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                                Abstract 

  A method is presented for calculating various characteristics of the turbulent 
boundary layers developed on both smooth and rough bottoms by waves. The profiles 
of velocities and the mass transport velocities in the oscillating turbulent boundary 
layer are derived theoretically on the basis of a physically meaningful assumption of 
an eddy viscosity, and the numerical results are compared with existing experimental 
data which have been done by others. 

  In addition, the analytical data on the oscillatory flow near the bottom are applied 
to a theoretical description of some of the problems of sediment movement such as 
determination of the predominant direction of sediment transport due to waves. 

1. Introduction 

 In order to estimate accurately the magnitude and the predominant direction 
of sediment transport, it is important to find a law which describes the 
oscillatory flow near the bottom due to surface waves and from which the 
hydrodynamic forces acting on the sand grains can be  derived, and to reveal a 
relationship between the flow near the bottom and the movement of sediment. 
Much theoretical and experimental studyhas been done by others on the action 
of laminar boundary layers under the surface waves.  Longuet-Higgins" have 
deseribed the mechanics of the boundary layers which are developed on bottoms 
by a progressive wave in shallow water. Iwagaki and  Tsuchiya2 have studied 
theoretically and experimentally the problem of wave decay in shallow water due 
to bottom friction under the surface waves. However, the mechanics of the 
turbulent boundary layers under the waves are not well understood because of 
the complexity of the phenomena and because of the difficulty of developing 
turbulent boundary layers due to waves in small-scale laboratory flumes. 

 To observe the characteristics of turbulent boundary layers due to oscillatory 
flow,  Kalkanie experimented using an apparatus with an oscillating solid 
boundary.  Jonsson° conducted experiments using a U-type wave tunnel in 
order to measure the velocity in the turbulent oscillatory flow. Recently, Hori-
kawa and  Watanabe” have shown that the velocities in the turbulent boundary 
layer under waves developed on bottoms can be measured by the flow visualiz-
ation method. 

  On the other hand,  Kajiurao has presented a theoretical model of the structure 
of the turbulent oscillatory flow in which the basic idea was to consider the 
average state of turbulence over one wave period and then to assume an eddy 
viscosity analogous to that for steady turbulent flow. And  Johns') has shown a 
boundary layer method for the determination of viscous wave damping in 
turbulent conditions by assuming an eddy viscosity different from that of Kajiura.
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 In the present paper, the velocity distribution and the bottom shear stress in 
the turbulent boundary layers developed on both smooth and rough bottoms are 
estimated by using an assumption of eddy viscosity similar to that of Johns. 
In addition the mass transport velocity in the oscillating turbulent boundary 
layers under partial reflected waves is also derived on the basis of this theory. 

 This theory suggests that the direction of the net sediment transport is affe-
cted by the mass transport. 

2. Analytical Considerations of Velocity Profiles in Turbulent Boundary Layers 

 The objective of the present study is to derive an adequate description of the 
turbulent flow of a  realfluid near smooth and rough bottoms under wave action.  

(  1  ) Formulation 

 For a two-dimensional case, taking the coordinate axes  (x, z) fixed in the 
horizontal bottom with the x-axis directed horizontally and the z-axis vertically, 
and assuming an incompressible homogeneous fluid of constant depth, the 
boundary layer equation for the averaged motion is: 

       au +uau +wau - -1 ap1 at   (  1  ) 
      at  ax az  p  ax  p  ax 

and the equation of continuity for the incompressible fluid is given by the 
expression: 

       auaw   + —0  (  2  ) 
 ax  az 

in which p is the pressure, p the density, r the shear stress, u and w the ave-
raged velocity components in the boundary layer in the direction of x and  z, 
respectively. Additionally,  u„ denotes the velocity just outside the boundary 
layer, and it is related to the pressure in Eq. (1) by the form 

 1 ap  _au_+u --au-                                              ( 3 ) 
 p  ax at ax 

  In dealing with the turbulent case, an appropriate expression must be propos-
ed for the shear stress of turbulent flow. The shear stress is given  by the 
expression 

             au   11= Ng-a_z  (  4  ) 

where  N. is usually referred to in the literature as the coefficient of the eddy 
viscosity. In addition, it is assumed that the coefficient of the eddy viscosity 

 N. is a function of a only and is given by the form 
 Nz  vN  (z) (5) 

where  v is the kinematic viscosity and N  (z), which is a non-dimensional form, 
describes the effect of turbulence. 

