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Abstract

The author derived a dynamic theory for the deformation of a granular solid satu-
rated with a liquid, assuming that the liquid {filling up the pore spacs is a Neswtonian
viscous fluid and that the skeleton constituted by solid particles is a linsar visco-elastic
solid. The theory consists of the three fundamental equations, that is, the equations
of motion of the liquid and the skeleton and the equation of continuity between the
particles and the liquid. In a case where the particle and liquid are taken to be in-
compressible and the deformation of soil takes place on a quasi-static procass, thesz
equations are accepted as the theory of three-dimensional consolidation, including
Terzaghi’s well-known equation as a special casz, and are also recognized as the basic
equations of motion of confined ground water in a visco-elastic aquifer. A theoretical
example will be shown for the rheological deformation of an infinite confined aquifer
with uniform thickness caused by pumping up water at a constant rate.

1. Introduction

Tt is said that the subsidence of a ground surface is based on the contraction
of the soil layer caused by the depression of the pore pressure. The conception
of pore pressure was first introduced by K. v. Terzaghi and soil mechanics
has made great advances through its conception. He considered that the soil
particles, being more or less bound to each other by the sticking force, constitute
a skeleton of soil with elastic properties and that the skeleton supports the
external burden together with cooperation of the water filling up the pore space
between the particles, and he successfully solved the settlement of the soil layer
with the good idea that a contraction of the soil depends on the rate of squeezing
out of pore which neccessarily brings about the decrease of the pore water
pressure. But he treated only a one-dimensional problem under constant load
with a quasi-static method.

In Oct. 1940, M. A. BiotD published the theory of three-dimensional conso-
lidation and developed the treatment of soil deformation for any arbitrary load
variable with time. In Sep. 1963, M. Mikasa® published a useful theory ol soft
layer consolidation showing many suitable examples, especially taking account of
finite strain. But they treated only an elastic problem in the same way as Terzaghi.

Although much attention has been paid to damage due to subsidence and persever-
ing efforts have been made to elucidate its mechanism on the basis of the above
theories, the results of many investigations indicate the nonelastic deformation of
the soil and the unfitness of the elastic theory for the quantitative explanation of
the settlement. Of course, the deformation of the soil layer could not be a sim-
ple rheological model owing to the irregularity of the alluvial structure and the
complexity of the mechanical character of soil.
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We shall now derive in this paper the visco-elastic deformation of a confined
aquifer as the first step in the rheological research of subsidence.

2. Derivation of Fundamental Equations

Soil particles constitute the skeleton of the soil matrix, pushing and rubbing
each other’s contact portions against an external burden. Owing to the comple-
xity of its structure, however, one could not expect the direct treatment of forces
acting on each particle. In the same sitnation, it would also be quite impossible
to deal quantitativey with the motion of pore water attending to the tortuous and
irrregular pore space. Therefore we are obliged to consider the representation of
motion averaged over a volume element of soil, which is taken to be large enough
compared to the size of the pores, so that it may be treated as homogeneous, and
at same time small enough compared to the scale of macroscopic phenomena in
which we are interested, so that it may be considered as infinitesimal in the
mathematical treatment. It will be sufficient in soil mechanics to consider the
average conditions over the volume of soi) in the above sense.

(@) Egquation of motion of pore water

The motion of water in pores is governed by the hydrodynamic equation of vi-
scous fluid. We regard the pore water as a Newtonian fluid and denote by V
(V,, Vs, V3) the particle velocity of pore water. The equation of motion of pore
water is expressed by

%I;=X~—%gradp— ( é n-—x) grad 6 + pp2 V (1.1
where ¢ is time, X is exlernal body force, p and p are the density and pressure
of water, respectively, 4 is the divergence of water flow, and » and « are the
kinematic viscosity of shear and bulk respectively; the dependences of which on
density p are assumed to be slight.

Consider a unit volume of the soil mairix in the sense stated above. Integra-
ting Eq. (1.1) over the pore space ¢ of the unit volume and using the following
notations:

U= SSS,V‘”’ pP= j SSSP d (1.2), (1.3)

we have

U ox 2 grad P —(%n—x)SgS’ grad o dv +9\{{ pPVar  (.9)
where U is called “Darcy’s velocity” or the “specific flow rate” and P is the “pore
pressure’” proposed by Terzaghi.

