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Earthquake Response Analysis of Underground Tubular Structure 

                By Kenzo  Tom and  Shiro  TAKADA 

                      (Manuscript received July 10, 1974) 

                           Abstract 

  The present paper deals with the vibrational characteristics of the longitudinal and transversal 
 vibration of underground tubular structures subjected to earthquakes. The analytical model is 

 composed of a cylindrical tubular structure of which axis is parallel to the ground surface and 
 the surrounding ground is treated as an infinite homogeneous half space. From the analyses on 
 the structural response to sinusoidal excitation, it was found that the vibration of the structure 

 due to the inertia force will be hardly induced in the ground and that the dynamic motion of 
 structure is strongly dominated by the ground motion. Moreover analyses on the axial and 

 bending strains revealed that the axial strain is proportional to the velocity amplitude of the 
 surrounding ground, while the bending strain is proportional to the acceleration amplitude. 

 The results  suggest that the velocity amplitude in the ground is the most significant factor in 
 the aseismic design of underground pipe systems and the acceleration amplitude is of  importance 

 for the structures with large diameter such as subway tunnels. Response analyses of strains to 
 strong motion accelerograms have been also performed by making use of the Fourier transform 

 method. The analyses made clear that the effect of structural stiffness on the induced strain level is 
 not so remarkable and the reduction of strain in structure from the strain in surrounding ground 

 is of the order of  10 to 20%. Then the strain in ground is considered to be the upper bound of 
 strain in structures. 

 1. Introduction 

 Earthquake resistant design of structures such as gas pipes, water pipes, subway 
tunnels and so forth can be classified as the same kind of structures from the view 

point of the seismic response analysis because such structures are constructed beneath 
the ground surface and they constitute network systems. In the present paper, these 
structures are hereafter specified as the underground tubular structures. Since this 
kind of structures are usually surrounded by soils, an interaction system is made up 
of the structure and ground. Although the subsurface structures such as a caisson 
resting in an upright position also constitutes an interaction system, the specific 
length in a horizontal direction is small compared with the wave length of a seismic 

wave and it is, therefore, possible to assume that there is no phase difference between 
any two points on a horizontal plane. On the other hand, in the underground tubular 
structure above defined, the long axis is essentially parallel to the ground surface and 
then there would be readily found any two arbitrary points which move out of phase 
of each other. Therefore the formulation of the problem should be performed from 
another point of view and it is necessary to establish a different approach of the 
analysis from the ordinary conception of the aseismic design which has been developed 
mainly for superstructures.
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  Various  authors1)-6) have discussed the problem and vibrational characteristics 

of underground tubular structures. That which has been made clear to date may be 
summed up as follows; 1) The relative motion of underground tubular structure is 
very small compared with that of ground motion during earthquakes. 2) The natural 
vibration of such structures is hardly excited. 3) The amplitude of displacement of 
a structure does not exceed the amplitude of the surrounding ground. 4) Dynamic 
axial strains induced in any cross section of structures are generally graeter than the 
bending strains of the structures with small diameter. 

 From the above summary it may be noticed that the distribution of the relative 

displacement along the structural axis and distribution of strain amplitude induced 
in ground are the most significant factors in the earthquake resistant design of 
underground tubular structures. Moreover it is readily recognized that the induced 
strain will be extensive when a seismic wave travels along the surface of the ground 
in which the local geology is complicated and varies from place to place. 

 In the present paper, theoretical analyses are performed employing the elastic 
wave transmission theory for a three dimensional model. Analytical models are 
composed of a cylindrical tubular structure of which long axis is parallel to the 

ground surface and the ground is treated as an infinite homogeneous elastic half 
space. Throughout the analysis it is assumed that the direction of the seismic wave 

transmission coincides with the structural axis. As for the wave velocity, the phase 
velocity of surface wave does not necessarilly coincide to the velocity of body waves. 

Since the waves travelling along the ground surface are concerned in the present 
study, the different wave velocity from body wave velocities is assigned in the analyses. 

