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Abstract

To evaluate the reliability of structures subjected to severe earthquake excitations in relation
to the ultimate aseismic design method which guarantees the safety of structures in the ultimate
state, the basic statistical characteristics of the response of elasto-plastic structures should be under-
stood. At the present time there is no useful analytical method which can be used to treat problems
of the response of stochastically excited hysteretic structures with strong nonlinearity. The Fokker-
Planck equation approach is inapplicable to problems which involve the hysteretic nonlinearity
or the non-white excitation. As an approximate analytical method, the statistical linearization
technique has been widely used, since this technigue overcomes the above restrictions. However,
this technique requires small nonlincarity, and so may be not applicable to find statistical charac-
teristics of the response of hysteretic structures with strong nonlinearity which is considered im-
portant in relation to the ultimate aseisroic safety.

The purpose of this paper is to introduce a new statistical Jinearization technique that will allow
as to obtain solutions to the problem of the response of hysteretic structures with strong nonlinearity
to random cxcitation. From experimental results of the responsc of hysteretic structures with strong
nonlinearity by means of the simulation technique, it is pointed out that the response possesses
broad-band characteristics and the center of hysteresis eccentrically fluctuates. With these points
as background, a new statistical linearization technigue is introduced by considering the scatter of
frequency and the fluctuation of the center of hysteretic oscillation. The eqguivalent linearization
coefficients are detlermined by the least mean-square crror method.  In the present study, the average
used in minimization procedure is a combination of ensemble and time averages. Though the
technique developed by T. K. Caughey involves only amplitude of hysteretic oscillation as random
variable, the shift of center, amplitude and frequency of hysteretic oscillation are treated as ran-
dom variable. The joint probability density function of these random variables is approximately
evaluated under the assumption that the response is a stationary Gaussian process.

The numerical analysis is carried out in the case of a single-degree-of-freedom structure with
bilinear hysteresis to a band-limited white Gaussian excitation. From the statistics of the stationary
response computed by the statistical linearization techniques and the simulation technique, it is
shown that the scatter of frequency and the fluctuation of the center of hysteretic oscillation affect
strongly on the displacement response of bilinear structures with severe nonlincarity, and so the
statistical linearization technique is considerably improved by taking them into account. Another
fact of importance is the existence of the optimum rigidity ratio which minimizes the variance
of the displacement response. It is suggested that the above optimum ratio has a great significance
in doing the aseismic design of the elasto-plastic structures.

1. Introduction

In the present approach to obtain a sound anti-seismic structure, a dual design
concept is often used?. The structure is designed to resist a moderate earthquake
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without significant damage according to the elastic design method, and to resist a
strong earthquake without extreme damage or collapse according to the elasto-
plastic aseismic design method. Due to its randomness in nature, earthquake
excitation has been treated as a stochastic process. Therefore, in relation to the
aseismic safety of structures subjected to strong earthquake from probabilistic point
of view?, it 15 considered essential to understand the basic statistical characteristics
of the response of structures, particularly in the latter design method, of the response
of nonlinear hysteretic structures.

At the present time there are many analytical methods which can be used to treat
problems of the response of nonlinear structures to random excitations. An exact
solution may be cvaluated by only solving the stochastic differential equation such
as the Fokker-Planck equation. Unfortunately, this Fokker-Planck equation approach
has a very limited range of applicability?), and no solution of this equation for the
response of nonlinear hysteretic system has yet been obtained. As an approximate
analytical method, the statistical linearization technique has been widely used, since
this technique is applicable to a nonlinear hysteretic structure subjected to a Gaus-
sian excitation with a non-white power spectral density. This technique was develop-
ed by Booton®) and Caughey® as a statistical extension of the method of equivalent
linearization of Krylov and Bogoliubov in deterministic theory. Caughey has dis-
cussed the technique for the problem of a nonlinear hysteretic oscillator in the sta-
tionary random process®”. The application of this technique to problems of non-
stationary random response of hysteretic structures has been discussed in References
8 and 9. However, the abovementioned technique requires small nonlinearity.
Therefore, the technique may be not applicable to find statistical characteristics of
the response of hysteretic structure with severe nonlinearity, which is considered
important in relation to the uitimate aseismic safety.

From investigations of the response of hysteretic structures by means of the simula-
tion technique, it is pointed out that as the degree of nonlinearity becomes greater,
the response has the frequency character of broader band process, the fluctuation of
the center of hysteresis in connection with the plastic deformation increases, and so
the response increases rapidly.

With these points as background, it is the purpose of the present sutdy to introduce
a new statistical linearization technique by taking into account the scatter of frequency
and the fluctration of center of hysteresis. It is felt that this new technique leads
both to a clearer interpretation of a tendency that the response of a hysteretic struc-
ture increases markedly, as the nonlinearity becomes more severe, and also to an
improvement of the statistical linearization technique. The statistical linearization
technique is based on the idea of replacing the original nonlinear sturcture by a
related linear structure in such a way that the mean squared value of the difference
between the two structures is minimized. In the present study, the average used in
minimization procedure is a combination of ensemble and time averages. Under
the assumption that the shift of the center, amplitude and frequncy of hysteretic
oscillation are slowly varying random variables over any one cycle, the combination
average is defined under such a law that ensernble average is taken with respect to
to three random variables after time average is carried out over one cycle. The joint
probability density function of the three random variables is approximately evaluated
using the assumption that the response is the stationary Gaussian process.
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As a numerical example, a single-degree-of-freedom structure with bilinear hystere-
sis subjected to a band-limited white Gaussian excitation is considered. The statistics
of stationary response are computed by using the three statistical linearization tech-
niques based on the following different analyses:

1) the one-dimensional analysis without consideration of the scatter of frequency

and fluctuation of the center of hysteretic oscillation,

2) the two-dimensional analysis without consideration of the scatter of frequency

of hysteretic oscillation,

3) the three-dimensional analysis with consideration of the scatter of frequency

and the fluctuation of the center of hysteretic oscillation.

