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                           Abstract 

   The vortex excited oscillation of a canti-levered square cylinder in smooth flow was studied 
 experimentally. The flow velocity-oscillation amplitude relations were obtained  for cylinders 

 with 3 combinations of mass and natural frequency and with 3 kinds of damping. From these 
 results, the critical flow velocity and the lift force-oscillation amplitude relation at the critical flow 
 velocity were obtained. The critical flow velocity was higher than that of the two dimensional 

 cylinder and the lift force was much reduced compared with that of the two dimensional 
 cylinder. 

1. Introduction 

 A cylinder placed in a smooth flow oscillates in the lateral direction to the flow 
at and around the critical flow  velocity due to the dynamic lift force associated with 
the vortex shedding  from the cylinder. Thus, to design cylinder-like structures such 
as stacks and slender tall buildings, knowledge of the critical flow velocity and the 
characteristics of the dynamic lift force are needed. The critical flow velocity for a 
circular cylinder was studied by Scruton (1965)" and those for rectangular cylinders 
were studied by Parkinson  (1971)r However, the characteristics of the dynamic 
lift force, which depends on the flow velocity and oscillational behavior due to the 
interaction between the flow and the oscillating cylinder, is not known well. 

 For a lightly damped cylinder, the oscillation is nearly simple harmonic with the 
natural frequency of the cylinder at and around the critical flow velocity. 

 x=Xo  sin  2ilot (1) 

where x is the lateral displacement and  X6 is the oscillation amplitude. Scruton 
assumed the dynamic lift force F(t) as the combination of in-phase and out-of-phase 
component of the displacement. 

 F(1)=  hao,  V)Prnox-Eko(Xo, V)PD2foi (2) 

where  V, p and D are the flow velocity, fluid density and the cylinder width, re-
spectively. Scruton found  ko(X  0, V) to be negligible and studied  ho(Xo, V) for a 
circular cylinder. Bishop & Hassan  (1964)' assumed F(t) as follows 

 Cz(X  o,V)  -21-  PV2D  sin  (2gfot  +0) (3)
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where  0 is the phase lag between x and  F(t). They studied  CL(X.,  V) and  0 for 
a circular cylinder by forced oscillation technique. In the present work, we assumed 
F(t) in general as is given in eq (3). However, as we confined our study only with 
the resonant oscillation of a cylinder at and around the critical flow velocity,  0 in 
eq. (3) turns out to be  ar12. 

 F  (0=  Cx(X0,V)  1  PV2D  sin  (27rfot  +7r/2) (4) 

  Slender tall buildings commonly have a square cross section, but there is little 
work on the dynamic lift force on the square cylinder. Therefore, we studied 
CL(Xa, V) for a square cylinder by free oscillation technique. 

2. Experimental Equipment and Procedure 

  Fig.  1 shows the model on a dynamic balance. The vertical rod which supports 
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the model is connected near the top to a horizontal rod and this horizontal rod is 
held by two bearings in such a way that the model can oscillate just in the lateral 
direction to the flow without any friction. The vertical rod at the bottom is fixed 
to coil springs and these to beams. Strain gages are attached on one of these beams 
for displacement measurement. The beams were so rigid as not to cause any higher 
mode oscillation. An electric magnet below the vertical rod provided necessary 
damping for the system. The model was a square cylinder of 10 cm width and 40 
cm height and was made of plexiglass. 

 Taking the rotation of the model at the bearings  B as the variable, the equilibrium 
of moment is 

        (POtittrixF(
z,t)z•dz (5)         M +C+KO=             dt2dt 

where  2  d'=m(z)•22•dz in which  m(z) is the mass distribution from the rod bottom 

to the model top; C, K and H are damping coefficient, spring constant and the model 
height, respectively. Choosing the model top displacement as the variable, the 
equilibrium equation becomes 

 Mo(tPx- + 2C -22rfo-x+ ziefo2 •x)-150E(z'Oz•dz (6) 

                                                   where  27rfo=4KoiMo and  C=C0/(2NIK0M0), in which  Mo-M/H2,  Co-C1112 and 
 Ko=  K/H2. 

 The mean velocity profile of the flow is also shown in fig. 1. The boundary layer 
thickness of the flow was about 7cm and the turbulence in the flow above the 
boundary layer was negligible. 

  Parkinson reports that a circular cylinder oscillation can have two different values 
of the oscillation amplitude at and around the critical velocity. To check this 
aspect, for a cylinder at a flow velocity, two initial displacement of  X./D= 0.0 and 
0.2, which was the maximum displacement measurable, were given and the resulting 
stationary amplitude of simple harmonic oscillation was obtained. 

