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                             Abstract 

  The author, at first, derives the theory for the deformation of a granular solid saturated 
with a liquid, assuming that the liquid filling up the pore space is a Newtonian viscous 
fluid and the skeleton constituted by solid particles is a linear visco-elastic solid. The 
theory consists of three fundamental equations, that is, the equations of motion for pore 
liquid and solid skeleton, and the equation of continuity between the particles and the 

 liquid. In the second place, a formal method is considered for solving the fundamental 
equations in a case where the liquid and the particles are incompressible in the gravita-
tional field, and we have the respective equations of the dilatation, rotation in the solid 
skeleton and of the piezometric head of the liquid. Finally, it will be found that these 

 respective equations obtained by a quasi-static treatment are accepted as the theory of 
 three dimensional consolidation including TERZAGHI'S well-known equation as a special 

 case, and are also recognized as the basic equations of motion of confined ground water 
 in a visco-elastic aquifer. An example is shown for the motion of ground water in a 

 simple model as seen in the figure. 

Introduction 

 It is well known that soil mechanics  has made great advances since the 
conception of pore pressure (Hydrostatische  Uberdruck) proposed by K. v. 

 TERZAGHI. He considered that the grains and particles in soil, being more or 
less bound to each other by sticking force, constitute a skeleton of soil with 
elastic properties and that the skeleton supports the external burden together 
with the cooperation of the water filling up the pore space between the parti-
cles and he successfully solved the settlement of the soil layer with the good 
idea that a contraction of soil depends on the rate of squeezing out of pore 
water which neccessarily brings about the decrease of pore pressure. But  he 
treated only a one-dimensional problem under constant load with a quasi-static 
method, that is, in such a way that a soil body is gradually deformed, the 
external force being equal to the result of the stress exerted in the skeleton 
and the pressure of pore water at any  instance. 

 In Oct. 1940, M. A.  BIOT" published the theory of three dimensional consolida-
tion and developed the treatment of soil deformation for any arbitrary load 
variable with time. His paper contains much of interest to us but his treat-
ment is also quasi-static method, although it is often applicable in engineering 

practice. Our expectations of his theory will be prescribed later in the discus-
sion. Moreover, in Sep. 1963, M.  MIKASA2' published the useful theory of soft 
layer consolidation showing many suitable examples, especially taking account
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of finite strain. But he treated  only a one dimensional and quasi-static pro-
blem in the same way as  TERZAGHI. 

 Recently in soil mechanics, much attention has been paid to the correspon-
dence of soil deformation caused by a vibrating agency in connection with the 
effective performance of engineering construction or safe protection from heavy 
damage such as an earthquake. It may be clear that the theory of consolida-
tion must be improved and made into a dynamic one for the above require-
ments. We shall now derive in this paper the dynamic theory of consolidation, 
considering the rheological properties of soil. 

1. Derivation of fundamental equations 

 Soil particles constitute the skeleton of the soil matrix, pushing and rubbing 
each other's contact portions against an external burden. Owing to the com-

plexity of its structure, however, one could not expect the direct treatment of 
forces acting on each particle. In the same situation, it would also be quite 
impossible to deal quantitatively with the motion of pore water attending to 
tortuous and irregular pore space. Therefore we are obliged to consider the 
representation of motion averaged over a volume element of soil, which is taken 
to be large enough compared to the size of the pores so that it may be treated 
as homogeneous and at same time small enough compared to the scale of 
macroscopic phenomena in which we are interested so that it may be con-
sidered as infinitesimal in the mathematical treatment. It will be sufficient in 
soil mechanics to consider the average conditions over the volume of soil in 
the above sense. 

   (a) Equation of motion of pore water 

 The motion of water in pores is governed by the hydrodynamic equation of 
viscous fluid. We regard the pore water as a Newtonian fluid and denote by 
V  (V1, V2, V8) the particle velocity of pore water. The equation of motion of 

pore water is expressed by 

       DV —X—
pI11                         grad p-(3r—K)grad 8+72 rV  (1  .  1)   Dt 

where I is time, X is external body force, p and p are the density and pres-
sure of water, respectively,  U is the divergence of water flow, and  r and K are 

the kinematic viscosity of shear and bulk  respectively  ; the dependences of 
which on density p are assumed to be slight. 