 The boundary conditions are that 
 u  =  w  0 at  z  =  0 (6) 

 U  =  uw as  2.—.00 (7) 
 The velocity u is taken to be equivalent to that of the bottom in the irrota-

tional theory, that is, 
 U..=  614,1+  e2U.1-1-   (8) 

where  € is a small ordering parameter,  w=27/T  (T  : the wave period),  tre.,1 and  tto.2
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are expressed by the real part of 
 tn. (x)  eiwt  (0) 

and  U62 (x)  I 
respectively. 

 The vertical velocity in the boundary layer is derived from Eqs. (2) and (6) 
in the form 

       w__EC  8u de                                                (10) 
               ato 

by introducing a non-dimensional quantity  $ defined as  follows  : 

 e  =  en  +  a(i) (11) 

                  

\  1 
where 

         =  (vT/27r)  A 

 ED =  +a  (z0/5) (12) 
a is a constant and  ac, the roughness length. 

 Substituting Eqs. (3), (4), (5) and (10) into Eq. (1) yields 
 au auau  5E auatau-a         u — de =u" + u.  +(au                                   Ar)(13) 
 ataxae  axataxaeae 

 If the horizontal velocity in the boundary layer is expanded as a power series 
in  e in the form 

 u =  etti +  e2u2   (14) 
the differential equation of the first approximation for u is given by the expre-
ssion 

     au, _  au—i+ a2,0a(N au,  (15)       at at ae•ae 
with the boundary conditions 

 u1=0 at  E=E0  l(16) 
 u,= as  e-oo 

By putting a solution for  u, 
 Et,  =um (x)  (1-F  (e))ee" (17) 

and by substituting Eqs. (9) and (17) into Eq. (15), the differential equation 
for the function F is obtained as  follows  : 

     drddn_     a' F=0  (18)      \e 
with the boundary conditions 

 F  (e0)  =  1 1                                                (19) 
      F(00) = 0) 

  The velocity  u, in the boundary layer is expressed by the real part of Eq. 
(17). 
  The foregoing formulation is quite general, but the boundary layer equation 
for Kalkanis's experiment which was done by using an oscillating bed takes the 

 form 
       au  _ 1  a,  

  at  p  az(20) 
with the boundary conditions 

and        u=uwat z=01                                                (21) 
 u=0 as z-.0.01
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where u. is a periodic function of t only. Therefore, a solution for  it is obtained 
in the form 

 u=u-F (e) (22) 

by substituting Eqs. (4) and (5) into Eq. (20). Additionally, that of Jonsson's 
experiment which was done by using a water tunnel is given by Eq. (15), but 
the term  (au,s,/ao is independent of any spatial coordinate. Therefore, its solut-
ion is expressed by Eq. (17) with  ub,  = constant. 

 (  2  ) Analytical solution of equations 
 Non-dimensional form of the eddy viscosity N: The functional form of N 

must be determined in order to derive the velocity profile of the oscillatory flow 
in the turbulent boundary layers. 

 Kajiuras) assumed the turbulent boundary layer of the oscillatory flow to 
consist of three  parts  : the inner layer, the overlap layer, and the outer layer, 
by following the concept of the wall and the defect layers established for the 
case of an unidirectional turbulent boundary layer. Consequently, eddy viscosity 
was assumed to be constant in the inner and outer layers, and to increase in 

proportion to the height  z above the bottom in the overlap layer. Such an 
assumption was employed by  Johns', in problems of damping of gravity waves 
and tides. However, the eddy viscosity which was assumed by Johns increases 
and decreases with  a, in the inner and the overlap layer, respectively, and is 
constant in the outer layer. Kalkanis also showed that the eddy viscosity for 
the case of the turbulent boundary layer of oscillating beds was assumed to be 

proportional to  z2. 
 In this paper, by following a concept similar to that of Johns (1968), and by 

taking account of the bottom roughness, the non-dimensional form of the eddy 
viscosity N is assumed in the form  : 

     for 50 ee, (23) 
  N=l2for Ele< e2 (24) 
  1 for  E2  e (25) 

where 

 C=1+{(el-1)(e2-$)/(E2-$1)} (26) 

and 

 Ei=eo+cr  (z1/5)  (27) 
 e2=  eo  +a  (z2/(3) 

and  zo is the roughness length, but is not well defined physically. The quant-
ities a,  al and  2, are disposable parameters which should be determined by the 
turbulent structure and the scale length of the boundary layer. 

