  N+I 

 N>ln>m'  +1 and  N-2-7-72'>n'  ---  (4.55) 

From the above equation it is found that the eigen-vector and eigen-function 
of the N-layered half-space or those of the  m-layered media, which are normal-
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ized by the value at the  m'th boundary, can be obtained by substituting the 
relevant eigen-value to the reduced transfer functions of the  m'-layered media 
subjected to the excitations at the bottom boundary as far as the inequalities 
in eq. (4. 55) are taken into account. 

 In what follows, we will discuss the definite properties of the singular points 
of the one-dimensional wave-transfer functions of the linear visco-elastic multi-
layered half-space. Since it is difficult to describe precisely the properties of 
the singular points for the general class of linear visco-elastic media, we will 
confine ourselves to the special classes which seem to be frequently encountered 
in practice. First, we will consider the case where the type of visco-elasticity 
is common to all the layers and the half-space, namely 

 Pn  (7w)  —Pnoti(j(0),  n  1,  2„ N,  N  +1  -  (4  .  56) 

where  p„0's are the real-valued distribution coefficients of visco-elasticity. In 
this case, the complex wave number  Kn given by eqs.  (2.  40) and (2. 41), and 
the wave-transfer function associated with the reflected waves to the incident 
waves at the  nth boundary through the  nth medium  b,, defined by eqs.  (2.  53), 
(2. 54) and (2. 56) are respectively expressed as  follows  : 

 K, co  I 1                    v„o9C/04                                coR(tc,,)>0  for  I  (w)  =  0-•(9 .57)       V 
                       .VP"At() —"P„+IP„+toPan0—             bn                                                          (4. 58)                          vp,,Pno +  VPn+IPn+10 Prvno+ Pn+IVn+10 

in which  v  , are the distribution coefficients of wave velocity defined as 

 Pno/  Pr,  •  •  •  (4.59) 

From the above equations, it is found that for this special class,  pc„1, are ex-
pressed as frequency-dependent complex numbers, while  b„', become frequency-
independent real numbers. 

 Transforming the frequency parameter w to a new parameter  2 by the equation 

 A=m  N/1/9  (./w)  •  •  •  (4  .  60) 

it can be shown that the problem concerned with the above-mentioned special 
class of linear visco-elastic media are reduced to the problem for the perfectly 
elastic case. Hence, if the singular points of the one-dimensional wave-transfer 
functions for the perfectly elastic media are 
known, those for the linear visco-elastic 
media are obtained by using the inverse  co >,N  >  0 transformation of eq.  (4. 60) which is de-
noted as  co  �  2p  2  0 

 w=1(2)  •  •  •  (4.61)  2/1 

 For instance, in the case of the threeII�2p20 
                                   element model of the linear visco-elastic 

media as shown in Fig. 3, the operator Fig. 3 Three element model of a linear 

 gent) in eq.  (4.  56) is expressed in the visco-elastic medium.
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form 

                                  1+jcco            q(j (0)= 1+ jd to ---(4.62) 

where 

 C=  2111  2111   —d  114+2P  , 
 21i 
 00>1/1>0,  .�2p,  2/2�0,  co�c>d�0  ••  •  (4.63) 

and the inverse transformation is determined as  follows  : 

         10)=3d +exp( jt).V —A+B + exp( —j76±),VA+B  (4  .  64) 

          A-            21d 127d2 l3d OA' } 
         B_A 1 +I  1  c  c2 \ 2+                                                            —(4.65)                V27d°l 4 6d 108d') 

et' 27d3 

 In particular, in the case where  if/ tends to infinity the three element model 
is reduced to the so-called Voigt model, and the coefficients in the operator  q(jw) 
given by eq.  (4.  62) become 

 c—  2/11, d=0 
 If_t 

In this case, by considering the higher terms with respect to  d-' in eq. (4. 65) 

it is found that eq. (4. 64) is reduced to 

            j (.7rc)1           1(2)ii+3d +expntfI1c222                  6 3dmAlr3—12 I 

                      

• 7 )16 .)3d1-9d1 CAA                                      + exp (-1 637/-( 2Ai1c2A2                                   Y3 12 

              f
2Va'  +2_/14022   ...  (4  .67) 

which is, of course, the inverse transformation of eq.  (4.  60) for the Voigt 
model's operator  q(fro)-1  +jay. 