2. Strain Amplitude to Sinusoidal Excitation 

2.1 Axial Strain 

 As is shown in Fig. 1, the tubular structures are constructed under the ground 
surface and essentially parallel to the free surface of an elastic homogeneous space. 
In this figure a denotes the outer radius of structure and b is the inner radius. The 
cylindrical coordinates system  (r,0,x) is set as shown in Fig. 1. Analysis is performed 
in a case that a tubular structure is subjected to a longitudinal seismic wave which 
travels along the structural axis. The incident wave at the ground far enough from 

 /A*,  

 f(t) 
 —  r 

              — 

 Fig.   1 Analytical model



             Earthquake Response Analysis  of Underground Tubular Structure 109 

the structure is expressed by 

 v" =  4•exp  {iic"  (x —  et)} (2.1) 

where  4,  k" and  e4 are the amplitude of displacement, the wave number and the 

phase velocity of the incident wave, respectively. Let u and w be the displacement in 
the direction of r and x coordinates respectively, then displacement components 
u and w are given by the following expressions considering the mode of the trans-
mission of the incident wave. 

 =  U  •exp  {lk"  (x  —  cat)}  ,  w  =  W  •exp  {ik"(x  —  00} (2.2) 

Substituting these expressions into the wave equations which govern the motion of 
the ground, the following results are obtained. 

                           i"  is =  {Ah* HT(h* r)k                      B11(1)(g*r)} •exp•  {ik"(x — c"t))- 
  'g2 

                       } (2.3)   "* 

  w =— Aik2
gH9,) (Mr)g2 

                       B(g* r)}  •  exp•  {ik"(x — e"t)). 
  11 

where 

 (m)y  (002  (hx)2  =  h2  (h")2  (/  4) 

 (et  -  (002  -  002  g2 (k12 

and  vf and v, are the dilatational and rotational wave velocities in the ground, 
respectively.  H(„')(z) is the  Hankel function of the first kind and A and B are constants 
to be decided by boundary conditions. 

 As the effect of the transversal component of displacement is not so significant for 
the dynamic properties of the longitudinal direction of the system under consideration, 
in the present paper, therefore, radial displacement  u is neglected. Then the longi-

tudinal displacement w of the ground is calculated as follows; 

 —A           ik
2(AHvh*a)(g0h)**2H1-1((1)(0g1)**a)                                      H (t.)(g* a)}  •  exp {ik"(x—c"0} 

h 

                                                  (2.5) 

From Eq. (2.5), surface traction  r,, which exerts on the contact plane of the structure 

with the surrounding ground is calculated as follows; 

                        Ow            rrx1r=„ Or r=aLILA (gh)2 k"* H(1(h* a) (2.6) 
  Subsequently we deal with the axial vibration of the structure. At  r  =a, on the 
structural surface, the structure is in contact with the ground. Therefore the sur-
rounding ground exerts a traction force on the structural surface, which is a function 

of the relative displacement of structure. Then the system under consideration is 
described as a kind of interaction system composed of the structure and ground. 
Denoting the amplitude of the structural deformation by  ut the displacement of
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structure  u" is written by 

              up =  ua exp  fikA  (x —  cA (2.7) 

Assuming no slip on the contact plane of structure with ground, the boundary 
condition is given by the following equation. 

 u; (2.8) 

Combining Eqs. (2.5), (2.7) and (2.8), constant A in Eq.(2.5) is solved in terms of 
 td as follows; 

     A = —14,1  [ the iH(t,)(h*a) Ch*111)(gsa)1/(P(Ma)}1 (2.9)          Ch* 
                              H(1,) (g* a) 

On the other hand, the motion of the structure under the exertion of the restraint 
force  Ft. and inertia of ground is governed by the following differential equation 

 82u4  02744  820         A
pr at2 A  pEax2= 012                    Apr F(2.10) 

where,  A  p, r and E are the cross sectional area, the volume density and Young's 
modulus of structure, respectively. And  Fl is calculated from Eq.(2.6) as follows; 

 F = a  r,  „d  0 =  prra2.(o2.  f  A  •  ul exp (x —  cAt)). (2.11) 

 0 where 

       p= —  2  /  [F  (h*/ i( :A1} + F(g*a)] a)]}(2.12) 
         F(z)  z  Hod  (z)1111)(z) 

Concerning the restraint force given by Eq.(2.11),  prza2 is the mass of soil excluded 
by the structure and the magnitude of acceleration is  02ug•exp  A(x  —et)}  . Then 
the quantity  pna2a)24  •  exp  likA(x  —cA  01 is refered to inertia force.  If  f" in Eq.(2.12) 
were independent of frequency of an incident wave,  f" could be regarded as a coef-
ficient of virtual mass. Frequency characteristics  off  A will be discussed in Section 5. 