 For the case of a smooth bottom, the eddy viscosity is given by putting  zo=0 
in Eqs.  (23)—(25). 

  Finally, because of dividing the oscillating turbulent boundary layer into three 

parts, the boundary conditions which must be added in Eq. (19) are that F and 
dF/de are individually continuous at  C=e1 and  e=ez. 

 Solution for  e2ce<e,  : 

 Substituting Eq. (23) into Eq. (18) gives the differential equation for  F:
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      d(e2 dF F, 
      del de  I  a2 or

Jr(28) 
      (PP dFi  C2

d-52+26—de——a2F=0 

and hence its solution is given by  : 
 F—  e-34(Ale-n+  A2e) (29) 

in which  A, and  A, are constants determined by the boundary conditions and n 

 (=nR-Finr) is a complex constant in the form 

 n=  (i+LY (30) 
 4  a' 

as a function of a. 

 Thus,  nR and  nr which are the real and the imaginary parts of n, respectively, 

can be expressed as follows : 

   ?IR(41+ (2/a)4+1)H (31) 

          8  

    _e1+(2/a)' —1)34(32) 

 8 

 Solution for  er<e<ez  : 
 For Eq. (26), it is readily seen that 

 (it  _  l3 

by putting 

 p=  _  _CL-1 (34)  e2—e^ 
 Substituting Eqs. (24) and (33) into Eq. (18) gives the differential equation 

for  F: 
   d(c,dF)_iF=0 (35) 

       lit\dC-(re' 
with  a4=ai3. Since Eq. (35) is the same form as Fq. (28), its solution is given 

 by  : 
 F=E-31  (BI  C-'" +  B2 Cm) (36) 

in which  B1,  B2 and  nt  (=mR+imr) are complex contants, and then  m is a 
function of  ore only 

 (1  i  \34  M  \  
4  asaI (37) 

Additionally, 

   mR=e/1±(2/ae)'+1)8 (38) 

 8 

 mr  =(41+  (2/ae)2  - (39) 
 8 Solution for  6,<6  : • 

 Since N=1 for  E->62, then Eq. (18) is simplified in the form  : 

        d2F 
  de  —a, F=0 (40) 

and its solution is given by  : 

  F = C exp 6) (41) 
                 24 a
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where C is a constant. 
 Determination of the constants of intergration  11,,  Ay,  B,,  B2 and  C: 

 By applying the boundary conditions (19) and the continuous conditions of F 
and  dF/de at  e=e, and  e=e2, the constants of integration  Al,  Ay,  .81,  .82 and 
C can be determined from the following  equations  : 

 (Aleo-"+AzEon)  ecn  H=1 (42) 

                                            (43) 

    (2          + m)Bleim ±(12— m)Bielm} 

           \ 

               +0,41$1_,,±(2)_n\A2ei,,) (44) 
      )\ 

     [(122m) B+ (1—tn) By= ThiCe-1Ez (45) 
 B, + B2 =  —2Ce-42 (46) 

where 
 A  =4i/az  =  +  ORUct (47) 

Hence, by using of Eqs. (45) and (46), it follows that 
 B,  =—  DIB2 (48) 

where 

 (1+0-142a4—nz) 
 D,  =  (49)  / 1 \ 

           (1+0+VIcreL2-+ 

 Taking Eqs. (42) and (48) into account, Eqs. (43) and (44) may be written 
respectively  : 

 A2  = {(1 —  Dieit)ei-B2 —  viDin}neensinn  (n62) (50) 

      2neinil2 = [ Ki +nz)fi+ (12+ n)} (1 — Dlec,m) —2mfil  einB2, (51) 
                           in which 

 Dy =  e,/e. and  B2  =1n  D2 (52) 
Furthermore, by the combination of the above equations, 