 In the case where  2,(21=  CO the model consists of two parallel springs and the 
two coefficients in eq. (4. 62) and their ratio become 

 c=d=oo,  =7-2P(4 . 68)  d

Substituting the above equations in eqs.  (9. 64) and (4. 65) the following inverse 
transformation is obtained for the operator  q(jw)  =c/d. 

      _rc•7r_c               exp( /6)-2exp(j6c271-                                            —812  ---  (4  .  69) 
In this case, multiplying a constant by the distribution coefficients  pno's, the 
operator  q(jco) can be reduced to unity. 

 In the case where either of  211 or  2te is zero, the model has only a spring
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and the operator  q(jw) becomes unity. 
 Henceforth, we can assume without loss of generality that the inequality 

 co>r>d>0  —(4.70) 

is valid for the three element model shown in Fig. 3. By substituting eq.  (4.  62) 
in eq.  (4.  57) and by taking into consideration eq.  (4.  70), the complex wave 
number is expressed in the following form  : 

                     wI 1-Litho 
                            en—                         vno 1  +jcw 

 wR(rc,,)>O,  1(x,,)<0 for  I(w)=0  •••  (4.71) 

 Hence, in this case, the branch points of the one-dimensional wave-transfer 
functions  GC, which are defined by eqs.  (3.  21)-(3.  23),  (3.  25)-(3.  28),  (4.  58) 
and  (4.  71), consist of a zero and a pole of the operator  q(jw) given by eq. 

 (4.  62), namely                                                                      

• • • (4 .72)                          iwb= cand gob-1- 

each of which has a positive immaginary part. 
 As previously mentioned, if the singular points of the one-dimensional wave-

transfer functions of the perfectly elastic multi-layered half-space, which may 
be composed of a denumerably infinite number of poles  {„2, having the 

positive immaginary parts, are known, the poles  {,w,  _a}, which may also 
have the positive immaginary parts, of the linear visco-elastic multi-layered 
half-space can easily be determined by using eqs.  (4.  64) and  (4.  65). 

 Next, we will consider the properties of the one-dimensional wave-transfer 
functions in the neighbourhood of the branch points and at infinity for the case 
of multi-layered half-space which is composed of the visco-elastic media re-

presented by the three element models as shown in Fig. 3. Here, the visco-
elastic operators  p„(  jaw  g are assumed to be different in each medium and given 
by 

              Pn(jw)=N1 +jc„w                        o1+ jd-,  n  1,  2,  N, N+1  •••  (4.73) 

Hence, in this case, there exist  2(N+  1) branch points  {,rue,  zwD}—{j/en, 
and a denumerably infinite number of poles  {,xo, 

 Representing the complx parameter w in the form 

 w=o+jr  ..•  (4.74) 

the complex wave number associated with the  n th medium is expressed as 
follows  : 

 /  1  +  .id„w                        R(Kn) +./.1(Km)  •  •  (4  .75)  vno 1+ jc„to 

                R(Kfl)                    1 8(C„„ 2+fc„:22)±±:                  vfloV^En V+
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 1  r (C.+C„2 +D.2)— 8D.        1(K„)•• • (4.76) 
                         Viz()VEC, N/ 2 N/Cn,/c,42+ D7,2 

and 

 (82  +r2)N/C.2+D.2         licz 12 • • •  (4.77)  v
„02E„ 

where 

 =c„d,,(82+  vr_  1„\I  en Ad1) 

 lin=  (en—  dn)O  •-•  (4.78) 

                  En= c7,2[32+— elm)2)�0 
and 

           C.2 + Dn2 = cn2c1.2[52+(r—  )(r— 
                          I11 V 2                     =c,2d.2 (82 ±r2)[(32 +V— ,,I end.-11 •  •  •  (4.79) 

                         +c„c1,,(2r— 1)cm do)  — d1)                     c,,a 

Here, it is noted that the following inequalities are  valid  : 

 Cm+  VC.2+Dm2  >0,  8D„>0  •••  (4.80) 