 Substituting  Eqs.(2.1) and (2.7) into  Eq.(2.10), the absolute value of the displace-
ment of the structure is obtained as follows; 

 U;,1 — u:•exp {ikA (x —cA t)} (2.13) 

     ( c:)21  

                c 

         - 1 ±  fA 
                      r  1  —  (b  a)2 

where,  (c°=E/r) is the longitudinal wave velocity in the structure. From Eq.(2.13), 
normalized axial strain of the structure  e*,, is determined by 

 eA= au4/=( a(134                                                 (2.14)              ax/alc"u," 

where  r4 is the wave length of the incident dilatational wave.  P in Eq.(2.13) is a
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complex function expressed in terms of the Hankel function with complex arguments . 
However under the following approximation, the definite value of  P can be 

determined in terms of real variables. Namely, from Eq.(2.4), g*a and h*a are 
rewritten by the expressions 

      cA2a2       g*a27::A V( vt)—h*a — 27rti( v1 (2.15) 
Considering that the radius of structure is negligibly small compared with the wave 
length,  x",  ea and h*a in Eq.(2.15) take very small values. When the argument of 
the Hankel function takes an imaginary value,  f  A can be written by the modified 
Bessel function  K  n(z) and the following relationship can be deduced. 

 f  A  24c1,eKo(g*a)            a(2.16)  KI(g*a) 

 For the set of values  &iv/  =10.0  v=0.35,  b/a=0.95  c'/w=1.5 and  KAla=100, 
{(cOic,4‘2     )1} in  Eq.(2.13) takes the value of 43.3 and  pf4/711—(bla)21 in Eq. (2.13) 
is 219.2. Therefore, it is reasonable to consider that the following inequality is 
valid generally. 

      (CO)2< 1p•(2.17)              CA r I  —  (bla)2 

The left hand side term of the above inequality relates to the vibrational characteristics 
of the structure and the right hand side term is related to the restraining force acting 
on the structural surface. Furthermore, since the magnitude of the denominator of 

 Eq.(2.13) is greater than that of the numerator, the following approximation is 

possible. 

 CP,  ti  ugA•exp  {ac" (x  —  cAt)} (2.18) 

According to Eq. (2.18), it follows that the displacement of the structure is close to 
that of the surrounding ground when the wave length of the seismic wave travelling 

along the axis of the structure is long enough compared with the radius of 
the structure. In other words, as far as the underground tubular structure such as 

pipes, tunnels and so on is concerned, vibrations of structures due to the inertia force 
of the structure  will by hardly induced in the ground and the dynamic motions of 
structures are strongly dominated by the ground motions. 

 When the approximate result given by Eq. (2.18) is valid, the axial strain is readily 
calculated from Eq. (2.14) for the sinusoidal incident wave with amplitude  uo as 
follows. 

 5A. OOx ,  /  a2n.(L)                                                  (2.19) 

And 

 EA — ax4(6-A) (2.20)
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Considering that  It  tc" =  ea and that  [04 is replaced by velocity amplitude, Eq. 
 (2.20) implies that the axial strain in a tubular structure is proportional to the velocity 

amplitude of surrounding ground under the assumption that the displacement of 
structure is approximated by that of the ground. These results are significient and 
comprehensive for the earthquake resistant design of this kind of structures under 
consideration and permit us to infer the strain or stress in structures if we could 
estimate the velocity amplitude of the ground during earthquakes. As velocity 
records can be computed from accelerograms by numerical integration, this procedure 
is usually possible and not so troublesome. 