 B2 =  Bedi (53) 
 A2  =  Ae3H-n (54) 

where the constants A and B are given by the following  equations  : 
  B = n/D3Elm (55) 

 A=[{(12+ m),8 + (12+n)) (1 — DIer2m)— 2m/31/2D2nD3                                                (56) 

by putting 

      D3= [22M)8+ (1+ n)} (1— Dier2=)-2mAix 
       sinh  (n02)  —  nB2n (1 — (57) 

Hence, the insertion of these expressions in Eqs. (42), (48) and (46) yields 
 A,  =  (1-EMECNOn  • (58) 

 B, =  D,Bwi (59) 
  C  (1—DI)  Be034 (60) 
 Bottom shear stress 

 To clarify the relationship between bottom shear stress and wave characterist-
ics such as the water particle velocity at bottoms it is convenient to define
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the following quantities  : 
the bottom friction velocity  us* 

 TRIP =  uo*us* (61) 
where  uo* is the amplitude of it. The velocity just outside the boundary layer 

 81Z., is represented by the real part of 
 sub' (x)  e" 

If  0 is the phase of  :03* relative to  Eli„,, the bottom friction velocity  tia* is defined 
by 

 UR* =  uo*eic<ot-co (62) 
Furthermore, the wave friction coefficient  CI is generally defined by 

 TRIP =  CI  (Mb')  Etiwi (63) 
 In general, by using Eq. (4), the bottom shear stress is given by 

                au  rn/P =[N.-a-z]z=0 (64) 
 The insertion of Eqs. (17) and (23) in  Eq.  (64) yields 

 7-8/p  =  (WO)  wet M  (e0)  e" (65) 
where 

 -WED)  =—  crEoF'  (ea) (66) 
 (  3  ) Numerical Results and Comparison with Previous Experimental Data. 

 a) Comparison with experimental data obtained by Jonsson et al. 
 Jonsson measured the velocity distribution in an oscillating turbulent flow over 

an artificially roughened surface, by using 
a U-type water tunnel. The roughened surf- 
ace used in his experiment was a triangular0.6cm 
shape with the dimensions  O. 6 cm high and 
1.7cm apart, as shown in Figure 1. The  0.25  con  0.6em 
velocity was measured by a small propeller                                               Fig. 1. Roughened surface used 

 (0.  5cm diameter) and a photo-cell type  cut  r- by Jonsson. 
ent meter, and the bottom shear stress was 
calculated by the integration of the velocity distribution. In addition,  Carlsen", 
later, experimenting on the same tunnel, added new data. 

 Their exprimental conditions are presented in Table 1. 

               Table 1, Experimental conditions used by Jonsson 
                          and Carlsen. 

                           Jonsson Carlsen 

       wave height H (cm) 540 430 
         wave period T (sec)  8.39  7.20 

        water depth h (cm) 1000 1000 
 llj  (cm/s) 213 153 
 b (cm)  0.116  0.107 

 it,blu 2460 1640 

 Since  sue, is constant in the case of the water tunnel, by putting  Ent,=u, 
 -TrH/T sinh kh , Eq. (65) may be written in the form 

        t-B/ p=u02 (u05/0-1M  (Eo)  eiwt 
or(67)  (

rB/  pun')  (uoa =  M(E0)  e"
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Hence, the relationship analogous to that of  Eq. (62) becomes 

 (uo*/u0)ael{wt-�) =  (u0Shi)-'Melzat (68) 
By differentiating the above equation with respect to  ad, retaining the real 

part of it and putting  (0t=0, the phase difference 0 of  Ts relative to  uA is given 
in the form 

   =  tan-I(MR/Mi) (69) 

where  MB and  MI are the real and imaginary parts of M, respectively. 
 To compare the experimental values with the theoretical prediction, the follow-

ing  rrothod is adopted : firstly,  (z-B/pu02)  (1403/0 defined by Eq. (67) is  corn-

         

, i I ^ I I 
 •  •                      •  

 20••• 
 •  • 

 • 
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                   1O •  
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            Fig. 2. Variation of bottom shear stress with time based 
                    on Jonsson's data. 
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              Fig,  3,  Relationship  between  Cf0  and  Re.
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puted for the various values of a,  zo/d,  zi/O and  z2/3; secondly, the computed 
value is chosen so as to be in satisfactory agreement with the experimental 
data  ; and finally, the numerical values of a,  zi/O,  z1/5 are determined. 

