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                               Abstract 

   To evaluate the reliability of structures subjected to severe earthquake excitations in relation 
 to the ultimate aseismic design method which guarantees the safety of structures in the ultimate 

 state, the basic statistical characteristics of the response of elasto-plastic structures should be  under-
 stood. At the present time there is no useful  analytical method which can be used to treat problems 

 of the response of stochastically excited hysteretic structures with strong nonlinearity. The Fokker-
 Planck equation approach is inapplicable to problems which involve the hysteretic  nonlinearity 

 or the non-white excitation. As an approximate analytical method, the statistical linearization 
 technique has been widely used, since this technique overcomes the above restrictions. However, 

 this technique requires  small  nonlinearity, and so may be not applicable to  find statistical charac-
 teristics of the response of hysteretic structures with strong nonlinearity which is considered im-

 portant in relation to the ultimate aseismic safety. 
   The purpose of this paper is to introduce a new statistical linearization technique that will allow 

 as to obtain solutions to the problem of the response of hysteretic structures with strong nonlinearity 
 to random excitation. From experimental results of the response of hysteretic structures with strong 

 nonlinearity by means of the simulation technique, it is pointed out that the response possesses 
 broad-band characteristics and the center of hysteresis eccentrically fluctuates. With these points 

 as background, a new statistical linearization technique is introduced by considering the scatter of 
 frequency and the fluctuation of the center of hysteretic oscillation. The equivalent linearization 

 coefficients are determined by the least  mean-square error method. In the present study, the average 
 used in minimization procedure is a combination of ensemble and time  averages. Though the 

 technique developed by T. K.  Caughey involves only amplitude of hysteretic oscillation as random 
 variable, the shift of center, amplitude and frequency of hysteretic oscillation are treated as ran-

 dom variable. The joint probability density function of these random variables is approximately 
 evaluated under  the assumption that the response is a stationary Gaussian process. 

   The numerical analysis is carried out in the case of a single-degree-of-freedom structure with 
 bilinear hysteresis to a band-limited white  Gaussian excitation.  From the statistics of the stationary 

 response computed by the statistical linearization techniques and the simulation technique, it is 
 shown that the scatter of frequency and the fluctuation of the center of hysteretic  oscillation affect 

 strongly on the displacement response of bilinear structures with severe nonlinearity, and so the 
 statistical linearization technique is considerably improved by taking them into account. Another 

 fact of importance is the existence of the optimum rigidity ratio which minimizes the variance 
 of the displacement response. It is suggested that the above optimum ratio has a great significance 

 in doing the aseismic design of the elasto-plastic structures. 

1. Introduction 

 In the present approach to obtain a sound anti-seismic structure, a dual design 
concept is often  use&  . The structure is designed to resist a moderate earthquake
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without significant damage according to the elastic design method, and to resist a 
strong earthquake without extreme damage or collapse according to the elasto-

plastic aseismic design method. Due to its randomness in nature, earthquake 
excitation has been treated as a stochastic process. Therefore, in relation to the 
aseismic safety of structures subjected to strong earthquake from probabilistic point 
of  viewE, it is considered essential to understand the basic statistical characteristics 
of the response of structures, particularly in the latter design method, of the response 
of nonlinear hysteretic structures. 

  At the present time there are many analytical methods which can be used to treat 

problems of the response of nonlinear structures to random excitations. An exact 
solution may be  evaluated by only solving the stochastic differential equation such 
as the Fokker-Planck equation. Unfortunately, this Fokker-Planck equation approach 
has a very limited range of  applicability3), and no solution of this equation for the 
response of nonlinear hysteretic system has yet been obtained. As an approximate 
analytical method, the statistical linearization technique has been widely used, since 
this technique is applicable to a nonlinear hysteretic structure subjected to a Gaus-
sian excitation with a non-white power spectral density. This technique was develop-
ed by  Bootore0 and  Caughey as a statistical extension of the method of equivalent 
linearization of Krylov and Bogoliubov in deterministic theory. Caughey has dis-
cussed the technique for the problem of a nonlinear hysteretic oscillator in the sta-
tionary random  proces0.7). The application of this technique to problems of non-
stationary random response of hysteretic structures has been discussed in References 

 8 and 9. However, the abovementioned technique requires small nonlinearity. 
Therefore, the technique may be not applicable to find statistical characteristics of 
the response of hysteretic structure with severe nonlinearity, which is considered 
important in relation to the ultimate aseismic safety. 

  From investigations of the response of hysteretic structures by means of the simula-
tion technique, it is pointed out that as the degree of nonlinearity becomes  greater, 
the response has the frequency character of broader band process, the fluctuation of 
the center of hysteresis in connection with the plastic deformation increases, and so 
the response increases rapidly. 

 With these points as background, it is the purpose of the present sutdy to introduce 
a new statistical linearization technique by taking into account the scatter of frequency 
and the fluctration of center of hysteresis. It is felt that this new technique leads 
both to a clearer interpretation of a tendency that the response of a hysteretic struc-
ture increases markedly, as the nonlinearity becomes more severe, and also to an 
improvement of the statistical linearization technique. The statistical linearization 
technique is based on the idea of replacing the original nonlinear sturcture by a 
related linear structure in such a way that the mean squared value of the difference 
between the two structures is minimized. In the present study, the average used in 
minimization procedure is a combination of ensemble and time averages. Under 
the assumption that the shift of the center, amplitude and frequncy of hysteretic 
oscillation are slowly varying random variables over any one cycle, the combination 
average is defined under such a law that ensemble average is taken with respect to 
to three random variables after time average is carried out over one cycle.  The  joint 

probability density function of the three random variables is approximately evaluated 
using the assumption that the response is the stationary Gaussian process.
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  As a numerical example, a single-degree-of-freedom structure with bilinear hystere-
sis subjected to a band-limited white Gaussian excitation is considered. The statistics 
of stationary response are computed by using the three statistical linearization tech-
niques based on the following different analyses: 

  I) the one-dimensional analysis without consideration of the scatter of frequency 
     and fluctuation of the center of hysteretic oscillation, 

  2) the two-dimensional analysis without consideration of the scatter of frequency 
     of hysteretic oscillation, 

 3) the three-dimensional analysis with consideration of the scatter of frequency 
     and the fluctuation of the center of hysteretic oscillation. 