An indication of the relative merit of the above three techniques is proved by
the experimental result obtained by means of the Monte Carlo technique.

2. Statistical Linearization Techniques

Consider a structure with nonlinear hysteresis subjected to random excitation of
the earthquake type. It will be assumed that the hysteresis behaviour is a smoothly
varying process and the character of hysteresis is stable. In order to obtain an
approximate solution for the response of the nonlinear hysteretic structure, replacing
the nonlinear hysteretic characteristics function ¢(y, %; t) by a related linear function
@.(y, 7; £) which is described in terms of displacement 5 and velocity %

@o(n, %5 )=k ()n+d,.(2)7 (2.1)

in which &,(¢) and d,() are the equivalent stiffness and the equivalent damping
coefficient. The difference p—¢p, between the original nonlinear function and the
equivalent linear function will be dependent on the choice of k, and d,. Asy and %
are stochastic processes, the difference is also a stochastic process. As a means of
making the difference a minimum in a statistical sense, it is desirable to use the
criterion that the mean squared value of the difference is a minimum. In the present
study, the mean squared error function is expressed as

Sk d)=E[{e(n,5: 1) =0, 7; £)}*] (2.2)
In the above equation, the averaging operator E,[-] means a combination of time and

ensemble averages, which is defined as

EL={ <>, p@dx 2.3)

in which <>, denotes the local time average over one cycle of oscillation and
P(x) is the joint probability density function of random variables x involved in
<->,. To minimize J(k,, 4,) requires the following conditions for %, and 4,:

8 _ ] _, 0
3k, 0d, ' Ok

0:J

>0 Far

>0 (2.4)

Then, the equivalent linearization coefficients can be obtained as follows:
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E 7] E,[%"] E,[7i] E/[7*]

k()=

2.1 Analysis with consideration of fluctuating hysteresis

The response of hysteretic structures subjected to random excitations has been
investigated by means of the digital simulation and electronic-analog techniques in
References 10), 11) and 12) and in Chap. 3. The following points are emphasized
from these experimental results: As the degree of nonlinearity of the hysteretic
structure becomes greater,

(1) the frequncy character of response becomes that of broader band process,

(2) the hysteresis behaviour fluctuates more obviously in a random manner and
the shift of hysteresis center increases in connection with the growth of plastic
drift.

Hence, in order to apply the statistical linearization technique to problems of deter-
mining the response of hysteretic structure with large nonlinearity, consider a model
of hysteretic behaviour with the above points as background as shown in Fig. 1.
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Fig. 1. Force vs displacement characteristic for a typical hysterests.

Point C denotes the center of hysteresis which eccentrically fluctuates. §,(¢) is the
» co-ordinate of point C, x(¢) and w(t) denote amplitude and frequency of hysteretic
oscillation, respectively. The variables 3,(¢), x(¢) and o(t) are treated as slowly
varying random functions of time, and so have nearly constant values over any one
cycle. Under the assumption that a structural response is smoothly varying process,
the response y(t) may be approximately a sinusoidal time function.

7(2) =0.(2) —x(t)cos(w(2)2) (2.6)
7(t) =x(t) w(t)sin(w(t)t) 2.7

As in Fig. 1, a is the minimum, ¢’ is the maximum and r is the interval between the
minimum and the maximum, then 3., y and  are given by
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’ ! __
J,= oc-;a =uv,(a, '), xr=% 5 @ =v,(a, ') (2.8)
w=_"_
T

where
—co<a<a' <o, 0<x< o
Using Eqs. (2.6) and (2.7), the expressions obtained after averaging 2, 72 and »3
with respect to time over one cycle are
, 1 (%, 2 X% _
<7 >L=? o 7 dt:6c +T=Blu(ac’ Z)
(2.9)

<> —LSZ"Zdz—ﬁﬂz (x, 7)
L'—ZT()’? _21'2_de,

Given the hysteretic characteristics function ¢(y, %; t), the time averages <gp>,
and <g%»>, may be expressed as

2r
<¢77>1.=%§0 endt=C,, (0., %, T)
(2.10)

. 1 (%
<¢”7>L:Wg wﬂdﬁzcde(ac, %, T)
0
The above time averages are represented as functions of random variables 4, y
and 7. If Pl % 7; t) denotes the joint probability density function of §,, y and «,

the equivalent linearization coefficients k, and d, are obtained from Egs. (2.5),
(2.9) and (2.10), as follows:

S Cao®or %, D) p(., 7, T; 1)d6, drdr
D

k,(8)= (2.11)

[ Bu@0p@. 2, 5 0)do, drde

[ Caul®ur 2, 22p0. %, 75 1) a0, dxds

d,(t)= (2.12)

{ But 0)p. %, 75 0)d8, dxde
D

in which D denotes the integral area that §, ranges from —oo to 40, and y and =
from 0 to oo,

Evaluating of C,,, C,, for bilinear hysteresis

In particular, the hysteresis considered here is the so-called bilinear hysteretic
restoring force ¢(; r) as shown in Fig. 2. This hysteresis is the simplest representa-
tion of idealized structures and is often used as an approximation to the yielding be-
haviour. Note that ¢(7; r) represents the non-dimensional hysteretic characteristic,
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Fig. 2. Bilinear hysteretic restoring force.

r1s the rigidity ratio of the second to the first branch, both the elastic limit deformation
and strength are unity. Let the co-ordinates of the center of hysteresis be (3, 4,),
the displacement 5 and the restoring force ¢ can be written from Fig. 2.