The pore pressure P is generally taken to be thermodynamic pressure and is
determined by the density and temperature of the water. In constant tempera-
ture, we can write '

log—£—=Bg(P—Py) (1.5)
00

where g is called isothermal compressibility. In the foregoing, po and P, are the
density and pressure in some reference state, say a state at rest. In the case
where external body force X is gravitational force, it is convenient to introduce
the quantity ¢ which is termed the “piezometric head”
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P = ,O_I; +x; (1.6)

where x3- axis is taken as positive upward.

Appropriate expression to the last term in Eg. (1.4) is given by referring to
Darcy’s law governing the flow of water in a porous medium. He postulated the
viscous force acting on water to be proportional to the flow velocity and introduc-
ed, as the proportional constant, the physical quantity 2 which is called the co-
efficient of permeability of the soil, and according to his expression, the viscous
force is written by

Paffir vaom- E{fi va

In the next paragraph we shall treat the motion of soil particles together with
the flow of pore water, and so it may be reasonable to assume that the viscous
force ' was proportional to the relative motion of water to soil particles, viz.

(V— aal;) where u is the mean displacement of soil particles as seen latter. From

our assumption, it is possible to express its force as follows

= F (V- 2) - H{0-o2)

Pore water is regarded to be almost incompressible in engineering practice.
In this case, inserting the expressions (1.5), (1.6) and (1.7) into Eq. (1.4) and
neglecting the inertia patt of acceleratiOn

aa[t’+ag[grad o + — (U oo "a'; )] 0 (1.8)
Eq. (1.8) is, of course, reduced to Darcy’s law if the soil particle has no motion
and the flow of water is not accelerated.

(b) Equation of motion of soil skeleton

we shall now pay attention to the motion of the soil skeleton. Terzaghi, Biot and
Mikasa assumed the elastic isotropy of stress-strain reiations for the soil skeleton.
While we also accept the isotropy in order to avoid the trouble of mathematical
presentation, we had better give up the elastic property of soil with reference to
the resuits of many investigations postulating the nonelastic deformation of soil.
On the other hand, it may be clear that the non-linear relation between stress
and strain make it difficult to analyse the deformation quantitatively. We now
regard it tentatively as a linear visco-elastic relation.®

Consider again the volume element in the sense stated previously and take the
average over the actual displacement v of soil particles contained in that volume.
We define it as the displacement of skeleton, u, that is

u l—i;SSS, vdv (1.9)

Supposing that the difference (v—u) produces only a minor effect on the stress
on the skeleton viz. effective stress and assuming the strain to be infinitesimally
small, the strain on the skeleton is given by tensov ey
_ 1 ou: , ou
e=—5 (B_x, a_xj) (1.10)
Corresponding to this, the effective stress ovj is exerted on the skeleton. According
to the assumption of linear visco-elasticity,® stress g4; is represented, as positive
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in compression, by

(1+ 2102 o= —2(1+ Sy 25 Jouo—2(14 385 G5 eu (1.11)

where 8i; is the Kronecker notation and @ is the dilatation of the soil skeleton,
that is
8u| 0Uy , OU3 2
6x|+ax2+3x3 (Il )
Introducing the operation with respect to time

a*
1+zapat,, 1+2ﬂp 2
e=3 " 7 =, T (1.13), (1.14)
7 50 n or
1 —— 1 T
+ 255 + 2105

we can write the stress force per unit cubic element of soil as follows
ad'i!' 26 2
=— ({ —_— = i .15
a%; (8+10) e Mpeu (1.15)
Furthermore, the skeleton is pushed by the pore pressure of the surrounding
water. This pressure action fi may not produce any shearing strain by reason of
the assumed isotropy and will be expressed by

f =SS(._,,SW 1’""“‘555“_,) grad pdv=—(1—o)grad P (1. 16)

per unit volume of soil, where r is the outward unit vector normal to the sur-
face element de of solid space.

In addition to the above forces, the skeleton tends to be dragged by the flow
of pore water in its direction through the reaction of the viscous force acting on
the pore water. This drag force f; will be expressed by

o ou
f,= ,_]f( oo — ) (1.17)
We can thus estabhsh the equation of motion of the soil skeleton, that is

(1—0'),03 —(l—o‘)X VO"“fﬁl‘fz

8:‘2
= (1—0) X+ (% + M) grad®+ M pou— (1—a>gmdp+pik&(v—a%’; ) 18

where p; is the density of soil particles and X is an external body force. In
almost all cases with which we are concerned, X is a gravitational force. Express-
ing the vertical]y upward unit vector by k, we have