3. Experimental Results and Analysis 
3-1 Flow velocity-response amplitude relation 

  For square cylinders with 3 kinds of combinations of  Mo and  f, and with various 
critical damping ratio  C, the flow velocity-response amplitude relation were obtained 
and are shown in Fig. 2. As is seen from the figure, at a flow velocity a little 
lower than the critical one, the oscillation amplitude can take either one of the two 
values depending upon the initial displacement. In a velocity range higher than 
the critical one, the same phenomenon occurs though the two amplitudes are less 
easy to distinguish.
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                  Fig. 2 Flow Velocity-Response Amplitude Relation 

3-2 Critical flow velocity 

 The reduced critical flow velocity  Ve/f0.0 was 9.8 for all the cylinders  tested. 
Scruton says  V  for) to be 6.6 for two dimensional square cylinder. The higher 
value of  17c/f0D for the present cylinder is due to the three dimensional condition 
as was pointed out by Vickery  (1968).4) Bishop & Hassan found that the critical 
flow velocity depends on the oscillation amplitude for a circular cylinder. However, 
for the present square  cylinder, the critical flow velocity does not show any marked 
dependency on the oscillation amplitude. 

3-3 Analysis of the oscillation 
 The equation of the motion for a canti-levered cylinder is given in eq. (6) and 

is rewritten here. 

 ma  (  ri2x  dt2+4.27rfox/hen,x Ht)z • d z (7) 

For lightly damped cylinders tested, the oscillations were nearly simple harmonic motion 
with the natural frequency of the cylinder at and around the critical flow velocity 

 Xo sin  2nlat  (81
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The oscillation of eq. (8) means that the lift force F(t) is also simple harmonic and 
that the phase between the displacement and force is  r/2 . Thus, F(t) was expressed 
here as follows 

           F(z, t)=C5• A-PIP.°sin  (2xfot+x)2) (9)                    2 

The coefficient  Cr depends upon the flow characteristics , cylinder shape and cylinder 
oscillation. 

 CL=CL(V  „a,  p, D,  H,  p,  X0,  .T0)  (10) 

where p is the flow viscosity and  sh is the cross sectional shape of the cylinder  ; the 
other symbols are defined elsewhere. Arranging the parameters in dimensionless 
form 

          Cz=Ct(-PVD V H  X0  
                   p f0D '  D'  D' 

 In the present study, the sectional shape is square and the Reynolds number influence 

will be negligible. HID was 4. Thus, for this particular cylinder 

                   V
D)1            F(z, t)=CL(XD°fo                    'PV2Dsin (2xfot+x12) (12)                            2 

Putting eqs. (12) and (8) into eq. (7), we obtain 

 X0  = 1 Ca X0 V  p.D2HIVy                                                (13) 
            DAn'D ' foD) 2CM0\for)) 

The equation of motion for two dimensional cylinder is 

            ma(dtx`'"+.470fix)=1F(z,  t)•dz       dz 

where  ./1/0=  rn(z)dz  • The relation between the flow velocity, mechanical property 

 of the cylinder and the oscillation amplitude is 

 Xo _ 1cX0V\PD2I1V                                                (15) 
             D 16r2 D-' foD) (M0 \faDy 

The difference in the mechanical condition between the cantilevered cylinder and 
two dimensional cylinder appears in 2 in front of  (M0 in eq. (13) instead of 1 in 
eq. (15). 

 From eq. (13), we can see that  2CM0/PD2  11 value which gives a certain flow 
amplitude at a flow velocity is uniquely determined. Fig. 3 shows  2CM0IPD2H values 
which give  XolD=0.05 at various flow velocities for all the models tested. The data 
fall onto a curve confirming the above discussions. Taking  X,,//3.-0.05 as the  per-
missible maximum response, we can refer to the figure as a stability diagram. The
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             Fig. 4 Damping-Maximum Amplitude Relation. The abscissa is 
 CM  /  PD2H for Scruton's data. 

stability diagram for a two dimensional square cylinder obtained by Scruton is also 
shown in the figure, in which  XSD=0.01 is the permissible maximum response 
and the abscissa is  C.11101PD2H. The figure shows that the critical flow velocity for 
two dimensional cylinder is lower than that of the canti—levered cylinder. Apart 
from that, the difference of the oscillation between the two conditions is not clear. 