 An indication of the relative merit of the above three techniques is proved by 
the experimental result obtained by means of the Monte Carlo technique. 

2. Statistical  Linearization  Techniques 

  Consider a structure with nonlinear hysteresis subjected to random excitation of 
the earthquake type. It will be assumed that the hysteresis behaviour is a smoothly 
varying process and the character of hysteresis is stable.  In order to obtain an 
approximate solution for the response of the nonlinear hysteretic structure, replacing 
the nonlinear hysteretic characteristics function  co(v, 17; t) by a related linear function 

 CO,(72,  7); t) which is described in terms of displacement  ,1 and velocity  ij 

 ./7;  t)=  ke(t)v+  de(t)ij (2.1) 

in which  k,(t) and  CO are the equivalent stiffness and the equivalent damping 
coefficient. The difference  co—co, between the original nonlinear function and the 
equivalent linear function will be dependent on the choice of  k and  d,. As  ij and  ij 
are stochastic processes, the difference is also a stochastic process. As a means of 
making the difference a minimum in a statistical sense, it is desirable to use the 
criterion that the mean squared value of the difference is a minimum. In the present 
study, the mean squared error function is expressed as 

 J(k  e,  d  e)  -=ET  I.L1C0(21,  11;  0—  49,(n,  1)}2i (2.2) 

In the above equation, the averaging operator  ELI.] means a combination of time and 
ensemble averages, which is defined as 

 Rib],  <  •  >  Lp(x)dx (2.3) 

in which  <•>, , denotes the local time average over one cycle of oscillation and 
P(x) is the joint probability density function of random variables x involved in 

 <->„ To minimize  J  (ke,  de) requires the following conditions for  k, and  de: 

        0J 0J 02J 02j  > 0             —0' ,>0 (2.4)            ka d
ea k ,2de2 

Then, the equivalent linearization coefficients can be obtained as follows:



114 T.  KOBORI, R.  MINAL  and  Y. SUZUKI 

 E1(00  ELL01  E  LEO]  &ECM] 

         E LEW E072i EEEDP]             AO=(2.5)       k 
            Fife]  E  LDIC  E  LE772]  E  LEVU 

 E  tr7Pli  E  LEV]  ELC97n7  E  %DP] 

2.1 Analysis with consideration of fluctuating hysteresis 

  The response of hysteretic structures subjected to random excitations has been 
investigated by means of the digital simulation and electronic-analog techniques in 
References 10), 11) and 12) and in Chap. 3. The following points are emphasized 
from these experimental results: As the degree of nonlinearity of the hysteretic 
structure becomes greater, 

 (1) the frequncy character of response becomes that of broader band process, 
  (2) the hysteresis behaviour fluctuates more obviously in a random manner and 

      the shift of hysteresis center increases in connection with the growth of plastic 
      drift. 

Hence, in order to apply the statistical linearization technique to problems of deter-
mining the response of hysteretic structure with large nonlinearity, consider a model 
of hysteretic behaviour with the above points as background as shown in Fig.  1. 

 '9(Q) 

 a'  { __- 

      tiAr 
                            bc 0(' 

              Fig. 1. Force vs displacement characteristic for a typical hysteresis. 

Point C denotes the center of hysteresis which eccentrically fluctuates.  ac(t) is the  
.)2 co-ordinate of point C, x(t) and  w(t) denote amplitude and frequency of hysteretic 
oscillation, respectively. The variables  3,(t), x(t) and  w(t) are treated as slowly 
varying random functions of time, and so have nearly constant values over any one 
cycle. Under the assumption that a structural response is smoothly varying process, 
the response  i2(t) may be approximately a sinusoidal time function. 

 v  (t)  =  e(t)--x(t)cos(o)(00 (2.6) 

 '(t)  x(t)  (t)sin(to  (t)t) (2.7) 

As in Fig.  1, a is the minimum,  ct, is the maximum and r is the interval between the 
minimum and the maximum, then  3„ x and w are given by
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         a+a'at
2—a   Se=u1(a,—=v2(a, a') (2.8)  2 

 to=  it  

 where 

 —00<a<ai<  0<x<00 

Using Eqs. (2.6) and (2.7), the expressions obtained after averaging  )22,  7)2 and  )2) 
with respect to time over one cycle are 

               1
r^02rCx2               <7/2>L=2712dt =O +—2Bite(SZ) 

          121- 7r2x2 (2.9)               <172> 
t-=  2r 02v2Bde(x, r) 

 <vii>  L=0 

Given the hysteretic characteristics function  C9(7), t), the time averages  <co72>0 
and  <0>L may be expressed as 

                          1  (2'                  <sov>
i. =  2r Cridt=. Cee(6,,x, r) 

                                                  (2.10) 
              <t= 1VTdtC de(8„z, r) 

 2r0 

The above time averages are represented as functions of random variables  6„ x 
and r. If  p(k, x, r; t) denotes the joint probability density function of  5,, x and r, 
the equivalent linearization coefficients  k, and  de are obtained from Eqs. (2.5), 

(2.9) and  (2.10), as follows: 

                    C„,(6,, x, r)p(S c,  x, r; OEM cdxdr 

                                                  (2.11) 
 B  „(6  „  x)p(t  e, x,  r;  da,  dxdr 

 Cde(S  c, x,  r)p(O„  x,  r;  da,  dxdr 
 64(0   D  (2.12) 

                     B de(z, r) p(t3 c,  x,  r;  t)c1Sedxclt 

in which D  denotes the integral area that 5, ranges from  —00 to  -1-00, and x and r 
from 0 to  00. 