 Figure 2 shows the variation of  (ra/pu02)  (434) with time based on  Jons-
son's data. In this figure, the full line indicates the theoretical curve computed 
from Eq. (67) for a case of a=2.4,  4t/3=3.0,  41/3=50 and  zz/O-100. The 
agreement between the theory and the experiment is fairly good. In the comp-
arison of the experimental data with the theoretical results, the Reynolds 
number,  uoi/s,=2460, in this experiment seems to be roughly related to the 

parameter a with the values of 2. 4. 
 From Eqs. (63) and (68), the maximum value C10 of the friction coeffic-

ient  Cr is given by 
 CIo=  (tioahi)-'R  (Melo) (70) 

where the symbol R denotes the real part of  Meio. Figure 3 shows the re-
lationship between the maximum friction coefficient  Ch and the Reynolds number 

 uod/u. In this figure, the full line denotes the theoretical curves computed 
from Eq. (70) as a  —  (40a/  u)  X  10-3, and the experimental data of Jonsson, 
Carlsen and Iwagaki and  Chen,' are also plotted. 

 It is found from this figure that the value of a may be roughly equivalent 
to that of  0403/0  X 10-s, Furthermore, Nikuradse's roughness parameters used 
by Jonsson and Carlsen are 2. 3 and 6. 3cm, respectively, so that the roughness 

parameter of Carlsen is about  2.7 times that of Jonsson. As shown in Figure 
3, in the present theory, Jonsson's and Carlsen's roughness parameters  ze/a have 
the values of 3. 0 and 8. 0, respectively so that Carlsen's parameter is about  2.7 
times that of Jonsson. 

 This shows that the theoretical predictions agree well with the experimental 
data. Figure 4 shows the variation with time of the velocity  distribution in the 
turbulent boundary layer experimentally obtained by Jonsson. In this figure, the 
full lines denote the theoretical curves derived by Eqs. (29), (36) and (41), for 

  ~II••60 
                                                  50 

 turast40 
       •

El:30 

                                                o 

                                                    o 

                                              o 

        • 
• o° 

.1.9•                                                   0 
                                                              .• 

       -05 0  • 05 1.0 

 LJ/Uo 

        Fig. 4. Comparison on a velocity profile between experimental values 
               and theoretical curves based on  Jonsson's data.
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 the case of  a=2.  4,  ,a0/5-30,  zi/  b=  50 and  22/6=100.  It is found that the obse-
 rved values of  u/u, almost agree with the theory except in the upper layer and 

 furthermore, the thickness of the turbulent boundary layer is greater than that 
 of the laminar case. 

  b) Comparison with experimental data obtained by Kalkanis 

                                 Table 2. 

 Run  1  Run  2  Run  3 

 An  (ft)  1.0  L  5  1.5 
    T (sec) 2.76 3.53  a68 

 'to  (Ctrs)  2.275  a  67  3.52 

 s  (ft2,  S)  1.06  X  10-5  1.06X10-3  1.06X10-5 

 S (ft)  a 16x  Iv  1  a  44  X10-3  c  2.13X10-3 
                 463    uorliv615  1 707      

1 ,  

 40.o.  t  1  I  1  1  
                                      THEORETICAL TURBULENT CURVES 

                           ----  Zo/S=  0 — 

 1111111 ---  zo/S  =  1          20.0 

         II  10.0  kali  GI°  0  I 
 MagallIMIM. .  a 

    8.0lanaMiZIONa,aa  ,---PII4r1MMI    -..Num• 
 tHOM- 41         6.0 ill uo S i y = 400 0.11•01•1 as f .ii/ u°1 /24 = 800 - 

                  Ma% .Nw I \AI 

  4.•^riarstiaam    ommithilwirAm. 