 Consider a unit volume of the soil matrix in the sense stated above. Integrat-

ing eq. (1. 1) over the pore space a of the unit volume and using the following 
notations 

             555V dv (1.2) 

                                       (I 
 P—=-555 bdv (1.3) 

we have 

 DU 

                         1 

           —0X—=7 grad P—(3—22—,c)555 gradWv+.7i 551 F2 Vdv  (1.4)
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where U is called  "DARCY'S velocity" or "specific flow rate" and P is the 
"pore pressure" proposed by  TERZAGHI. 

 The pore pressure P is generally taken to be thermodynamic pressure and 
is determined by the density and temperature of water. In constant tempera-
ture, we can write 

               log P
Po=$(P—Po) (1.5) 

where  )9 is called isothermal compressibility. In the foregoing,  A, and Po are 
the density and pressure in some reference state, say a state at rest. In the 
case where external body force X is gravitational force, it is convenient to 
introduce the quantity  co which is termed the "piezometric head" 

           Pg  +xs  (1.6) 

where  x3-axis is taken as positive upward and g is  gravitation] acceleration. 
 Appropriate expression to the last term in eq. (1. 4) is done by refering to 

 DARCY'S law governing the flow of water in a porous medium. He postulated 
the viscous force acting on water to be proportional to the flow velocity and 
introduced, as the proportional constant, physical quantity  k which is called 
the coefficient of permeability of the soil and according to his expression, the 
viscous force is written by 

 F  vSSr Vdv—=---+SS1Vdv 

 0 In next paragraph we shall treat the motion of soil particles together with the 

flow of pore water, and so it may be reasonable to assume that the viscous 

force F was proportional to the relative motion of water to soil particles, viz. 

 (17.— ) where  it is the mean displacement of soil particles as seen latter. 
From our assumption, it ispossible to express its force as follows 

           Fakg(V— alt                         Of )dv= ckg (U — a-6 a II) (1.7) 

 Pore water is regarded to be almost incompressible in engineering practice. 
In this case, inserting the expressions (1.  5),  (1.  6) and  (1.  7) into eq. (1.4) and 
regarding the inertia term of acceleration to be negligibly small, we have 

    OU1                   +ag{grad+—k(U— a au)1-=0  (1.8)    atOE 

Eq. (1. 8) is, of course, reduced to  DARCY'S law if the soil particle has no mo-
tion and the flow of water is not accelerated. 

   (b) Equation of motion of soil skeleton 
 We shall now pay attention to the motion of the soil skeleton.  TERZAGF11, 

 BLOT and  MIKASA assumed the elastic isotropy of stress-strain relation for the 
soil skeleton. While we also accept the isotropy in order to avoid the trouble 
of mathematical presentation, we had better give up the elastic property of
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soil with reference to the results of many investigations postulating the none-
lastic deformation of  soils'. On the other hand, it may be clear that the non-
linear relation between stress and strain make it difficult to analyse the de-
formation quantitatively. We now regard it tentatively as a linear visco-elastic 

 relation''. 
 Consider again the volume element in the sense stated previously and take 

the average over the actual displacement  u of soil particle contained in that 
volume. We define it as the displacementof skeleton u, that is 

                   CC  u= 
1_131j (1,/7 dv (1.9) 

 Supposing that the difference (v—u) produces only a minor effect on the 
stress on the skeleton  viz. effective stress and assuming the strain to be in-
finitesimally small, the strainon the skeleton is given by tensor  e(e,i) 

                     1(bu,  bui 
                   2 \ b'xj  )  (1,  j=1,  2'  3) (1.10) 

Corresponding to this, the effective stress  a(a,i) is exerted on the skeleton. 
According to the assumption of linear visco-elasticity, stress  co is represented, 

as positive in compression, by         

> 6P  

                                                                          P       (1+Erp 0/P /i A(1+ap,a;,)60(9+210+191)n;)eti} (1.11)  =1o& 

where  Si; is kronecker notation and is the dilatation of the soil skeleton, 

that is 

                       (au, outlats \          ++(1.12)                                  ax25x3 ) 

Introducing the operation with respect to time 

           (1+ Ea)1+ E,9, )         \ofP,_,OP /                        J-11=,,(1 .13, 1.14)          BP  "  6P 

 (1  +  btP  (I  +  Er, )  BEP 

we can write the stress force per unit cubic element of soil as follows 

             6au= — ( + 71)ax(1 .15) 
         Ox,ari 

  Furthermore, the skeleton is pushed by the pore pressure of surrounding 

water. This pressure action  f, may not produce any shearing strain by reason 

of the assumed isotropy and will be expressed by 

             f,=15Pnda= —555 grad Pdv= — (1—a) grad P (1.16) 
                          ll-a1suTf(I-al 

per unit volume of soil, where n is the outward unit vector normal to the 
surface element da of solid space. 