Evaluating of  C  „„  C  „e  for bilinear hysteresis 

  In particular, the hysteresis considered here is the so-called bilinear hysteretic 
restoring force  co(Li; r) as shown in Fig. 2. This hysteresis is the simplest representa-
tion of idealized structures and is often used as an approximation to the yielding be-
haviour. Note that  07; r) represents the non-dimensional hysteretic characteristic,
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 9(q)  Pc(  °lc) 
   r                                                          --"" 1 

         1 
                 / 

 11. 

        6 , ' 

 - 

                        Fig. 2. Bilinear hysteretic restoring force. 

 r  is the rigidity ratio of the second to the first branch, both the elastic limit deformation 
and strength are unity. Let the co-ordinates of the center of hysteresis be  (5„  MO, 
the displacement  i2 and the restoring force  cr can be written from Fig. 2. 

 .1=6  c+vc                                                   (
2.13) 
 co=r6c+yo, 

where 

 77,  =  —xcos(an),  7",=t=  xto  sin  (tot) 

Then,  <tri)>L and  <0>, become 

 <4077>L=  <(7(e+40c)(13,+70>  7.=t17+  <47c77c>L 
                                                  (2.14) 

 <0>c=  <(ree-H9c)iic>  L=  <vciic> 

The final expressions of  Cka,  Cr, are given by 

   c„, <son> L=nnx2+ +(1—r){ 27rx—r)x2COS-1(122-xVx-1—yx2} 

 2 

                                               for  x  >1 

                            z                              v 
 =rq+for  O<x<I 

                                                  (2.15) 

               2(1 —r)(x-1)   C
de=<C0i7>L— for  x  >  1 

    =0 for  0  <x<1
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2.2 Probability density function  p(S„  x,  z) 

  It is assumed that the excitation is a stationary Gaussian process with zero mean 
value and the response of the nonlinear sturcture with a stable hysteresis is also 
approximately a stationary Gaussian process with zero mean value. From Eq. 

(2.8), the joint probability density function  p(3„  x, r) in the stationary process 
can be represented as 

 awl  9U1 
 8a  6a' 
 P(Sc,  26,  r)=  Pa  c—x,  6,+x,  r)/  =2p,(6,  —7C,  Se+x, r)  a

u,  002 
 as Oa' (2.16) 

in which po(a, a', r) is the joint probability density function of a,  a' and r. Futher-
more, it can be expressed as 

 Po(a, a',  T)=  Po(a, a'  I  r)-pr(r) (2.17) 

in which  po(a,  r) is the conditional probability density function that, given a 
minimum  of  "2(t) at  t=0 and the next maximum at  t=r, then  v(0),« and  72(e)=d, 
and  pr(r) is the probability density function that, given a minimum of  v(t) at  t  =0, 
the next maximum occurs at  /---=r. Since the exact solution of probability density 
function  pr(r) cannot be evaluated, an approximate expression for pr(r) will be 
evaluated by using the theory of random points developed by Stratonovich and 

 Kuznetsovl3). Assuming that maximums of the response process  72  (t) occur at 
 es,  (j=1, 2, ... ), after a minimum at  t=0; i.e, 

 10)=0,  3)(0)  >0 

 fi(ti)=  0,  ij(c;)<  0 for  j=  1,  2,... 

then the points  rt form a system of random points, characterized by the distribution 
functions 

                        fo(ri,(ri,• • 

The distribution function  r,) is given by 

 r,) 

 „  

 it,  od1/0-  •  •  eh 

 22Dw(ilo,  iio)irodi2o 
                                                  (2.18) 

Using the distribution functions, the probability density function  pr(r) can be 
obtained as  follows:
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                                  s

!1 CT 
             =fi(r)± E

2(r0fs(vi,•.., rs_Ddri. • • dry_i (2.19)                  —p1)0 

The above equation has been obtained by the inclusion and exclusion method as 
indicated by S.  O.  Ricei.O. The probability density function  pr(r) can also be 
expressed in terms of cumulant functions 

    pr(t)dt=-exp{-10gi(t)dt+2(—S;)sCr0107gs(t, tdts}                   •• 

                                                  (2.20) 

in which the cumulant functions are related to the distribution functions 
as follows: 

    gi(r)—fi(r) 

 g2(r1, r2)=Pri, r2)—Rr1) 
 (2.21) 
 gs(ri, r2,  r3)=f3(r1, r2, r3)—f1(r1)f2(r2, r3)—Pr2)./2(ri,  r3) 

 —Pr 3)f2(r1,  r2)+2Pri)Prz)fi(r3) etc. 

However, the calculation of higher-order terms in the series (2.20) and evaluation of 
multiple integral (2.18) lead to technical difficulties. Therefore, it is desirable 
to limit the present consideration to lower-order terms. For the sake of simplicity 
in computation, the system of random points is assumed to be the Possion system, 
that is, 

 8'3=0 for  s>2 
Then, differentiating Eq. (2.20) with respect to r gives 

               pr(r) =f ,(r) expL_ fi(t)dti  (2.22) 

                                              o 

 On the other hand, the conditional probability density function  po(a,  Ir) is 

given by 

               a27-() 27riik(Vo,37)0,  VT,;0=,;, =a di2o dth 
 Po(a, a' I r)=L,                5J

oivoivTiw(vo,  3;0,  v„  (Roar 
                                                     (2.23) 

