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                          Abstract 

  As a basic study to find the effect of ground-structure interaction on the earthquake res-
ponses and the anti-seismic safety of structural systems, it is important to describe the 
dynamic properties of the sub-soil ground under the foundations of such structures. 

  Based on the wave propagation theory, this paper deals with the "Dynamical Ground 
Compliance (D.  G. C.)" of a model of foundation-ground systems more realistic than those 
used in any previous studies on foundation vibrations, namely, a rectangular foundation 
resting on a viscoelastic  stratum over a rigid half-space for the cases where the vertical, 
horizontal, or rotational harmonic excitations act on the foundation. Defined in this paper 
as the transfer function describing the ratio between the dynamic complex displacement 
of a massless foundation and a harmonic exciting force, D.  G. C. is a collective representa-
tion of the dynamic characteristics of the sub-soil ground under a foundation. Its limiting 
expression in zero frequency results in the "Statical Ground Compliance", which means 
the inverse of the statical ground stiffness. It is assumed that the stratum is composed of 
a three-dimensional, homogeneous, isotropic, Voigt solid, and lies in welded contact with 
the supporting rigid half-space. 

  The analytical expressions of D.  G. C. as well as the displacements at the ground surface 
are obtained through the multiple Fourier transformation technique in the double integral 
representation including an improper infinite integral. The poles of the integrand are 
the roots of the frequency equations connected with Rayleigh and Love waves. The de-
tailed discussions on the properties of these free waves are also developed in relation to 
the attenuation and the resonance  phenomena of the viscoelastic stratum. Some numeri-
cal calculations of  D.  G.  C. as well as the equivalent coefficients of a Voigt model evalu-
ated according to  D.  G. C. are given to  clarify the effects of various parameters related to 
the frequency of excitation, the constants of the viscoelastic stratum, and the shape and 
size of the foundation. 

  Compared with the results of similar problems obtained in the authors' preceding works 
for a perfectly elastic half-space and stratum, the present study has led to several princi-
pal conclusions  on  : the effects of energy attenuation owing to mechanisms of both wave 
radiation and internal dissipation, the comparison between the cases of a stratum and a 
half-space especially as to the resonance and energy attenuation phenomena, and the con-
dition under which a stratum can be practically treated as a half-space. 

  1. Introduction 

 Numerous studies have recently been made on the effect of soil-structure interaction 
on the anti-seismic safety of structural systems. In most of these analytical studies, 
the wave propagation theory under the assumption of elastic or viscoelastic media has 
been applied for clarifying the dynamic properties of the sub-soil ground neighboring 
the structural foundations as well as the mechanism of seismic wave propagation.



290 T. KOBORI, R.  MINA! and T. SUZUKI 

Starting from the well-known work of  E.  Reissner02), a large number of studies on 
foundation vibrations have been made by various investigators on the basis of the 
wave propagation theory.  T.  Y.  Sung3),  F.M.  Quinlan4), I.  Toriumi5), R.N. Arnold et 

    G.N.  Bycroft7), and H.  Tajimi8 have investigated the harmonic vibrations of a 
rigid circular foundation resting on an elastic half-space. The case of a rigid non-
circular foundation, that is, the rectangular foundation prevalent in actual structures, 
has been analyzed by H.  Tajimi8), J. Elorduy et  al.9), and  W.  T. Thomson and T.  Ko-
bori1011),  R.N. Arnold,  G. N. Bycroft and  G. B.  Warburton6)7112) studied the vibrations 
of a rigid circular foundation on different kinds of soil condition, in which an elastic 
stratum is assumed to be welded with a supporting rigid half-space in the case of tor-

sional vibration and to permit of a horizontal free-slide at the bottom in the vertical 
and rotational cases, respectively. T.M.  Leen) studied the case of a viscoelastic half-
space having complex  Lames constants, while his main interest lay in the behavior of 
far field surface vibrations as a means to establish the foundation vibration technique 
for in-situ determination of the dynamic properties of sub-soil ground. 

  Following  Thomson and  Kobori's work, the authors have already carried out a series 
of studies on the  forced-vibration problems of a rigid rectangular foundation resting 
on an elastic half-space and an elastic stratum lying over a rigid  half  -spacem)-3.8). In 
these studies, "Dynamical Ground Compliance", that is, the transfer function prescrib-
ing the relation between the foundation displacement and a disturbing force, is intro-
duced in order to represent the dynamic properties of a massless-foundation-ground 
system. 

  In all of the above-mentioned studies except  reference9), the unknown stress distri-
bution beneath a foundation is assumed appropriately in order to avoid the mathema-
tical difficulties involved in the so-called "mixed boundary value problem". Beginning 
with E. Reissner and  H.  F.  Sagoci's  studies19)20, a number of attempts to solve precisely 
the foundation vibration problem as a mixed boundary value problem have been made 
recently. In addition, several analytical methods to obtain an approximate solution 
have been presented by earthquake  engineers9)21). 

 Although a rigid circular foundation on a perfectly elastic half-space has been 
adopted as a typical foundation-ground model in most of the previous studies, the 
actual sub-soil ground may be reasonably regarded as a stratified medium rather than 
a half-space. The presence of soil layers is important in wave propagation problems 
because of resonance phenomena arising  from the reflection and refraction of traveling 
waves at the boundaries. Moreover, the nature of the internal energy dissipation may 
always be observed in the actual soil medium. Therefore it seems realistic, in the 

present stage of theoretical approach, to express the soil ground as a viscoelastic me-
dium. Waves may thus be attenuated owing to internal dissipation together with 

geometrical wave radiation. Furthermore, most actual structures have rectangular 
foundations rather than circular ones. 

  To consider the dynamic properties of a more realistic ground model, namely, a 
stratified medium having internal dissipation, the foundation vibrations on a three-
dimensional, homogeneous, isotropic, viscoelastic stratum over a rigid half-space are 
investigated in this paper, in which authors concentrate mainly upon the derivation of 
the analytical and numerical expressions of the "Dynamical Ground Compliance" of a 
rigid rectangular foundation. The viscoelastic stratum is assumed to be welded to the 
supporting half-space and composed of a  Voigt solid, a model adopted frequently in



           Dynamical Compliance of a Foundation on a Viscoelastic Stratum 291 

seismic wave propagation problems. In relation to the resonance and wave attenua-
tion phenomena, a detailed consideration of the properties of Rayleigh and Love's free 
waves is presented as well. Comparing the results with previous solutions in the case 
of a perfectly elastic medium and especially paying attention to the resonance and wave 
attenuation effect, the analysis is made from the viewpoint to  discuss  : what influ-
ence the dissipative attenuations have on the dynamic characteristics of the  system  ; 
what differences do exist between the two cases of a stratum and a  half-space  ; and 
under what conditions a stratum can or cannot be practically treated as a half-space. 

 2. Basic Equations and General Solutions 

 For a three-dimensional, homogeneous, isotropic, Voigt solid, the displacement vector, 

 { u, v,  w}, satisfies the followingequation ofmotionin Cartesian coordinates (x, y, z); 

   [(2+,0)±(2' + /0 a0 J1t la04048zit                         x'y'8zf 

                                82                 --f[(P+if at)v2 pOt211u, v,=13(1) 
                        O where 

               Ou  OOw          4 ——dilatation (2a) 
 OxOv +yaz 

               828202 
            p2u                     a
x2 +ay2+8x2 =Laplacian operator (2b) 

 and  p=  Lames  constants  ; and  p'=  viscosity constants corresponding to 2 and p; 

 p=density  ; and  t  =time. 
 By eliminating the displacement components  it, v, and w, the wave equation for the 

dilatation  d is obtained as 

         [C14- A'+2"\721 824-=(3)                 .A+2
,et •OtcfOt2i 

where 

                               2+2,a       c
i=(4) 

indicates the dilatational wave velocity in a perfectly elastic solid. 
 For convenience of analysis of the boundary value problem in the following sections, 

the triple Fourier transform of  Al with respect to the coordinates x and y, and time  t 
is introduced. 

 t)3 [4(x, y, z,  t)]=  4-(19, r, z, to) 

          _(1 y1-1-1-tffx, y,z,t)e-1(sx+"+')dxd ydt (5)
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Hence, the inverse transform is given by the equation 

 ctrtiO ,  r, z,  (01=  4(z, y, z,  t) 

           =(--1Y5-5--4-63,  r,0))c+i(x13"7+1')da drcho (6) 
By making use of the theorem of the Fourier  transform22) 

                 °   
8x'at5—}±{i/9, in jet)} 41(7) 

the  triple Fourier  transform of Eq. (3) becomes 

            ddz2j(82+7.2)h2014-,0  (8) 
  The solution of the above equation is expressed by 

 +  (9) 

where 

                           1 

                                       A 21t
/1  J'      a? = R2+7-2 — h2h2=e0+   gi—Li+iw(10) 

                                          2 

  Let the triple Fourier transform of the displacement vector  (u, v,  w) be denoted as 

 113D{u, v,  la, (11) 

Substitution of Eqs. (9) and (11) into the triple Fourier transform of Eq. (1) yields 

   btid22—cd1{tt,=@c2g2—h2g1){—i8X1(z), —aiX2(z)} (12) 
 where 

       afr /922+ r2_eg2,K2=,(0,8,241+ itoIC] (13a) 
                           ci 

 Xi(x)—X2(z)—                    Ale-'2 4- A2e'"IzAle-alz—A2e"1'(13b)      h2h2
gi 

 C2=  1/— (13c) 

 and c2 indicates the distortional wave velocity in a perfectly elastic solid. 
  The general solutions of  (u, v,  w} for Eq. (12) are then 

 ta,  =  1—  ia  Xi(z),  —  a1X2(z)} 

 +{B1, C1,  Di}  e-a"+  {B2, C2,  Dz}e+"2' (14)
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By the substitution of Eqs. (9) and (14) into the triple Fourier transform of Eq. (2a), 
the following identity is  obtained  ; 

 —  ieBi  —  irCi  a2Di)e-'2'  —(i0B2+  irC2-Fa2D2)e+""=0 (15) 

The quantities  D1 and  D2 can then be expressed in terms of B1, B2,  C1, and C2, that is, 

 Di=   
 a2COL+                                            a2 

                           D2=— (151B2+IC2) (16) 

The independent quantities A1, A2, B1,  B2,  C1, and  C2 in the preceding equations are 
the arbitrary constants to be determined from the boundary conditions. 

  With the aid of Eqs. (14) and (16), the general solutions for the triple Fourier trans-
forms of the stress  components  (rez,  r,„  az} are obtained as follows; 

        „,0•z}—f)  raw +&U1,Ou\,  ( Ow ± av 
                  g2\8x az\8yaz 

                             (A+211  _2  A  +2  4a  

                         \ 

                         glg2 gz  Oz_I 

 _u  (ow+ dual,delfiriv+  din( 1+ 2,a _2it)242   it  
 gz  dz g2\ dzI \ 6-1 gz  g2  dz I 

      -  2iai8 X2(z), — 2iairX2(z), (204+ K2 g2)-X2(z)}             8.2 

 -1  07115  1'21,  2a2D21  e  —  0712,  Y2z,2Ce2D2/e.a21 (17) 
where 

     (182-Ea)Bi+197-C_Or Brk(r2 +ai)C  Y
u-2j— U=1 and  2J (18)  az  a2 

 The general solutions for a Voigt solid obtained in this section are easily extended to 
those for the general class of linear viscoelastic solids, when the quantities gi and g2 
are replaced by the somewhat general expressions  gi(iw) and  g2(iw), respectively. 
They may now be considered as operators representing the frequency characteristics 
of a viscoelastic solid. In particular, when substituting  2'-=  p'=  0,  i. e.,  8-2=g2=1, in 
the foregoing equations, they result in the solutions for a perfectly elastic solid. 