  In addition to the above forces, the skeleton tends to be dragged by the flow 

of pore water in its direction through the reaction of the viscous force acting
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on the pore water. This drag force  f2 will be expressed by 

 f2—  —p  ukg(a  pout  U) (1.17) 
 We can thus establish the equation of motion of the soil skeleton, that is 

             11 
 (1—  a)ps66212= (1— Ox+ F. ++ A 

    — (1— a)X+ (..r+n) grad +32172u— (1 — a) grad P+ p k(U— a au)  (1.  18)                                                at 

where  p, is the density of soil particles and X is an external body force. In 
almost all cases with which we are concerned, force  Xis a gravitational force. 
Expressing the vertically upward unit vector by k, we have 

 (1—  a)ps62u— — (1 — a)psgrk + (2+30 grad 0+31172u 

 —  (1—  a)  grad  P+  pag(U— a (1.19) 

   (c) The equation of mass continuity 

 Finally, we shall derive the equation of mass continuity per unit volume of 
soil. Suppose that a skeleton in any volume of soil had porosity  ao at an in-
stance of no dilatation  0=0, and that the particles in it had density  Poo at that 
time. Because the skeleton under consideration is to be framed by the same 

particles at any instance, the mass of the skeleton must be conserved, that is 

 ps(l—  a)(1+  6)—  p,o(1—  ao) (1.20) 

since the dilatation  0 represents the volume increase of soil skeleton per unit 
initial volume and p, is the density of particles at dilatation  6. The volume 
of the skeleton is varied with time by external force and consequently, porosity 
a is also varied. Eq.  (I. 20) gives us the relation between their time rates. 

 As our subject is soil fully saturated with pore water, the change of pore 
volume results in the flow of pore water into or out of the volume element. 
This situation is represented by 

 (ap)—  —div(apV)—  —  div  (pU)  (1  .  21)                  at 

where p is the density of water, V is the particle velocity of water and U is 
the specific flow rate as defined previously. 

 Combining eq.  (1.  20) with eq.  (1.  21), we make 

           6a  j  (1—ao)p,0  ) —div (pU) (1 .22)              0i 1(1 —  a)p3+  ap = 61  I  1+©  I 
This is an equation which we expected to derive. Relation of  ps to  p  ou may 

be obtained from the consideration of the compression of soil particles due to 

the effective stress a and pore pressure  P, although we have little knowledge 

about it at present. However, in general, the compressibility of soil particles 

and water is small. Assuming both densities to be constant, we rewrite eq.
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 (1.  22) as 

 (1  —  a  0)  Ot  +div  U=0 (1.23) 

with good approximation neglecting the small quantity of order 02. 
 Approximating the values a in eqs.  (1.8) and  (1.19) to the value  ao after eq. 

 (1.23) and summarizing the fundamental equations in the case where the ex-
ternal body force is only gravitational force and the soil particles and pore 
water are incompressible, we have 

 (1—  a  Opsolu2  =  —  (1-60)(p,o—po)gk+c_r  +30  grad 
 +  31172u—  (1  —ao)pog  grad  co+  po  ügf  (U  —  a  o at ) (a) 

      O1/
°                 6—+ a ogigradn+—1U—a811)}=0           kat(b) 

                        60  (1  —  a  0)  +  div  U=0  (c) 

where 

                                 aU2au,       (9   ++(d) 
 6x,  6x2  asr3 

                                CD    pog F  x3 (e) 

           (1+ a)(1+aP)         P=1PatP 
                                                ,.31-= 

        +6           „ (f)                                           r„-P                P=1 5IP(1+EaP)                                                           7,_,613' 

In the remainder, we shall omit a subscript "0" from the respective  notations. 