7=0,+7,
(2.13)
(0=T60+(0¢
where
9, = —xcos(ot), N ,=7n=2wsin(wt)
Then, <gp>, and <¢7>, become
<> = <@l +9 )0 +1,)> =10+ <., > 216
2.14

<¢7.7>L= <(r60+¢c)ﬁc>l,= <¢t7?C>L

The final expressions of C,,, C,, are given by

= SN S g I i _1<_g) 2—x f_ﬁ}
C..=<pn>_ rﬁc—f-z-}-(l r){zﬂ cos~} 1 - + = Jr—1 5

for x>1
=r6§+%2 for 0<xz<1
(2.15)
Cde=<¢7}>L=Z(ILT(Z_1) for x>1

=0 for 0<z<1
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2.2 Probability density function p(5., %, 7)

It is assumed that the excitation is a stationary Gaussian process with zero mean
value and the response of the nonlinear sturcture with a stable hysteresis is also
approximately a stationary Gaussian process with zero mean value. From Eq.
(2.8), the joint probability density function p(d, y, r) in the stationary process
can be represented as

ov, 0v,
Pa Do’
P(au x, T):Po(ac_x’ 6C+Z, T)/ =2P0(6c_x! ac+xs Z')
a[)z 002
da o’ (2.16)

in which py(a, ', t) is the joint probability density function of u, ¢’ and r. Futher-
more, it can be expressed as

Po(a’ a,! 7)=Po(aa allf)'PT(T) (217)

in which pyle, ’[7) is the conditional probability density function that, given a
minimum of 5(¢) at {=0 and the next maximum at ¢=z, then 5(0)=a and yz)=¢/,
and p(r) is the probability density function that, given a minimum of y»(¢) at (=0,
the next maximum occurs at t=r. Since the exact solution of probability density
function pr(r) cannot be evaluated, an approximate expression for pr(z) will be
evaluated by using the theory of random points developed by Stratonovich and
Kuznetsov®. Assuming that maximums of the response process 7(f) occur at
7, (j=1, 2, ... ), after a minimum at t=0; Le,

7(0)=0,  #(0)>0
77(1'])=0, 77‘(1'1)<0 for J=1, 2,

then the points 7, form a system of random points, characterized by the distribution
functions

fl(fl): fz(fl) rz)s“-sfs(fla'“a Ts)-

The distribution function f(zy,..., 7,) is given by
f.:(rl" tes rs)

O O bt « ve I3 £33
R I AT E AR ATIC S M R PR N2

o

gomw(ﬁo, Hodsemo diig
(2.18)

Using the distribution functions, the probability density function p,(r} can be
obtained as follows:
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-

pr@) =i+ 5O

T W AT P S AT

0
The above equation has been obtained by the inclusion and exclusion method as
indicated by 8. O. Rice!. The probability density function pr(r) can also be
expressed in terms of cumulant functions

S:’pT(:)dz:exp{—g;g1<z)de+§z (‘3!1)5 ) S;gsm,..., zs)dzl---dzs}

0

(2.20)

in which the cumulant functions gi{zy...7,) are related to the distribution functions
as follows:

(D =f1(7)

8271, 1) =fo(r1, 1) = f1(7))

83(T1, 7o, T3) = f3(Ty, T3y T3) — f1(r)fa(Tay T8) = f1(T2)fa(T1, 7o)
—f1(ra)f2(ty, )+ 211 (7)) f1(Ta) f1Ts) ete.

However, the calculation of higher-order terms in the series (2.20) and evaluation of
multiple integral (2.18) lead to technical difficulties. Therefore, it is desirable
to limit the present consideration to lower-order terms. For the sake of simplicity
in computation, the system of random points is assumed to be the Possion system,
that is,

(2.21)

&:=0 for s>2
Then, differentiating Eq. (2.20) with respect to r gives

pr@=fi@ exp| ={ 0| (2.22)

On the other hand, the conditional probability density function pya, o'|7) is
given by

0 = aw - ay - Y3 33 -
S_QSO’”O | 7. | w(’?o, Tos Tos Vrs Nrs 777')!70=a,r/,=d,, F;u=§;,=0d770 d’h

PO(a’ a, | r) = 0 uo" -a - .o . 3 133 .
S_wgovomlw(vo, Toy Nu 1) s0=ne=0 A0 A,

(2.23)

Substituting Egs. (2.22) and (2.23) to Eq. (2.17), p(3.. . 7) is approximately obtain-
ed as

PO % D)=2po(8. — 2, 8,+2[7) fi(e) exp | = | fu(ar

=2 &}1’“)‘ exp[— SOJZT(? dt] (2.24)
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in which

Ji= go"’i'ow(ﬁn» ';70),‘,0=o dijy

0 o ..
1= " ol 1o Hos 1y 1, )a0mi -0 0, (2.25)