Substituting Eqs. (2.22) and (2.23) to Eq. (2.17),  p(o„  x, r) is approximately obtain-
ed as 

 p(5,, x,  r)  =  2po(r7,  —  x,  c+x  I  Of  i(r) exp [-5.refi(t)dt] 
 =2   J3(6,'  X'  r) expJ2(t)   di] (2.24) 

                    _J1
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in which 

 Ji"-= 21E0             0,0,i'i0);0=0 

            0 

     )12=5°5'Q0ii0 IFi7711(1/0):7)0,tr,i;,)arir-othiodth(2.25) 
 Js=  c.'&1 li              5r I W(770, 1/0, ih171,-, 12r,Vir)0o—a,,,-01.(72—ir-040 di,  —0 a 

 Using Eq. (2.24), the probability density functions of the shift of center  o, the 
amplitude x and the extremum a are expressed as 

            p„(6,)=0dr0dxp(Se,  x, r), —< Sc<00(2.26) 

           px(x)=1 d•L-(lap(Sc, x, r), 0�x<CO(2.27) 

           PA(a)dr5dx p(a+ x,  r),  —  co  <a<  oo  (2.28) 
             oo 

Under the assumption that  ri(t),  ii(t) and ii/(t) arc the stationary Gaussian processes 
with zero mean values, the joint probability density function  w(vo,  ijo,  ii,) 
is the multi-dimensional normal density function and is expressed as 

       we4a,170, ihifVT,=(27)3K eXP[ 1sux ix;1(2.29)                                                   2J-1 

in which IKI is the determinant of the covariance matrix [K], S1, is the element 
in the ith row and  ith column of the inverse of the matrix [K] and (x1,  x2,  xs) 
denotes  (72o,  ;20.  i7o,  77,  lin  'FM. The covariance matrix [K] is 

 KII•  •  •  K15 R(0) 0 R(2)(0) R(r)  R(')(t)  R(2)(r).  

•  •  0  —R(2)(0)  0  —R(2)(r) —  R(2)(r) —R(3)(r)       

• • • • • •  R(2)(0) 0  R(4)(0)  R(2)(r)  R(3)(r)  R(4)(r) 

 LiCi=  
•  •  •  •  ••  R(r) —  R(')(r)  R(2)(r)  R(D) 0  R(2)(0)       

•  •  •  •••  R(1)(r)  —R(2)(r)  R(3)(r)  0  —R(2)(0) 0 

      K61  •  •  K"  ,R(2)(r) —  R(3)(r)  R(4)(r) R(2)(0) 0  R(4)(0) 

                                                  (2.30) 

in which 

 Kij=E[xixi],  i,  j=1,...,  6 

and  R(7) denotes the correlation function, that is, 

 R(r)=E[n(t)v(t  +  r)]
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 Ri1)(r)  — d
r'R(r),  i=1.....4 (2.31)                     d 

The expression obtained after integration on  a by making use of Eq. (2.24) is 

 Uo(x) 

 p(5,, x, r)dx = A(r)  exp(—  Bx2)0 for n= 1 
                                   a; 

           2a.                                                        2 
  U0(x)+U2(x) 2 

                  044,a 

                                               (2.32) 

in which 

   2    =Al 7:exp( A)  dt) 
      (2703Ji I K I 112rrEo0 Ji 

                           1ai )  R=sii—s14,  ao  =sii  +$14, at =513-1-516, a24(6s33 ao 
   ,1  ,N/  Ic;;;;1  ,N/ R(4)(0)     J1  2rr k

a  27r R(2)(0) 

 M3/2  J2—  47r2(mi—m)  [1+  Hcot-1(—H)] 

 M1=k4)(0)0(2)2(0)—K2)2(01+R(2)(0)R(3)2(r) 

 M2=  —R(4)(0{R(2"(0)—H2Ar)l—R(2)(V)K3)2(V) 

 M3  =  IR(2)(0)R(4)(0)—  R(2)(r)R(4)(0+  R(3)1(012 

 IH2)(0)H4)(r)—  H2)(r)R(4)(0)}2 

     M2  

               /4   "X) = 150(1 + Csins2i:20)2  :(1-Fe2)+4it  eee2  (4-1-$2){1+  erf(e)}1c10 

   U2(x)=1 C44 (COS 0 —sin0)2 sin 20 1-2,te2                                         +4  2
.10 (1+c1 sin20)3L2 

       -1-477geE2 (  145   +  3E2+  e4){i+erf(0}1 
 c2(sin0±cos0)  e=  X 

 c,  sin20
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 ai  
                 35  a

o—2s36 3 —S,6   C
l , e2—                                           12 

     2.333—CifVI2                                     2.533— 
   ao ao 

 erf(E)=  2 10e-22 dz           017r 

 Using Eq. (2.23), the first and second order moments for the amplitude x and the 
extremum a are obtained as 

              - 

  E[x]=5 5 Axil 0(x)  exp(—  Bx2)dx  dr (2.33) 
           o o 

 E[a]=  —  E[x] (2.34) 

 E[x2] -- 1TAx2Le(x)  exp(—Bx2)dx  dr (2.35) 

                0 

                                     e2    E[ce9=55AK  +  x2  ) U0(x)+ U2(x)}exp( Bx2)dx dr (2.36) 
       00zao4a,3a2 

 E[ca],  —E[x3] (2.37) 

In particular, the mean and variance of the shift of the center of hysteresis are given 
by 

 E[SC]=E[a]+E[x]=0 
 (2.38) 
 &sac  =ELa21—E[x2] 

 As above mentioned, the new technique of statistical linearization is introduced 
by taking into consideration the scatter of frequency and the fluctuation of the 
center of hysteretic oscillation. It may be proper to call such a technique a statistical 
linearization technique based on the three-dimensional analysis, since three variables 

 Se, x and  r in this analysis are treated as random variables. To investigate the 
analytical technique, two different techniques are introduced. 