2.2 Bending Strain 

 Flexural vibration of a underground tubular structure is analysed for the case that 
the structure is subjected to a SH wave travelling along the axis of the structure with 
velocity  CB. The similar analytical model with that used in the previous analyses is 
set up. An incident seismic wave in the ground far enough from the structure is 

 written as follows. 
 0 =  uy exp (x —  cBt)} (2.21) 

where  us,  IcB and  ca are the displacement amplitude, the wave length and the phase 
velocity of the incident wave, respectively. After the manner of the analysis for the 
longitudinal vibration, relative displacements u and v in ground are calculated by 
solving the wave equations governing the transversal motion of an infinite elastic 
medium. In the present model, the longitudinal displacement w is essentially vanished 
because of the property of the assumed wave motion. Thus,  11 and v are obtained as 
follows; 

   u —{MOH"Or(p*r)N (q*r)j•cosO•exp {ika(xet)} 
                                               (2.22)           HT(p*r)OHT(q*r)  }v  =  MNO r•sinO•exp {ik1(x —  cat)} 

where  HT  (z) is the Hankel function and M and N are constants to be determined 
from boundary conditions. And the arguments of the Hankel function are given by 

 (p*)2  =  (to/ vi)2 —  (v,/ vi)2  (W)', (q*)2  =  (40  (k8)2 (2.23) 
Stress components in the ground are calculated from Eq. (2.23) as follows; 

                                   (H(1)qtr)                         (1)(er)  +  N 12/2( or = [M{—A (P*)2-11(1)(er) + 2118211           Or2r2 

 H(1)(q*r))}i•cosO•exp {ikB(x —et)}(2.24) 

r„ =[2M{ti(1)(n*r)OH(1)(p*r) +N{02M)(q*r)  
   r'OrOr 

 HT  (g*r)  1  OH'" (g*r 

 OrsOr)}]  •sinO•exp  {ik8(x —  eSt)} (2.25)
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In the next place, we deal with the flexural vibration of the structure under the 
restraint forces which are induced as the result of the interaction between the structure 
and the ground. Under the assumption of the complete contact between the structure 
and its surrounding ground, the following boundary conditions are to be satisfied 
by solutions. 

 Uf;•cos0,  v1,8  =  —U8B•sin0 (2.26) 

where  1,8=4  exp{ik8(x—c81)}, and  ult expresses the deflection of the structure. 
 On the other hand  u; must obey the following differential equation for the flexural 

vibration of a uniform bar. 

          o4u;Fu; 02u°   El+  
TA — TAF(2.27)  &xi                  at 2  Ot2 

where  A  , r and  El are the cross sectional area, the volume density and the modulus 
of  flexural rigidity, respectively.  FR is the restraint force from the ground, which is 
calculated from Eq. (2.25) as follows: 

 F!! =  I (o-r•cos0 — r„  •  a•d0 

 0 

                  = wra2. 0)2. f s sae/ • exp  {ik8 (x — c81)} (2.28) 

where 

                       F(p*a)F(q*a) — 4              fa 
 F(p*a)•  F(q*a) — F(p*a) — F(q*a) (2.29) 

            F(z) =  zTh)(z)1H(1)(z) 

Substituting Eqs. (2.22) and (2.28) into Eq. (2.27), the amplitude of displacement of 
the structure for the flexural vibration can be determined as follows;  

1     = El (k8)4 11. u:•exp{ike(x — cB1)} 

                 —  

 rn (a2 — b2)I ± r  1  —  (blarre 

                                               (2.30) 

  On the other hand, the normalized bending strain of the structure is defined by 

            ee = a 2&WVart  = 4n2a)2  Un(2.31) 
       0xauu 

where r8 is the wave length of the incident SH wave. Each term of the denominator 
in Eq. (2.30) is rewritten by the following expressions with non-dimensional variables. 