0 * as ..
J3= S_”go% | 7, | w(ﬂﬂv Tos NosT=s s -or)qo=a,q,=a’,;lo=;lr=0d"70 d”r

Using Eq. (2.24), the probability density functions of the shift of center 4., the
amplitude y and the extremum ¢ are expressed as

pac0)={"del dxp@., 1.0, o<t <o (2.26)

0 0

pr={ as{” do.p. %), 0<i<o (2.27)
0 -

pala) =Swdrgddxp(oc+x, x, 1), —co<aow (2.28)
0 0

Under the assumption that y(t), 7(t) and #(¢) are the stationary Gaussian processes
with zero mean values, the joint probability density function w(ng 7o, 7o B s )
is the multi-dimensional normal density function and is expressed as

. - 1 1 &
W7oy Nos Has Nos Nas ) = o K| exp [_Ti élsux"x/} (2.29)

in which |K| is the determinant of the covariance matrix {K], §,, is the element
in the ith row and jth column of the inverse of the matrix [K] and (%, %3, ..., %¢)
denotes (9o, 70 %o Vo> Tes 7). T he covariance matrix [K] is

Ky K| [R(0) 0 RPO) R()  RV() RO(r)
0 —R(Z)(O) 0 _Ru)(r) —R(Z)(t) —R3)(¢)
RD(0) 0 R‘“(O) R(z)(f) R®(r)  R@(7)
[K]= =
R(x) —RW(r) R¥(xr) R(0) 0 R®(0)
R(l)(r) —R(Z)(r) R(”(z') 0 —R(Z)(O) 0
K - K R@)(¢) — R®)(7) R(4)(f) R(Z)(O) 0 R(“)(O)
(2.30)
in which

K;j=E[:x,-xj], i, ]:1,,6
and R(z) denotes the correlation function, that is,

R(@)=E[n()n(t+1)]
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. di
R<'>(r)=—d—; R(z), i=1,.,4 (2.31)

The expression obtained after integration on a by making use of Eq. (2.24) is

Uy (%) o
8152‘1?(66, %, ) dx= A(r) exp(— Bx2) ° -
2o Ua+ ﬁ;yz&) ,
(2.32)
in which
A= (27;)3]1TK|112G% «/;Lj exp<_5;lzj(lt) dt)

1 al
B=5)1—514 @y =511+ 514, @) =53+ 514, =y 2333—‘[0

1 k;,'“ 1 _ R(“(O)
h= g Y- o

_ My 1
2= g =gy L+ Heot ™ (~ )]

M, = RPDO{R ()~ R (D)} + ROORV' ()

M= = RO@{R?'(0) = R®'(@)} - RA®RY' ()

My={RPORW(0)— RAE@RW() + RV (2))?
—{RDORD(®)~ RODRI ()}

M,

==

Uy =4 e % [a+en+im eer (3 rer Jaterfory |ao

1 (=4 (cosﬁ—sinﬂ)zsinw[ 9 a2 4
UZ(X)_fgo (1+¢; sin26)? PrgpeiHs

T get? (% +5ez+e4>{1 +er_f(€)}:| d6

¢,(sin@+ cosf)

$="Jite, sn20
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2
a1
_ — 2536 _ _S13—5%s
1= » = 2
2
2533 — L 2554— 2L
S33 z S33 P
0 0
erf(f):i_g e~?'dz
Jr

Using Eq. (2.23), the first and second order moments for the amplitude y and the
extremum g are obtained as

E[x)= S:S:Al U,(x) exp( — Bx,) dzdz (2.33)
Ela]=~E[X] (2.34)
E[x%]= g:g: Ax2Uy(x) exp(— Bx?) dxde (2.35)
Ha?]= g:S:A {(2%0* 12) Uy(x)+ ﬁ U,(x) }exp( _Bx?)dxdr  (2.36)
Elox]=—E[x%] (2.37)

In particular, the mean and variance of the shift of the center of hysteresis are given
by
E(0,]=E[a]+E[x]=0

K; s, =E[a?]-E[x*]

(2.38)

As above mentioned, the new technique of statistical linearization is introduced
by taking into consideration the scatter of frequency and the fluctuation of the
center of hysteretic oscillation. It may be proper to call such a technique a statistical
linearization technique based on the three-dimensional analysis, since three variables
3,y and ¢ in this analysis are treated as random variables. To investigate the
analytical technique, two different techniques are introduced.

First, if only r among three variables is a deterministic parameter, the probability
density p(d., ¥, 7) is reduced to

p0,, %, 0)=2ps(0,—x, 6, +2|r)0(zr—7%*)
J3(§ s xa Z') X
=2 22 2 L i(r—1%) 2.39
G (t—1%) (2.39)
in which §(-) is Dirac’s delta function and

ok=—r (2.40)

where N, is the expected number of extremum per unit time and is given by

N,={" Filuth, i);-odi=L/ (2.42)

Ky
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This technique based on the probability density P x» ) of Eq. (2.39) instead of
Eq. (2.24) may be called a technique based on the two-dimensional analysis in cor-
respondence with the three-dimensional analysis.

Secondly, as treated in References 6) and 7), it is assumed that the response is
contained within a narrow band frequncy and the amplitude of this process forms
the Rayleigh distribution. Then, both the scatter of frequency and the fluctuation
of the center of hysteretic oscillation are neglected. Therefore, the probability
density function p(,, ¥, r) reduces to

p@,, 2% )= p,()-0(0,)-0(r—T) (2.42)

in which
f=%, d=7N, (2.43)
No=\"_Vilw(r.i),-0di (2.44)

where @ is the mean frequency and N, is the expected number of zero crossing per
unit time.  p(y) is the probability density function of peak amplitude and is given by

px(x)= ——w exp <—%) (2.45)

Since this analysis treats only the amplitude y as a random variable, the technique is
called that based on the one-dimensional analysis.

