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               By Masataka  YAMAGUCHI and Yoshito  TSUCHIYA 
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                             Abstract 

  This paper presents the relation between wave characteristics of the second order approxi-
mate solution of the cnoidal wave theory derived by Laitone and by  Chappelear. 

  If the expansion parameters  Lo and L3 in the Chappelear theory are expanded in a series 
of the ratio of wave height to water depth and the expressions for wave characteristics of 
the second order approximate solution of the cnoidal wave theory by Chappelear are rewritten 
in a series form to the second order of the ratio, the expressions for wave characteristics 
of the cnoidal wave theory derived by Chappelear agree exactly with the ones by Laitone, 
which are converted from the depth below the wave trough to the mean water depth. The 
limiting area between these theories for practical application is proposed, based on numerical 

 comparison. 
  In addition, some wave characteristics such as wave energy, energy flux in the cnoidal 

 waves and so on are calculated. 

1. Introduction 

 In recent years, the various higher order solutions of finite amplitude waves based 

on the perturbation method have been extended with the progress of wave theories. 
For example, systematic deviations of the cnoidal wave theory, which is a nonlinear 
shallow water wave theory, have been made by  Kellern,  Laitone2), and  Chappelears> 
respectively. All are based on a perturbation expansion method, which suitably 
stretches the vertical dimension, as developed by  Friedrichs4). Keller confirmed 
the results of Korteveg de  Vrieso which is a primary intuitive theory. The second 
approximation of the cnoidal wave theory was derived primarily by Laitone and in 
succession the third one by Chappelear. However, the mutual relation between 

them is not made clear, since expressions for these solutions are different from 
each other. 

  In this paper, the analytical relation between wave characteristics of the second 
approximate solution of the cnoidal wave theory by Laitone and by Chappelear is 

presented and the limiting area between the theories for practical use is proposed 
from the comparison of the numerical results on the expansion parameters. 
In addition, some wave characteristics such as wave energy, energy flux in the 
conidal waves and so on are calculated. 

 As already pointed out by  Stokeso, the physical definition is necessary to 
determine the wave celerity in the extension to the higher order approximate 
solution of finite amplitude wave theory. The Stokes second definition of wave 
celerity is used by Laitone and the first definition by Chappelear, although recently
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Tsuchiya, one of the authors and  Yasuda" calculated a new cnoidal wave theory, 

making use of the Gardner-Morikawa transform, in which the deficiency is overcome. 

As the cnoidal wave theory by the same definition must be used in the comparison, 

the cnoidal wave theory recalculated by the  authorsg),  using the second definition, 

is utilized in place of the one by Chappelear. 

2. Second Order Approximate Solution of Cnoidal Wave Theory 

 If the coordinate system x, z as shown in Fig. 1 is taken, the wave characteristics 

by the second approximate solution of the conidal wave theory derived by  Laitoneo, 

which is converted from the depth below the wave trough  It, to the mean water 

depth h and from the coordinate system taken at the depth of the wave trough to 

the one at the mean water depth are given by the following equations respectively  ; 

for the wave celerity c and the wave length L, they are written as 

 1_1.7 H 
 ht  h 

        1////)///1111/MMIIIIMMIIMIIIM1/l 
                   Fig. 1 Definition sketch of coordinate system 

 =1-L(M1—2N1)(Hh2)+(M+M2IN Ir 12N2X h)2 
 Vgh(1) 

 L 4KK  13.±(  70-2 3 NV H\ 2 2                                             (2)           h 
1/.3(H/h)8c2 2Vh)1 

in which H is the wave height, g the acceleration of gravity,  IC the modulus of 
the Jacobian elliptic function and K the complete elliptic integral  of the first kind 
and  MI, M2, N1 and Nz are given as 

  M2 K(1                                  2tel                 M—1{140(0+14/09) + E(E +-43-t2—1)) 
                      K K 

 11     N1=(22--1 + K ).A72—  4z4 {2(1 —,e2) —  (2_K2) N1(3) 
in which E is the complete elliptic integral of the second kind. 