 First, if only r among three variables is a deterministic parameter, the probability 
density  p(Sc, x, r) is reduced to 

 p(S„  x,  r)=  2p0(0,—z,  c+  xlr).0(r  —r*) 

                    J(àx r)  —  2 3a"   •  a(r  —  r*) (2.39)  he
r) 

in which  (3•) is Dirac's delta function and 

 1 (2
.40) 

where  N,, is the expected number of extremum per unit time and is given by 

 NP IYiWO) 7r,‘,/  IC(2.41)
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This technique based on the probability density  p(O„  x, r) of Eq. (2.39) instead of 
Eq. (2.24) may be called a technique based on the two-dimensional analysis in cor-
respondence with the three-dimensional analysis. 

  Secondly, as treated in References 6) and 7), it is assumed that the response is 
contained within a narrow band frequncy and the amplitude of this process forms 
the Rayleigh distribution. Then, both the scatter of frequency and the fluctuation 
of the center of hysteretic oscillation are neglected. Therefore, the probability 
density function  fiat,  x, r) reduces to 

 p(6„ x,  r)=  1),(2).6(8  ).S(r  — (2.42) 

in which 

                              71   = ,  =  7r/V-0 (2.43) 

 Nol  18  I  w(vo,),=  di? (2,44) 

where it) is the mean frequency and  No is the expected number of zero crossing per 
unit time.  p„(x) is the probability density function of peak amplitude and is given by 

                     x2     px(x)= —exp ()                 2K)(2.45) 

Since this analysis treats only the amplitude x as a random variable, the technique is 
called that based on the one-dimensional analysis. 

  In general, numerical work needed to evaluate the probability density function 

 p(&  z, r; t) involving time-dependent covariances of  0),  ii(t)  and  CO will 
become significantly heavy if the response process considered is non-stationary. 
However the evaluation of  p(O„  x,  r; t) in the case of the technique based on the 
one-dimensional analysis does not seem extremely  difficalt. In the case of non-
stationary random process,  p(ae,  x,  r; t) is expressed as 

 r;  t)=  px(x  ;  *6(S c)•6(r  —f(t)) (2.46) 

in which  px(x;1) and  CO are given as a function of the covariances  K  9,7(t),  IC(t) 
and  K„,(t) in the following  equationso 

 x2  x p2x2  
 p  x(x  ;  t)=  exp exp  2K,(t) _  K,„(t) 2(1— p2)1C,,,(0) 

        x2 px           pA2(1— 02)&0(0K,(t)1)eriC/2(1 p2)K,n(t))1 (2.47) 
and 

                    IK„(t)   t(t) = r/Co(t)— 7r.v  (2.48) 
                              (1—p2).1Co
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where 

 p=K,;,AIK„,(t)  K,4(t) (2.49) 

3. Numerical Example 

 As an example of the application of the present techniques to problems of struc-
tural response, consider a single-degree-of-freedom structure with bilinear hysteresis 
subjected to an excitation  f  (t). The dimensionless equation of motion associated 
with the ductility ratio  72 is expressed by 

 2  

 ata2h V+(001; r) = —fit) (3.1) 
and 

 v=t=S20T 

                                                        ' in which x is relative displacement response, T is time,  d is the elastic limit deforma-
tion, h is the critical damping ratio,  po is the natural frequency of the structure , 

 is  nondimensional time,  co(7); r) is the bilinear hysteretic characteristic as shown in 
Fig. 2 and r is the rigidity ratio of the second to the first branch . For  the present 
investigation, the  excitation  f  (t) is taken to be a stationary random function with a 

power spectral density  S.,(00), a Gaussian probability distribution and zero mean 
value. The statistical linearization techniques in the previous chapter are applicable 
to the Gaussian excitation of which frequency characteristics is an arbitrary type 
such as actual earthquake excitation. In order to investigate the approximate analy-
tical techniques and to understand the applicability of these techniques to problems 
of the response of hysteretic structure, it is desirable that the frequency characteristic 
of the excitation is simple such as white. However, Eq. (2.24) involves the covariance 
function of the second derivative  $(t) of the response, which does not exist in the case 
that the frequency characteristic is white. Therefore, let the  excitation  f  (t) be a band-
limited white Gaussian process with the power spectral density represented in the 
following form: 

 So                                f
orI�o),                       )27r 

      S f(co)=(3.2) 

                          0 otherwise 

 where  we is a cut off frequancy and  S, is a parameter associated with the intensity 
of excitation. 

3.1 Monte Carlo Solutions 

 In order to understand the statistical characteristics of the response of hysteretic 
structure subjected to a random excitation and to check the accuracy of the analytical 
values obtained through the statistical linearization techniques , a numerical simula-
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don based on the Monte Carlo technique has been carried out on a digital computer. 

Numerical procedure 

 The artificial earthquake has been simulated according to M. Shinozuka and 
C.-M.  Jan16). A stationary band-limited white Gaussian noise with zero mean and 
the power spectral density given by Eq. (3.2) is generated by following  equation  : 

 f(t)_( o)1/2                           E cos(co:t +qii)  (3.3) 

and 

 to;=wid-Sw 

 ;=(i  —   21   ).elia for  i  =1, N (3.4) 

                             co,                 d
to= 

where  0, is the independent random phase uniformly distributed between 0 and 
2r,  am is a small random frequancy introduced to avoid the periodicity of the simulat-
ed process and is  uniformly distributed between  —,1072 and  11(072 with  dot  <dw. 
The response of the structure subjected to the above excitation was obtained by 
numerical integration of Eq. (3.1) using the Runge-Kutta method. For each com-
bination of r and  .50, an ensemble of 400 time-histories of response was generated. 
Initial values  of  77,  77 and  ij were zero for each sample. This procedure was carried 
out till the variance built up from zero toward its stationary level. The set of parame-

ters used is  h=0.01,  0,  =2,  N-50 and dui =-48-. Fig. 3 shows the variances of the 
transient response calculated as an ensemble average at each time by the following 
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         Fig. 3. Transient variance of displacement response  of structures with bilinear 
                 hysteresis.  —  :  1-dimensional analysis.  •  •  •  : Simulation. 