In general, numerical work needed to evaluate the probability density function
p@. 1 t; t) involving time-dependent covariances of 5(¢), #(¢) and #(¢) will
become significantly heavy if the response process considered is non-stationary.
However the evaluation of p(3,, 3, r; t) in the case of the technique based on the
one-dimensional analysis does not seem extremely difficalt. In the case of non-
stationary random process, p(é,, y, v; t) is expressed as

P, %, 5 8)= px(x; 1)-0(0)-0(r —7()) (2.46)

in which p,(y; ¢) and () are given as a function of the covariances K, (), K, ()
and K, (¢) in the following equations®:

Px(%; 0-‘”‘"( zK,,,](t) >[ K::(t) =P <_%

—HM/Z(I oHK,,(t) (K,M(z) ) (MW)] (2.47)
and

K, (1)

T()=n/d(t)= 7:«/ A=Ky 0y

(2.48)
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where

p:K,,;,/\/K”,,(t) K;,,‘,(l) (2-49)

3. Numerical Example

As an example of the application of the present techniques to problems of struc-
tural response, consider a single-degree-of-freedom structure with bilinear hysteresis
subjected to an excitation f (¢). The dimensionless equation of motion associated
with the ductility ratio y is expressed by

d? d
g T2kt e(n = —f() 3.1

and
p=-", t=8,T

in which x is relative displacement response, 7 is time, 4 is the elastic limit deforma-
tion, 4 is the critical damping ratio, £, is the natural frequency of the structure,
¢ is nondimensional time, ¢(y; r) is the bilinear hysteretic characteristic as shown in
Fig. 2 and 7 is the rigidity ratio of the second to the first branch. For the present
investigation, the excitation f(¢) is taken to be a stationary random function with a
power spectral density S (w), a Gaussian probability distribution and zero mean
value. The statistical linearization techniques in the previous chapter are applicable
to the Gaussian excitation of which frequency characteristics is an arbitrary type
such as actual earthquake excitation. In order to investigate the approximate analy-
tical techniques and to understand the applicability of these techniques to problems
of the response of hysteretic structure, it is desirable that the frequency characteristic
of the excitation is simple such as white. However, Eq. (2.24) involves the covariance
function of the second derivative #(t) of the response, which does not exist in the case
that the frequency characteristic is white. Therefore, let the excitation f(t) be a band-
limited white Gaussian process with the power spectral density represented in the
following form:

So o for o] <
S,<w>={2” orlol<e. (3.2)

0 otherwise

where w, is a cut off frequancy and S, is a parameter associated with the intensity
of excitation.

3.1 Monte Carlo Solutions

In order to understand the statistical characteristics of the response of hysteretic
structure subjected to a random excitation and to check the accuracy of the analytical
values obtained through the statistical linearization techniques, a numerical simula-



124 T. KOBORI, R. MINAI and Y. SUZUKI

tion based on the Monte Carlo technique has been carried out on a digital computer.

Numerical procedure

The artificial earthquake has been simulated according to M. Shinozuka and
C.-M. Jan®. A stationary band-limited white Gaussian noise with zero mean and
the power spectral density given by Eq. (3.2) is generated by following equation:

f&=(23040)" 8 costorn+4) (3.3)
and

wi=w;+0w

w,-=<i—%)dw fori=1,2,..., N (3.4)

dw= a])vﬁ

where ¢, is the independent random phase uniformly distributed between 0 and
27, 8w is a small random frequancy introduced to avoid the periodicity of the simulat-
ed process and js uniformly distributed between —4e’/2 and 4e'/2 with 4o’ € do.
The response of the structure subjected to the above excitation was obtained by
numerical integration of Eq. (3.1) using the Runge-Kutta method. For each com-
bination of r and S; an ensemble of 400 time-histories of response was generated.
Initial values of 5, % and % were zero for each sample. This procedure was carried
out till the variance built up from zero toward its stationary level. The set of parame-

ters used is £/=0.01, @,=2, N=>50 and Aw’:g—g’. Fig. 3 shows the variances of the

transient response calculated as an ensemble average at each time by the following

Kmitt)
4

0 51 o BT 20m

Fig. 83(a) Moderately nonlinear (r=0.5)
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Fig. 3(b) Severely nonlinear (r=0.1)

Fig. 3. Transient variance of displacement response of structures with bilinear
hysteresis. —— : I-dimensional analysis. @ @ ® : Simulation.

equation:

K, ()= <(n(t)— <n(t)>)*> (3.5)

in which <> denotes an ensemble average over the ensemble. As in these figures,
the variance K, (¢) fluctuates with time, even if the variance amounts to its stationary
level. Therefore the variance of the stationary response was newly calculated in this
study by the following method of average to eliminate the time variation of the
variance K, (¢). This average was the time average of K, (¢} over the interval,
of 5 times the natural period, in which the response was considered as stationary.
This stationary variance is denoted herein by K, . The variances K, and K;;
of the stationary velocity and acceleration response were estimated by using the similar
averaging method.