(1 —a)pg 7 i (1—0) psgk + (L4 M) grad@+ My2u

~(1=n)gradP+p %€ (U—o %‘;) (1.19)
(¢) Equation of mass continuity

Finally, we shall derive the equation of mass continuity per unit volume of soil.
Suppose that a skeleton in any volume of soil had porosity s, at an instance of
no dilatation &=0, and that the particles in it had density pso at that time. Be-
cause the skeleton under consideration is to be framed by the same particles at

any instance, the mass of the skeleton must be conserved, that is
ps(1=6) (1+6) = pso(1—0v) (1.20)
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since the dilatation @ represents the volume increase of soil skeleton per unit
initial volume and ps is the density of particles at dilatation ®. The volume of
the skeleton is varied with time by external force and consequently, porosity ¢
is also varied. Eg. (1.20) gives us the relation between their time rates. As
our subject is soil fully saturated with pore water, the change of pore volume
results in the flow of pore water into or out of the volume element. This situ-
ation is represented by

g{(ap)=—div(apV)=—div(pU) (1.21)

where p is the density of water, V is the particle velocity of water and U is the
specific flow rate as defined previously.
Combining Eq. (1.20) with Eq. (1.21), we make

2 {a=0)pitop) = 2 (¢ 11%”*‘)] div (e D) (1.22)
This is an equation which we expected to derive. Relation of ps to ps may be
obtained from the consideration of the compression of soil particles due to the
effective stresses a;; and pore pressure P, although we have little knowledge
about it at present. However, in general, the compressibilities of soil particles
and water are small. Assuming both densities to be constant we rewrite Eq.
(1.22) as

<1~ao)%—€+div U=0 (1.23)

with good approximation neglecting the small quantity of order 62

Approximating the values ¢ in Egs. (1.8) and (1.19) to the value oo after Eq.
(1.23) and summarizing the fundamental egations in the case where the external
body force is only gravitational force and the soil particles and pore water are
incompressible, we have

<1 0‘0) Psl) 3),‘2 :—(1—00) (pgo—pg)gk+ (2+ml)grad9+mzyzu
_ ag(yr_ ou
(1—00) peg gradp+ py L& 3 (U o at) (a)
U _ ou
S+ out[grad g (U=en )] =0 ®
(1_00)W+dlv U=O (C)
where
= QUi Oy | Oty _P
0= o on T on Y=g T @, (e
i mo b
1+Z“Paﬂ, 1+p=216p5?p
Y= - , M=y — __a 0, (@
d »
1+2rﬁ Bt’ l+;7‘p'ét7

In the remainder, we shall omit the subscript “;” from the respective notations.

3. Derivation of Fundamental Equations of Subsidence
In this section, we shall seek the fundamental equations for the deformation
of a confined aquifer caused by ground water flow.
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Let us first examine a static equilibrium state of the skeleton with a steady
flow of pore water. From Egs. (a) (b) and (c), we have
O0=—U—-0)(ps—p)gk+ R+M)grad@+Mpiu—pg grad ¢ 2. 1)
Now, we divide the displacement u into itwo parts, u; and u, which satisfy
the equations

0=—(1—0)(ps— p)gk+ &+ M) gradBy, + Mp2u,, (2. 2)

0= (B+M)gradBe,+ My ?us, — pg grad ¢ @. 3
respectively, where

O =div upy, B =div uy, @. 4), @ 5

Eq. (2.2) expresses that uy, is the displacement caused by the apparent weight
of the soil skeleton in water without external load and Eq. (2.3) means that if
uy; is uniform in the entire body of soil, grad ¢, consequently U, is zero, say
conversely, if pore water flows, the skeleton of the soil must be strained to that
extent.

When external load and/or piezometric head ¢ vary with time after the initial
state, the strain on the skeleton and the velocity of flow begin to leave the static
state. We proceed to investigate the unsteady motion.

Disolving the quantities ¥, ©, U and ¢ into the static part ug=ug +up, 6
=60+6;, Uy and ¢, and respective deviations u’, 6, U’ and ¢’ from the static
one, we have for the deviating parts

(I-—a)p; aﬁ —(2+§Ift)grad9’+§m£73u’—-(l—a)pg grad ¢’
: o2 (yr_ oW
% (U Y ) @ 6
U , -
Y -i-og[gradga +- <U )] 0 @ 7
(1— o') +divl’=0 2. 8

We can now derlve the equation for only the dilatation & in the following man-
ner. In the remainder, let us omit the prime of each quantity. Taking the
divergences of Eqs (2.6) and (2.7) and the time derivaiive of Eq. (2.8)