 Eq. (13) also shows that, with  V/J0D fixed, there is a relation  between LID and 
2  CM,IPD2H, though the relation may not be one-to-one. Fig. 4 shows this relation 
at  V/f0D=9.8. As there is only one oscillation amplitude at the critical velocity, the 
date falls into one curve. As the critical flow velocity was  independent of the oscilla-
tion amlitude and was alway  V  ebroD=9.8, the figure presents  2  CM0/PD2H—maximum 
amplitude relation. Scruton's data at  V  foD=6.6, which is the critical flow velocity 
for two dimensional cylinder, is also shown in the figure in which the absissa is
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 CM./  PDW. The figure shows that the maximum oscillation for a cantilevered cylinder 
  is much reduced compared with that of the two dimensional cylinder. 

    From eq. (13), the lift force coefficient can be obtained from the oscillation 
  amplitude as follows 

             cIX,V \                 )16r° Ar° 2CM°(hDYasi            DfoD D PD211V 

  For two dimensional  cylinder. the relation becomes 

         r Xo V_                )16'X°  CM°(f°17 (17)              —1\(Df oD7rD pD2.11V 

  At  I/J.4.0=9.8, Cs was obtained from eq. (16) for the present cylinder and is 
  shown in fig. 5. The data falls onto a straight line and Cs can be expressed as 
  follows 

 C5(Xo/D)=0.  1  +2.  0  •  Xo/D  (18) 
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             Fig. 5 Amplitude-Lateral Force Relation at the Critical Flow Velocity. 

  Also shown in the figure is  Ca for a two dimensional square cylinder obtained from 
  Scruton's data using eq. (17), and  Cr for a two dimensional circular cylinder at the 
  critical velocity taken from Bishop & Hassan. The figure shows that the lift force 

  for a canti-levered cylinder is much reduced compared with that of a two dimensional 
   cylinder. 

    The results suggests that  Cs at the critical flow velocity is a linear function of 
 XolD. 

 Cs(X01D)=a+3•Xo/D  (19)
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Putting eq. (19) into eq. (12) and making use of eq. (8) 

•                   1 

             FV(t)--a •2-p2Dsin (2trfot+w/2)±
2n_'2•1- pforfix  20) 

where  S=f0DIV, As is seen from eq. (3-14), the linear dependency of  Cx on  LID 
can be considered to be the source of aerodynamic negative damping. 

4. Application 

  For the prediction of the lateral oscillation of buildings and stacks in the wind, 
the effect of turbulence present in the wind should be taken into account. However, 
the effect of the turbulence on the lateral oscillation of cylinder has not been studied 
much so far and is not known well. Surry  (1971)s' says that the presence of 
turbulence does not much reduce the intensity of the dynamic lift  force due to the 
vortex shedding and Scruton & Rogers  (1971)°) say that the response oscillation in 
a turbulent flow is far from the simple harmonic oscillation associated with vortex 
shedding in smooth flow. Here we will just show the way the lateral response of a 
tall building in wind can be predicted  from the exprimental results above, if the 
turbulence present in wind does not change the dynamic lift force characteristics 
found in the smooth flow. 

 We consider a building response y(z, t) in the first mode p(z) which is appro-
ximately a linear function of z, 

         y(z,  t)=  x(t)  p(z)=X(t)  •  z/H  (21) 

For this generalized coordinate x(t), the equation of motion takes the following form 

 Moei  +2(  •  27rfaX+47d!x)=-LLF(z,  t)zdz 122) 

             a where M0=Sm(z)pz(z)dz, Comparing eq. (22) with eq. (7), it is seen that the 
o rigid canti-levered cylinder oscillation represents the oscillation of a building in the 

first mode. Thus the results obtained for the response of canti-levered square 

cylinder in a wind tunnel can be applied to the first mode response of a tall 

building of a similar shape. 
 We take a building with following  characteristics  ;  D--20m, H=40m,  f0=0.4 Hz, 

 C=0.02 and average  mass=20kg•  sect/m4. From the experimental results we can see 
that  17,=80m/sec for this building, and, as  Mo/PD211  =50, we can see that the 

oscillation amplitude at the building top is 200cm if the wind blows at this speed. 

4. Conclusion 

  The vortex excited oscillation of a canti-levered square cylinder of  HID-4 in a 
smooth flow was studied experimentally. The main findings are summarized as 
follows; 

(1) The lift force at and around the critical flow velocity of a lightly damped 
cylinder will be expressed as follows  :
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           F (0= CL(XD ' fo.D)g pV2D  sin (2irfot+r/2) 
(2) The critical flow velocity of this square cylinder is higher than that of the two 
dimensional one and is given  below: 

 V  o/  foD=  9.8 

(3) The lift force coefficient at the critical flow velocity is much reduced than 
that of the two dimensional one and is given as follows in the oscillation amplitude 
range of  XLID<0.2. 

 CL(Xo/D)  =  0.  1  +2.  0  • LID 
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