 El  (k8)4
r.ar8ji ±(byi,388 _f8 (ea,  q.a)   rn (a2  —  b2)(02 \ c8 )1a )I 

                                                  (2.32)          aeB)2 p*a = 2n(CB)2— 1 ,= 2z aIA— 1KBVViVt
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     For the same value of  c°  vi, v,  e  la with those in case of the longitudinal vibration 
      and for  cB/w=1.5, the following results are obtained 

                 EB)4                                        fe  —  I.------0.64,456.0 (/33)              (l (k  
            a2b2) (02r-(bla)2 

     Since  Isla takes the value greater than 100 considering the wave length of actual 
     seismic waves, therefore, the next inequality would be generally valid. 

                  El (le)4                —1B 
                 rn (a2 — b2)co'r 1 — (bla)2f(2.34) 

     The left hand side term of above inequality relates to the vibration characteristics of 
     the structure and the right hand side term shows the effect of the restraint force which 

     is exerting on the structural surface. This implies that the inertia force of the structure 
     is so small compared with the reaction from the surrounding ground that the de-

     flection of the structure is restrained to the extent of that of the ground. Therefore 
     from the results obtained herein it follows that the vibration of the structure itself 

     is hardly evoked by virtue of the existence of the restraining force. 
     Considering the magnitude of the second term of Eq. (2.30), it is close to zero when 

     the value of  al  KB is less than 0.01. Thus it may be possible to establish the following' 
      approximation in case of  ahvB=0.01.  

t  ill,  u:  •  exp  {ikB(x —  (JO} (2.35) 

     Then the bending strains calculated by Eq. (2.31) is deduced to 

                        a2U 
                ea = augs47r2 ( a yU                                                        (2.36)                6

.x2/a) 

     As en is defined by a•b2U,,B10x2, it finally yields 

                  en (-27r)2•Ug(2.37) 
                                              KB 

     As the term (27 tle)2 •  u: is identical with acceleration of the surrounding ground, it is 
     found that the bending strain is closely related to the acceleration amplitude of the 

      ground. 
       The most important result obtained in this section is that the bending strain induced 

     in the underground tubular structure during earthquakes is almost proportional to 
     an acceleration amplitude of the surrounding ground, while the axial strain is relative 

     to the velocity amplitude. 

     3. Strain Amplitude to Random Excitation 

       So far the sinusoidal motion of ground has been considered in the analyses 
     described above. In this section the strain amplitude of the structure subjected to a 

     random seismic motion is discussed.  et and  ea* given by Eqs. (2.14) and (2.31), 
     which are the response to an input of sinusoidal seismic wave can be written as
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follows; 

 es1(40)2) =  ed  (a))  •  exp  {40A  (w)} 

               es104:(02) =e s(4)•exp {ivs (3.1) 

where  w is the circular frequency of incident sinusoidal wave and  e  s(s) and  e' 
denote the frequency response function of strain amplitude and  pA(to) and  coa(w) 
the phase response. On the other hand, since  itc"to2 and  u:(02 are the acceleration 
amplitude of sinusoidal ground motion, the left hand side terms of Eq. (3.1) give the 
frequency response of strain induced in the structure which is subjected to unit 
amplitude of acceleration with frequency to. By making use of the above frequency 
response functions, strain response in time domain is obtained for the system sub-
jected to an arbitrary time function  f(t) in place of the sinusoidal seismic wave. 
Applying the finite Fourier transform technique, strain curve  e(r) is calculated by 
the following formula 

 GO)  =  2>- I.1-1(hs)•F(i(s)•ei"1.clo (3.2) 
                                   0 where 

 Rho)  = f(t)•cr'°"• dt 
  0 (3.3) 

 H(iN) =  e  (0))•  exp  {iy7s  (co)} or  e  a  (w)•  exp  litos 

From the analyses performed in the previous section, it is obvious that  11(ico) is the 
frequency response function which represents essentially the stationary response of 

the system. Therefore any solution calculated from Eq. (3.2) is inevitably a periodic 
function with a period which coincides to the record length under the analysis. 

 However the effects of the periodic property of the solution are not so remarkable 

provided the period is long enough compared with the record length of excitation. 
By addition of zeros to the head and tail of the input seismic record  f(/), the errors 

caused by the periodic nature of the solution could be avoided. In the numerical 
computation the  F.F.T. argorithm is employed because it effectively reduces the 
computation time for this kind of calculation, which deals with a great number of 
date points. 