50

(1~0) ps2 atz O _ (2+2m)pi6- (1=0) pg7p+ p-%- (dwU 07) 2. 9)

3 1 (o0 38

ét—d1vU+ag[V?go+--—<dwU 238 -0 (2.10)

(1—0) %g at divU=0 @11
Combining Eq. (2.10) with Egs. (2.8) and (2.11),

Prp= Ig‘g" o+ % 2.12)
Substituting from Egs. (2.8) and (2.12) into Eq. (2.9),

_ 1-¢ ) 3*0 . pg 30 _
(=0) [+ 152} 284 28 % - +amypre (2.13)

This is the equation we want to derive.
As the particular case which interests us, we shall pick out the guasi-static
motion. Neglecting the accelerated terms in Egs. (2.12) and (2.13), we find

39 a0 _ .
2 = krrp= g<8+25m>79 (2.14)
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Differentiating the right part of Eq. (2.14) with respect to time and inserting
the left part of Eq. (2.14) into this, we make

72[3—‘;—%(8+2m)72¢]=0 2. 15)
This may be regarded as the basic equation of three dimensional consolidation.
It is worthy of note that if ¢,(¥, %) is a solution of Eq.(2.15), o,(¢, x)+F (%)
+ Fy(f), where p2F =0, is also the solution within the limits of quasi-static tran-
sition, in physical words, the progress of consolidation is not affected by the
non-divergent flow of pore water and/or the gradual change of the water head
in the entire region of the soil medium. When the non-divergent flow has alrea-
dy been included in the static part of the piezometric head considered previously,
Eq. (2.15) is reduced to

dp _ k 2

a_t—¥ﬂ;;g,(2+2ﬂn)7 o (2.16)
In the case of the elastic skeleton, operations £ and M are reduced to Lame's
constant 2 and g, respectively. Let us examine the special case of a column of
soil supporting a load and confined in a rigid cylinder so that no lateral expan-
sion can occur. Eq. (2.16) is then rewritten as
op _ k d*p
Bk aran 21
By comparing this with Terzaghi’'s well-known equation, we can see the relation
of operations & and M to the value @ which is termed the coefficient of compre-
ssibility in soil mechanics, ©

L+2M=1+e)/a=1/(1—0)a

Eq. (2.14) is taken as the basic equation for subsidence closely related to the

flow of confined ground water® through the visco-elastic aquifer. We shall show
it here in a simple example.

4. Example

We consider the deformation of confined aquifer caused by pumping up the
ground water at a constant rate after a certain instance in a laterally infinite
aquifer with a uniform depth as seen in Fig. 1.

r» @ = Constant

—-— - .
T wepressmn

- . cone
P Confining
b stratum

nitial piezometric 2__ _
= ~~ y Drawdown
N

4 /97

g
Confined - = -
aquifer - B N - =

HLn A : AN ¥’ "
Bedrock " fe2r,

Fig. 1 Radial flow to a well completely penetrating
an infinite confined aguifer with a uniform
depth & and a permeability K.

Assuming that, at the initial state, the confined water had no flow and the



8 Y. FUKUO

aquifer was in equilibrium under a burden load in gravitational field, we have
the equation for the deviating state from the equilibrium one
%_‘?=%<2+2mm@=kw 3.1
Now, supposing that the aquifer deforms only in a vertical direction and that
the flow of water is uniform in the vertical cross-section and that the upper and
lower boundary surfaces of the aquifer are not leaky, we can put on initial and
boundary conditions,

t=0; 6=0, ¢=0, w(=u)=0 (3. 2
>0 ; —27rer_‘;‘;—=Q, at r=7u 3. 3)
-0 9 _ -
6=0, 37 0, at r=o0 3. b
09 _ - —g G0 _ -
e 0, w=0, at 2=0, 7z 0 at z=b (3.5), (3.6)

where, b and K are the thickness and permeability of the aquifer, respectively,
7w is the radius of the pumping well, @ is the pumping rate of water and the
surface z=0 and & are the lower and upper boundary surfaces of the aquifer,
respectively.

From the conditions (3.5) and (3.6), we can see that the quantities ¢ and &
are independent of z and that the amount of subsidence is obtained by w(z=25)
=b6.