 In particular, in the case where  do  =0, eqs.  (4.  78) and  (4.79) are reduced 
respectively to the following  equations: 

 C„=1—Cmr 

         Dn=en(1  •••(4.81) 

 E„—c,3282+(r—  )2)cn  
and 

 C„2  =  —(4.82) 

 Since  r„ given by eq. (4. 75) is analytic except the two branch points  j/e. and 

 j/dn, the function  X„ defined by eq.  (3.24) is also analytic except for these 
points. On the other hand, the wave-transfer function  b,„ associated with the 
reflected waves at the  it  th boundary to incident waves, is expressed as 

       b. _ PaVno V(1+jcnw)(1+jdn+lot) — Pm-1.0)7,44o V (1+ fr.+ we) (1 + jd.(0)  (4  .  83) 
 p„v„,  VG  -Eicnto)  (1  +jdn+I(.1)  +p.+0).+10  V(1  +  jc„+,w)(1  +  :Ida) 

and its squared absolute value is written in the form 

                   lanI2— 2R(am) +1 (R(a.)— 1)2+12 (cr.)        Ibni2=•••(4 . 84)                   i an 12+ 2R(am) +1(R(an)+1)2+12(an) 

in which 

 PnVno   j   (1  +  jc,o)(1+jdn-i-vo)  •-•  (4  .  85) 
 P.-FIVn+10  v  (11-jcn+0)(1  +  jd„w)
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  From eq. (4. 83) it is found that the branch points of the function  b. consist 
of  j/c.,  j/d.,  j/c,2+2 and  j/d.4-2. And, from  eqs.  (2.  54),  (4.  84) and  (4.  85), it is 
shown that if the pertinent cuts excluding the four branch points are con-
sidered, the equation  ar=  -1 can not be valid in the complex  co-plane. Then, 
the function  b. is one-valued, analytic and bounded in the complex plane with 
the above-mentioned cuts.  Hence, the one-dimensional wave-transfer functions 

 Gi;', defined by eqs.  (3.  21)-(3.  28) are one-valued analytic functions in the 
complex  co-plane with the cuts excluding the finite number of branch points 

 {j/c„,  j/d„}, n=1,  2,  N, N+1 except for a  denumerably infinite number of 
poles which are zeros of  NZic given by eq.  (3.  23). 

  In the following it is shown that the one-dimensional wave-transfer functions 
 G;2'  2 are finite in the neighbourhood at any branch point,  j/c or j/d, of the set 

 {j/c.,  j/d.} in which 

 c=cn=cn2=  =C22,, 
 q�n1  •••(4.86)  d  d

m,   =ring, 

As regards the branch point j/d, it is easily found that the values of  b,', and 
 Xm's,  n  =1, 2, N, N+1, at this point are finite, hence, the one-dimensional 

wave-transfer functions  G.V, are also finite at the branch point j/d as well as 
in its neighbourhood. 

  To find the properties of the one-dimensional wave-transfer functions  GA', 
at the branch point  j/c, we consider the neighbourhood enclosed by an arbi-
trarily small circle around the branch point. Supposing an arbitrarily small 

positive number  s we set 

 (n=sexp(  j0)+-le-  •••  (4  ,  87) 

namely, 

 5=ecosfl,  r  -Esin8+ -1c  •••(4  .88) 

Substituting the above equations in eq.  (4.  78) we obtain 

 C=  cd  e2-  d)  sin  (9.e 

 D=(c-d)cos  02  E  •  •  •  (4 .  89) 
 E  _es? 

 Hence, when  E tends to zero eqs.  (4.  76) and  (4.  77) are asymptotically ex-

pressed as follows  : 

              cosfi•^c-d 1Vc- d 1                             IC
te„)-cLif••• (4 .90)      R (Ku):Th-V 2 - sindeon°)/2 c2v.,e 

and 

                              c-d  1                                 KnI2 
  c'ono2  6 •  •  •  (4.  91) 

By using eq. (4. 90) the function  X. given by eq. (3. 24) is expressed as
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       X„ -)L=' exp\-sineVc- d H„)                              expI(cos/1- ^c-d   H„) 
                  V 2 c2v,,,^ eV 2 1/1 -sin°  c2vno 

 n=m,n2„  71p  • (4.92) 

From the above equation, it is found that when  e tends to zero  X.'s for  n=n„ 
 n2„  n„ diverge with exponential order except for  0=z/2. 