   .......Irs az. 
 PaNMIVI 

            2.0           THEORETICAL LAMINAR  CURV  1 lii 
                    III Run 1  I  \ 

 0 Run 2  9 Run 3  \  \ 
 1.0 i  

      0.02 0.04 0.08 0.1 0.2 0.4 
 U/110 

          Fig. 5. Comparison of the observed velocity profiles with the theoretical 

               one (after Kalkanis).
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   Kalkanis measured the velocity distribution in a turbulent oscillatory flow 
 over smooth and rough platforms which oscillated with a simple harmonic  motion. 

   In all of his experiments, the amplitude  Ag of the moving platform and its 

 period  T=2r/o) were chosen to insure conditions  of turbulent flow, so the maxi-
 mum velocity of the platform  uo is equal to  Asti. The velocity was measured 

 by a symmetric instrument similar to a Pitot tube combined with an electric 
 indicater for measuring pressure differences. His experimental conditions for 

 the smooth platform are presented in Table 2. 
   On the other hand, the theoretical velocity profile induced by the periodic 

 oscillation of a platform at the bottom is given by Eq. (22)  : 
  u  uoF  (e)e" (71) 

 where  e0=1 for the smooth bottom. Therefore, F (e) for this case may be 
 computed by using Eq. (29), (36) and (41) and putting  zi/O-50,  z2/3=100 and 

 a=(uod/v)  x10-3. Figure 5 shows the comparison of the observed theoretical 
 one indicated by the full and broken lines, respectively. 

   Although the scatter of points can be seen, this figure indicates that the 
 experimental values shown by Kalkanis are generally more than those predicted 

  by the theory. However, the trend of the experimental values in which u/uo 
  increases with the increasing of the Reynolds number is in agreement with the 
  theory. It seems that the deviation causes the structure of the turbulence over 

  the oscillating plate to be different from that produced by the oscillatory body 
  of water. 

 3. Mass Transport by Oscillatory Flow in the Turbulent Boundary Layers 

  (1) Formulation 
   Using the well-known values of  Longuet-Higgins'o, the mass transport velocity 

  within the bottom boundary layerisdefined by the real part of 

        U= E2CU2 +5241dt •axaUt—UVax aedeldt (72)               J\Jeo 
  where the overbar denotes the average over one wave period and  u, is already 

  solved in the preceding section. However, the second-order velocity  Eta is not 
  well understood. From Eqs. (13) and (14), the differential equation of the 
  second approximation for u is given by the  expression  : 

          au2 ur au, _ au,  ieau,=au.2 +u..au.,+ a(0,a (Nais2(73)       at  ax ae Jeo ax at axae ae 
  As shown by  Schlichting"), since the second-order velocity  u2 has an oscillatory 

  component  U2p in addition to a time-independent component  uas, then 
 U2  =  U2s. 

  The boundary conditions for Eq. (73) can be written  as  : 
 u2p  =  u2o  =  0 at  C  =  en (74) 

 U2P =  U.2 

 u2s  : finite,  au"  0 at  e->cc (75)                 ae 

   The purpose of this section is not solve the second-order velocity  u2, but is 
  to compute the mass transport velocity. Thus, it is found from Eq. (73) that 

  only a solution for  ü5 is required. The time average of Eq. (73) over one wave 

  period is given by
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         /41   
 au'all'Ce 641de =+ cow(iv  duz) (76) 
 a,ae..e0ae ae 

Substituting Eq. (17) into Eq. (76) yields 
                       du      2 a2toA(ivir ae)—a*dxEFF*—(F+F*)+  d  de(e-eoVe0Fdel  (77)           —ubt 

in which the asterisk denotes the complex conjugate and only the real part of  rty 
is to be retained, because only that of  u1 is significant. If the time average 
velocity u2 is defined in the form  : 

  •dub,(78)    44
2=2a 2a, ubldx 

with boundary conditions 
 G(e)=0 at  e  =  Ea 

 G(00) finite 
 dG/  de  =  0 as  e->oo (79) 

then 

      (       delNdGdi) _ FF*- (F+ F*)+ddb*  (e- en_ seoFde)(80) 
 (  2  ) Analytical solution 

 The integration of Eq. (18) with respect to e yields 

                                              (81)         eFde—ia2o{e02F' (eD)- N dF1                    de J 
Therefore, substituting Eq. (81) into Eq. (80) and taking  F(eo)=1 and  F(00) 
=0 into account gives 

 d (NAG)=FF* -(F+F*)+(e- eo)  dF  ±i a, dF x  a#Vde 

                     (N  de—e04"(e0)} (82) 
Integrating this equation from  ell to  e, and taking the boundary conditions into 

 account  : 

      N dGeo2G'($0) +Se0FF*de-2a2ImENdF—de-eozP(e0)1 
          +Seneddericde-eo(F*-1)-ice2eo2P(eo)(F*-1) 

      +1a,c.3eodedNdFdF* de (83) 
where the symbol Im denotes the imaginary part of the value in the brackets. 