equation: 

 K,(0=  <  (72(t)—  <  v(t)>  > (3.5) 

in which  <•> denotes an ensemble average over the ensemble. As in these figures, 
the variance  K,,„,(t) fluctuates with time, even if the variance amounts to its stationary 
level. Therefore the variance of the stationary response was newly calculated in this 
study by the following method of average to eliminate the time variation of the 
variance  K  „„(t). This average was the time average of  K  „,(1) over the interval, 
of 5 times the natural period, in which the response was considered as stationary. 
This stationary variance is denoted herein by  Kyr The variances  K  e; and  IC.,;;; 
of the stationary velocity and acceleration response were estimated by using the similar 
averaging method. 

Experimental results 

  In Figs. 6(a) and 9, experimental results of  Kan are plotted for the parameters of 
 S  0=0.2, 0.6 and 1.0, and  r=0.1, 0.3, 0.5 and 0.8. Note that the structure becomes 

linear when  r-->I and the perfect elasto-plastic hysteretic structure when  r--.0. There-
fore, these figures give an indication of how the degree of nonlinearity affects the struc-
tural response. From these figures, it can be seen that the variance of displacement 
response for the same intensity of excitation is strongly influenced by the degree of 
nonlinearity, and is minimized when the rigidity ratio is 0.3. Figs. 6(b) and (c) 
show experimental results of  K,;i and  .K;;;; for  S0=0.6 and  r=0.1, 0 .3, 0.5 and 0.8.
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The variances of velocity and acceleration response are sensitive to the rigidity ratio 
r, but they decrease monotonically with decreasing r. 

  To investigate the assumption used in the previous chapter that the response forms 
the Gaussian distribution, the probability density function of the displacement 
response in the stationary situation obtained by the simulation is plotted in Fig. 4. 
In these figures, the dashed line represents the normal density function with the mean 
and the variance obtained by the simulation. Further more, Figs. 5(a) and (b) 
show how the probability distributions of the displacement and velocity response 
are influenced by the regidity ratio, respectively. In these figures, the scales are 
chosen so that the Gaussian distribution plots as a straight line. From Fig. 5(a), 
it seems that the experimental distribution of the displacement response is on the 
whole similar to the Gaussian distribution. However, for the severe nonlinearity 

 (7=0.1), the experimental distribution diverges increasingly from the Gaussian dis-

tribution as the displacement level  1  '2— <72>   1, normalized by the standard  devia-
                                               fro 

tion  a, of  )2, becomes larger. The  effect of nonlinearity is less significant for the 

distribution of the velocity response than for that of the displacement response. From 
these results, the assumption of normality is proper for the response of the structure 

with small to moderate nonlinearity. On the other hand, for severe nonlinearity, 

the assumption of normality is, strictly speaking, invalid, and so this fact may have 

some effects on the results obtained through the statistical linearization techniques. 
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3.2 Approximate analytical solutions 

  By making use of the equivalent stiffness coefficient  Ice and the equivalent damping 
coefficient  d5, the original nonlinear equation  (3.1) can be replaced by a related 
linear equation 

 d2   
 dt 2d                    71+ 2he qto eg dt 72+6'41= -f(t) (3.6) 

in which 

                                2h+ d, 
             a'gq=-`lice h"-2

\11c, (3.7) 

The statistics of the stationary response governed by Eq. (3.6) are readily obtained . 
The correlation function of the response  r) is given by 

 - 

         R(r) = ED:/(t)v(t + r)j=  S1(a))1  H((o)I  2  cos  (or  do) 

           So (Sc  COS  an     =deo(3 .8)  27r _., (04,-to2)2+4hLtqgeo2 

 In particular, when  T  =0  , the  covariances of the displacement, velocity and accelera-

tion response are expressed as follows:



128 T.  KOBORI, R. MINAI and  Y.  SUZUKI 

                  So              K
„—R(0)—                       4h(03 I° 

                                       eqeq  —  Thu  (0)=  0 

         — R'2)(0)=  
4h0  j_  (3.9)                                         „toe, 

 Ki.4=  R(3'  (0)  =  0 

           K..=R'4:(0)=—  Soo)„  /4 
 4h,q 

in which 

 4lieg Cq 
 7r  Jo (1= U2)24-4hLu2du,  j=0,  2,  4                                                   (

3.10) 
 to,                = 
to„ 

The final expressions of I, are given by 

         ).Theq h„1+ q2-F2gV1—k,       l
o=—7rtan-1-  ±2   log                  1 — q2n(\11 1  +  q2  —  22V1 

           2hhe1+ q2-20.—    /
2 =tan-1 eqq   log   (3.11)  1  —  q2  27rN/1  —  a z  1+  q2  + 

 =   4h,gq +2(1 —212%)I2— 

Numerical procedure 

  The estimates for the stationary response are computed for bilinear hysteretic 
structures by using the three statistical linearization techniques based on the following 
three different analyses: 

 (1) one-dimensional analysis without consideration of the distributions of center 
      and frequency of hysteretic oscillation, 

  (2) two-dimensional analysis with consideration of the distributions of center 
      and amplitude of hysteretic oscillation, 

  (3) three-dimensional analysis with consideration of the distributions of center, 
      amplitude and frequency of hysteretic oscilltion. 