 By taking account of the fact that  b„', for n=1,  2,   N,  N+1 and  Xn's for 
 ntni,  n2„np are finite and non-zero at the branch point,  j/c, and by sub-

stituting eq. (4. 92) in eqs. (3. 21)-(3. 23), the order of the one-dimensional wave-
transfer functions  G:2 in the neighbourhood of the branch point is determined 
as  follows  : 

 0(1G;  (jecos  0-  (e  sin  4))  ) 
                -0 (exp ( -sinfiilc- d 1   H1  

    2                                            Ve, v  iri 
 N>n,2n+I 
0,  1,  N  •••(4.93) 

where  {11}  =n1,  n2,   np and the convention given by eq. (4. 14) is to be 
adopted in the summation for  It-N. From the above equation, it is found that 
in general the one-dimensional wave-transfer functions  GA', are finite in the 
neighbourhood of the branch point j/c and that except the case where  72=-N 
and the case where  5-7r/2 the absolute values of  GA', vanish in exponential 
order as  e tends to zero. 

 Finally, to examine the properties of the one-dimensional wave-transfer func-
tions  G,', at infinity, we consider a circle having its center at the origin of 
the complex w-plane and an infinitely large radius. 

 (1)=R  exp(j0  •••  (4  .94) 

namely, 

 8-RcosO,  r  =  Rsit  •  •  •  (4.  95) 

 In the case where  d. not equal to zero, by substituting eq.  (4.  95) in eq. 
 (4.  78) we obtain 

 C„-  c„d,R2-  sin°.  (v.+4)R  +1 

 D,-cos0•(c,,-(1.)R  •••  (4.96) 

 E.-v..2W-  2  sin  0-c„R  +  1 

Hence, when R tends to infinity eqs.  (4.  76) and (4. 77) are asymptotically ex-
pressed as 

            R(tc,,)-cos0./ -dR,1(c.)=sinti•V R  ••-(4 .97)              c„ vnocn nnO 

and 

                              d. R2             Ir„122'•(4.98) 
                                                 c,, 11.0I 

Substituting eq. (4. 97) in eq. (3. 24) the asymptotic formula of the function  X„



 60 T.  ;WM:MIand R. MINA! 

is given by 

                                        .R\         X,,=_exp(sin 0.id"  R)exp(— j cos O.)/                                          d„H 

       cc„Vn0 

                                          CO>cn>d„>0,  R—„ee  •--  (4.99) 

From the above equation it is found that in the case where  d„ not equal to 
zero, the absolute value of  X. diverges in exponential order in the upper half-

plane, vanishes in the same order in the lower half-plane and remains to be 
unity on the real axis when R tends to infinity. 

 Similarly, in the case where  d. is zero, eqs. (4. 76) and  (4. 77) are expressed 
in the following forms as R tends to  infinity  : 

           cos  Rin—sint)R  R(K.) (4.100) 
              v 1 —sin0V2c. ?4,0 ^2c,„  Vrio 

and 

 1R              lictirar—(4,101) 
 c„ Vno2 

Hence, the asymptotic formula of the function  X. is determined as 

                        lin        V1 — sin() cos0   H.R) exp (-1 R) 
 I/2c. v,,,V1 — sin0V2c,, V.0 

 00>c,,>0,  d„-0,  -•-  (4.102) 

From the above equation it is found that in the case where  d. is zero, the 
absolute value of  X. vanishes in exponential order in the complex  o-plane 
except the positive immaginary axis on which it takes the value of unity when 
R tends to infinity. 