4. Estimate of Strain Amplitude from  Accelerograms 

 Replacing the wave length in Eqs. (2.14) and (2.31) with wave velocity in the 

ground, we have the following results. 

         V U  aA  U 
 EAEli=(4.1) 

                c"u;" (c8)°uss 

where  V=  tt,"(o and  A=40), are the velocity and acceleration of the incident seismic 
wave, respectively. As is mentioned in Section 2,  tiga and u33, are the amplitudes of
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displacement and  c" and  c. are the phase velocity of longitudinal and transversal 
waves. As is discussed in the previous section the dynamic behaviour of the under-

ground tubular structures are close to that of the surrounding ground and, therefore, 
the following expressions may hold good. 

 U U   =1
.0,1.0 (4.2) 

                                          11,B 

Under this assumption, the following identities are established. 

 V aA 
 CA ,  se  —•  (C192 (4.3) 

Henceforth, when the maximum values of V and A during earthquakes are given, we 
could readily estimate the maximum strain of the underground tubular structure 
from the above formulae. Strain amplitude computed from Eq. (4.3) are most likely 
greater than that computed from Eq. (3.2), which is the result of the analyses that 
treated the system as a soil-structure interaction system. The difference between 
strain amplitudes computed from Eq. (3.2) and that from Eq. (4.3) is considered to 
be the effect of the rigidity of the structure, which is neglected in the latter. The 
matter is such that the incident energy is appeared to be diminished by the rigidity 
of the structure. So the ratio of the difference above mentioned to the intensity of 
incident wave is refered to the loss factor of the incident seismic motion. 

 In order to compute CA and  en from Eq. (4.3) the amplitude of V and A are necessary 
and a method for rough estimate of those values from strong motion accelerograms 
are discussed. Integrating an acceleration record by numerical method without any 
correction on the base lines, the resultant velocity or displacement will diverge to 
have no actual meaning. This is due to various reasons such as the ambiguity of 
initial velocity amplitude, drift of base line, frequency characteristics of recording 
instruments and so on. In order to eliminate the divergence of resultant displacement, 
a filtering of low frequency component is effective so that, in the present paper, a high 
pass  filtering" is applied to the record utilizing the F.F.T. argorithm. Moreover a 
parabolic-type base line correction  methods' is applied to all records treated herein. 

5. Numerical Computation 

  Numerical computation has been performed to demonstrate the results obtained 
in the previous sections. Fig. 2 illustrates the relationship between  wla and  If  AI and 

 pi which express the restraining force from the ground. In Fig. 2 is shown the plots 
of  If  Ai and  If  B against the non-dismensional wave length for both of the axial and 
flexural vibration. In this figure the parameter  b/a expresses the ratio of the inner 
radius to the outer one. In the computation the following values are used:  colvi=10.0, 
v=0.40,  eir=0.8,  c"  11,1=1.5 and  es/w  =1.5. According to Fig. 2, the restrairing force  

1E1 for the axial vibration is smaller than that for the  flexural vibration throughout 
the range of  'via and this tendency is magnified for longer wave length or smaller
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structures. Moreover it is interesting to note that the resisting forces take large values 

for smaller values of  b/a. This result implies that the resisting force for deformation
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becomes greater as the wall thickness of the structure increases, which is consistent 
with the results of the theoretical analyses for tunnels performed previously. 

 Fig. 3 shows the absolute value of the axial and transversal displacement calculated 
from Eqs. (2.13) and (2.30). Both of the response curves have A single peak at the 
small range of  Kla and the value of  xla corresponding to these peaks are considered 
to be the natural frequency of the structure. These peaks do not appear for large 
value of the ratio of the wave length to the structural radius and the magnitude of 

the ordinate tends to unity for both curves. This result implies that the structural 
response is very close to the ground motion independent of the kind of motion, since 
the value of  xla is usually larger than 100. 