 The water surface displacement  )2 and the horizontal and vertical water particle 

velocities u, w are expressed respectively as 

             — (cn2—N1)( hI4) +13cn2+34cn4 — N2)(LI)2(4)
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              Ni (i  • 
  vgh—(-1+201+Mi+cn2)( )+                      hL2\2K2 cn2) + M+ MINI                               22 

 21K4—  6K2—  97K2—2 +3/ _1(2z                     t+(z)211cri2 (5)          4004K22 \K2)h 

        ±r-±f2z±(zlen,1012zH         L44 th+(h )2}4 \ K2)1.h \12).A h 
           13(H                                     50+ 

    ghh 1VK2Vhsn cn dn[1. +2N, 8,22  
                                            (6) 

 (1 _ 21e  ) {2hz+(zh)2}21012+1                        + (z)2} cn2( )1                2hhh 

in which  sn  =  sn  (2K  (x  —  ct)  /  L),  OA=  cn  (2K  (x  —  ct)  /  L) and  dn  =  dn  (2K  (x  —  ct)  /  L) are 

the Jacobian elliptic functions with a real period. 

 Also,  tne wave pressure is expressed as 

    pgh= (cn2 Nh+433cn2+cn4 N2)( H )2 

                          4 

                                            (7)           3 {2+(z)2}P.K2 + 2 (2x2 1)cn2  3K2H  )2z 
   4K2hhh h 

in which p is the density of fluid. 

 As already pointed out by Le  Mehalitelt3), N2 in the Laitone theory falls into an 

error in addition to the expression for the vertical water particle velocity expressed 

by the mean water depth. 

  On the other hand, the wave characteristics in the Chappelear cnoidal wave theory 

of the second approximation by the Stokes second definition of wave celerity are 

given as  follows  ; for the wave celerity and the wave length, they are given 
respectively as 

             =1+ L3+0 KE { L0 (2±K2 K  )22±5L0L3} (8) 
           gh 

         L 4K                                              (9) 
 h  V3L0 

in which  Lo and L3 are the small expansion parameters. The small parameters 
 Lo and L3 can be calculated from the following equations as function of  K and  H  /  h. 

        —H = K21,11 + —4°(10+70) +6.L31 (10) 
            2L3+Lo(K2+—K)+ Lo2——5(1 — 6K2— 9n4) +2 (1 +K2) E 

                                              (11) 
 +6L0L3(tc2+  K)+  L32-0 

 Next, the water surface displacement and the horizontal and vertical water particle 

velocities are written respectively as 

       17
11/, 3                                       30°           (2+0(1 ±C2) — L0K25212} ±[L32+L2(12 +23K2+ 12K4)                  20 

 

, (12) 

          +6Lo.L.3(1+K2)— {2-L02‘2 (1+x2)+.6L0L3r2} sn2+3Lo2K4sn4 

                                                                                                              ,
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           K         7,t 
                    °esa2}°42(10+ 2)_L,02(K2+3)_E. 

         ±1.02( )2+5L0L(1KE5L°20(1 +x2)sn2— 5L0L.,,,asn2         32 

      5+(z
h)24°(13)          )(           +—4Lo2r4sn4 — {23L2K2—2°3L1/42 (1-I-K2) sn2 

          —9—L2‘44}-1 
       4sn 

 —  (1+  2  ) 2f2 -Srl co dnr3 L2 ± 1-3 (1 ±L2-)2L3(1 +t2 -3x2sn2) 
  Vgh  h 1/31.0 2°4h°                                               (14) 

 3 15              LD3+r2) +--Lo2L3+3r2Lossn2} 

                   2 

 Also, the wave pressure is given as 

 pgh2 
           (2L3+Lo(l+K2)Loesn21 +1/324- 30L02(120± 23/C2+12) 

                           5 

 +6LoL3(1  +r2) —6 [6LoL3r2+1.L02,20  +0}  sna 
 (15)  3 3 

          + 7-1-Lo2c4sn4  —  2i +GI}  { 4 L.0262 7L02 (1 + r2)sn2 
               9 ,    —z

h 

3. Relation between Wave Characteristics by Both the Theories 

 It is assumed that the small expansion parameters  Lo and L3 are respectively 

expanded into series forms of  H/h as 

                 /\H                Lo—alcji)+a2c h) +  (16) 

              La= b,(1)+1),(li)2  +  (17) 
in which  a, and  bi are the coefficients to be determined. Then, substituting Eqs. 