  3. Boundary Conditions 

 In the problem schematically shown in Fig. 1, the following three kinds of exciting 
force are  considered  : 

 P1Q(t)  [t=  V, H, and R] 

where Q(t) is a time  factor  ;  P, is the amplitude of an exciting  force  ; and V, H, and 
 I? are subscripts indicating vertical, horizontal, and rotational excitations, respectively. 

Each exciting force acts on a rigid, rectangular, massless foundation of dimensions
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 2b  x  2c resting on the surface of a  three-dimen-  Rectangular  Foundation 
sional, homogeneous, isotropic, Voigt-type  vis-                                                                                                              -f  • 
coelastic stratum which has the constant thick- 
ness H lying over arigid half-space.X 

  Boundary conditions at the upper surface of 
the stratum  (z  0)  —Strictly speaking, the  k— b b —4 
boundary conditions at the upper surface of the 
stratum have tobeexpressed by the combina-                                       Y 
tion of the displacements in the loading area  Exciting Force  Pi  0(t) 
beneath the rigid foundation and the stresses  o 
outside it. Since such treatment of the problem -  X 
generally results in a so-called "mixed boundary Visco- Elastic 
value problem" involving simultaneous dual in-  StratUM 

 tegral  equations,  it  seems  difficult  to  obtain  the 
 analytical  solutions  of  the  dynamic  problem. 

Hence, we adopt the same treatment as in most  Rigid  Half-Space 
of the previous studies in which all of the 
boundary conditions are expressed in stresses 
by assuming appropriate stress distributionsbe-                                               Fig. 1. Geometry of the foundation- 
neath the foundation.ground system considered. 

  Corresponding to the type of exciting force, they are given as follows: 

  (1) Vertical excitation in the z direction 

           { 0 (in the domain D) 
        6={

l  (19)  —  qov•Q(t) (in the domain D), 

  (2) Horizontal excitation in the x direction 

       rxz0 (in the domain D) 

, 

 62=r  2=0  (20) 

 go•k2(t) (in the domain D), 

  (3) Rotational excitation about the y-axis 

            0 (in the domain D) 

 rxr=ryz=0 (21) 
 —Cox  •Q(t) (in the domain D), 

 where 

 D={Ix  I  �_br^  I  yl�c} (22a) 

 D={Ixl>  bk_l  I  yl  >  (22b) 

 The triple Fourier transforms of the above Eqs. (19) to (21)  are: 

  (1) Vertical excitation
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 Fr,—  4govbc  5(5,  7-)12(04,  tn=?,,z=0 (23)  2n 

(2) Horizontal excitation 

 fx:—                        4gorib27Cc  8(5, r)(2(a)),z=tyz=0 (24) 

(3) Rotational excitation 

 4goRbc  r)        3-z— i  N(19b)0(w),  txz=  -=  0 (25)  2n  sin  gb 

where 

                            sin gb•sin re        SO , r)—(26a)  i9b•rc 

 N(3b)—  sinfibfib  —cosfib (26b) 

                             1   I            Q((o)=.1i,R(t)7=(  2 n  )2  LQWC"dt (26c) 
The amplitude of the exciting force for each case thus becomes 

 Pv=-4bcgov, PR= 4bCgoThMR=4 0yCDR (27)                                       3 

 Boundary conditions at the surface between the stratum and the rigid half-space 
 (z=H)—  Here is considered the case of a welded contact at the boundary surface bet-

ween the stratum and its supporting rigid half-space, namely, 

 u=v=w=0 (28) 

Since three of the arbitrary constants can now be eliminated by the above conditions, 
 AZ,  B2, and  Cy are expressed in terms of  A1, B1, and  C1. 

 4. Frequency Equations 

 If all of the stress components given by by Eq. (17) vanish at the surface of a stratum, 
 z=0, three equations for the independent arbitrary constants,  A1, B1, and C1, are 

derived. In order that these equations may have nontrivial solutions, the determinant 
of the coefficients must vanish. After some tedious manipulation, the two equations 

 P(49,  r)=4cr1a269  2  +  r2)(2cei  /C2g2)cosech  aiThcosech  a211 

 _cria2002 7.2N2                      ) (2a2  eg2)2}coth  ai•coth a2H 

                   + (82 + r2){4ctict2 (2a1+ = 0                                         (29)
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and 

 L(0,  r)--acoth  a2H=  0 (30) 

are obtained. These are respectively the frequency equations for the Rayleigh and 
Love waves in a viscoelastic stratum over a rigid half-space. If the thickness of the 

 stratum H tends to infinity in Eq. (29), it reduces to the frequency equation for the 
Rayleigh waves in a viscoelastic half-space; 

          Fo(fi,  r)=12(82+e)—eg212—  4aia2(82  7-2)  =  0 (31) 

  By the introduction of the two kinds of variable transform 

 C2=e+r2 (32a) 

                    C C _ C2         C-==C 2 (32b) 
 11.1  C  p 

where  C= the wave number and  cp=c0/C= the phase velocity, and by using the non-
dimensional quantities 

                          2 _  h2—  C 1-2v                                                (33a) 
 c?  2(1--  v) 

             al-=-coKH= H (33b) 
 cz 

          — 

              ca   cz 21+2/11n2( +2 )71(33c) 
               •, 

      1.12HH1—2+2/1II2 

where  p=.-Poisson's ratio, Eqs. (29) to (31) are transformed into the following non-
dimensional forms; 

 F(e).  [4E2(2E2  — g2)  cosech(Ve2  —  n2  gtai)•  cosech(Ve2  —  g2a1) 

 14$4  ±  (2E2_                    gz)2ccoth(ge2—  n2  gicti).coth(V62  —  pal)] 

 ,ve2_  n  givE2  _  g2  {4(e2—  n2  gi  )  2  g2  )  (2E  2  „  g2)2).  ,  0  (34) 

 L(e)=coth(le2—  g2ai)=-  0 (35) 

 Fo(e)  (2e2  g2)2  —  4E24E2—  n2g1Ve2—  8'2=  0 (36) 

 where 

 1  1   (37) 
 8.1—  1  ±  g2 1+ hi

lnal 

  Eqs. (34) and (35) generally have an infinite number of complex roots whereas Eq.
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(36) has a finite number of complex roots. Let these roots be denoted by 

 eak=me  ok)+  ok)  [k=1, 2,  (38) 

where R and  / represent respectively the real and the imaginary parts of a complex 
number. The real and imaginary parts of each root relate to the phase velocity c, of 
the Rayleigh or the Love waves of a certain mode and the attenuation constant of the 
amplitude of the free waves, respectively. Eq. (36) for a half-space has only one com-
plex root in the  range  —rz/2<arg(eok)�r/2. For the case of a perfectly elastic me-
dium in  which  72Ri=  7/H2=0, all of the above frequency equations have a finite number 
of real roots. 

 Since the frequency equations for a perfectly elastic medium are real-valued func-
tions, their roots can easily be found by examining the sign of the value of the equation 
with increase of the argument  e. For a viscoelastic medium, on the other hand, it 
becomes difficult to find the complex roots, because the frequency equations are trans-
cendental complex-valued equations involving parabolic functions. Their complex-
valued roots are calculated here by the Newton-Raphson method in which the real 
roots obtained for a perfectly elastic medium are used as initial values. 

 From the roots of the frequency equations the following quantities can be  evaluated  ; 

                  r  

 attenuation constantce=Ia                (Cok)C2 —Mott)] (39a) 
                         L w 

 wave number  R(C  0  k)  ER(Cok)H=  We°  k)ail (39b) 

 Hamiltonian  w  =  w(R(C  00) [tort  =-  ai(R(Coh)H)1 (39c) 
 C2 

phase velocityCp= (39d)                R(CCp   1
ok)  c2  R(Soh) 

 group velocity cg  dw = dal   dR(C  0  h) c2dEW Can](39e) 
where 

 R(C00= me00,I(Cok)=w                       Woh(40) 
     02 C2 

and the quantities in brackets are the corresponding non-dimensional representations. 
 Results for the case of Poisson's ratio  i=1/4  (i.e., n2=1/3) and  27p1=1, meaning 

that the viscosity constant for the dilatational waves agrees with that for the distor-
tional waves, are shown in Figs. 2-4. Figs. 2a, 3a, and 4a indicate the solutions for the 
first five modes of Rayleigh waves and Figs. 2b, 3b, and 4b show those for the first 
three modes of Love waves, respectively.  Inspection of the frequency equations sug-

gests that there are always a couple of complex roots,  -±-E,„, whose arguments differ 
by  r from each other. Only the roots that satisfy the  condition,  —r<arg(eo„)50, are 
shown in these figures.
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 The real and imaginary parts of complex 1.5  

roots are separately shown in Fig. 2 as at—lk-al                                                                                                         ----11,„=0 

function of the non-dimensional circularRIB)
.7---:C.: 1st  mode frequency  a

l, which is defined as the ratio 
of the product of the circular frequency w,                                                        : 
and the thickness of the stratum H to the,  ..---------                                                                        !__-------:-- a  td-C 

                                                                                      2rel 
velocity of the distortional waves c2 in a 

 Ch.-----  perfectly  elastic medium. The dotted  and..r 
dashed lines in these figures indicate the  o  ( \ /  
solutions for a perfectly elastic stratum and 
those for a half-space, respectively.,.. 

, 

  Figs. 3 and 4 show respectively the non- 

                                                  _ dimensional phase velocity  c,/ c2 and the__ me-space 
non-dimensional group velocity  cg/c2 versus  t 
the product of the thickness of the stratum  -I  (to) 

 H  and  the  wave  number  R(C.0 which will 
be abbreviated to  C in this section. Theth3rd mode 
dotted lines indicate the case of a perfectly 
elastic stratum. The dashed lines in Fig. Gm 

 3a mean that the curves are transferred  is'   
from the third quadrant to the first and in  2nd   

                                       -- 

Fig. 4a from the second to the first, respec-  o2 4  6  8  0 ,—..10 
tively. 

  From these figures the following remarks(a) Rayleigh waves. 

on the properties of free waves are  ob-
tained : 

  Rayleigh  waves—Only one mode of pro-  P(‘)  —11"" al 

pagation is possible for the Rayleigh waves  1st  made 
_..._.... 

                                                     _.    in  a  half-space  and,  especially  in  a  perfectly  .  .  --
elastic  medium,  their  phase  velocity  is  deter- '  

                                     

.  .. 

 mined  independently  of  the  wave  number  0.5 . 

 

. •  3m1-/.. 