Experimental vesults

In Figs. 6(a) and 9, experimental results of K, are plotted for the parameters of
$p=0.2, 0.6 and 1.0, and r=0.1, 0.3, 0.5 and 0.8. Note that the structure becomes
linear when 7 —1 and the perfect elasto-plastic hysteretic structure when r—0. There-
fore, these figures give an indication of how the degree of nonlinearity affects the struc-
tural response. From these figures, it can be seen that the variance of displacement
response for the same intensity of excitation is strongly influenced by the degree of
nonlinearity, and is minimized when the rigidity ratio is 0.3. Figs. 6(b) and (c)
show experimental results of K, and K;; for §,=0.6 and r=0.1, 0.3, 0.5 and 0.8.
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The variances of velocity and acceleration response are sensitive to the rigidity ratio
r, but they decrease monotonically with decreasing r.

To investigate the assumption used in the previous chapter that the response forms
the Gaussian distribution, the probability density function of the displacement
response in the stationary situation obtained by the simulation is plotted in Fig. 4.
In these figures, the dashed line represents the normal density function with the mean
and the variance obtained by the simulation. Further more, Figs. 5(a) and (b)
show how the probability distributions of the displacement and velocity response
are influenced by the regidity ratio, respectively. In these figures, the scales are
chosen so that the Gaussian distribution plots as a straight line. From Fig. 5(a),
it seems that the experimental distribution of the displacement response is on the
whole similar to the Gaussian distribution. However, for the severe nonlinearity
(r=0.1), the experimental distribution diverges increasingly from the Gaussian dis-

tribution as the displacement level |’7 <92 , normalized by the standard devia-

tion ¢, of », becomes larger. The eﬂcct of nonlinearity is less significant for the
distribution of the velocity response than for that of the displacement response. From
these results, the assumption of normality is proper for the response of the structure
with small to moderate nonlinearity. On the other hand, for severe nonlinearity,
the assumption of normality is, strictly speaking, invalid, and so this fact may have
some effects on the results obtained through the statistical linearization techniques.

(¢) r=03 (@) r=0.1
Fig. 4. Probability density of displacement response for various
rigidity ratios r. ——: Simulation. ------- : Gaussian
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Fig. 5. Probability distribution of response.

3.2 Approximate analytical solutions

By making use of the equivalent stiffness coefficient k, and the equivalent damping
coefficient d,, the original nonlinear equation (3.1) can be replaced by a related
linear equation

4 d ,
EID 7)+2h,qweqmn+w”=—f(z) (3.6)
in which
— 2h+d,
a)eq=\/ke h54=_2\lz (37)

The statistics of the stationary response governed by Eq. (3.6) are readily obtained.
The correlation function of the response 5 is given by

oo

R(©)=ECr@n(t+0)]={"_S, (@) H(w)|*coswr do

_&Sw cos w7 dw (3.8)

T 2w Jeu, (02,— 0P+ 4h2 02 w2

In particular, when =0, the covariances of the displacement, velocity and accelera-
tion response are expressed as follows:
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- _ S
K”—R(O)—mfo
, s K,,=—R®¥(0)=0
K= —R?(O) = ——1, (3.9)
4 eqweq
S Kq"l':R(s)(O)=0
we
K-,,--,;ZR(“(O)= 40’12_4?_14
in which
4h,, (* u
- eag =0, 2, 4
’ m Jo (1—u?)?+4hZ u® du, j=0,
(3.10)
— w"
9= o,,
The final expressions of I, are given by
2h h 14+ g2+2gy1—h?
IO:Ltan‘1 i 2 — log s Ml
T 1—q% 2myl—hZ, 1+ ¢%*—2gJ1—hZ,
1 . 2h,,q h, 14 g2 —2gJy1 —At
I,=—1t 1 ] q 1 eq .
p = 1—g* 2mJ1-hZ, o8 1+q2+2qy1—hZ, (8.11)
4h,,q

=" 12012k )~ 1,

Numerical procedure

The estimates for the stationary response are computed for bilinear hysteretic
structures by using the three statistical linearization techniques based on the following
three different analyses:

(1) one-dimensional analysis without consideration of the distributions of center

and frequency of hysteretic oscillation,

(2) two-dimensional analysis with consideration of the distributions of center

and amplitude of hysteretic oscillation,

(3) three-dimensional analysis with consideration of the distributions of center,

amplitude and frequency of hysteretic oscilltion.
In order to find the basic statistics of the nonlinear response by using the proceeding
statistical linearization techniques, Eqgs. (2.11), (2.12) and (3.9) must be solved by
using of Eqgs. (2.9), (2.15), (3.7), (3.11) and (2.24), for the three-dimensional analysis.
Note that instead of Eq. (2.4), Eq. (2.39) is used for the two-dimensional analysis,
and Eq. (2.42) is used for the one-dimensional analysis. These are nonlinear algebaric
equations and it is difficult to solve them directly. However, they can, in general,
be solved by the following iteration scheme on the digital computer. Assuming a
set of values for k, and d,, then the covariance matrix can be solved easily, and by
using these results, a new set of values for £, and 4, is introduced. This procedure
can be repeated until the required accuracy is obtained.
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Numerical results

Figs. 6(a), (b) and (c) show variances of the displacement, velocity and accelera-