 In Fig. 4, the relationship of the axial strain  e*  A and bending strain  elf against  Kla 
is plotted, in which A logarithmic scale is adopted for both coordinates. It is clearly 

noticed from Fig. 4 that both  e*  A and  e*  B are proportional to a certain power of  ti/a. 
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 HIA  I  J/1  .  a  Tg  11t  VI 

 ,.. • Tims'.. ,-•.°wms° 
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 Fig. 5  Accelerogram and its Fourier spectrum
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As the gradients of these lines are found to be -1.0 for axial strain and -2.0 for 
bending strain, the axial strain is inversely proportional to the wave length and the 
bending strain is to the square of the wave length. As the frequency of wave is the 
reciprocal of wave length, axial strain is proportional to the velocity amplitude of the 

ground and the bending strain is proportional to the acceleration amplitude. The 
dotted lines in the same figure are plotted for the computed value from Eqs. (2.19) 
and (2.36). Although the values of the dotted lines are greater than that of the solid 
lines, only A slight difference is observed between the corresponding two lines for 
the full range of  xla. This difference is considered to be the loss factor caused by the 
rigidity of the structure. 

 In the next, the numerical computations of strain curve to random excitations 
were performed. Fig. 5(a) illustrates an accelerogram used as an incident wave in 
the numerical computation, which was recorded on a ground surface at Wakayama 
city during the earthquake which occured on March 30, 1968 and the velocity curve 
integrated from the accelerogram is shown in Fig. 5(b). The Fourier spectrum is 

shown in Fig. 5(c) and the predominant period is read to be 0.19 sec from this spec-
trum. By the method described in Section 3, the axial and bending strains were 
computed for the case of  ih-100 m/sec, a=2 m and the other non-dimensional 
constants were kept same with those values which were used in the case shown in 
Fig. 4. The frequency response functions versus strain amplitude are shown in Fig. 
6 for the case under consideration. Examples of the time history of the axial and 
bending strain are shown in Fig. 7. In the computation, in order to eliminate the 

periodicity in the solution, records with zero amplitude of 1.88 sec duration were 
attached to the head and tail of every original accelerogram. Comparing Figs. 5(b) 
and 5(a) with Figs. 7(a) and 7(b) respectively, it is found that the time history for the 
bending strain is quite similar to the accelerogram. Moreover it should be noted that 
the time history of axial strain is close to the velocity curve which was obtained by 

the integration of the accelerogram. 
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 Figs. 8(a) and 8(b) show the Fourier spectra of the axial and bending strain, 
respectively. Comparing two spectra shown in Figs. 5(c) and 8(b), it is obvious that 
the bending strain has close relations with the acceleration of the ground. In Fig. 9 

plotted is the relationship between S-wave velocity of the ground and the maximum 
strains induced in the structure to the incidence of accelerogram shown in Fig. 5(a). 

 The plots of the maximum strains against the radius of structure are shown in 
Fig. 10 which indicates that the bending strain is proportional to the radius of  struc-
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    Fig.  II Relations between maximum strain and predominant period of  accelerograms 

ture while the maximum axial strain is independent of the radius of structure. There-
fore this figure implies a notable fact that the bending strain is dominated and 
significant in a structure with large sectional area such as subway tunnels and that in 
contrast, the axial strain is important for underground pipe systems. 

 Effects of the predominant period of earthquakes to the maximum strain are 
illustrated in Figs. 11(a) and 11(b). Six accelerograms listed in Table 1 were used as 
incident seismic waves. Records were modified so that the maximum acceleration is 
250 gals. While the axial strain is proportional to the predominant period of the 
incident earthquake records, the bending strain is almost independent of the period. 
In these figures, the upper plots for each of the six records were calculated from the 
appoximate method given by Eq. (4.3) and the lower plots were from Eq. (3.2), which 
was derived from the analyses taking the interaction between the structure and 

ground into consideration.  But, the difference between corresponding two plots 
computed from the different methods is not so remarkable and values computed from
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Eq. (3.2) are smaller than the values computed from Eq. (4.3) by 10-20%. This dif-
ference is evidently due to the stiffness of structures as discussed previously. It is 

notable that the amount of the difference is almost the same for any records as long 
as the accelerograms analysed in the present paper are concerned. This is again 
consistent with the results shown in Fig. 4 as the wave length used in abscissa of Fig. 
4 is readily transformed to the period. 