C. For both a perfectly elastic and a vis-  I 
 I coelastic stratum, on the other hand, various: 

                 

., 
                         o - 

modes of Rayleigh waves maybepropa- 

                        t gated and all of these modes are "disper- -IR) 3m1 mode 
sive", that is, their velocities depend on the 
wave number.  2  rxt 

  In a perfectly elastic stratum, the number  ist 
of real roots increases, that is, the number 
of the mode of propagation increases with 
the frequency parameter  ct1=-(oH/  c2. It is 
noticed that no Rayleigh waves appear in  o  ' 2 4 • 6. 8ar. to 
the range  0�c4<ai„, in which  rzi„=tra  (b) Love waves . 
corresponds to the fundamental natural                                              Fi

g. 2. Roots of the frequency equa-f
requency  w„=r4p/  p/2H of the lateral vi- tion of a stratum. 

bration of a rod with the same length H  („=1/4 and  2'112=1.) 
and similar end conditions (that is, one end
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                                                                  , 

 C2  ;,,,\Tig2= 0U2 \11,2=0 
 ll'l8- 11 

 .I1\1\  6th  mode , \ 
 11% 1  \

‘, 
 6  •  1%l‘  6-    ' I ‘ \ 

; I ' '',•,                                                               3rd mode 
                  -, 

   ,, \ \ 
       2nd 4-\                   '2nd    4/l

ewd 3rd- , 1st      \SI
\‘6t-h'Cl'',.-..._ st 2-2 •    4th;-l-C\--------- ---------......_LI  _   -.... 

- - 

 0 2 4  6  CH  --P-8 0 2 4  6  CH---8 

      (a) Rayleigh waves. (b) Love waves. 

             Fig. 3. Phase velocity of free waves.  (a-1/4 and  A'  I  p =  1.) 

 2.0  q  2.0 

,........  

 Ichl2.111       .4t hm1 mode 

 C9Nist  C, !I g82 ,,2nd  1.51/  ist                           ode 1.5   I ,..-  
1 , ,    ,' 3rd  
1  / '  ----...... 
1 •  

 1.0  A 1.0  IIit. 1st  , - ---- 

 1' '" \,..----__l 
                                                                                                    _i:tic j________,.., 

 .(---#- 

 

•  

...„..----  ______.--  -- 

 0.5  till    I
li 

 ---  11„2=  0.1    TIH20.1      "  
11112=074;2=0 
 / 

 4  6  CH—ell  0 2 4 6  CH-8 

       (a) Rayleigh waves. (b) Love waves. 

              Fig. 4. Group velocity of free waves.  (v=1/4 and  A'/µ'  =1.)
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is fixed and the other is free) as the stratum. As  al or CH increases, the phase and 
the group velocity of the 1st mode approach the Rayleigh wave velocity in a half-space 
and those of other modes all approach the distortional wave velocity. 

  In a viscoelastic stratum, on the other hand, all modes of propagation of Rayleigh 
waves are possible in the whole range of the frequency parameter  al. The real parts 
of the complex roots  R(E„) are separated into two groups. As  al dicreases, the real 

part approaches zero in one group and diverges to infinity in the  other  ; the phase 
velocity diverges in the former group and vanishes in the latter. Since the imaginary 

part  /(ea„) or the attenuation constant  a=1(C„) of each mode increases rapidly with 
the decrease of  al in the lower frequency range of the associated critical frequency 
below which the corresponding mode of Rayleigh waves in a perfectly elastic stratum 
does not appear, it is suggested that the Rayleigh waves of the mode may have little 
effect on the dynamic properties of a stratum in such a lower frequency range. 

  As for the relation among the modes of Rayleigh waves in a viscoelastic stratum, it 
is indicated that the phase velocity of the 1st (or 3rd) mode approaches the velocity 
with opposite sign of the 4th (or 6th) mode, and the attenuation constant of the former 
mode also approaches that of the latter, respectively as the parameter  al decreases. 

  The phase velocity for all modes of Rayleigh waves in a perfectly elastic stratum is 
a monotonically decreasing function of  CH in the range  O<CHG  oo. On the other 
hand, for a viscoelastic stratum, the waves of even modes appear in the whole range 
of  (H  and most of them show a similar tendency to those for a perfectly elastic stratum. 
For the waves of odd modes, however, there exists the range  O<CH<((H)a, in which 
the waves of the mode do not appear. 

 In the case of perfectly elastic stratum there are two kinds of double root,  namely  : 

(a) A double root connected with some single mode at which the group velocity van-
    ishes. 

    (The mark  "0" in the figures indicates these points.) 
(b) A double root connected with two distinct modes at which the  phase velocities for 

   the two modes coincide with each other. 

    (The mark "0" in the figures indicates these points.) 
It is found that the phase velocity at the double root of type (b) is just twice the distor-
tional wave velocity in a perfectly elastic medium and also that the value of the para-
meter  al at which the double root of the type (b) occurs agrees with the value of  al at 
which  eok vanishes in one of the two distinct modes or in another possible mode. In 
Fig. 2a, for instance, the parameter  al at which the double root occurs associated with 
the 1st and 2nd modes (or the 3rd and 4th modes) agrees with  al at which  ea, vanishes 
in the 1st (or 6th) mode. It is noted, moreover, that these values of  al correspond to the 
natural frequencies,  al=  (2m+1)s/2n  [m=  integer], of the longitudinal vibration of a 
rod having a length H which equals the thickness of the stratum and end conditions of 
the fixed-free type which are similar to the boundary conditions of the stratum. The 

points at which dispersion curves cross the abscissa in Fig. 2a show the condition 
 e  ok  =  0 that means the zero wave number or the infinite wavelength. Furthermore, 

the frequencies evaluated from the enumerably infinite number of values  al's which 
satisfy the equation  ea„=  0 coincide with the natural frequencies of the above-men-
tioned one-dimensional rod for the transverse and longitudinal vibrations and also cor-
respond to the resonant frequencies of Case  (A) that will be described in section 8. 

 Love  waves—  Any modes of wave propagation of this type are impossible in a half-
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space. It is found, however, that various modes of Love waves, all of which are dis-

persive, may propagate in both a perfectly elastic and a viscoelastic stratum. 
 In a perfectly elastic stratum, the real roots  E.. for Love waves have a tendency as 

regards the frequency parameter  al similar to that for Rayleigh waves, and no waves 
of this type appear in the range  0  5cti<air, where  al„ is common with the previously-
mentioned critical frequency for Rayleigh waves. The phase velocity, which is a 
monotonically decreasing function of  al or CH, is always larger than the distortional 
wave velocity. On the contrary, the group velocity, which is a monotonically increas-
ing function of  al or  CH, is always smaller than the distortional wave velocity, to which 
both the phase and the group velocities approach as the parameter  al or  CH increases. 

 In a  viscoelastic stratum, on the other hand, an enumerably infinite number of modes 
of propagation of Love waves is possible in the whole range of  al and as the parameter 

 ct1 decreases, the real part of every mode vanishes, that is, the phase velocity diverges 
to infinity. No complex root appears in the first and third quadrants in the complex 

 e-plane for these waves different from that for Rayleigh waves. The behavior of the 
imaginary part with  al is similar to that of Rayleigh waves; the attenuation constant 
of each mode increases rapidly in the lower frequency range of the relevant critical 
frequency below which Love waves of the corresponding mode do not appear in a 

perfectly elastic stratum. In this case, in contrast to the case of Rayleigh waves, 
there does not exist the range of CH in which the propagation of free waves of this 
type is impossible. 

 The frequencies, evaluated from the enumerably infinite number of values  ai's which 
satisfy the equation  eek  =0 for a perfectly elastic stratum, coincide with the natural 
frequencies of lateral vibration of the one-dimensional rod mentioned previously in the 
case of Rayleigh waves. For waves of the Love type, there are no such double roots 
as have appeared in the case of Rayleigh waves. 

 5. Solutions for Displacements at the Ground Surface 

 Three equations for the arbitrary constants, A1, B1, and  C1, are obtained by substi-
tuting the Fourier transforms of the boundary conditions given by Eqs. (23) to (25) into 
the solutions of the transformed stress components, Eq. (17), and by setting  z  =O. 
Since all of the eight unknown constants contained in the transformed displacement 
components, Eq. (14), are then determined from these equations, the solutions of the 
displacement components at the surface of the ground can now be obtained by per-
forming the inverse Fourier transform. The solutions for the displacements at the 

ground surface corresponding to each type of exciting force given by Eqs. (19) to (21) 
are expressed in the following integral  representations  : 

 (1) Vertical excitation 

                            4bcgo     u=V[Fog,r)2nvivr)0(to)}1 
      ( viPvgq—r8                             WO, T)S(8, r)0(0))          \ 

27c27rit 

• 

 e+4  ""  +`') did  &Not
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       Pv g2  ( 1rCM"- 8  
        71.227raF(19, r)rg, r)s(19, r) 

                           •sin  x8•cos  yr•Q(o)e+i'd0r17-do) (41a) 

 v—Pn'vg2( 21  )iY ST ns(R, r)        a7Coo7-) 

 •cos  xa•sin  yr  •Q(c0)e+  co  dr  do) (41b) 

  w=PV,g2( 21 )irST al° TVG% r)s(g,  r)       7C2/1\77oF(8,r) 

                       •cos  x  g.cos  yr.  owe'cla  &Nu) (41c) 

where 

 W(/3,  2-)  =  {(2ai+eg2)(82+  r2)+2cdfxD  +crice2{(2a2+eg2)+2(192-1-7"2)}  

-  (cosech  a1Thcoschot2H—coth  ail-•eath  a2H) (42a) 

 Tv(O,  r)-=  (Q2+ r2) coth  a1H—aia2coth  a2H (42b) 

 (2) Horizontalexcitation 

 uP    = Hg2(11rr /c2g2a1,927•No,r2 1 s(8,        7C2lik2rJ --)0JoLF(0,  r)  L(5,7.)_ia2(82+12) 
 •cos  xfi•cos  yr•Q(co)e+i'dfidrcho (43a) 

     PH211gzczi   V=g)25 5 56,7E  e_ TH( 8, 7)   S(8,  r)  
        2r2a27r--  0 0Fo, r) L($,  J  a2(92+  r2) 

                          •sin  xg•sin  yr  •Q(w)e+il  '0  dr  dta (43b) 

  W-PH8.2(1nSTfi  8.2G(th r)+11S(8,r) 
     n-2,u27r-oo2F(a,a2(82+7.2) 

                         -sin  xthcos  yr-O(to)e+"dfidrdo (43c) 

where 

 n=(192+  e)coth  a2H—  choe2coth (44a) 

 G(0,  0=  (2a2  +  g2)  4(132+  r2)—aitt2coth  ail-•oth  a2H} 

 2a1a2(32  r2)cosechaiThcosech  a2H (44b) 

 (3) Rotational excitation
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    u__ 3MRg2( 1V° CT°  
         tr2fib \ 27)oF(8,7)TF(13,r)ssin rb)N(8b)  

•  cos  x  •cos  y  r.  Q((o)e+"  d  8  dr  dto (45a) 

 v3/147g2(  1 yirrr  
       7r2\-JD )0 F(8, y) w(8,ssinrb)N(8b) 

                        •sin  xa•sin  yr•Q(co)e'clO  dr  dto (45b) 

  w_ 3Meg1aler)                            Tv(5,1)sin
iv,Nos b)         tr2jab2(\27r IoJo F(8, 7-) 

                          •sin  x/3-cos  yy•  Q(a)e+"  ri  dy (45c) 

• 

 The above solutions reduce to those for a viscoelastic half-space if the thickness of 

stratum H tends to infinity. 