Reducing the Eq. (3.1) to ordinary differential equation by Laplace transform-
ation, we have :

HVe =:—g{2(p)+2§m(p)]72V9=k72Vp G
with
. v, _Q
r=rv ; —2zbKr ar” b (8. 8
r=co ; Ve=0, f@g:o (3. 9
where
Ve={" eroa, V,={" eripdi (3.10), (3. 11)

Let us now consider the deformation in the Voigt model as a typical visco-
elasticity. In this case, the operation is expressed by

1+c¢p — al+2Bu

2 = —_— = - - =+t .
R(PY+2M(p) =(2+2p) 5,5 where ¢ 2, (3.12)
and representing by the usual notation shown in Fig. 2, the quantities 2, p, 7
and ¢ are

PR PSS O > W NPT S | (3.13)

E+E, . T TE+E E,
with notice that 0<—i~<%. We have the solutions of Eq. (8. 7)

Vo
,_ATQ / THep Kol Y5r2) 3.1
T 2nbrw ¥V PP (1+7D) K)(E_rwz) '

v
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E: o=

Ee

e

Fig. 2 Voigt's model for the rheologi-
cal character of the aqufier

V7@ l+7p K”(‘Ji”)

2avbr.t PP(1+ch) K, (J_ ’ z) (3.15)

where K, and K, are the modified Bessel
functions and

pEﬁ_z,/i, = 1+_2/i_57”“
o8 Kpg K,
2= ,P(H‘Tﬁ)
1+cp

The solutions ¢ and @ are determined from V, and Ve by the use of the inver-
sion theorem for the Laplace transformation

1 oo a+ioo
= oni Sf,:‘ Vedp, 6= S L6 Vedp (3.16) (3.17)
As the functi Itep [ Ttrb _ pg(dr JT .
S e funetions I/ pPa+rp) ‘/ DT+ » K°< v 'z> and K% z)
have the branch points at p=0, —- i , = ; - and —oo, the integrations in Egs.

(3.16) and (3.17) are carried out, using the contour of Fig. 3 with two cuts on

Fig. 3 The contour of inverse integra-

tion for Laplace transform-
ations Vo, and Ve.

we get
ol e, - 458
2my [SL. p+), dp Onbre

the negative real axis so that the integt-
ants are single valued functions of p within
and on the contour.

In the limit as the radius of circle I
tends to infinity and the radii of circle &,
and &, tend to zero, the respective integrals
round them can be shown to vanish. On
the circle 8o, we can find the limiting value

llmis et?V,dp

5o 0 27t

S om0 09
as the radius 8, tends to zero, where C=
0.5772--- is Euler's constant.

Because the argument of p is = and —=
on the lines L,, L and L,’, L, respecti-

vely and then Ko<’/: rz) KL({E mz) are

expressed by the formulas,
Ko(xia)=Fi-% [ (@ FiYo() |

Ki(zi)= - [ J(FiY(@ ]
Z : real, not negative,
LS“’ o/ 1=co
T Jiy p*(1—~7p)
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x JWDY () = Yo () 1 (") 4,
Jir w)+Y|2(7 w)
1 _ 1Q L Ve ot /7 1
ont [Sudi’ﬂ“sm,dﬁ] T 2nbre = San ¢ l/—a”gp—_'j')‘
POV w) = Yo(r') ] (7 w) do
T+ Y (e

Finally, we get the solution for the piezometric head

o=y (7€ Jim Tog (5 )

V@ i Sl/° st /T 1—cp  JoODY (7 w) = Yo (D) i (7 w)

2nbre 0 3se &V 0 (1=70) T (r D)+ Yt (r'a)

T e ot - 0 Yi(7e) =Y, w
Vr @ Svf ‘/ co=L LNV =Y OD] () 3 g,

2nbre 3(7’,0—1) T w)+ Y 2(7 )
_~/_ o(1=r1p) _~/r Pp(1=1p)
where r= 71/ T—cp 7w i ep

In a similar way, we can find the solution for the dilatation

o—_T9 [ZC—llm log(%é)]

Agv2h 50— 0
J?Qf . Sl/"e"" T—70 e Jo)Y Y (7)) = Yo () ] (7 w)
27%b¥w 5o 0 80 o’ (1—cp) T W) + Y37 w)
N Q (= - ,,1 114 - S Y () = Yo ) Ji (7 w) 3.90
2rivbra Sm o (1—cp) JGAES I CA I
When the radius of the pumping well is very small, we have
. s . 2w __ 2 [/ 1-cp _
}LTojl(r W>_0' 1'1:30 er|(7’,w>— 77f7w’ ﬂJT p(l TP)

and then
) l/ce pt Jr ‘/P(I—TP)
lim o= yb I: 2C—11m log(4 2 5) 60_)0 a,. (

rw-»0
_S;y ;’P‘]o _Jvirl/p_(ll_c%@)dp](&m)

: . 72 ) Ve -pt 11—
Iim 6 = szb |:-2C—11m ]og(%z-ao)—lu:ra Ss..e p(l__Tfp).