 In order to find the basic statistics of the nonlinear response by using the proceeding 
statistical linearization techniques, Eqs. (2.11), (2.12) and (3.9) must be solved by 
using of Eqs. (2.9), (2.15), (3.7), (3.11) and (2.24), for the three-dimensional analysis. 
Note that instead of Eq. (2.4), Eq. (2.39) is used for the two-dimensional analysis, 
and Eq. (2.42) is used for the one-dimensional analysis. These are nonlinear algebaric 
equations and it is difficult to solve them directly. However, they can, in general, 
be solved by the following iteration scheme on the digital computer. Assuming a 
set of values for  lc and  d„ then the covariance matrix can be solved easily, and by 
using these results, a new set of values for  k, and d, is introduced. This procedure 
can be repeated until the required accuracy is obtained.
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Numerical results 

 Figs. 6(a), (b) and (c) show variances of the displacement , velocity and  accelera-
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tion response as a function of the rigidity ratio r for the set of parameters, S0=0.6, 
 h=0.01. Remember that the rigidity ratio r indicates the degree of nonlinearity 

for the bilinear hysteretic sturcture. From these figures it can be seen that the degree 
of nonlinearity affects storngly the over-all response. In particular, it is interesting 
that the variance  K„, of the displacement response is strongly influenced by the 
degree of nonlinearity and the difference of the analytical technique as indicated 
in Fig. 6(a). For the structure with small to moderate nonlinearity  (r>0.5) all 
analytical estimates agree rather well with the simulated results obtained in the 

previous section. For the strong nonlinearity, however, the effect of the different 
analytical techniques on predicting response is clearly apparent. Whereas the 
simulated result indicates that there is a noticeable tendency for the variance  K„ 
to increase rapidly with decreasing r when the rigidity ratio is less than 0.3, the one-
dimensional estimate decreases monotonically and the two-dimensional estimate in-
creases slightly with decreasing r. The three-dimensional estimate gives considerably 
a better prediction than other analytical estimates and shows the above tendency. 
However, this estimate also becomes qualitatively much less satisfactory as the rigidity 
ratio decreases below about 0.3. 

  In Fig. 6(a), the variance  KM, of the shift  3, of the center of hysteresis is also 

plotted as a function of r. It is found that the variance  KO,Oe, in general, increases 
with decreasing r, and the estimate for  Ki54, computed from Eq. (2.38) based on 
the three-dimensional analysis increases rapidly when r<0.3, and is always greater 
than one based on the two-dimensional analysis. It is noted here that the variance 

 K3,6, based on the one-dimensional analysis does not exist from its definition indicat-
ed as Eq. (2.42). Therefore, the effect of the fluctuating center of hysteresis is 
evident in the fact that the enlargement of displacement response with decreasing 
r when r<0.3. 

  On the other hand, variances  K,;;, and  .K.,;;; of the velocity and acceleration response 
decrease monotonically with decreasing r as shown in Figs. 6(b) and (c). From these 
figures, it is found that the discrepancy between analytical and simulated results, 
and the effect of the different analytical techniques are much less significant than 
that of the displacement response. 

  Fig. 7 shows how the probability density function  P  At), for the interval  r between 

                    Rio 

                               0.3- 

                                    r= 0 5 
                                                         11  -0.01 

                       az - 

                                                r 0.1 

 0  n  2n  3n  z3  r 

              Fig. 7. Probability density function of  interval r between successive 

                       extremums of response.



          Statistical Linearization Techniques of Hysteretic Structures to Earthquake Excitations 131 

zero crossing of 7•7(t), evaluated approximately by Eq. (2.22), is influenced by the 
rigidity ratio r. For the moderate nonlinearity  (r---0.5), the probability density 
has a remarkable peak and the scatter of  r is small. Therefore, the response retains 
narrow-band characteristics, even with the introducing of yielding. For the severe 
nonlinearity  (r=0.I), there is no distingushed peak and the scatter of r is large. 
This indicates that the response does not possess narrow-band characteristics. By 
comparing the result of based on the two-dimensional analysis with that based 
on the three-dimensional analysis, in Fig. 6(a), it is suggested that the scatter of r 
as well as the fluctuating center of hysteresis has greatly significant effect on predict-
ing the displacement response of hysteretic structures with severe nonlinearity. 

 Figs. 8(a) and (b) show the equivalent linearization coefficients  k, and  d, as a 
function of r, respectively. As the rigidity ratio r deceases, the equivalent stiffness 

 k, decreases by reason of the softning nature of the hysteretic structure, and the 
difference among the results obtained with use of the three different analytical 
techniques increases. Particularly, the three-dimensional estimate for  k, decreases 
rapidly when the rigidity ratio r is less than 0.3. By contrast, the equivalent damp-
ing  d„ associated with the hystertic energy dissipation due to yielding, increases with 
decreasing r as shown in Fig. 8(b). The difference among the three estimates for 
the equivalent damping is less than for the equivalent stiffness. It is well known 
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that the softning nature of the nonlinear sturcture tends to increase the displacement 
response, while the damping due to the energy dissipation tends to decrease the 
response. For the structure with small to moderate nonlinearity, the damping effect 
dominates, and so the displacement response is decreased as in Fig. 6(a). Contrary 
to this, from the results based on the three-dimensional analysis, it is found that for the 
structure with severe nonlinearity, the displacement response is increased by the reason 
that the effect of the  softning nature dominates even though the equivalent damping 
coefficient increases. On the other hand, the velocity and accerelation responses 
are affected by only the damping effect. 