(16) and (17) into Eqs. (10) and (11) and truncating the series expansions to the 
second order of H/h, the expressions  Lo and L3 can be given as 

 LoK2 (Rh.) 410005E212{)(1)2 (18) 
 L3 2E2 (r2 KE )(  h_E                                 40K4i(- 6r4 + 26,0+4) 

                                                (19) 
              +5 K30+2 —K*LIhT 

 In the next, if Eqs. (18) and (19) are substituted into Eqs. (8) and (9) in order 

to convert the wave celerity and the wave length in the Chappelear theory into 

the explicit expressions of the ratio H/h, the calculation finally yields



         Relation between Wave Characteristics of Cnoidal Wave Theory 221 

               11_ (2 r,11`‘±-16+16E2-6E4 
        1/gh2E2\K I\ h40E4                                                 (20) 

             +5—K-(2- K2 -23K)) (h)2 
             L _  4KK    h 1/3(th){1+812fie5E,12KE )(11h )} (21) 

 Also, the water  surface displacement, the horizontal and vertical water particle 
velocities and the the wave pressure can be expressed respectively through a similar 
calculation as 

           h-E2(1K )1\ h-E1(\+4e11f(E2-KE'2 -E2)                                                     
, (22)             -3E4cn2+3E4cn41(4)2 

                                  /2 

            ,1E)+cn                     _2_                             4c 12(e2  1)                    (110±r-4         gh!C- 

         y22E VE 1 (52E)254tz 
                 K K 4E2K2Kcn+4-cn-32h- (23) 

     2)132 

              h2 f 4,o(11c2)  + 2,2(-1  ±2e2) cn2 -4-cn2} 
     w- -(1+))/3VI)31                           sn cn driEl+(-18+11E2+16—K 

   ^gh hK2hSet  (24) 

           4‘20-12) 4(2 h±(h                     )2} (1 2‘2+3k2cn2)1(—)1 
             H 1 

      p;h 1(K)+cn2) ( h)+4K4 C2 (K2 — 1) + (2 -E2)-K.1;20 e2 
            — 324012 2- 3K4C114}4K2i2hh)2} 11 —r2+2(2E2-1)cn2  (25) 

           —3r2cm4J igh)2 z 
 If brief calculations are performed by substituting Eq. (3) into Eqs. (1), (2), (4), 

(5), (6) and (7), it is clear that the expressions for the wave characteristics in the 

Chappelear theory agree exactly with the ones in the Laitone theory. The second 

approximate solution of the cnoidal waves by Laitone corresponds to the one by 

Chappelear in which the expansion parameters  Lo and L3 are expanded into the 

power series of H/h and the expressions for the wave characteristics are truncated 

to the second  order of H/h. Conversely speaking, this is due to the fact that in 

the Laitone  theory,  the original expansion parameters are expanded into the power 

series of H/h and truncated to the second order of H/h as well as the standing 

long wave theory of finite amplitude derived by  Shutom as the nonlinear interaction 

problem of the cnoidal waves. 

 Apart from the practical applicability for the prediction of the wave character-

istics, it may therefore be concluded that the solution by Chappelear is more exact 

than the one by Laitone, as far as mathematical formulation is concerned.
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4. Numerical Computation and Consideration 

  In this section, the computed results for some wave characteristics based on both 

the original mathematical solutions are compared to each other and the limiting 

condition for practical use is considered 
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     Fig. 2 Comparison between numerical results for wave celerity by both theories 