(0}
Kk

10

(2) Displacement response and center of hysteresis

]
0 0.2 0.4 06 08 r 10
(b) Velocity response

i 1 I

]
0 0.2 04 0.6 08 r 10

(c) Acceleration response

Fig. 6. Variance of stationary response of structures with bilinear hysteresis.
:1-dimensional analysis. —-——: 2-dimensional analysis.
3-dimensional analysis. @ : simulation
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tion response as a function of the rigidity ratio 7 for the set of parameters, §,=0.6,
h=0.01. Remember that the rigidity ratio r indicates the degree of nonlinearity
for the bilinear hysteretic sturcture. From these figures it can be seen that the degree
of nonlinearity affects storngly the over-all response. In particular, it is interesting
that the variance K,, of the displacement response is strongly influenced by the
degree of nonlinearity and the difference of the analytical technique as indicated
in Fig. 6(a). For the structure with small to moderate nonlinearity (r>0.5) all
analytical estimates agree rather well with the simulated results obtained in the
previous section. For the strong nonlinearity, however, the effect of the different
analytical techniques on predicting vesponse is clearly apparent. Whereas the
simulated result indicates that there is a noticeable tendency for the variance X,
to increase rapidly with decreasing r when the rigidity ratio is less than 0.3, the one-
dimensional estimate decreases monotonically and the two-dimensional estimate in-
creases slightly with decreasing 7. The three-dimensional estimate gives considerably
a better prediction than other analytical estimates and shows the above tendency.
However, this estimate also becomes qualitatively much less satisfactory as the rigidity
ratio decreases below about 0.3.

In Fig. 6(a), the variance K§.5, of the shift §, of the center of hysteresis is also
plotted as a function of . It is found that the variance K§.5,, in general, increases
with decreasing r, and the estimate for K46, computed from Eq. (2.38) based on
the three-dimensional analysis increases rapidly when r<0.3, and is always greater
than one based on the two-dimensional analysis. It is noted here that the variance
K 5.8, based on the one-dimensional analysis does not exist from its definition indicat-
ed as Eq. (2.42). Therefore, the effect of the fluctuating center of hysteresis is
evident in the fact that the enlargement of displacement response with decreasing
r when r<<0.3.

On the other hand, variances K ; and K;; of the velocity and acceleration response
decrease monotonically with decreasing r as shown in Figs. 6(b) and (c). From these
figures, it is found that the discrepancy between analytical and simulated results,
and the effect of the different analytical techniques are much less significant than
that of the displacement response.

Fig. 7 shows how the probability density function P,(z), for the interval r between

A
0af
r=05 S.=06
h =0.01
we=2,
02k
r=03
o1k
=01
0 ™ 7n an am T 5

Fig. 7. Probability density function of interval = between successive
extrernums of response.
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zero crossing of 7(t), evaluated approximately by Eq. (2.22), 1s influenced by the
rigidity ratio r. For the moderate nonlinearity (r=0.5), the probability density
has a remarkable peak and the scatter of ¢ is small. Therefore, the response retains
narrow-band characteristics, even with the introducing of yielding. For the severe
nonlinearity (r=0.1), there 1s no distingushed peak and the scatter of 7 is large.
This indicates that the response does not possess narrow-band characteristics. By
comparing the result of K, based on the two-dimensional analysis with that based
on the three-dimensional analysis, in Fig. 6(a), it is suggested that the scatter of
as well as the fluctuating center of hysteresis has greatly significant effect on predict-
ing the displacement response of hysteretic structures with severe nonlinearity.
Figs. 8(a) and (b) show the equivalent linearization coefficients %, and 4, as a
function of 7, respectively. As the rigidity ratio r deceases, the equivalent stiffness
k. decreases by reason of the softning nature of the hysteretic structure, and the
difference among the results obtained with use of the three different analytical
techniques increases. Particularly, the three-dimensional estimate for k, decreases
rapidly when the rigidity ratio r is less than 0.3. By contrast, the equivalent damp-
ing d,, associated with the hystertic energy dissipation due to yielding, increases with
decreasing  as shown in Fig. 8(b). The difference among the three estimates for
the equivalent damping is less than for the equivalent stiffness. It is well known
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0k 7 h =0.01
o We=2.
02+
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0 0.2 04 06 08 1 10
(a) Equivalent stiffness coeffictent.
de
048, %=06
RN h =0.01
[ N Ny We=2
02 o
1 1 | ]
0 02 04 06 08 r 10
(b) Equivalent damping coefhicient.
Fig. 8. Equivalent linearization coefficients. ——: }-dimensional analysis.

—--—: 2-dimensional analysis. -------: 3-dimensional analysis.
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that the softning nature of the nonlinear sturcture tends to increase the displacement
response, while the damping due to the energy dissipation tends to decrease the
response. For the structure with small to moderate nonlinearity, the damping effect
dominates, and so the displacement response is decreased as in Fig. 6(a). Contrary
to this, from the results based on the three-dimensional analysis, it is found that for the
structure with severe nonlinearity, the displacement response is increased by the reason
that the effect of the softning nature dominates even though the equivalent damping
coefficient increases. On the other hand, the velocity and accerelation responses
are affected by only the damping effect.

Fig. 9 shows the results of the variance K, obtained by the simulation technique
and the two statistical linearization techniques based on the one-dimensional analysis
and the three-dimensional analysis for §,=0.2, 0.6, 1.0. This figure gives an indica-
tion about the range of the applicability of the statistical linearization techniques
to the prediction of stationary random response of bilinear structures. Increasing
the intensity of excitation as well as decreasing the rigidity ratio increases the degree
of nonlinearity of structures, and so increases the discrepancy among the analytical
results and the simulated result. Furthermore, from the result by the three-dimen-
sional analysis or the simulation in this figure, it is clearly evident that the vartance
of the displacement response of the structure for the same intensity of excitation
has a minimum. The optimum rigidity ratio which gives the minimum variance
is about 1/3. It is considered that this optimum value depends on the intensity
S, of excitation and the critical damping ratio 4 of the structure. When the ratio

K

] |
0 0.2 04 0.6 08 r 10

Fig. 9. Effect of rigidity ratio r on variance of displacement response.
——: l-dimensional analysis. -—--: 3-dimensional analysis.
® : Simulation.
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r is less than the optimum value, the characters of the response differ markedly from
that of structure with small to moderate nonlinearity, for example, the variance
of the center of hysteresis, the probability density function P.(r) and the probability
distribution of the displacement response, as described before.