 By taking into consideration the above-mentioned facts as well as the fact 
that all  b„'„ are finite at infinity the order of the one-dimensional wave-transfer 
functions  GA'„ at infinity is determined as  follows  : 

 0(IG;(jR  cos  —  R  sin  5)1) 

                         ,, ill —ines—N111,1\  =0 exp  (—  'sin  BC  R  E--^REp 
 ̂ =n+11/dHVi0V27= n+ I^Ci                                                                                        v;o

d,=0 

 

•  •  •  (4 .103) 

where in the summation for  n---N the convention given by eq. (4. 14) is adopted. 
Hence, it is found that when R tends to infinity, the absolute values of the one-
dimensional wave-transfer function  G;,'„ for  n  =0,  1,   N-1 vanish in ex-

ponential order while the absolute value of G'„,v, remains finite in the complex 
w-plane, at least except the real and posotive immaginary axes on which the 
absolute values  IG;;I', for  n  =0,  1,  N are able to be finite and oscillatory 
if a certain condition is satisfied. 

  For the special case where both  c„ and  d„ are zero, that is, the perfectly 
elastic medium, no branch points exist and the quantities given by eq. (4. 78) 
or eq.  (4.  81) become 

 D„--0  •  -  •  (4.104)
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Then, eqs.  (4.  76) and  (4.  77) take the forms 

                           cos()  R
, 1(K,)=sinfiR --•  (4.105)                     R(Kfi)                                                                1),,0 

and 

                 0(.12=1 R2  —(4.106) 
 lino 

 Hence, in this case, the function  X. is expressed as  follows  : 

              X„— expsin OH' R) exp— j cos() R) 
           Vn0vn0 

 cn=c1,-0  •••  (4.107) 

By comparing the above equation with eq.  (4.  99), it is found that the be-
haviour of the function  X„. at infinity for the perfectly elastic medium is similar 
to that of  Xfi for the linear visco-elastic medium in which  oo>cn>d„>0. 

 Therefore, all the preceding discussions about the behaviour, in the neigh-
bourhood of the branch points and at infinity, of the one-dimensional wave-
transfer functions  Gk's are valid for the general multi-layered half-space which 
is composed of the linear visco-elastic media represented by the three element 
model shown in Fig. 3, including the Voigt type media and the perfectly elas-
tic media. Also, based on eqs. (3. 66)-(3. 68) it is found that the singular 

points of the one-dimensional wave-transfer function at an arbitrary point in 
the linear visco-elastic multi-layered half-space are the same as those of 
and its properties in the neighbourhood of the branch points and at infinity 
are similar to those of  G,',. 

 As for the one-dimensional transfer functions  G'A', of the multi-layered 
media, which consist of the linear visco-elastic media characterized by the 
three element model, subjected to the excitations at the bottom boundary, 
similar discussions as previously mentioned on the singular points and the 

properties of such functions at the singular points and infinity can easily be 
taken up based on eqs.  (3.  22) and  (3.  46) together with the known properties 
of the one-dimensional wave-transfer functions 

5. Concluding remarks 

 As one of the basic studies related to the supposition of a reasonable model 
of random earthquake excitations according to the dynamic characteristics of 
the ground at the site of a structure, the analytical expressions of the one-
dimensional wave-transfer functions of a general class of linear visco-elastic, 
horizontally multi-layered half-space to vertically incident plane waves at the 
bottom boundary through the half-space are obtained and the singular points 
of such wave-transfer functions and their properties in the complex plane are 
discussed. 
 The one-dimensional wave-transfer function associated with an arbitrary point 

in the multi-layered half-space is defined as the ratio of the Fourier transform 
of the response at the point to that of the incident waves at the bottom bound-
ary, and it can be expressed in terms of the wave-transfer functions associated 
with wave propagation and such one-dimensional wave-transfer functions as-
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sociated with the adjacent boundaries. 
 By making use of the method of mathematical induction and the concept of 

feed-back  loop, it is verified that the one-dimensional wave transfer functions 
associated with the boundaries in the linear visco-elastic multi-layered half-
space as well as the characteristic equation of such a dynamic system are 
expressed in the successive product forms in terms of the wave-transfer func-
tions associated with wave propagation and with the reflected waves at the 
boundary to incident waves and some kind of symbolic operator related to a 
certain multiplication. 

 Based on the above-mentioned product forms involving the symbolic operators, 
the eigen-value problem of the linear visco-elastic multi-layered half-space and 
the properties of the one-dimensional wave-transfer functions in the complex 

plane, especially, the behaviour of such functions in the neighbourhood of the 
singular points and at infinity, are discussed. 