 Fig. 2 shows one of the comparisons for the wave celerity, in which T is the 
wave period. The solid line, the broken line and the one-dotted chain line in the 
figure indicate respectively the theoretical curve by the Chappelear theory, by the 
Airy wave theory and by the Laitone theory. The theoretical curves by both the 
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Fig. 3 Comparison between numerical results for vertical distribution of horizontal water 

       particle velocity of wave crest phase based on both theories
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 Fig. 4 Comparison between numerical results for expansion  parameters in 
             Chappelear's theory. 
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         exactly and those approximately in Chappelear's theory
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cnoidal wave theories agree with each other in the case of larger value of h/H, 

while the result by the Chappelear theory becomes slightly larger than the one by 

the Laitone theory, as the value of h/H decreases. 
  The vertical distribution  of the horizontal water particle velocity at the wave 

crest phase is compared in Fig. 3. As already pointed out by Iwagaki and  Sakaim, 

the Laitone theory gives the shape of the vertical distribution of the horizontal 

water particle velocity at the wave crest phase which increases rapidly toward the 

water surface from the bottom, in comparison with the Chappelear theory and the 

previous theories in the case of smaller value of h/H. This is caused by formulating 
the wave characteristics explicitly on  H/h in the Laitone theory. 

  Fig. 4 is the comparison between the expansion parameters computed directly 

from Eqs. (10) and (11) in the Chappelear theory for the given values of  K and 

 h/H and the ones from Eqs. (18) and (19) taking into account to the second order 

of H/h in the case in which the Chappelear theory coincides with the Laitone 

theory, as described already. The solid and broken lines in the figure correspond 

to the former and latter cases respectively. The results computed from the latter 
equations deviate rapidly from the ones from the former equations with decrease 

of h/H and moreover the tendency for L3 is more prominent than the one for  Lo. 

  Fig. 5 gives the degree of the mutual difference between the parameters computed 

exactly using Eqs. (10) and (11) and those computed approximately using Eqs. (18) 

and (19). In the figure,  50  % (L0) means that the degree of deviation between 

the parameter  Lo computed by the two methods is 50 percent and the broken line 

indicates the breaking criterion computed by the Chappelear theory under the 

assumption that the horizontal water particle velocity of the wave crest  phase at 

the water surface becomes to be equal to the wave celerity at the wave breakig. 
The figure shows that the region in which the degree of deviation for both the 

parameters  Lo and L3 is insignificant is limited to the higher value of h/H. It is 
also found that the region for  L0 is considerably wider than the region for L3 in 
the same percentage. 

 Similarly, the ratio of the difference between the computed results on the wave 
characteristics by both the theories is given in Fig. 6. In the figure,  no is the 

wave crest height above the still water level at the wave crest phase, u,  uo and  uo 

are the horizontal water particle velocities of the wave crest phase at the water 
surface, the mean water level and the bottom,  po and  p, the wave pressures of the 

wave crest phase at the mean water level and the bottom and  win.. (-0.2) is the 

maximum vertical water particle velocity at the location of  z/h=  —0.2 respectively. 
It is found that although the magnitude of the errors due to the approximation 

mentioned above is different from each other in the computed results of the wave 

characteristics, the effects of the approximation on  u0/  ̂  u0/  gh  p,/pgh and 
 w„,„0  (-0.2)/  gh are more clearly prominent than those on the other wave char-

acteristics. Also, these effects on the ratio of  hit and  wmax  (  —  0.2):  gh are 1/2 

times and 3/2 times respectively of the effect on the parameter  L0 in the case of 

the  larger- value of h/H, as would be made clear from the comparison between 
each equation.
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 Since the Laitone theory is regarded as an approximation of the Chappelear 

theory on the expansion parameters  Lc, and  L3, as mentioned previously, the limiting 

region of applicability of the cnoidal wave theories for the various wave characteris-

tics has to be determined only by bounding the limiting region for the parameters 
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             Fig. 7 Limiting region between both theories for practical use 

 Fig. 7 shows the limiting area of applicability for practical purposes between 

both the theories, in which the degree of deviation between the computed results 

on each wave characteristic by both the theories is roughly  20  % of the one at 

the breaking point except for the wave celerity in the case in which the difference 
is not so significant for practical computation. The limiting area is composed of 

the overlapped area in which the degree of difference for  L3 is smaller than 30 96 

and the degree for  Lo  6  % in the case of the smaller value of  e and  2  % in the 

case of the larger value of  e. In the figure, the region corresponding to  K3 is 

the area of applicability for the Iwagaki hyperbolic wave  theory's), which is derived 
from the Laitone theory under the condition that  r= 1 and  E  =1 but  IC=7  >0. Within 

the limiting area, the degree of daviation between the computed results on the wave 
characteristics by both the theories is less than  0.7% for  zzo  h,  6% for  u,/  1./  gh  , 