 The last term of the right-hand side of Eq. (83) may be integrated by parts. 
 This yields 

       CS N dF NF* dF_                           en'F'(ea)--1-5e FF*(84)    Sede deageo 
Furthermore, from Eq. (84) it follows that 

      ce
ciNedFde  ddFer                 aRLNF* dF                   eo2P(e0)1 (85) 

 3 and 

    5endeFF*de  =[  a2ImNF*dF —&P(eo)] (86) 
                     e finally, substituting these expressions into Eq. (83) gives the equation for G  :
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      N  dG — eo,G'(e0)-2celm[N   dg F*)]+  (e  e0)F* 
        de 

 ia2  [N   dF*  —E02{F(e0)}*  —  N  —dF  Fs—  eo2F*F'(eo) (87) 
 de 

Since this equation must  satisfy the boundary conditions,  dG/  de-0 and  F=0 as 

 E-.00, the first term of the right-hand side of this equation must be written 
 by  : 

 e02G'(eD)=  {FI(ED)}* 
 Therefore, 

                 dFNdF1 _w* _ iaw  dE        N —de— = 2a2Irn[Nde+ (eco 

                               J 

 +la'  {NF*  dF —ED2F*F"(ea)} (88) 
              de 

Moreover, an integration of the above equation by taking G(0)=0 into account 

yields 

       G(e)=icez(FF*+  F-2F*)—CE                  MF* dgdE 
 de 

 —See  o(PIVN){e02F'($0)+(i/a2)(e—E0)Ide (89) 
 Using the mass transport velocity defined as follows  : 

 ut dual  Kra(90) 
 2a2to dx 

and substituting Eqs. (88) and (89) into Eq. (72), the non-dimensional form of 
Eq. (72) can be expressed by  : 

 K(e)=la2[2FF*  —3F*  +  1 —  (e—  ea)  ddF:—JEo  F*  f   dere   +  "F;(e°1  de] 
          +a, dE*N dF_60,F(e0,1+(e(e —&OF*  de                                               (91)         1a,!E

aN 

 (  3  ) Numerical values and comparison with experimental data 
 The vertical distribution of the mass transport velocity in the turbulent boun-

dary layers induced by surface waves can be evaluated by obtaining a numerical 
solution of Eq. (91). In order to generalize the theoretical description of the 
mass transport within the bottom turbulent boundary layer under wave action, 
it is convenient to deal with partial reflected waves. 

 The surface elevation for the partial reflected waves is given by the form of 
the real part of 

        )7= i(.k•k•                    e-1x+re'x)eliat          2 

where  H1 is the incident wave height and r the reflection coefficient. The 
bottom velocity corresponding to this is 

 Eu.,=cubleire, (92) 
and 

 urn  =  (uo/ i  (e-mx—reihr) (93) 
where 

 ito =  rHi/Tsinh  kh 
 It is evident that only the real part of these expression has significance. 

Now, it is asumed that 

  K  a2(Kst (94)
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in which  ICI and  Kpi are the real and imaginary part of K, respectively. From 
(93), the complex conjugate of  ub, and the derivative of  tie,' with x are given 

 by  : 

 41=  -(40/6)  i  (e'  -  re-i4x) (95) 
and 

 duel/ =  (uo/  s) k  (e-in: + rethz)  (96) 
By substituting these expressions into Eq. (90), the mass transport velocity is 

given  by  : 

 U= 1 (k)u°i ( 1 - r2) + 2 rsin2kx}(K st +  iKpo) 
            2(,) 

and finally, retaining the real part of this equation yields 

 U=12(1)u°2{a- r2)Kpg +2rKstsin2kx)-(97) 
                    di 

 According to Longuet-Higgins, the mass transport velocity obtained by lami-

nar theory is expressed by 

        = 41°           (1)u2{(1-r2)Kpt+2rKsisin2kx}(98)             (0 

The comparison of Eq. (97) with Eq. (98) indicates that the mass transport des-
cribed by the turbulent theory is formally similar  to that of the laminar one. 
As is evident from Eq. (97), since  r  =0 and  x-1, it is found that  Kpo and  Koo 
describe the vertical distributions of the mass transport velocity within the tur-
bulent boundary layer in the case of a progressive wave and of a standing wave, 
respectively. 