 As a result, for the usually encountered multi-layered half-space which is 
composed of the linear visco-elastic media represented by the three element 
model including the so-called Voigt type media and the perfectly elastic media, 
it is shown that the singular points of the one-dimensional wave-transfer func-
tions consist of a finite number of branch points on the positive immaginary 
axis and the two sets of a denumerably infinite number of poles with positive 
immaginary parts, both of which are zeros of the characteristic equation and 
symmetrical with each other with respect to the immaginary axis. And also, 
it is found that the one-dimensional wave-transfer functions of the multi-layered 
half-space are one-valued analytic and bounded in the complex plane with the 
cuts excluding the branch points with positive immaginary parts except for 
the poles which also exist in the upper half-plane and that the wave-transfer 
functions vanish in exponential order at infinity for almost all points in the 
full complex plane as far as the inner points of the multi-layered media above 
the half-space are concerned. However, it is noticed that the one-dimensional 
wave-transfer function associated with the bottom boundary adjacent to the 
half-space takes the non-zero finite values at infinity. These properties of the 
one-dimensional wave-transfer functions may guarantee the physically realiz-
able condition of the transfer function and also assure the applicability of the 
residue theorem in expressing the impulsive responses as well as the variances 
and co-variances of the random responses in the linear vsco-elastic multi-layered 
half-space in the forms of infinite series expansions. 

                          Acknowledgment 

 The authors wish to express their thanks to Mr. Tamotsu Suzuki, Research 
Assistant of the Disaster Prevention Research Institute of Kyoto University, 
for his discussions and co-operation in the preparation of this paper. 

                               References 

  1) Kanai, K.,  "Relation between the Nature of Surface Layer and the Amplitudes of 
     Earthquake Motions," Bulletin of the Earthquake Research Institute, Univ. of Tokyo, 

     Vol. 30, Part 1, March, 1952, pp. 31-37. 
  2) Kanai, K., "Semi-Emperical Formula for the Seismic Characteristics of the Ground,"



        Wave-Transfer Functions of the  Visco-Elastic  Multi-Layered  Half-Space 63 

    Bulletin of the Earthquake Research Institute, Univ. of Tokyo, June, 1957, pp.  309-
    325. 

3)  Kenai, K., Tanaka, T., and Yoshizawa, S.,  "Comparative Studies of Earthquake 
    Motions on the Ground and Underground (Multiple Reflection  Problem)," Bulletin of 

    the Earthquake Research Institute, Univ. of Tokyo, Vol. 37, 1959, pp. 53-87. 
4) Bustamante, J. I.,  "Response Spectra of Earthquakes on Very Soft Clay." Bulletin of 

    the Seismological Society of America, Vol. 54, No. 3, June, 1964, pp. 855-866. 
5) Herrera, I., Rosenblueth, E., and Rascon,  0. A.,  "Earthquake Spectrum Prediction 

    for the Valley of Mexico," Proceedings of the 3rd World Conference on Earthquake 
 Engineering, Vol. 1, 1965, pp. 1-61-74. 

6) Yoshikawa, S., Shima, M., and  Irikura, K.,  "Vibrational Characteristics of the Ground 
    Investigated by Several Methods," Bulletin of the Disaster Prevention Research  Insti-

    tute, Kyoto Univ., Vol. 16, Part 2, Jun., 1967, pp. 1-16. 
7) Yoshikawa, S., Shima, M.,  Coto, N., and Irikura, K.,  "Vibrational Characteristics of 

    the Ground in the Region of  Matsushiro," Annuals of the Disaster Prevention Re-
    search Institute, Kyoto Univ., No. 13, A, March, 1967, pp. 189-199. (in Japanese) 

8) Yoshikawa, S., Shima, M., and Irikura, K.,  "Vibrational Characteristics of the 
 Ground in the Region of Matsushiro II," Annuals of the Disaster Prevention Research 

    Institute, Kyoto  Univ., No. 11, A, March, 1968, pp. 179-192. (in Japanese) 
9) Sezawa,  K.,  "Possibility of the Free Oscillations of the Surface Layer Excited by 

    the Seismic Waves," Bulletin of the Earthquake Research Institute, Univ. of  Tokyo, 
    Vol. 8, 1930, pp. 1-11. 