2 % for  u0/  ̂ gh . 8  % for  zit/  ̂ gh  , 0.2 % for  c/  ‘'gh, 3 % for  h;  L, 0.7 % for  po' 

 pgh,  8  % for  pb/pgh and  9  96 for  wt,,  (-2.0)/  ^gh respectively. Accordingly, the 
cnoidal wave theory by Laitone is only applicable in the shaded area under the 

above criteria and the theory by Chappelear must be used in the other region.
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Also, the hyperbolic wave theory by  Iwagaki must  be used  in the region of  K more 

than 0.98  (K73) of the shaded area. 

 According to the above considerations, the errors due to the approximation should 

be previously estimated from Fig. 6  wIllen applying the cnoidal wave theory by 

Laitone and the hyperbolic wave theory for the calculation of each wave charac-

teristic. 

5. Some Calculations on Wave Characteristics 

 According to  Whithami,,, the density and flux of mass, momentum and energy 
in water waves are defined respectively as 

     (a)  Mass  :  Po=5'  pdz (26)  Q0=  pudz (27)  -ft 

 (b)  Momentum  :  P1=5  pudz (28) -h(p + ple2)dz (29) 
      (c)  Energy  :- _„ t±w+pgzidz           2)(30) 

                     Q2=-f2-1p(zi2-Ew2)+p+pgziudz (31)                                           ft 

in which  P, and  Q, indicate the density and flux respectively. 

 The mean values of these quantities on a wave length are calculated using the 

second approximate solution of the cnoidal wave theory by Chappelear and by 

Laitone. 
 If the expressions for the wave characteristics in the Chappelear theory are 

substituted into Eqs. (26), (27), (28) and (29), the calculation for the density and 
flux of mass and momentum yields 

 Po—ph (32)  C20=  P,  =0 (33) 

 1  pgh212L3+L(,(K2i-x)+3L,32  +8E0E3(0+  r) 
                                              (34)              02{_ 7 + 17K2+23K4+ 10(20+4 —EK )}              10 

which are correct to the second order of the expansion parameters. The flux of 

mass and the density of momentum in waves calculated using the wave theory 

derived by the Stokes second definition of wave celerity vanish, as would be 

expected from the definition. 

 In the next, the kinetic energy can be given from the first term of Eq. (30) as 

         1      P2k-2pglzilL2 fC2 I + 2 (2 —0EK3(E )2} +4Lo2L,k2— 1 
   3 K 

         +2(2 K2)EK3(EK)21 + L3 117K4+9K2-26+ (-340+190(35) 

                           1 

        +101)c-45(r2+2)(K—E)2 +15(AK)311 
          \ ,1
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If the potential energy is measured from the mean water level, it can  be written 

as 

      P2p=-2pgh2141,32 + 41,43(K2+K)+32  (3v4  Fe  1  E  4  (v2+  I)  -EK 
                L2L            +4L33+4L33+-°53196v4+444(.2- 24 +120 (v2+ 1)  26LoL32 (36) 

         x (v24-K ) +15L°3(540+55v-4-3e-22+ (760+1340+76)-E Ij 
Using Eq. (11), the kinetic energy can be proved to be identical with the potential 

energy to the first approximation of the cnoidal wave theory. The energy partition 

to the second approximation, however is not in the same ratio. 

  Accordingly, the density of wave energy is expressed as a sum of Eqs. (35) and 

(36) by the following equation. 