 In Fig. 12 shown is the plots of the maximum velocity amplitude obtained by 
numerical integration of accelerograms against the corresponding maximum ac-
celeration amplitude. In addition to the accelerograms listed in Table I, another 55 
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                     Table  1 Data for earthquake record treated 

  Data Location DateMax. Acc. Predominant  No. (gal) Period (sec) 

  S074N Shimizu 1965.4.20 86.3 1.28 
  S236N Miyako 1968.5.16 118.0 0.18 
  S265N Wakayama 1968.3.30 176.0 0.19 
 5265E Wakayama 1968.3.30 258.0  0.51 
 11A04N Taft 1952.7.21 153.7 0.73 
 11A18E Hollister  1961.4. 4 175.7  I  .10
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accelerograms were analysed to obtain these plots. These accelerograms were 
classified into three groups depending on their predominant period T as shown in 
the figure. Denoting the maximum acceleration amplitude by  A. and the maximum 
velocity amplitude by  V., the following approximate representations are possibly 
adopted for each group. 

 T  >  0.7  V.  +  0.2  A. 

 0.3  <  T  <  0.7  V,,,  +  0.1  A.  (51) 

 T  <  0.3  V,,,  +  0.05  A. 

                     (Am  : gal,  V,,,  : kine) 

 A more important result is obtained which concerns the relationship of the maxi-
mum velocity amplitude to the predominant period of the corresponding accelero-

grams, which is shown in Fig. 13. In advance of the computation, all records were 
scaled to have the same maximum amplitude of 250 gals. Applying the least squares 
method to these plots, the following expression is obtained. 

 Vm  + 16.5  T°•58 (for  Ant = 250 gal) (5.2) 

These empirical formulae enable us to estimate the maximum velocity amplitude 
when the maximum acceleration for the design purpose is given. Once the maximum 

acceleration and velocity amplitudes are determined, a rough estimate of the upper 
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bound of the strains induced in the underground tubular structures are readily 
calculated from Eq. (4.3). Moreover, in order to estimate the actual strains in struc-
ture, these strains are to be reduced by the lossfactor from 0.1 to 0.2. 

6. Conclusion 

 The main conclusions derived from this study are summarized as follows: 
  1) As far as the underground tubular structure with uniform physical property 

is concerned, the structural vibration caused by its inertia force is hardly excited in 

ground. This is attributed to the fact that the inertia force of this kind of structures 
is usually negligibly small compared with the restraining force which the surrounding 

ground exerts on the structural surface. 
 2) Reaction force per unit length of structure is remarkable in the  flexural motion 

of the structures rather than the axial motion and it is proportional to the squares 
of the ratio of the wave length to the structural radius. 

 3) Axial strain induced in the underground tubular structures during an earth-

quake is greater than the bending strain for the large value of the ratio of the wave 
length to the structural radius. When, however, the radius of the structure exceeds 
a few meters, the bending strain dominates in the structure instead of the axial strain. 

 4) The bending strain increases in accordance with the acceleration amplitude 
in ground while the axial strain is proportional to the velocity amplitude. These 
results suggest that, excepting for the wave with an extremely short period, the 
velocity amplitude in ground is the most significant factor in the aseismic design of 

the underground tubular structure with small diameter, while the acceleration 
amplitude is of importance for the structures with large diameter such as subway 
tunnels. 

 5) Strain levels induced in the structure are reduced by 10 to  20% of strain in the 

surrounding ground as the result of interaction between the structure and ground. 
Then the strain in ground is considered to be the upper bound of the strain 
in structures. 

 6) From the results of numerical computation of the strain curve to several 
strong motion accelerograms, it can be said that the maximum bending strain in 
structure with radius of 2  m  is estimated to be the order of  0.6*10-3 when the ground, 
in which S-wave velocity is assumed to be 100 m/sec, is subjected to the acceleration 
with maximum amplitude of 250 gals. However, the axial strain reaches to the extent 

of  1.090-3 for the incident wave with predominant period of 1.0 sec and this value 
can increase for an increasing predominant period. 
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