2. Method for solving the fundamental equations 

 In this section, we shall seek for a formal method to solve the fundamental 
equations (a), (b) and (c) 

 Let us first examine, a static equilibrium state of the skeleton with a steady 
flow of pore water. Eqs. (a) (b) and (c) become 

 0=  —  (1—a)  (ps—  p)gk  +  (_C  +  aograd  e 

 +  nru  —  (1  —  a)  pg  grad  co+  p U (2.1) 

 0=  U+  k  grad  c (2.2) 

 0  =  div  U (2.3) 

From eqs.  (2.2) and  (2.3), we can solve the quantities U and  40 satisfying 
the respective boundary conditions under consideration. Inserting these solu-
tions into eq.  (2.  1), we have 

 0  —  (1—  a)  (ps—  p)gk  +  (1+30 grad  6  +3(172u—  pg  grad  CO (2,4) 

 Now, we divide the displacement  it into two parts,  uol and  no2, which satisfy
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the equations 

 0=  -  (1-a)(ps-  p)gk+(s+30grad  eel  +SW21101 (2.5) 

 0=  (Z+  SO  grad  (902  +  avuo,  —  pg  grad  c (2.6) 

respectively, where 

 901div  uol (2.7) 

 002-div u02  (2  .  8) 

Eq.  (2.  5) expresses that  uo, is the displacement caused by the apparent weight 
of the soil skeleton in water without external load and eq. (2. 6) means that 
if  uo2 is uniform in the entire body of soil, grad CO, consequently U, is zero, 
say conversely, if pore water flows, the skeleton of the soil must be strained 
to that extent. 

 When external load and/or piezometric head  c vary with time after the 
initial state, the strain on the skeleton and the velocity of flow begin to leave 
the static state. We proceed to investigate the unsteady motion. 

 Disolving the quantities a, 0, U and  co into the static part  uo=u0,+u02, 00= 
 ee,  +  092,  uo and  coo and respective deviations  u',  0', U' and  c' from static one, 

we have for the deviating parts 

                  6u'         (1 -cr)ps6
1,2=(l+50 grad et 

                                         U+nru' -(1-a)pg grad gyp' +Pati_a6t(2.9) 

     OU'1                 + ag4grad k(U'-a 68u;)).=0 (2.10)    at 

                         (1-a)60-'                   +div U' =0 (2.11)                         at 

 We can now derive the equation for only the dilatation 0 in the following 
manner. In the remainder, let us omit the prime on each quantity. Taking 
the divergences of eqs. (2. 9) and (2. 10) and time derivative of eq. (2. 11) 

  02ag 
                12       (1-cr)ps= (_C+230re ——a)Pgrw+ p(div  U-  a6:) (2.12) 

            60  

             160  

           6i (div U)+agirk                       tp+ (div U ot  )1-0 (2.13) 
                      Fe    (1 -a)6

/2a6t+(div U)=0 (2.14) 

Combining eq.  (2.  13) with eqs. (2. 11) and (2. 14), 

                     1a6'01OH        172
(p-+(2.15)                    agorkat 

 Substituting from eqs. (2. 14) and  (2.  15) into eq.  (2.12), 

           (1- a)[ps+ a-gp6t9 62+=+23017219(2.16)                              2kPg.at
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This is the equation we want to derive. 

 In the second place, we shall derive the equation for the rotation 

                                  Q  -=  rot  u 

Taking the rotation of eqs. (2. 9) and (2. 10), 

 A2Dad                                   a) arid+p Crg  (rot  U—  a)  (2  .  17) 
 61'  h  .6t 

 at(rotCg+rot U—62gat =0 (2.18)      \kat 

From eq (2. 18) we have 

                      rot  U= 6g e-colkile-agelkal2-dr (2.19)                                          Br 

where, we can put rot  U=0 at  1=0 as U is the deviating velocity from the 
steady state. 

 In many cases, we assume the dependence of variables on time as form  ea, 
to solve the transient problem. Put U and  P in the forms 

 U  U*edi,  f2  12*ea, (2.20, 2.21) 

then 

                                 crec,    rot  U*=ag+alet\';‘2*               1 —exp(—(2.22)              g+ ak [k11 

The term  12* exp  (—  ag±k t) represents the effect of initial rotation on the 
sequential motion of the soil skeleton and will disappear exponentially with 
time as its expression. 

 If we obtain the dilatation and rotation  a from eqs. (2.16) and (2.17). we 

can find the deviation of displacement  it by solving the following equation 

 ru=  grad  0—  rot  12  (2  .  23) 

with the convenience of the Heaviside operation for partial differentiation. 