The statistical linearization technique based on the three-dimensional analysis
proposed in this paper is applicable to the prediction of stationary random response
of bilinear structure when the rigidity ratio is greater than the above optimum value.
The technique based on the one-dimensional analysis is applicable for small to
moderate nonlinearity (r>0.5), as recognized by other investigations!®-19).

The technique based on the three-dimensional analysis gives underestimated results
for the variance of the displacement response in comparison with the simulated results
when the rigidity ratio is much less than the optimum value. This major discrepancy
between the two results for the hysteretic structure with severe nonlinearity may be
due to the following factors:

(1) The response of the structure possesses the broad-band characteristics,
and so is not a smoothly varying process. Hence, the continuous behaviour of
hysteresis cannot be treated discretely as the closed hysteresis over one cycle.

(2) The probability distribution of the response is not Gaussian distribution.

(3) The probability density function P,(z) given by equation (2.22) is drastically
apporximate and gives an unsatisfactory estimate for large 7.

As a example of the application to non-stationary random process, also shown in
Fig. 3 are values of the transient variance K, (¢) evaluated by using the step-by-
step linearization technique based on the one-dimensional analysis® 9. Tt appeares
that the analytical results agree rather well with the exprimental results for moderately
nonlinear system. Contrary to this, the discrepancy between two results is quite
apparent for severely nonlinear system. Thus the technique based on the one-dimen-
sional analysis appears to be very powerful to anyalze non-stationary response as
well as stationary response only when 7 is greater than 0.5.

4. Conclusions

In order to understand the statistical characteristics of the responses of hysteretic
structures subjected to severe earthquake excitations, a new statistical linearization
technique is introduced according to the facts that the response of a hysteretic struc-
ture with severe nonlinearity is not, in general, a narrow band process and hysteretic
behaviour obviously fluctuates eccentrically in a random manner. The basic
statistics of the stationary response of a single-degree-of-freedom structure with bilinear
hysteresis subjected to a band-limited white Gaussian excitation with zero mean value
are numerically evaluated by the statistical linearization techniques based on the
three different analyses; i.e., 1) the one-dimensional analysis, 2) the two-dimensional
analysis and 3) the three-dimensional analysis. To investigate the range of applica-
bility of these techniques, a numerical simulation has been carried out.

Though the general features of the random response of nonlinear hysteretic struc-
tures, which are varied depending on the characteristics of hysteresis and excitations,
cannot be derived from this limited analysis, some of the significant finds can be
summarized as follows:

(I) The response of the bilinear hysteretic structure is, in general, quite sentisive
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to the rigidity ratio of the second to the first branch of hysteresis. Particularly, the
experimental result by the simulation technique shows a noticeable tendency that
as the rigidity ratio decreases, the variance of the displacement response of the structure
for the same intensity of excitation decreases gradually, and increases rapidly after
it has a minimum at a certain rigidity ratio. Apparently this tendency is also rec-
ognized by the statistical linearization technique based on the three-dimensional
analysis. It is considered that the optimum rgidity ratio which minimizes the
variance depends on the intensity of excitation and the damping ratio of structure.
The optimum value is nearly 1/3 in the range of parameters used in this study. Other
techniques do not explain the tendency. In particular, the variance estimated by
the technique based on the one-dimensional analysis decreases monotonically with
decreasing rigidity ratio.

(2) The variance for the shift of center of hysteresis evaluated by the three-

dimensional analysis is always greater than one by the two-dimensional analysis,
increases gradually with decreasing rigidity ratio, and rapidly increases when the
rigidity ratio is less than the optimum value. The probability density function of
the interval between two adjacent extremes of displacement response is apporximately
evaluated, and indicates that the scatter of frequency of hysteretic oscillation is notice-
ably large for severcly nonlinear structures. Therefore, the scatter of frequency
and the fluctuation of the center of hysteretic oscillation affect strongly on the dis-
placement response of the hysteretic structure with severe nonlinearity.
(3) From the error survey made with the aid of a numerical simulation based on
the Monte Carlo method, it can be said that the statistical linearization technique
based on the three-dimensional analysis is applicable to the prediction of stationary
response of structures with bilinear hysteresis when the rigidity ratio is greater than
the optimum value.

From the above-mentioned remarks, it is evident that the investigation on the
scatter of frequency and the fluctuation of center of hysteretic oscillation are necesasry
to make clear the response of hysteretic structures with severe nonlinearity. It can
be said that the statistical linearization technique is considerably improved by taking
into account the distributions of them if not satisfactory. The large displacement
response caused by the shift of the center of hysteresis may be a serious problem on
the aseismic safety of hysteretic structures with severe nonlinearity in relation to
the instantaneous failure due to large deformation and the low-cycle fatigue phenome-
non due to repeated deformation. It is suggested that the existence of the optimum
rigidity ratio which minimizes the variance of the displacement response may have
a great significance in doing the aseismic design of structures.
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