-0 I
A D a5 T S o B Y

In the special case where 7=0, we have

i =g {20~ (35 S
whimf, o W (' 1 g )ee)
=1z bK I: 2C— hm log(4 z 60>—]1m W(5:2)

Jf W(pt) oo 1/ I—cp l(T"/ dp]

= anI: C_IOg(‘lv 3 )+Jr SD W( C;iil_>] <1/T 7’E>d§:| (3.23)
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h W(xy={ -*dy is the “well function” and El/ -
where €] Sx , unction” and ¢ {=cp »

and also
_ Q L (Veert AT 1/ o
lim & = T |_ 2C— llm log(4 35o> 8«131—?8 Sao P ]o( vl T=¢p >dp

rvo—0
. _CS:/C et Jo(_’r‘/ l 4 . )dp:l

c
~ b ("+2,;)K[ C- log(wt)*ﬁ S:W(c;il) ( )
o :;;Jo(Tq/ L0 )a] s Geee=n)

0
- stz O ee(E) - 7))

A e e
- e Wl ey | (U5re)de] (.24

Using the dimensionless time #* and distance 7*
=l r*z‘/L - (3.25)
c 4 Vo,

the amount of subsidence { is obtained by

=568 - o
T(zp-%)ﬁ[_c_]Og(*g;r)ﬂ“*W(—t*)
+, W< Y1 )'*]'(’* )dy

—et S:W< i )r*f ) (r*y)dy]

i+
—(lerron( 52 )+ B GO () ey
e lovue et (o))

pEY  [_c_ 7+ U ey .

4m+2ﬂ)K[ ¢ 108( 4% )+e‘ W(—#*) — (C+logt*)

- “ . © 2y *
27*5 logy ]l(r*y)dy-l-so Y1 Jo(r*y)dy

O 1O yz ) Tty

et* *Y _ pmt*¥
(C+logt*) —e So 2+1 JoG*y)dy

+e-t*§ n-ln! o {”S ddy( yz-ll-l )ﬂjo(r*y)dyH

=i

+e"*W(— ) — 2(—C— long*)

pgQ —9C— 1o ¥
4n(1+2p)K[ 20 —log—7
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+2(1-e Y Kar®) +e* (CHloger+ 5 L e

—25 (G e[ (=7 (75 )™ K]

m=um!(m+l)!(n—m——l)!
— 2 1*2 (n|>2 t*”( )Kn(r*)—l

ok o — 1) mpmtm

= Q4THK
"*2 (nl)z (72 ) K”(’*>]

oS k[ R + B (G R f1-e 3 ST

—e

2r(A+2p) K
Summarizing the result of the calculation, we have the solutions, o, © and
in a special case where 8420 =Q+42p) (1 +c— aat )
. _ e 1 I R
lm 0= 51k [ Ko +,§,Zs‘< ) Ear) [1-e I 1] (3.26)
TS | Y BN Y LA [ ptx s B
o = ok L2 nt (o) Ko 1= S )] e
i —__pgQ  ral /rkNm 0y [ ek BT
lim (= ok [ ST\ 2 ) Kt {1 ,530 ) 3.28)
t T T L2
pr=_t =/ T T = pgT" 3.29
where ¢, l/ vV eKGQ+2m 3.29
TIME (t%)
0 [o}] 0.2 03 04 as
! T T | T T T f T 1
| VISCO-ELASTIC {r*=02)
wi
(&]
=z -
L
)
o | ELASTIC (Ir'*=0.2)
m
D
w
2_
DRAWDOWNQL—RECOVERY—‘-L—DRAWDOWN—

sl
Fig. 4 Comparison between the deformations of elastic and visco-elastic

i i i *— P8R —
confined aquifers in a case where »*=0.2 and TG+ 9mEK 1 for

pumping up the water intermittently.
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Comparison between the elastic and visco-elastic deformations is shown in

Fig. 4 with th ¢ soluti ogl  w( 7\ in the elastic subsid
. ela™ - . 1 10 -
ig. 4 wi e exact solution (e G2 K Ak ) in the elastic subs
ence and the approximation of the third power of #*™ in visco-elastic one, Eq
i * __peQ __ _ i
(3.28) in a case where 7*=0.2 and T oK 1 for pumping up the water
intermittently.
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