 6. Definition of Dynamical Ground Compliance and Its Analytical Ex-

     pressions 

 The solutions for Fourier-transformed displacement components at the surface of the 

ground may be represented by the general expression 

                  17((0)=-PrQ(to)* J(co) (46a) 

or its inverse expression 

 U(t)=  PIQ(t)*J(t)= P127±-)121—Q(r)J(t— r) dr 
 =Pi(    27-htQ(r)J0t) dt (46b) 

                                             - where 

 U(w)={u,  r-C{u,  v,  241  (47a) 

 /(0)=  ,,[,f(t)]  [1=  V, H, and  R=  type of exciting force] (47b) 

and  Tht  =  operator indicating the Fourier transform with respect to time t. 

 Since the function  Au)) is defined as the output-input ratio,  13(0)1P,Q(0)), in the 
domain of the Fourier transform with respect to time t, it means the complex transfer 
function of displacement components to an exciting force associated with the dynamic 
problem of a massless-foundation-ground system considered in this paper. 

 If the time factor 

 PIQ(t)=  (t)[= Dirac's delta-function] (48) 

in substituted into Eq. (46b), the equation
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 U(t)—(12g--)125O(r).J(t-r)dr=( )2J(t)  t�0, 11(0=0  t<0 (49)                            2g 

is then derived to represent the impulsive response of this system. 
  On the other hand, if the time factor 

 Q(t)=  eiwt (50) 

with its Fourier transform 

    .1)-1   Q(00 =2)25—dt=(-217.27ta(w-to0 =(-2g2 6(0— CO') (51)    7r7r 

is substituted intoEq. (46a),the inverse Fourier transform of U((00becomes 

    U(t)=P1(27r-1 )11(1  )-16(co-cd)f(al)e."'dco'=Pie"ti(to) (52)                         -27r 

That is to say, it is found that the function  .7(  co) is expressed also by the ratio of the 
displacement components  U(t) to the complex harmonic exciting force  Pie'•'. 

  The complex frequency response of a representative displacement of a foundation in 
the exciting direction, which can be evaluated from the function  J(w), is now defined 
as the "Dynamical Ground Compliance  (D.  G. C.)" of a rectangular foundation on a 
viscoelastic medium. As previously mentioned, this is the force-displacement transfer 
function with the inverse dimension of stiffness and represents comprehensively the 
dynamic characteristics of a  massless-foundation-ground system. If this quantity is 
determined in the whole frequency range, the representative displacement of a founda-
tion subjected to an arbitrary transient exciting force  PiQ(t) can be evaluated from 
Eq.  (46b). 

 For a representative displacement of a foundation, the following displacements of 
the ground in the loading area can be  adopted  ; 

 (1) Vertical excitation  =21)  x—y=z—.0 (53a) 

 (2)  Horizontal  excitation  Uo  =  U  I  x.y=z=0  (53b) 

 (3) Rotational excitation  0=wix=b0-,=0/b (53c) 

That is to say, the displacement in the exciting direction at the center of the founda-
tion is chosen in the cases of vertical and horizontal excitations, and the average rota-
tional angle defined by the ratio between the vertical displacement at the center of a 
side of the foundation area parallel to the rotational axis and the distance from the 
axis to the center of the side is selected in the case of rotational excitation. 

 The analytical expressions of  D.  G. C. are derived from the solutions of the displace-
ment components, Eqs. (41c), (43a), and (45c), as  follows  ; 

 (1) Vertical excitation 

 CALWol Wog2  11-   ale  Tv(19, r)S09,nag dr (54) 
   %i[PvQ(t)1 Rye"r2°FOC])
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(2)  Horizontal excitation 

 o] UOg2 (TPC2g2a2282 TH(19,r)_   T2    MP HQ(01Thiel'n2/4)0 )0 L  F(R,  r)L•(9,  r)]                              

•   S(th   dfidy (55) 
 a2(82+r2) 

(3) Rotational excitation 

   McbJ  — —   3g2 a1ic2 Tv(8, r)S(R,  r)N(8b)dfi  dr (56) 
 critEMRQ(()]Mxeivr—n2/2b2Fo,  r) 

 Although all of the above equations include a double infinite integral, one of the in-
finite integrals can be reduced to a finite one by the following transformation of the 
integration variables. 

 =Ccos  0,  y  =Csin  0 (57) 

In addition, the transformation 

                                          (58) 

and the non-dimensional quantities 

 a0=Kb=  b=ai (59a) 
                                     Cy 

        c2           —77     7/2 = • H2fX71=02 •22/=n2(21+2)on    bbb•+2,ttitt=77.m. b (59b) 

 1 1                                               (59c) 
                 gl= 1+  iThfio'  g2  1+  iv2ao 

are introduced. The analytical expressions of  D.G.C. are then written in a non-dimen-
sional form as  follows  ; 

  (1) Vertical excitation 

 RD/Jo]   6  ,,,a0,0(–pEVE2-7i2g7  v(E)S(ctoe,  B)dOd  R
IEPvQ(0]  7r2  30  )0  F($) 

        2   

               _aogirCEVE2_2el                                1-1  S(a 0e,61)(10 de  (60) 
                  7r2ioo  Fv(E) 

(2) Horizontalexcitation 

     Ca,E1403 •ba°615TeLle2g2 T(e)cos 20—sin 20  

   W 

      PHQ(t)]7r20oRe)Hg2+1E2— g2L($)-1  

•  S(a0e,  (Dade
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           aügT1iS[VE2—g2cos20—sin2° 1S(a0E, 0)d0de 
              7C200FH(e)g2VE2g2L(E) 

                                          (61) 
(3) Rotational excitation 

  b3 a° gS-S2 "e2 112g1 Tv(e)S(ctoe,  0)  N(a0E,  0)d0  de  AIRQ(t)]  3  7r2  0  0  F(E) 

              —61281n;eVe2n2g1 S(a0e,  0)N(aaf, 0)(10 de (62)                  zr2ao  Fv(E) 

where 

 Fv(e)=  ((2E2—  g2)2coth(J$2—  Ogiai)-11$24$2—  n2gi  Je2  —  g2  coth(ve2  —  g2a1)} 

 2   

  Tv(S) 124E2  — n2 gt Jrg2 cosech(&—  gzai) 

 —(2E2—  g2)cosech(Ve2—  Th2giat)}  2 (63a) 

Fll(e)= 1(2E2— g2)2coth(VS2 — mai)462vE2  /-2                                       vtg2coth(4e2 — gtai)} 

 2   

 TIM{2JS2 —  n2  gn/e2  — g2cosech(J$2— n2 81(0 

                           —  (2E2  —  g2)cosech(V£2—  gzai)}  2 (63b) 

 Tv(6)=  f2  coth(VE2  —  n2  gift].)  —  —  gi  g2  coth(462—  &al) (63c) 

 THM=  $2coth(4$2—  &at)  —  Jr  —  n2  gi  —  g2coth(JS2—  n2giai)  (63d) 

 S(ao$  ,  0)—  sin(aoecos0)  

                    

• sin(tao$ sin 0)  (63e)                 aofcos B)   ao$  sin  0 
                    sin(a$ cos 0)                          oe _ cos(aoe cos 0)     N(acie,  0)— (63f)  a

o$  cos  0 

 If the thickness H tends to infinity, Eqs. (63) and (34) become 

 Ev(e)  =  Fri(e)=  Fo($) (64a) 

 Tv(e)=  TH(E)  T(E)(  =  $2  VE2—  n28'01E2—  g2) (64b) 

 F(e)=  Fa  (e).  T(6) (64c) 

The substitution of Eq.  (69) into Eqs. (60) to (62) results in the analytical expressions 
of  D.G.C. for a viscoelastic half-space.
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  7. Definition of Statical Ground Compliance and Its Analytical Expres-

      sions 

  The limiting representations of the analytical expressions of  D.G.C. when the fre-

quency of the exciting force  a, tends to zero give, in particular, the "Statical Ground 
Compliance  (S.G.C.)". This is defined as the ratio of the static displacement of a foun-
dation in the forcing direction to a static load. Hence, its inverse is the static stiffness 
of the foundation-ground system. The final expressions of  D.G.C. given by Eqs. (60) 
to (62) are not available in calculating their limiting expressions, because the frequency 

 w is included in the denominator of the integration variable,  e=  V2=C•C21(t). However, 
if L. Hospital's theorem is applied to the limiting calculation of the integral representa-
tions with respect to the variables defined by Eq. (57) when the frequency parameter, 

 K  =  alc2, tends to zero, the analytical expressions of  S.G.C. can be evaluated as  fol-
lows ; 

  (1) Vertical excitation 

         leo  

  f sv=•bit=
27c21 (( (1+n2) sinh Cccosh C' — (1 — n2)C1         PvH  )o )o 1 + (1 — n2){(1 + n2) sinh  2C1+  (1—  n2)C121  b 

 

•  S(C1  Hb 0)(10dC1 (65) 
  (2) Horizontal excitation 

  fsm=  u° •bge=  1                   -(2r (1+ n2) sinh CI•cosh C'± (1 — n2)C'   PH             2n21110JoL+(1— n2) {(1n2)sinh 2C'± (1 — n2)C'21 

 b 

                    -cos  20-2  sin2°18(C'bH0)&14' (66)                                  cothCI 

 (3) Rotational excitation 

       $  63 ,et1  ( (1 n2)sinhV•cosh C' — (1 — n2)C'    f SR= •-        M
R 3 2g2 H io )o  1  +  (1  —  n2)  {(1  ±  n2)  sinh  2C'  +  (I  —  n2)C121 

 b 

 

•  S(C1 Hb'o)N(c' bHo)dodc' (67) 
where 

 C'  =CH  (68) 

 If the thickness H tends to infinity in the expressions of  S.G.  C. whose integration 
variable is C, the limiting representations reduce to the analytical expressions of  S.G.  C. 
for a half-space.
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  8. Resonance Phenomena 

  Perfectly elastic  medium—Resonance phenomena do not appear in the case of a 
half-space. On the other hand, for the case of a stratum over a rigid half-space, waves 
are reflected perfectly at both of the boundary surfaces of the stratum. Therefore, if 
a certain relation is satisfied between the depth of the stratum H and the frequency 
of the exciting force  w, the resonance phenomena that the amplitude of displacements 
diverges may appear when a harmonic exciting force is acting on the foundation. 
These resonance phenomena can be separated into the following three cases: 

  Case ®; the integral representing  D.C.  C. diverges in the neighborhood of  e=0, 
        that is, the resonant frequency agrees with the natural frequency of a one-
        dimensional rod having the same length as the depth of stratum. 