 P2=  -21  pgh214L  32  +  LIL  oLa(K2+  KE  )  +  1302  [3/C4  +  2/C2—  2+2  (K2+  4)  KE 
                               +- 3(Lif- )2}4-4L33+26L0L32(e+EK--)•  L0:L3  {960+64e-44 

 (37) 
         +40(20+5) K-60(—)21 +L°53[540+ 72K4 ± 6/C2-48 

                 •1 

         + (4201 1530+177)45 (K2I-2) ( EK  )2Jr15(E--)1'1                                   K1 

 The energy flux in the Chappelear theory is calculated from Eq. (31). The 
result is 

      02= pgh21/ gh3               r_kpz (K21 2 (2 - e2)-K -3( )21 + 33Lo2L3 (K2—1 
                    -2  (22—  2)  KE  3(  EK  )2)  ±  153  [18K4  +11E2—  29+  (  -36v4+6,v2 I (38) 

              54-124)KE--(7s2+ 25)(E)2+ 30( .4. )3I1 
Therefore, the transfer velocity of wave energy  cg, which is one of the definitions 
for the group velocity of waves, is expressed as the ratio of the wave energy flux 
to the wave energy density, although an explicit expression is difficult. 

 On the contrary, the similar wave characteristics in the Laitone theory are 
calculated respectively as 

 PO-ph (39)  0,=P,  =  0 (40) 

     01= 2pgh2+2-0N-2-1+2(2 - v2)KE-3(ft-)21(-il)2  1(41) 

      P2k=-12ph21 31,54 {2 — 12(2- K2)Ej{-—  3(Eic)2} ()2+ 301S K.4 
                                                (42) 

          +20-2+2(0-K-2=1)fc.+15 (K2 -2)(E4+ 30(KE--hH2)3-1 
            K.  ,
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     1 1       P2p — 2 pgh2[ 3E4  (E2  1+2(2  E2) E3(EJ(\2+1  K\K)1U2) 100                                                 (43) 

                                            E\ 2 H  X fr4 —3K2 + 2 — 2(er— 6/C2+6) 5 (K2— 2) ( K) h 

         1 

 P2—2pgha  3,c4  {K2  1+  2  (2  K2) t3(EK)1(11h)2 +1                                                              1E5 

 } (44)                                 E +15(H \3-1          x(r4_30+2+ ( — 2E4+17E2— 17'                            )K\Klfhl 

                                         02= pg1121/ gh 3‘14 [K2 1 2(E22) KEV.1( 

                                  h 

         +14( —E4 +3K2 —2) + (8E4-53E2+53)+60(2z-2)(E)2   30E6 (45) 

         +75(EHV')            \K-MhIj 

 These equations agree exactly with the ones by the Chappelear theory in the 
case in which the expansion parameters  Lo and L3 are expanded into the power 

series of H/h and the expressions for the wave characteristics are truncated to the 
second order of H/h. 

 Also, the energy transfer velocity can be given in an explicit form as 

        (H/h)    c0=Vgh+ {0 +30 _2                 2E2 fE2— 1 + 2 (2 —r2)(E/K) —3 (E/K)2;                                               (46) 

 +2(+0_70+7)(_E  K  )+  12  (E2  2)  (   t   )2+  12(K  )3)1 
 Since the preceding wave theories are derived using the perturbation method, 

the expressions for the horizontal water particle velocity and the other wave 

characteristics in the theories are expressed as the infinite power series of small 

parameter  e such as  u=  E  eittt, in which  Ili is the approximate solution  correspond-

ing to each order of r. Accordingly, in the calculation of Eqs. (27), (28), (29), 

(30) and (31) using the truncated series solution of the second order approximation, 
the contribution of the higher order terms beyond the third order e.g.  ma to the 

results exsists in the mathematical formulation. However, this contribution is 
neglected in the calculation. 

6. Conclusion 

 The relation between wave characteristics of the cnoidal wave theory derived 

by Laitone and by Chappelear was established. Expanding the parameters  Lo and 
L3 in the Chappelear theory into the power series of H/h and rewritting the 

expressions for wave characteristics in the Chappelear theory into power series 
of H/h to the second order, it was proved that the second order approximate 

solution of the cnoidal wave theory by Laitone coincides with the one by Chappelear 

to the second order of H/h. And based on the numerical comparison between the 

expansion parameters computed exactly and the ones computed approximately to
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the second order of H/h, the limiting region of wave characteristics in which the 

approximate expansion of  Lo and L3 in the Chappelear theory on the ratio of H/h 

is allowable was proposed for practical use. 

 In addition,  the density and flux of mass, momentum and energy were formulated 
using both the cnoidal wave theories of the second approximation as well as the 

energy tranfer velocity. 
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