 As the particular case which interests us, we shall pick out the quasi-static 

motion. Neglecting the accelerated terms in eqs. (2. 15) and (2. 16), we find 

 OR  =k  (2  .  24)  at 

               66k  =
pg+2,201720  (2  .  25)            at 

Differentiating eq.  (2.  25) with respect to time and inserting eq.  (2.  24) into 

this, we make 

 l72( °CD—k(±=2,9i)F72c01=0 (2.26) 
                   atpg 

This may be regarded as the basic equation of three dimensional consolidation. 
It is worthy of note that if  9,(1,  x,) is a solution of eq. (2. 26),  9,(1,  x,)+Fi(xi) 

 +F2(t), where  F2F,-0 is also the solution within the limits of quasi-static
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transition, in physical words, the progress of consolidation is not affected by 
the non-divergent flow of pore water and/or the gradual change of the water 
head in the entire region of the soil medium. When the non-divergent flow 
has already been included in the static part of piezometric head  c30 considered 
previously, eq.  (2.  26) is reduced to 

 _OC"  —  k (•+23Or9 (2 .27)  at  
pg 

In the case of the elastic skeleton, operations and  a are reduced to LAME'S 
constant A and p, respectively. Let us examine the special case of a column 
of soil supporting a load and confined laterally in a rigid cylinder so that no 
lateral expansion can occur. Eq.  (2.  27) is then rewritten as 

 aco  029  0+4) 
 at  pgax32 

By comparing this with  TERZACHI'S well-known equation, we can see the 
relation of operations  _C and  32 to the value a which is termed the coefficient 
of compressibility in soil mechanics,  (1+230  (1+e)/a=1/(1—cr)a. 

 Example 
 Eqs.  (2.  24)  (2.  25) and  (2.  26) are also taken as the basic equations for sub-

sidence related closely to the flow of confined ground water through the visco-
elastic aquifer. We shall it here in a simple example. 

 Let us consider the motion of confined water caused by tidal oscillation of 
sea water over the area of seashore  0<xl�a in a visco-elastic aquifer as 
shown in Fig. 1, where no flow of water exists through the surfaces  x1=0 
(contact surface between sea and aquifer)  x3=0 and h (lower and upper 
boundary surfaces of aquifer). 

 X3 
 4 

 Hexpiwt  

 

•  •  .  •  •  • • . • • • • • 
. • • . . . ••                         

• 
." • • . . . • . • . . . • • • • • • • . • _  

                                                  XI 
 o  a 

   Fig. 1. Idealized cross section of visco-elastic aquifer where the confined water is 
     moved by tidal oscillation of sea water on the area of seashore  0<xl5a. 

 We have the following equations for the deviation from the static state 

                     56
pgk  =(X +2,940re (E•1)            at 

 ae  =kin !, (E.2)  01 

with the boundary conditions
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            Otts ato  u
1=0,ax

,' ax,-=0 at  11=0  (E.  3) 

 u1=0,  U3  =  03  9=0 at  x,=  co (E.4) 

 ui=0,  us=0,                                as—=0 at  xs=0 (E.5) 
                                       aco  633+  pg50-  f  (xi) exp  tot, „=0 at  xs=h  (E.6) 

                                                 OX3 

where  pi is the density of sea water and  f(xl) is 

 f(x1)=H  0  �x�a 
          =0 a <x(E'7) 

 Now, suppose that the dependent variables  co,  6 and u are forced to be a 
steady periodic motion owing to the tidal oscillation of sea water level H exp 

 icot, we can put 

 6-  (9*(x,, x3)  exp  Uot  (E.  8) 

 u=u*(xl,  x3) exp  hot  (E.  9) 

 co=c*(xl,  x3)  exploit  (E  .  10) 

 Taking  2/0=0 and  us*,  tr,  CO* to be symmetric with respect to  xi-axis on 
the basis of boundary conditions, the differential eq. (E. 1) becomes 

 ituO*=  Pg1iii(o)+2310w)}F26* 
and we obtain 

 ()*=  2  1-dard2[(Ae5n  +  Be-5x")cos  ax, cos0511 
             oo 

 u3*-50*dz=  2  da(Aefir" -Be&`") cos  ax, cos all  +F(xl)  Ir  op 

where  F(xl) is an arbitrary function of only  xi and 

                                iwpg 
                  193-a2-k{i(ico)+2 ,510(0)}(E.11) 