  (1) Vertical excitation 

  Supposing the variable  e to be an infinitesimal positive number, and if the relation 

 Leath  (1e2  —  n2e1)1e  -a  =coth(inal)  =  —  i  cot(  na  )  =  0 (69) 

 e., 

           2rn+ 1 7r or co —2m +1  n1  (1—  v)E   al—(70)  2
n 2H p  (1+  v)(1  —2v) 

where  m  =  integer and  E=  Young's modulus of stratum, is satisfied, an approximate 
expression 

 [coth(Ve2—  n2ai)]ai_2m+i   „ 
 2n 

                                    :             —[ 2711+ 1 g (1-2n2221e2)1                                  ——. 2m+7/•2
n2 (71)   2 

can be obtained. It is found, using Eq. (71), that both of the functions  F(E) [Eq. (34)] 
and  F„(e) [Eq. (63a)] are of the order of  t2. Now let ei and  E  (61>6) be infinitesimal 
positive numbers and be Cauchy's principal value of the integral with respect to e 
in the double integral representation of  D.G. C. given by Eq. (60), respectively. Then, 
the integral  J., is expressed by 

        _ Jv = P5ve2o  Fv(E) S(ao$, 8)d$ 
     cy2rn+ 1 b  

2 

                  Cot2M. + 1Ir  b22 n iimr( E1 (1PF°2rt2 S(noE,  0)de 
    (4n2+ 1)+               2m+17 cot 2m2+16-'0Lie  $ J Fv(E)      4nn 

                                          (72) 

The first term of the above equation obviously diverges. So the resonance phenomenon 
may occur when Eq. (70) is satisfied. The resonant frequencies of this case coincide 
with the natural frequencies of longitudinal vibration of a one-dimensional rod one end
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of which is fixed while the other is free. This equivalent rod has the longitudinal 
rigidity,  (1  —  v)E/(1+  v)(1  —20, and the same length H as the thickness of the stratum. 

 (2) Horizontal excitation 
 If the relation 

 [coth(VE2  —  lai)]t,  0  =  coth(ia  1)  =  —  icota  =  0 (73) 

 e., 

                  at = 
                2m + 17r or CD2m + 1 Tr1/,ti                                            (74)    2 2H 

is satisfied, it is also found, after similar calculations in the case of vertical excitation 
described above, that Cauchy's principal value of the integral representation of  D.G.C. 
given by Eq. (61) diverges, which means the resonance phenomenon of infinite ampli-
tude. The resonant frequencies in Eq. (74) coincide also with the natural frequencies 
of lateral vibration of the similar equivalent rod having the shear modulus p to the 
case of vertical excitation. 

 (3) Rotational excitation 
  Different from the above-mentioned two cases, this type of excitation exhibits no res-

onance phenomenon corresponding to the natural frequencies of an equivalent rod. 
 As for the resonant frequencies of the vertical and horizontal excitations belonging 

to this Case (j), the above discussions show that a three-dimensional stratum can be 
treated as an equivalent one-dimensional rod having the same length and the similar 
end conditions as the stratum and oscillating in the mode corresponding to the type of 
excitation. As mentioned in section 4, the resonant frequencies of the horizontal exci-
tation given by Eq. (74) are the solutions of the frequency equations for both Rayleigh 
and Love waves with the condition  $0,,  =0 i.e., the wave number C=0. The resonant 
frequencies of the vertical excitation in Eq. (70), on the other hand, are the solutions of 
the frequency equation of Rayleigh waves with the same condition. 

 Case  :2); the frequency equation,  F(E)=0, has a double root in some mode, that is, 
        the  group velocity of the mode vanishes. 

 Case  ®; the frequency equation,  F($)=0, has a double root associated with two 
        distinct modes, that is, the phase velocity of the two modes agrees with each 

          other. 
 As mentioned previously and shown in Fig. 2a, the frequency equation,  F(E)=-0, for 

Rayleigh waves may have an enumerably infinite number of double roots belonging to 
Case  (g) or Case  ®. They are indicated by the mark  "e" (Case  ®) and  "0" (Case 

 ®) in Figs. 2-4. Owing to these double roots,  eak, at which the relations  F(e)I  E_tok 
 =dF(W  del  E=Eok=  0 and  d2F(e)/  de2I  z=to,  *0 are held, Cauchy's principal value of 

 D.G.C. diverges, that is, a resonance phenomenon having an infinite amplitude may 
occur. These two cases may appear in all types of excitation when certain common 
relations are satisfied between the depth of the stratum and the frequency of the dis-
turbing force. 

 Viscoelastic  medium—In this case it seems difficult to express the resonant frequen-
cies analytically. The resonant amplitude is reduced to a finite one owing to wave 
dissipations in a viscoelastic medium.
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  9. Numerical Calculations 

  Method of numerical calculations 
  It seems impossible to derive closed-form solutions expressed in terms of the func-

tions whose properties are well known, from the double integral representations of 
 D.G.C. including an infinite improper integral. Thus, a numerical integration method 

must be applied in order to clarity the properties of  D.G.C. 
  The outline of the numerical calculations of  D.G.C. is as  follows  : Since the integra-

tion with respect to 0 is common to repeated calculations of the infinite integral with 
respect to  E for various frequency parameters  ao, it may  be convenient to evaluate, in 
advance, the quantities 

       Macre) = SoS(aoe, 0)c10 (75a) 
 sn(ctoe)=1  sozoe,  sin  20c10 (75b) 

         SIN(aoe)=SoS(aDe,tOntoe, 0)610 (75c) 
for an appropriate set of values of the variable  aoe, which are selected here at intervals 
of 0.05 from 0 to 100. With the aid of the numerical tables for the above quantities, 
the integration with respect to e is then carried out by interpolating the values of the 
quantities in Eq. (75) for intermediate values of  aoe by Everett's or Stirling's formula 
of the 4th order. The numerical calculation of the infinite integral is carried on up to 
where the integrand becomes so small that the error produced by such truncation of 
the infinite integration is not more than 0.5 percent. In the numerical integration 
according to Simpson's 3/8  rule, successive subdivisions of the integration interval are 
made until the error becomes smaller than 0.05 percent. 

  Since the numerical table for the quantities given by Eq. (75) is also common to the 
integral representations of  S.G.  C., the numerical integrations of  S.G. C. are carried out 
by the same method as mentioned above. 

  Distinct differences as to the integration path  on  e may now arise between the two 
cases of perfectly elastic and viscoelastic media. The interpretation of the integration 
path will thus be given below separately for each of these two cases. Inspection of 
the analytical expressions of  D.G. C. shows that results of the integration are obtained 

 as a complex number, the real and imaginary parts of which shall be denoted by  fit 
 and  f2,  [1=  V, H, and  R], respectively, in the following. 

  Perfectly elastic  medium—The analytical expressions of  D.G.C. for a perfectly 
 elastic medium, obtained by setting  VI  =  2=0. i.e.,  81=  g2=1 in Eqs. (60) to (62), 

 include the following singular points on the path of  integration  ; namely, 

    the branch points are e = n and e =  1; 

 the  poles  are  e  =  1,  e  =  eo.ug  =  1,  2,  •  -  NJ, and 

 E =  1, 2,  •  •  •,
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where  En  =real roots of the frequency equation, Eq. (34), for Rayleigh  waves  ; 
 en,=real roots of the frequency equation, Eq. (35), for Love  waves  ; 

and  N  and  N= the total number of real roots,  E„,, and  En„ respectively. 
 When the integration path on  E is extended in the complex-plane, the path can be 

selected as a positive real axis, avoiding the above-mentioned singular points around 
semi-circles in the first quadrant. The integrals  along these semi-circles around the 
singular points,  E=Th and  E=1, vanish when the radius of the circle tends to zero. 
Hence, the integrations are expressed in terms of Cauchy's principal values with respect 
to both poles,  en for Rayleigh waves  and  En, for Love waves, and the sum of the 
residue term which is  —in times the value of residue at the singular point for Rayleigh 
or Love waves. It is noted that the residue terms for Love waves appear only in the 
case of horizontal excitation. 

 In the case of a half-space, Cauchy's principal values are complex numbers and the 
residue terms are pure imaginary ones. For a stratum, on the other hand, Cauchy's 
principal values and the sum of the residue terms give respectively the real and imagi-
nary parts of D.G.C.; namely, 

 (1) Vertical excitation 

 FiCt[w°1  f
iv+  ifzv (76)  cii

tLPvQ(01 

where 

             fiv = n20a°PrEFV(e)IE2 a2SI(aoS)de (77a) 
 N• V_ 2            no
E            f hdFv(f)        zv=$0001(77b) 

                                              -1 

 -  det=„k 
 (2) Horizontal excitation 

 itEu°1 •bl-t= fark  ifzx (78)               ca
tLPHQ(0] 

where 

   a°2 PR 2  Sis(a0e)ide (79a)            £
FH(£)1{Sr(aoe)— Sis(aae)}     7roFH(e)Ve2-1L(E) 

        aorie2-1iSi(aoe) Sis(acie)}ao7/ kr=E11-s,s(aos)1-E„kr         7tk=1dFH(e)                   al 

 de e=o* 

                                           (79b) 

 (3) Rotational excitation 

                    iirEqS]  b3gtJ,zr                   1R•J2R (80) 
              iitEMaQ(01 3
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where 

              ao n, 2—M2 s
ixamdf(81a)                 fix=                      F v(e) 

 aoeVe2— n2        2Rsm(aos)  7r  k=1   dFV(e)(KW 
 e-Eok 

In the above equations P represents Cauchy's principal value of the improper integral. 
In evaluating Cauchy's principal value with respect to a pole, Longman's  method231 is 

 used  ; namely, separating the integrand into two parts, an even and an odd function, 
about the pole and choosing an appropriate symmetric range of integration, Cauchy's 
principal value associated with the range is calculated by only considering the contri-
bution of the even function to the integral. 

  Viscoelastic  medium—When some mechanism of internal energy dissipation exists in 
a medium, all singular points of the integrand in the integral representations of  D.G.C. 
become complex-numbers. Therefore, it seems convenient, in this case, to evaluate 
the integral with respect to  e directly along the positive real axis on which no singular 

points appear. 

  Numerical results 
  Numerical results will be shown for the case of  n2=-1/3, i.e., Poisson's ratio of the 

medium,  v=1/4. 
  For the three types of loading and for various shape ratios c/b,  S.G. C. is shown in 

Fig. 5, in which the solutions 

 3  
                                        (82)           fsv="v•byte, f.571bI/                             _ of-se—,,,,•Ro      PVP H2,1R• 

are plotted versus the ratio of the thickness of stratum H to the reference half-width 
of the  foundation  I), which is defined according to the type of excitation such that 

 1)r=1,e=3lbc and  L=(b3c)4. By the use of the reference half-width these figures 
make it possible to find the shape effect when the cross-sectional shape of the founda-
tion is varied while its area and its moment of inertia about the rotational axis remain 
constant respectively in the cases of translational and rotational excitations. The 
dotted lines in these figures indicate the solutions for a half-space. 

  For the three types of excitation  D.G.C. of a square foundation,  c/b=  1, is shown in 
Figs. 6 and 7 versus the frequency parameter  cto. These figures show the case where 

 11/411=1 and  v=1/4. This means that the non-dimensional viscosity coefficients of 
dilatational and distortional waves defined in Eq. (59b) are equal, namely,  721=  v2=7). 
In Fig. 6 the variations of  D.G.C. according to the ratio of stratum thickness to founda-
tion width, H/b, are presented, and the variations according to the non-dimensional 
viscosity  coefficient') are shown in Fig. 7. 