10) Sezawa, K., and Kanai, K.,  "Decay Constants of Seismic Vibrations of a Surface 
    Layer," Bulletin of the Earthquake Research Institute, Univ. of Tokyo, Vol. 13, 

    Part 2, 1935, pp. 251-265. 
11) Kanai, K., "The Effect of Solid Viscosity of Surface Layer on the Earthquake Move-

    ments," Bulletin of the Earthquake Research Institute, Univ. of Tokyo, Vol. 28, 
    Parts 1-2, 1950, pp. 31-35. 

12) Kanai, K., "The Requisite Conditions for the Predominant Vibration of Ground," 
    Bulletin of the Earthquake Research Institute, Univ. of Tokyo, Vol. 38, Part 3, 1957, 

    pp. 457-471. 
13) Bolotin, V. V.,  "Statistical Theory of the Aseismic Design of Structures," Proceed-

    ings of the 2nd World Conference on Earthquake Engineering, 1960, pp.  1365-1379. 
14) Tanabashi, R.,  Kobori, T., and Minai, R.,  "Aseismic Design and Earthquake Response 

    of Structure," Annuals of Disaster Prevention Research Institute of Kyoto Univ., No. 
    5, B, March, 1962, pp. 1-32. (in Japanese) 

15) Kobori, T., and Minai, R.,  "Non-Stationary Response of the Linear System to Random 
    Excitation," Bulletin of the Disaster Prevention Research Institute, Kyoto Univ., Vol. 

    16, Part 2, No. 111, Jan., 1967, pp. 37-80. 
16) Shinozuka, M., "Simulation of Nonstationary Random  Process," Proceedings of the 

    American Society of Civil Engineers, No.  EMI, Feb., 1967, pp.  11-90. 
17) Housner, G. W., and Jennings, P.  C., "Generation of Artificial Earthquakes," Proceed-

    ings of the American Society of Civil Engineers, No.  EMI, Feb., 1964, pp. 113-150. 

 18) Kobori, T. and Minai, R., "Response Spectra of Quasi-Stationary Random Excitations," 
    Bulletin of the Disaster Prevention Research Institute, Kyoto Univ., Vol. 17, Part 3, 

    March, 1968, pp.  45-99. 
19)  Kobori, T., Minai, R., Inoue, Y., and Takeuchi, Y.,  "On Spectral Characteristics of 

    Artificial Earthquakes Generated for Structural Response Analysis," Annuals of the 
    Disaster Prevention Research Institute, Kyoto Univ., No. 11, A, March, 1968, pp.  369-
    903. (in Japanese) 

20) Kobori, T., and Minai, R.,  "Non-Stationary Random Excitations of a Linear Discrete 
    System," Proceedings of the  16th Japan National Congress for  Appl. Mech., 1966,



64 T. KOBORI and R. MINAI 

    pp.  324-332. 
21) Herrera, I., and Resenblueth, E., "Response Spectra in Stratified Soil," Proceedings 

    of the  3rd World Conference on Earthquake Engineering, Vol. 1, 1965, pp.  1-44-60. 
22) Kobori, T., and Minai, R.,  "Study on Unstationary Vibration of Building Structure 

    with Plastic Deformation of Substructure," Proceedings of the 2 nd World Conference 
    on Earthquake Engineering, Vol. II, 1960, pp. 1085-1104. 

23) Kobori, T., and Minai, R.,  "On Some Boundary Value Problems of Vibrating Elastic 
    Body in One-dimension," Proceedings of the  10th Japan National Congress for Appl. 

    Mech., 1960, pp. 319-324. 
24) Kobori, T., and Minai, R., "Eigenvalue Problem in Earthquake Response Analysis," 

    Proceedings of the  2nd Japan Earthquake Engineering Symposium, 1962, pp. 147-152. 
    (in Japanese) 

25) Kobori, T., Minai, R., and Inoue, Y., "Earthquake Response of the Structure Con-
    sidering the Effect of Ground Compliance,  2nd Report," Annuals of the Disaster  Pre-
    vention Research Institute, Kyoto Univ., No. 8, March, 1965, pp. 193-218. (in Japanese)