From the condition  (E. 5), we find 

 F(x1)=0,  A=B 

                                      and then 

                      2 "-  6*  = ooda dA  [2A cosh(3x3  cos ax, cos a,1 (E.12)         Ir 

              u3*-21"daodArdasinh  9x3cosax, cosafi (E  .  13)          7Cp2A 

 The differential eq. (E. 2) becomes 

 re-  kw  e* 

and we obtain
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     _   1                                  Idachl[(Ce'+ De')cos  ax, cos al] 
              a So c°*k (62 /0x,2+62 /ax32)+ 2rc00                                   (0            =daS:d2 [ k(s22_a2)2A cosh fixs+ (Cr+De-axa  )] cos  ax, cos ail 

       From conditions  (E. 5) and (E. 6), 

 aC-  aD  =  0 

 24  •  2A  sinh  fix+  a(Ceilk  Drah  )  =0  k(
192  a') 

       and then 

                    * =
Te2                   S0 da od2[ k (fi21— a2) 2A{cosh  fix3 

  sinh  flit                                       cosh  arskos  a,x, cos  ail] (E.14)                               a  sinh  ah 

        Carrying expressions  (E. 12) and  (E. 14) into condition  (E. 6), we can decide 
        the unknown constant A(a,  2). 

               - f_t(ico)+232(iio)6* xa=k+pgyot=h = pig f(xl) 
                                    =  131,4f)0 dac12(fGOcos  ax, cos  ea) 

               2A  a  tanh  ah                             (X+2 511)sinhf“) 

       Carrying this expression into  (E. 12)  (E. 13) and  (E. 14) and integrating these 
        with respect to  2, we can find the solutions of this example 

             2Hpig
30tanhah                                     h              (9= ir(i+2expiced0sinhSda[coshpis cos ax, sin aal (E.15) 

                                         2Hpig                                   r

ig2sinh 13h tanh  ah                   ICC( +230exp 
         u3=sinhjars cos  ax, sin aa]  (E.16)                    daE

. 

 2H  picosh axstanh  alt             W-rep0exp kotrdaracosh ahsinh                                               cosh firs] cos ax, sin  as  (E.17) 
                       fi 

         Quantity  us will give us the time variation of the 

        ground surface caused by the tidal oscillation of the sea 
        level. When the rheological character of the aquifer 

        is of Voigt's type as shown in Fig. 2, the value of  El 

 (1'+2.30 is as follows. 

 ..C(ith)+2J1(ico)                  {E2(E,+E2)+ (0)722)2} -Uov2E,  Ea[11112 
 (El  +  E2)2+  (0u22)2 

        3. Discussion 
                                                                       Fig. 2. Voigt's model 

 I) The gradient force  fi of the pore pressure was for the aquifer . 
        explicitely taken into the equation of the skeleton mo-

        tion in our treatment, while the effective stress was assumed to have no direct
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• action on theflow of pore water excepting the relative motion (II—aatau 1be-
tween them. From the viewpoint of the principle of reaction, it may be 

impossible to say that the stress really exerted on soil particles would do so. 
In fact, it is quesionable whether there is a supporting condition in a spring 
model as proposed by  TERZAGIII or not in the consolidation of partially perme-

able material. If we take up this problem, however, we are forced to solve 
the microscopic condition in which the soil particles and pore water support 

an external load.  TERZAGIH'S excellent success is perhaps due to dispose of 

the action of the effective stress on the squeezing rate of pore water to the 

experimental coefficient of the compressibility of the soil. Our operations  -C 
and  31 have quite the same meaning as in TERZAGHI'S case. But our case 

is a saturated one and then we must seek some methods for the  imcomplete 
saturated soil.  BLOT considered this problem and introduced the physical 

quantities H and R which may give a clue to this research. 
 2) As is well known,  DARCY'S law is applied to the flow of a liquid through 

porous media when its velocity is in a certain range, but his law becomes 
unsuitable at a higher velocity, probably due to the fact that the frictional 
force is not proportional there to the velocity, even thouth the coefficient of 

permeability  k was corrected to fit the phenomenon. When the velocity is 
extremly high, the soil particles could not keep their configuration and are 

possibly floated by the drag force of the flow. We must abandon the applica-
tion of our fundamental equations at that time. One of such motions is an 

interesting case driven by alternating force with high frequency. In this case, 
the pore water cannot flow smoothly in accord with the external force and 

will consequently be partially compressed.  Bturs'€) has already investigated this 

problem, taking account of the compressibilities of soil particles and water. 
The attack on this problem may give a solution to the prevention of soft layer 
damage in heavy earthquakes. We shall develop our equations to be applic-

able to phenomenon of variable densities, refering to  B/OT'S theory and at the 
same time, considering whether the criterion is compressible or not. 
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