  The physical meanings of  S.G.C. may easily be understood as the reciprocal of the 
static stiffness of a foundation-ground system. It seems difficult, however, to find the 
physical properties of  D.G.C. directly from the present complex-valued expressions. 
Then, let  D.G.C. be related to the relevant Voigt model consisting of the equivalent 
stiffness and viscous damping both of which are functions of frequency. Since the 
force-displacement transfer function of the Voigt model is expressed as  1/(4,4acce,)
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 [1=  V, H, and R], the equivalent stiff- 
ness coefficient K„and the equivalent0.3   
viscous damping coefficient ca are deter- t 
mined from the relation  fe, 1              0.2-

re---issiatin,,a,  

      1  

 fl1+ if 21— (83a)e/b1     ICel + ia0C el2 ,1/2 
 4 

i.e., 0.1 • 

'  a 

 fir—  fztb7W /Ca=22Ca= ao(     fl1+f2Ifii-Ff2i) 

                 (83b) 
                        0 5 101511.4—,20 

                                                                                  by 

Results for the case whered'/a'=1 and(a) Vertical excitation. 
c/b=1 are shown in Fig. 8 for the two 
cases of H/b=4 (or  H/b  =2) and H/b 0.3   
=00, the latter case of which cones-              fI1 1/2Th  
ponds to a half-space. f_Sts-  

 The cases of a square foundation are0 .2, 42   IV&   
indicated in all of the above figures of  C/b-1 

 D.G.C. In order to find the effect of 
_I/2                                                                   2 the shape of the foundation on  D.C.  C.,4 

the equivalent coefficients of the Voigt 01 
model,  ke, and  et,, evaluated from the    1-1„ 
following expressions of  D.G.  C. having b. 
similar form to Eq. (82) for  S.G. C. 

                  0 5 10 15 .ft— 20  b
„   ThElv°3 • by It — fw+iw (84) (b) Horizontal excitation. 5iVPvQ(t)] 

 7,Cuoi   • h Hp= f iii + lint (85) 
RIEPHQ(01 

 0.06• 

   ilt[Chl  3c-,;?        •Ra= iIR..j2R (86) , aji__ R
tEMRQW]63f.  era in                 0,04 - filiks 4 

are shown in Fig. 9, in which abscissa is  C/b=1 
                                                    2 

the frequency parameter,do= oill pl t41, 1/2 
                 002 -4 

                 T2   and the parameters  H/b, and—- 
                                   cy 

                                                                                                   b.=00                               6 , 
 piC221+2P1  •—•remain constant ..  

 '-15  it  _._  20 

 In Figs. 6-9, dotted lines represent the BR 
solutions for a half-space and fine solid(c) Rotational excitation. 

lines drawn vertically indicate the posi- Fig. 5. Statical Ground Compliance for 

tion of the resonant frequencies in the various shape ratios  06.(u=1/4.) 
 case of a perfectly elastic stratum. The
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notation  (:),,[.I=  1, 2, and  3] in the upper blank of these figures means the kind of 
resonance phenomenon discussed in Section 4 and subscript  k stand for H/b or  H/b,. 

  10. Discussions 

  Statical Ground Compliance (See Fig. 5.) 
  S.  G. C. of a stratum indicated by solid lines in Figs.  5a to  5c tends to increase rapidly 

in the comparatively small range of  H/b,, and approaches gradually to  S.G.C. of a 
half-space indicated by dotted lines as the parameter H/b, increases. The rate of con-
vergence of  S.G.  C. of a stratum into  S.G.  C. of a half-space with the increase of  H/b, 
becomes large in the  order  :  1 vertical, 2 horizontal, and 3 rotational loading cases. 
There is little difference in the convergency between the two types of translational 
loading in which the rate of convergence is rather small, and rapid increase continues 
until the thickness of the stratum H becomes about three times the reference half-
width of the foundation  (bc)112. In the case of rotational loading the convergence is 
found to be extremely rapid and  S.G.C. of both media almost coincide with each other 
when the thickness of the stratum H becomes more than five times the reference half-
width of the foundation  (b3O19. Comparing the two cases of translational loading 
under an identical static force, it is found that  S.G.C., namely, the foundation displace-
ment in the loading direction is always found to be larger for the horizontal case. 

 For all types of loading,  S.G.  C. increases almost linearly in the range where  H/b, is 
small, and it remains nearly constant in the range of large H/b,. By reference to the 
non-dimensional expressions of  fs, given by Eq. (82), the following relations may be 
approximately satisfied between  S.G.  C. with the original dimension and the cross-
sectional properties of the foundation as long as the foundation has an identical  shape  : 

 S.G.  C. is almost inversely proportional to the area of the foundation for the transla-
tional loading cases and to the moment of inertia about the principal axis of the founda-
tion for the rotational case, respectively, when the thickness of the stratum is relatively 
small in comparison with the reference half-width of the foundation, in other words, 
when the stratum is considered as a thin layer over a rigid half-space. On the con-
trary, when the thickness is considerably larger than the reference half-width of the 
foundation, namely, when the stratum may be treated approximately as a half-space, 

 S.G.C. increases almost in inverse proportion to the square root of the area for the two 
translational cases and to the three-fourth powers of the moment of inertia for the 
rotational case, respectively. 

 As regards the effects of foundation shape on  S.G.  C., it is found that for the transla-
tional loading cases,  S.G.C. is maximum when the foundation is square. Comparison 
between the two cases in which a horizontal force acts along either of the mutually 
perpendicular principal axes of a foundation indicates that  S.G.  C. for a loading in the 
slenderer direction  (c/b>1) is always greater than that in the other perpendicular 
direction  (c/b>1). Both, of course, agree with each other for the vertical case. For 
the rotational loading, if the moment of inertia remains constant, the smaller deforma-
tion, namely, the smaller  S.G.  C. is produced as the shape becomes slenderer in either 
direction of the principal axes of the foundation area. 

 Resonance phenomena (See Figs. 6 and 7.) 
 One of the main aspects in the dynamic problems of a stratum different from the
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case of a half-space is that an enumerably infinite number of resonant frequencies 
appears owing to the repeated wave reflections at the upper and lower boundary sur-
faces of the stratum. 

 As mentioned in Section 8 there are three kinds of resonant frequencies in the case 
of a perfectly elastic stratum. The following table shows the values of the non-
dimensional frequency parameter  a() at resonant frequencies appearing within the 
range,  0�_a0�2. These frequencies are indicated by fine solid lines drawn vertically 
in Figs. 6-9. 

  Table The values of frequency parameter a, at resonant frequencies within  0  Sao  52. 

 the kind of resonant type of excitation 
 H/b   

   frequency vertical horizontal rotational  

I  1.5708 

 0  2  1.  3603  0.7854 
 4  0.  6802  0.  3927,  1.  1781,  1.  9635 

 1 

 0 2  1.3506 
         4  0.6753  1.  8637 

 1 

 0 2  L3603 
      4  0.6802 

  The notations in the first column of the table indicate the kind of resonant frequency 
such  that  ; 

 ®=those which correspond to the  natural  frequencies of an equivalent one-dimensional 
   rod having the same length with the thickness of stratum, 

 ®=those at which the group velocity of some mode vanishes, and 
 T=those at which the phase velocities of two distinct modes coincide with each other. 

  The above resonant frequencies are determined from the roots of the non-dimen-
sional frequency equations expressed in terms of the frequency parameter,  a1=a0 

 •111b=wHIc2, and the velocity ratio,  n=  c2/ci. Consequently, they are functions of 

only the constants of the stratum such as the thickness H, the density  p, the shear 
modulus p, and Poisson's ratio  v. They are thus independent of the shape and dimen-
sions of the foundation. It is an interesting fact, as mentioned partly in Sections 4 and 
8, that the resonant frequencies of Case Ca) coincide with those belonging to Case ® 

 asenciated with the vertical excitation. 

  As shown in Fig. 7, the resonant amplitude of  D.G. C. of a perfectly elastic stratum 
 (7=0) diverges at those frequencies. A viscoelastic stratum, on the other hand, has 

finite amplitudes at the resonant frequencies because of the internal energy dissipation 
in the medium. As the non-dimensional viscosity coefficient  v is larger, the behavior 
of  D.G.C. in the neighborhood of the resonant frequencies becomes smoother and the 

peak frequencies of the absolute value of  D.G.  C. i.e., the amplitude of the foundation 
displacement, are gradually shifted into the lower frequency range.
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  Attenuation mechanism (See Figs. 7 and 8.) 

  In general, whether the medium is perfectly elastic or viscoelastic,  D.G. C. is 
expressed as a complex number and its imaginary part is concerned with some energy 
attenuations. 

  Perfectly elastic  medium—Even though the medium has no attenuative nature ow-
ing to internal dissipation, it shows an apparent attenuation caused by wave radiations, 
that is, waves are radiating away from the exciting source at the surface into the 
medium. In this case,  D.G. C. is expressed as the sum of Cauchy's principal values of 
the improper integral, which are complex or real  numbers, and the residue terms around 
the  poles related to Rayleigh and Love waves, which are pure imaginary numbers. 
This summation of the residue terms means that the contribution of Rayleigh's or 
Love's free waves with definite amplitudes may appear in the solution of  D.G. C., 
because these poles give the components with the wave number of such free waves. 
It is suggested by G. N.  Bycroft7 that the composed waves are the divergent waves, 
which radiate away exclusively from the source without including reflected waves 
from infinity. Therefore, the solutions obtained  by this summation may have the 

physical meaning that the boundary conditions at the radial infinity are throughly 
satisfied. 

  The imaginary part of  D.G. C. of a half-space consists of two  parts  ; the imaginary 

part of Cauchy's principal value and the residue term around the Rayleigh pole. These 
parts represent respectively the downward wave radiations of bodily waves and the 
radial wave radiations of free waves. Energy attenuations are thus produced by these 
two kinds of wave radiation mechanism. In the case of a stratum, on the other hand, 
the imaginary part consists of only the sum of the residue terms around the finite 
number of poles corresponding to the free waves of possible modes. Energy attenua-
tions in this medium are thus produced only by free waves in the radial direction, 
while no radiations occur downward because of perfect wave reflections at the bound-
ary surface of the rigid half-space. It is observed from the equivalent viscous damp-
ing coefficient in the case of a perfectly elastic stratum shown in Fig. 8 that an abrupt 
increase of energy attenuation occurs in the immediate right side of a resonant fre-

quency. This is because a free wave of some higher mode appears additionally when 
the frequency increases over the resonant frequency. For both kinds of free waves, 
as mentioned in Section 4, there is the frequency range,  0  �ai<  ai„, in which the 
frequency equations have no real roots. In this range, any propagation of free waves 
is impossible in a perfectly elastic stratum and thus, the stratum exhibits no attenua-
tions in the frequency range below the lowest resonant frequency. 