  In general, it is very complicated and slow to compute the values of K nume-
rically, so it is necessary to  simplify the computation of Eq. (91), For this, the 
nondimensional form of the mass transport velocityis approximated as  follows  : 

      Ic(e), ia2[2FF* -3F* + 1- (e — e°)dF*                               _iee.deCF*dg  d£1  (99)          de 
 Figure 6 (a) and (b) show the variations of  Kpo and  Koo with  z/8 calculated 

for the case of  zo/ =0 and the various values of  Re(=  up(  /v), respectively. In 
these figures, the dotted lines describe the velocity profiles of the mass transport 
according to the laminar theory. It is found that the velocity profiles for the 
turbulent boundary layer over smooth bottom vary slightly with the increasing 
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 Fig.  6.  Variations of  Kpt and  Kse with  zja.
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of the values of Re. However, the effect of the Reynolds number on the values 
of  Kpt is not remarkable in the range of  Re<2000, and also the values of  Kpt 
are little different from those predicted by the laminar theory. 

 On the other hand, it is found that the values of  Ka decrease considerably 
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    Fig. 7. The effect of roughness on the values of Kpt and  Ku. 
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with the increasing of the Reynolds number. Furthermore, Figure 9 shows the 
relationship between the values of  Ks, and those of  zo/(1. It is also found that 

the thickness of the reverse transport layer increases with the increasing of the 

roughness length similar to that of the Reynolds number. 
 Figure 10 shows a comparison between experimental values and the theoretical 

curves for mass transport velocity change in x direction. In these figures, the 
full and dotted lines describe the theoretical curves computed by laminar and 

turbulent theories, respectively. Measurements of the mass transport velocity 
were made by using nylon particles with a diameter of  4.8 mm and a specific 

gravity of  1,10. Although agreement between the experimental values and the 
theoretical curves is very poor, the maximum values of the experimental results 
are roughly in agreement with the dotted curves obtained by turbulent theory. 

 This may be due to the velocity difference between the nylon and water 

particles. The application of the above data to the problem of sediment move-
ment induced by wave motion is important, since the direction of sediment 
movement may  he determined by the existence of the mass transport. 

 In general, the order of the mass transport velocity is higher than that of the 

oscillatory velocity of water particles and its magnitude is generally small, but 
it is possible that bottom materials are transported by the composite flows. 

Therefore, it seems that the direction of the drifting sand is determined by that 
of the mass transport in the boundary layer. From this prediction, it seems 

that beach processes in prototype and model are influenced by the mass transport 
within the boundary layer. Therefore, a point to which special attention 

should be paid is that the values of Re and  zoD5 play an important role with 

respect to the scale effect of beach processes. 
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 4. Conclusion 

  I have studies fluid motion in the turbulent boundary layers developed on 
smooth and rough bottoms under wave motion, especially the velocity profile 
and the mass transport velocity in the boundary layers. 

 The followng conclusions may be derived from the results of this  study  : 
 1) The velocity profile of an oscillatory flow in a turbulent boundary layer 

observed by Jonsson agrees with the theoretical value except for the large value 
of  z/b. However, the experimental values obtained by Kalkanis are not in 
agreement with the theoretical curves. 

  2) The computation of the mass transport velocity presented here is an 
application of the turbulent boundary layer theory. The outstanding feature of 
the numerical results for the mass transport velocity  is that its velocity profile 
for standing waves is greater in the laminar case  than in the turbulent case. 
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  3) The direction of the mass transport velocity for standing waves is influe-
nced by the bottom roughness. Therefore, it is possible that the direction of 
the net sediment movement is different according to the scale of characteristics 
of wave and sediment. 
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