 Fig. 9 shows the results of the variance  K obtained by the simulation technique 
and the two statistical linearization techniques based on the one-dimensional analysis 
and the three-dimensional analysis for  So=0.2, 0.6, 1.0. This figure gives an indica-
tion about the range of the applicability of the statistical linearization techniques 
to the prediction of stationary random response of bilinear structures.  Increasing 
the intensity of excitation as well as decreasing the rigidity ratio increases the degree 
of nonlinearity of structures, and so increases the discrepancy among the analytical 
results and the simulated result. Furthermore, from the result by the three-dimen-
sional analysis or the simulation in this figure, it is clearly evident that the variance 
of the displacement response of  the structure for the same intensity of excitation 
has a minimum. The optimum rigidity ratio which gives the minimum variance 
is about 1/3. It is considered that this optimum value depends on the intensity 

 So of excitation and the critical damping ratio  h of the structure. When the ratio 
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 r is less than the optimum value, the characters of the response differ markedly from 
that of structure with small to moderate nonlinearity, for example, the variance 
of the center of hysteresis, the probability density function  PT(r) and the probability 
distribution of the displacement response, as described before. 

  The statistical linearization technique based on the three-dimensional analysis 

proposed in this paper is applicable to the prediction of stationary random response 
of bilinear structure when the rigidity ratio is greater than the above optimum value. 
The technique based on the one-dimensional analysis is applicable for small to 
moderate nonlinearity  (r>  0.5), as recognized by other  investigations10-13). 

  The technique based on the three-dimensional analysis gives underestimated results 
for the variance of the displacement response in comparison with the simulated results 
when the rigidity ratio is much less than the optimum value. This major discrepancy 
between the two results for the hysteretic structure with severe nonlinearity may be 
due to the following factors: 

  (1) The response of the structure possesses the broad-band characteristics, 
and so is not a smoothly varying process. Hence, the continuous behaviour of 
hysteresis cannot be treated discretely as the closed hysteresis over one cycle. 

  (2) The probability distribution of the response is not Gaussian distribution. 
  (3) The probability density function  PT(r) given by equation (2.22) is drastically 

 apporximate and gives an unsatisfactory estimate for large  z. 
  As a example of the application to non-stationary random process, also shown in 

Fig. 3 are values of the transient variance  K,,,,(t) evaluated by using the step-by-
step linearization technique based on the one-dimensional  analysis8)•9). It appeares 
that the analytical results agree rather well with the exprimental results for moderately 
nonlinear system. Contrary to this, the discrepancy between two results is quite 
apparent for severely nonlinear system. Thus the technique based on the one-dimen-
sional analysis appears to be very powerful to anyalze non-stationary response as 
well as stationary response only when r is greater than 0.5. 

4. Conclusions 

  In order to understand the statistical characteristics of the responses of hysteretic 
structures subjected to severe earthquake excitations, a new statistical linearization 
technique is introduced according to the facts that the response of a hysteretic struc-
ture with severe nonlinearity is not, in general, a narrow band process and hysteretic 
behaviour obviously fluctuates eccentrically in a random manner. The basic 
statistics of the stationary response of a single-degree-of-freedom structure with bilinear 
hysteresis subjected to a band-limited white Gaussian excitation with zero mean value 
are numerically evaluated by the statistical linearization techniques based on the 
three different analyses; i.e., 1) the one-dimensional analysis, 2) the two-dimensional 
analysis and 3) the three-dimensional analysis. To investigate the range of applica-
bility of these techniques, a numerical simulation has  been carried out. 

  Though the general features of the random response of nonlinear hysteretic struc-
tures, which are varied depending on the characteristics of hysteresis and excitations, 
cannot be derived from this limited analysis, some of the significant finds can be 
summarized as follows: 

 (1) The response of the bilinear hysteretic structure is, in general, quite sentisive
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to the rigidity ratio of the second to the first branch of hysteresis. Particularly, the 
experimental result by the simulation technique shows a noticeable tendency that 
as the rigidity ratio decreases, the variance of the displacement response of the structure 
for the same intensity of excitation decreases gradually, and increases rapidly after 
it has a minimum at a certain rigidity ratio. Apparently this tendency is also rec-
ognized by the statistical linearization technique based on the three-dimensional 
analysis. It is considered that the optimum rigidity ratio which minimizes the 
variance depends on the intensity of excitation and the damping ratio of structure. 
The optimum value is nearly  1  /3 in the range of parameters used in this study. Other 
techniques do not explain the tendency. In particular, the variance estimated by 
the technique based on the one-dimensional analysis decreases monotonically with 
decreasing rigidity ratio. 

  (2) The variance for the shift of center of hysteresis evaluated by the three-
dimensional analysis is always greater than one by the two-dimensional analysis, 
increases gradually with decreasing rigidity ratio, and rapidly increases when the 
rigidity ratio is less than the optimum value. The probability density function of 
the interval between two adjacent extremes of displacement response is apporximately 
evaluated, and indicates that the scatter of frequency of hysteretic oscillation is notice-
ably large for severely nonlinear structures. Therefore, the scatter of  frequency 
and the fluctuation of the center of hysteretic oscillation affect strongly on the dis-

placement response of the hysteretic structure with severe nonlinearity. 
(3) From the error survey made with the aid of a numerical simulation based on 
the Monte Carlo method, it can be said that the statistical linearization technique 
based on the three-dimensional analysis is applicable to the prediction of stationary 
response of structures with bilinear hysteresis when the rigidity ratio is greater than 
the optimum value. 

 From the above-mentioned remarks, it is evident that the investigation on the 
scatter of frequency and the fluctuation of center of hysteretic oscillation are necesasry 
to make clear the response of hysteretic structures with severe nonlinearity. It can 
be said that the statistical linearization technique is considerably improved by taking 
into account the distributions of them if not satisfactory. The large displacement 
response caused by the shift of the center of hysteresis may be a serious problem on 
the aseismic safety of hysteretic structures with severe nonlinearity in relation to 
the instantaneous failure due to large deformation and the low-cycle fatigue phenome-
non due to repeated deformation. It is suggested that the existence of the optimum 
rigidity ratio which minimizes the variance of the displacement response may have 
a great significance in doing the aseismic design of structures. 
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