  Viscoelastic  medium—As shown in Fig. 2, all the roots of the frequency equations 
are complex numbers having non-zero imaginary parts. The branch points appearing 
in the integrands of the analytical expressions of  D.G.C. are also similar complex 
numbers. Therefore, it is convenient to evaluate the infinite integral with respect to e 
in the analytical expression of  D.C.  C. along the positive real axis having no singu-
larities. No result is obtained in such a separated expression consisting of Cauchy's 

principal values and the residue terms as in the case of perfectly elastic medium. 
However, if the integration is made along an appropriate path in the complex e-plane, 
a formal separation into those two parts may be possible. The infinite integral in the 
analytical expressions of  D.G. C. means the continuous summation of the effects of 
every wave number included. Although the imaginary part of  D.C.  C. appears only
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in a certain definite range of the integration variable,  E=c2C/w, and at the poles on 
the positive real axis for a perfectly elastic  medium,  it  always appears in a viscoelastic 
medium in the whole range of wave numbers, because the dissipative attenuation may 
arise for waves of whatever wave numbers. Moreover, the residue terms at the com-

plex-valued poles are in general complex numbers. Thus, in contrast to the case of a 
perfectly elastic medium, a physical separation of the imaginary part of  D.G.C. of a 
viscoelastic medium into the radiative and dissipative attenuations will not be allowed, 
even though its formal separation be made such as the imaginary parts of the residue 
terms related to the radiation and dissipation of surface waves and of Cauchy's princi-

pal values related to those of other waves. However, in the case of a viscoelastic half-
space the equivalent viscous damping coefficient may have an appearance, as shown in 
Fig. 8, such that the amount of energy attenuation owing to internal dissipation in the 

viscoelastic half-space is added to that owing to wave radiation in a perfectly elastic 
one. It is observed, moreover, that the former, the amount owing to internal dissipa-
tion, increases almost linearly with the non-dimensional viscosity coefficient  v which is 
the parameter prescribing the magnitude of the dissipative attenuation. For the case 
of a viscoelastic stratum, such additivity of the energy attenuation seems to be invalid, 
because the two attenuation mechanisms of radiation and dissipation may  complicatedly 
interact with each other. 

 Even in the low frequency range below the critical frequency in which no free waves 
appear in a perfectly elastic stratum, innumerable modes of their propagation are pos-
sible in a viscoelastic stratum. Consequently, the two kinds of attenuation always 
occur in the whole range of frequency. However, as shown in Fig. 2 the attenuation 
constant of every mode is extremely large in this low frequency range, so that all of 
the free waves may attenuate immediately as they propagate and the dissipative 
attenuation may greatly predominate over the radiative one. In addition to the reso-
nance phenomena, it is one of the noticeable characteristics of a stratum different from 
the half-space that the energy attenuation caused by wave radiation is extremely 
small or does not exist at all in the lower range below the lowest resonant frequency. 

 In general, the two kinds of free waves, namely, Rayleigh and Love waves, may 

propagate in both a perfectly elastic and a viscoelastic stratum. It may be readily 
understood from the assumption of stress distributions produced by an exciting force 
beneath the foundation that both free waves appear in the case of horizontal excitation 
while only Rayleigh waves are caused in the cases of vertical and rotational excita-
tions. The occurrence of Love waves in addition to Rayleigh waves may be pointed 
out as a characteristic of the case of horizontal excitation. 

 The effects of dissipative attenuation in a medium of Voigt solid increase remarkably 
with the frequency, because the imaginary parts of complex elastic moduli are pro-

portional to the product of the non-dimensional viscosity coefficient  v and the frequency 
parameter  ao. Therefore, as shown in Fig. 7, the peaks of  D.G.C. near the resonances 
become gradually smoother as the frequency is higher, and the distinguished peak of 
the fundamental resonance can be particularly observed. It is considered in the range 
where  va0 is large that the waves produced at the source on the surface of a stratum 
may almost attenuate before they reach the boundary of a supporting rigid half-space 
and also that the reflected waves from the lower boundary may scarcely affect the 
behavior of the foundation at which  D.G.  C. is defined. Hence, the solutions of a vis-

coelastic stratum have a close resemblance to those of a half-space in the range of
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large  ric/0. Such resemblance in  D.G.C. is more remarkable in the case of a horizontal 
excitation than in the cases of vertical and rotational excitations. This may be inter-

preted by the following two  reasons  : 
 (1) In the case of a horizontal excitation, Love waves are caused together with Ray-

leigh waves. For the other two types of excitation, however, only Rayleigh waves are 

produced, and they contribute considerably to  D.G.C. of these cases. Since the atten-
uation constants of the first several modes of Love waves are surely larger than those 
of the corresponding modes of Rayleigh waves, the components of Love waves, which 
are inherent in a stratified medium, may attenuate more rapidly than those of Rayleigh 
waves and the latter wave components become distinguished when Voigt-type inter-
nal dissipation exist in a stratum. Therefore, as regards the contribution of free 
waves to the solutions of a stratum, it approaches the case of a half-space more closely 
for a horizontal excitation than for the other two types of excitation. 

 (21 Horizontal excitation is liable to produce distortional waves, and the other two 
cases to produce dilatational waves. The phase velocity or the wavelength of the latter 
waves is always larger than that of the former as long as the same frequency is con-
cerned. Moreover, the difference in their wavelengths becomes larger with the in-
crease of vac. In the range where  nap is large, waves of a shorter wavelength are thus 
distinguished for the case of a horizontal excitation in which the distortional wave com-

ponents may have the main role. On account of the wavelength effect of the bodily 
waves mentioned above, a supporting rigid half-space may have less effect on  D.G.  C. 
in this case of excitation, particularly in the range of large  nap. 

 Effects of the ratio of stratum thickness to foundation width (See Fig. 6.) 

 As the thickness of the stratum is relatively large in comparison with the width of 
the foundation, the reflected waves from the boundary of a supporting half-space have 
less effect on the behavior of  D.C.  C., which is defined at a point in a surface exciting 
area, because of both the phenomena of wave radiation and of internal dissipation. 
Hence, in the case where the ratio of the stratum thickness H to the half-width of 
foundation  11 is large,  D.G.C. of a stratum shows a closer resemblance to the case of a 
half-space. It is found that the rapid convergence of  D.G.C. of a stratum to  D.G.C. 
of a half-space with the increase of the ratio H/b is extremely conspicuous in the case 
of rotational excitation. In the two cases of translational excitation the effect of a 
supporting rigid half-space on  D.G.C. is considered to be accumulative, since the 
assumed stress distribution beneath the foundation takes the same sign at the same 
instance. For the case of rotational excitation, on the other hand, the assumed distri-
bution is proportional to the distance from the rotational axis, and both tensile and 
compressional exciting stresses are equally applied on the surface area at the same in-
stance. Since such surface excitations may have some cancelling effect, the dynamic 
responses of a stratum may be reduced rapidly with the increase of the depth from the 
surface. This may be the reason why the lesser effect of a supporting rigid half-space 
appears on  D.G. C. and the rapid convergence of  D.G. C. to the case of a half-space is 
observed in almost the whole frequency range except for the neighborhoods of the 
lower resonant frequencies in the case of rotational excitation. However, it is noticed 
that in the range where  *a° is large a strong resemblance in  D.C. C. is observed 
between the two kinds of medium, particularly in the case of horizontal excitation, 
because the effect of internal dissipation on the attenuation of free waves as well as on
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the wavelength of bodily waves appears more significantly for this type of excitation 
as mentioned previously. 

 Equivalent coefficients of Voigt model (See Fig. 8.) 
 Halfspace (indicated by dotted lines in figures.)  —  The equivalent stiffness coefficients 

 Key for the three types of excitation are monotonously decreasing functions of the fre-
quency parameter  ao. Although little difference in  ff., according to the change of the 
non-dimensional viscosity coefficient  v is seen in the range where  at, is small, the 
difference becomes more noticeable as the parameter  (20 increases and the coefficients 

 ra become smaller with the increase of the product  71(4 representing the magnitude of 
dissipative attenuation. In the case of rotational excitation, the equivalent stiffness 
coefficient is little affected by the parameter  v in a considerably wider frequency range 
than in the other types of excitation. 

 The equivalent viscous damping coefficients  co, on the other hand, show considerably 
different characteristics between the cases of translational and of rotational excitations. 
The coefficients  ce, in the vertical and horizontal cases are nearly constant over the 
frequency parameter range considered, that is, in these two cases the viscous damping 
coefficients are almost independent of the frequency. In the case of rotational excita-
tion, however,  ce, is an increasing function of the frequency parameter  ao at least in 
the range considered. Strictly, the coefficients  ca for both two translational cases show 
a slowly increasing tendency in the range where  ao is large. Regardless of the type 
of excitation and of the value of the frequency, the increase of the parameter  v yields 
an increase of  c,, approximately proportional to  v in addition to the value of  c., of a 
perfectly elastic medium caused only by wave radiation.  It is noted that in the case 
of rotational excitation the equivalent viscous damping coefficient of a perfectly elastic 
medium is inconsiderable for a small  ao, and the energy attenuation owing to wave 
radiation is insignificant as compared with the dissipative attenuation due to the vis-
coelasticity of the medium, especially in a low frequency range. 

 Stratum (indicated by solid lines in  figures.)  —  As for the equivalent coefficients,  Kez 
and  ce„ a similar tendency as has been in the discussions on  D.G.C. can also be pointed 
out such that the difference between a stratum and a half-space reduces as the ratio 

 H/b or the product  vac, increases. Because of the resonance phenomena inherent in a 
stratified medium, the local reductions of both coefficients occur in the neighborhood of 
the resonant frequencies. These reductions are more remarkable as the parameter v 
decreases, and especially for a perfectly elastic stratum both the coefficients vanish at 
the resonant frequencies. As the product  vao increases, the variations of the coeffi-
cients with the parameter  ao become smooth and the local reductions at the resonant 
frequencies gradually disappear. Also, in the range where  vao is large, the equivalent 
coefficients of a stratum converge uniformly to those of a half-space as far as the 
higher frequency range above the lowest resonant frequency is concerned. 

 It is a noticeable characteristic common to the three types of excitation that the 
coefficient  ce, is considered as nearly constant with respect to  ao in the lower frequency 
range below the lowest resonant frequency where the dissipative attenuation may be 
predominant. Especially for the case of rotational excitation in which energy attenua-
tion owing to wave radiation is scarcely produced even in a half-space, the equivelent 
viscous damping coefficient of a stratum is almost in accordance with the coefficient of 
a half-space in almost the whole frequency range when the ratio H/b is larger than 
about 4. As the parameter  ao increases from zero, the coefficients  ce, for all types
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of excitation increase rapidly in the neighborhood of the lowest resonant frequency 
because of the additional radiative attenuation owing to the first mode of free wave. 

  As for the general dynamic characteristics of the massless-foundation-ground system 
the equivalent coefficients show a considerable dependence on the frequency, particu-
larly in the cases of a half-space with a large dissipative coefficient and of a stratum 
in general. From this aspect, the use of such a simplified model as a frequency-in-
dependent single spring-dashpot system is clearly inadequate, and the use of a higher-
degree-of-freedom lumped system with approximate transfer function to  D.G. C. of the 
foundation-ground system may be recommended. It is noticeable, however, that the 
equivalent coefficients of a Voigt model show little fluctuation with the frequency if 
the following two conditions are  satisfied  ; (1) the thickness of the surface layer is 
much larger than the width of the foundation and a pertinent amount of dissipative 
attenuation exists in the medium so that the stratum under the foundation can be con-
sidered practically as a  half-space  ; and (2) translational excitation is treated in the 
relatively low frequency range. In this case, a frequency-independent single spring-
dashpot system may be available for a model of a massless-foundation-ground system, 
and the numerical values of its parameters are determined by using the equivalent 
stiffness and viscous damping coefficients, which are dimensionless quantities, as well 
as the ground constants and the shape and dimensions of the foundation. 

  Effects of the shape and size of the foundation (See Fig. 9.) 
  The shape of a foundation scarcely affects the qualitative nature of  D.G.C. and the 

equivalent coefficients, and affects their quantitative properties little when the shape 
parameter  c/b varies in the range from 1/2 to 2, while the area or the moment of 
inertia about the rotational axis remains constant for the cases of translational or rota-
tional excitations, respectively. Strictly speaking, both of the two equivalent coeffi-
cients,  ge, and  Oa, which are defined under the above-mentioned equi-area or equi-
moment of inertia conditions, take minimum values when the shape ratio  c/b  =  1 for 
all the types of excitation. It may be rather difficult to know the general characte-
ristic of the effect of the size of a foundation on the equivalent coefficients from the 
results obtained herein. However, it seems probable that both coefficients with origi-
nal physical dimension are approximately proportional to the square root of the area or 
to the three-fourth powers of the moment of inertia respectively for the case of trans-
lational or rotational excitation, when the frequency is smaller than the lowest reso-
nant frequency and when the thickness of the stratum is considerably larger than the 
reference width of the foundation. 

  Comparison between a stratum and a half-space 
  In the preceding, the properties of  D.C.  C. and  S.G.  C. have been discussed from 

several viewpoints. In completing the discussions they are now examined from the 
standpoint of the comparison between a stratum and a half-space. 

  The noticeable aspects of the dynamic properties of a stratum different from the case 
of a half-space are summarized as  follows  : 

  (1) There exist several kinds of resonant frequencies which are functions of the 
stratum and the constants of the medium. The resonant amplitude diverges for a 
perfectly elastic stratum on account of the existence of a supporting rigid half-space, 
but remains finite for a viscoelastic stratum because of the dissipative character of the 

 medium.
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 (2) In the lower frequency range below the lowest resonant frequency, the energy 
attenuation caused by wave radiation is extremely small in a viscoelastic stratum and 
does not exist at all in a perfectly elastic one. 

 When the ratio of the thickness of stratum H to the half-width of foundation b in-
creases, the above-mentioned frequency range decreases and the peaks of the reso-
nance curve become sharper and narrower. Moreover, as the viscosity coefficient 

parameter  v is larger, the resonance curve of the stratum are more smoothed and 
approach to the case of a half-space in the higher frequency range above the lowest 
resonant frequency. Except for the case of rotational excitation, however, the reso-
nance curve of a stratum does not converge to that of a half-space in the low frequency 
range in which the dissipative attenuation predominate over the radiative one. In 

general, when both the ratio H/b and the parameter v increase,  S.G. C. and  D.G.C. of 
a stratum converge to those of a half-space in the whole range of frequency. Since 

 S.G.C. and  D.G.  C. represent respectively the static and dynamic displacement charac-
teristics of a massless-foundation-ground system subjected to an excitation, they are 
considerably affected by the properties of the medium at the vicinity  of the founda-
tion. As the dissipative attenuation increases or the thickness of the stratum becomes 
large in comparison with the width of foundation, a rigid supporting half-space may 
have less influence on the characteristics of  .S.G.C. and  D.G.C., so that the solutions of 
the stratum show a closer resemblance to those of a half-space. 

 The distinctive features mentioned are such that, when the ratio H/b increases, the 
solutions of a stratum converge to those of a half-space much  more rapidly for the case 
of rotational excitation than for the translational cases, and also that the dissipative 
attenuation affects the solutions more remarkably for a horizontal excitation than for 
the other  cases  ; namely, while the convergence of  D.G.  C. to the half-space  solution, 
with the increase of the ratio H/b is extremely rapid for the rotational case in the 
lower frequency range because of the cancelling effect of the exciting force distribution 
and of the weak dependence on free waves, the convergence is rather rapid for the 
horizontal case in the higher frequency range because the dissipative attenuation 
increases with the frequency. 

 In general, it may be allowable in the range where vao is large to treat a stratum 

practically as a half-space notwithstanding the value of the ratio  H/b. It seems, how-
ever, that a stratum cannot be treated as a half-space, especially in the low frequency 
range, unless the ratio H/b takes a considerably large value. From the numerical data 
of  S.G.  C. and  D.G.C. of a viscoelastic medium, it is suggested that the lower bound of 
the ratio between the thickness of the stratum and the reference half-width of the 
foundation above which such practical treatment may be permissible in the whole 
range of frequency is about 4 for the case of rotational excitation and about 10 for the 
translational  cases  ; in other words, for the  validity  of the practical treatment of a half-
space instead of a stratum, the thickness of the stratum is to be about twice the width 
of an equivalent square foundation having the same moment of inertia with the rectan-

gular foundation for the rotational excitation and about five times larger than that 
having the same area of the foundation for the translational excitations, respectively. 

   In this paper, an idealized model of a foundation-ground system, namely, a rec-
tangular foundation on a viscoelastic stratum lying over a rigid half-space, which may 
have a severer condition than any other stratified medium in the sense of small radia-
tive damping, is considered in comparing its dynamic characteristics with the case of a
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half-space in which a considerable amount of radiative damping may exist. It is thus 
supposed that the above-mentioned conclusions on  S.G. C. and  D.  G. C. as to whether 
the stratum over a rigid half-space can or cannot be treated practically as a half-space 
may also be applicable for the case in which the supporting medium is composed of 
several viscoelastic layers. 

  11. Concluding Remarks 

  As a basic attempt to define the anti-seismic safety of structural systems including 
the sub-soil ground, the authors have made a series of theoretical studies in which the 
concept of the "Dynamical Ground Compliance" is introduced on the basis of the wave 

propagation theory in order to represent the dynamic properties of a foundation-ground 
system. Paying attention to the mechanism of dissipative and radiative attenuations 
in the ground, this paper has studied the dynamic properties of a viscoelastic stratum 
over a rigid half-space including a viscoelastic half-space as its limiting medium for the 
case in which a vertical, a horizontal or a rotational excitation is exerted on a massless 
rectangular foundation resting on the surface of the stratum. The stratum is assumed 
to be composed of a Voigt soid that has often been adopted in seismic problems as one 
of the most basic models of a viscoelastic continuum. 

  This study has led to the following principal  conclusions  : 

  (1) The energy attenuations in the viscoelastic stratum occur in two  mechanisms  ; 
one of these is the dissipative attenuation owing to the viscosity of the medium and the 
other is the radiative attenuation owing to the wave radiation into the medium. Al-
though the two mechanisms of energy attenuation interfere with each other in a strict 
sense, its total amount for a viscoelastic stratum seems in general to be the sum of the 
energy attenuation increasing monotonously with the viscosity coefficient and that 
caused by wave radiation for a perfectly elastic stratum. Especially in the case of a 
half-space, the amount of dissipative attenuation is almost proportional to the viscosity 

coefficient in a wide range of frequency. 
  (2) Two main aspects of the dynamic properties of a stratum different from those 

of a half-space  are  : 1. there is an enumerably infinite number of resonant frequencies 
to be determined from the thickness of the stratum and the constants of the medium, 
and the finite resonant amplitudes for a viscoelastic stratum diverge when the medium 
is perfectly  elastic  ; and 2. in the lower frequency range below the lowest resonant fre-

quency the energy attenuation owing to wave radiation scarcely appears in a visco-
elastic stratum and never exists in a perfectly elastic one. 

  (3) Less affected by a supporting rigid  half-space, the dynamic properties of a stra-
tum show a closer resemblance to those of a half-space, as the product of the viscosity 
coefficient and the frequency is larger or as the thickness of the stratum is considerably 
larger than the width of the foundation. The convergence of  D  .  G.  C. of a stratum 
into that of a half-space is slightly rapider for the case of a horizontal excitation when 
the above-mentioned product increases, and also remarkably rapider for the rotational 
case when the ratio of the stratum thickness to the foundation width becomes larger, 
than for the cases of other excitations. 

  (4) Thus, a stratum whose thickness is much larger than the dimensions of the 
foundation may be treated practically as a half-space in the whole range of frequency, 
otherwise such treatment cannot be permissible unless the product of the viscosity 
coefficient and the frequency takes a certain fairly large value and also the higher
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frequency range above the lowest resonant frequency is concerned. 

 (5) The equivalent stiffness and damping coefficients of a Voigt model evaluated 
from  D.G. C. cannot be given generally as the quantities independent of the frequency 
when the sub-soil ground is assumed to be a perfectly elastic or a viscoelastic stratum. 
However, if the ground under a foundation can be considered practically as a half-
space and if the translational excitation is confined in the relatively low frequency 
range, it is possible to determine approximately the frequency-independent coefficients 
of an equivalent Voigt model from the density and elastic constants of the medium and 
the shape and dimensions of the foundation. 

 The inverse of  D.G. C. gives the displacement-force transfer function of a massless 
foundation-ground system, which means the complex stiffness of the system. When 
this transfer function is connected with the transfer function of an above-ground struc-
tural system, it may be possible in principle to perform the earthquake response analy-
sis of a coupled ground-structure system subjected to an arbitrary transient earthquake 
motion. In particular, the linear harmonic responses of coupled  ground-structure 
systems can be analyzed by making direct use of the numerical solutions of  D.G. C. 
Therefore, several studies, including the authors', have been made on structural models 
resting on perfectly elastic half-spaces and their basic vibrational characteristics have 
been described in  detail24)-a6). 

 Even if a highly efficient digital computer is employed, immense operational time 
would be required for the following frontal attack method  of  ; connecting the analytical 
expressions of  D.G.  C. or those of the complex stiffness, each of which is an improper 
double integral representation including an infinite integral, with the transfer function 
of an above-ground structural  system  ; evaluating the Fourier transforms of the tran-
sient responses of the coupled ground-structure system in the frequency  domain  ; 
deriving their general expressions in the time domain by performing the inverse Fourier 
transformation with respect to the frequency  parameter  ; and finally, computing their 
numerical transient responses. However, the linear or nonlinear transient earthquake 
responses of a ground-structure system may be evaluated somewhat easily, if an ap-

propriate representation of the transfer function such as a rational function approx-
imated from the numerical solution of  D.G. C. is simulated on the equivalent operational 
circuit of an analog computer or on the program of a digital computer. Such practical 
treatment is indeed possible, so that several studies have been made on the methods of 
functional approximation of the transfer function and transient response analysis of 

ground-structure systems and also on the earthquake response characteristics of some 
elasto-plastic ground-structure  systems27)28). 

 Thus,  D.G. C. studied in this paper may offer the basic data in estimating the anti-
seismic safety of coupled ground-structure systems and may also have broad applica-
bility to various dynamic problems of ground-structure systems on a viscoelastic ground. 

 As a first step to describe the dynamic properties of a viscoelastic stratified medium, 
this paper has dealt with an idealized ground model for the purpose of simplifying the 
treatment of the problem and also of investigating the most basic stratified medium 
first of all. It will be  an important and interesting problem at the next step to study 
a more realistic ground model, such as a three-dimensional  stratified medium composed 
of several viscoelastic layers. The results of such an investigation will be reported in 

a subsequent paper.
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