Analysis of Strong-Motion Accelerograms

By Shiro Takada and Akio Komatsu

(Manuscript received October 3, 1974)

Abstract

In order to estimate the strain amplitudes occurring in underground structures subjected to earthquakes, data integrating techniques for strong-motion earthquake accelerograph records are investigated.

Excellent base-line corrections and high-pass filtering methods to be attached to integrated velocity and displacement curves are discussed. From the results of numerical integration of 19 accelerograms, empirical formulae related to the maximum velocity amplitude and acceleration, etc. are proposed.

1. Introduction

Relative-displacement distributions in the ground along the structural axis are the most significant factors in the earthquake-resistant design of underground structures, such as gas pipes, water pipes and subway tunnels. One of the authors revealed that the axial strains induced in the underground tubular structure during earthquakes are almost proportional to a velocity amplitude of the surrounding ground and that bending strains are proportional to an acceleration amplitude.

Maximum strains are expressed by the following equations;

\[
\epsilon_A = \alpha_A \cdot \frac{V}{v_a}, \quad \epsilon_B = \alpha_B \cdot \frac{a \cdot A}{(v_B)^2}
\]

In this Eq. (1), \(\epsilon_A\) and \(\epsilon_B\) are the axial and bending strains; \(v_A\) and \(v_B\) are longitudinal and transversal wave velocities. \(\alpha_A\) and \(\alpha_B\) are the loss factors which reduce strain levels in the structure by 10-20 percent of those induced in the surrounding ground as the result of interaction between the structure and ground. \(V\) and \(A\) are the maximum velocity and acceleration of the ground respectively and is a radius of the structure.

Once the maximum acceleration and velocity amplitudes are determined, a rough estimation of the upper bound of the strain induced in the underground tubular structure can be readily calculated from Eq. (1).

Knowledge of maximum-acceleration and velocity levels of the ground during destructive earthquakes is provided by strong-motion accelerograms. It is well known that the ground velocity and displacement curves obtained from the ground acceleration by single or double integration may be subjected to considerable errors over a long period because of the limits of accuracy of base line correction.

The errors present in the raw digitized accelerograms can be divided into two main groups. These are; (1) high-frequency errors due to the fall off of transducer
response in the accelerograph, and (2) low-frequency errors caused by mechanism of transducer and digitizing processes, influencing the base-line correction of accelerograms.

For high-frequency errors, digitized data is corrected using low-pass filter method, and for low-frequency errors, base-line or high-pass filter methods are operated in the processing of uncorrected accelerograms.

In the present paper, to estimate the strain levels in the underground structures, 19 strong-motion accelerograms are singly or doubly integrated using base-line and high-pass filter correction for velocity or displacement curves to preserve a meaningful form. Low-frequency errors present in uncorrected digitized data have little influence over the estimation of strain levels.

Plots of the maximum velocity amplitude or displacement amplitude obtained by numerical integration of accelerograms against the corresponding maximum acceleration amplitude are shown. And resultant empirical formulae enable us to estimate the maximum velocity amplitude when the maximum acceleration for design purpose is given.

2. Base-Line Correction by Polynominal Expressions

Seismograms are recorded on photographic paper on which the zero acceleration level is not indicated. While a zero line must be drawn for digitization purpose, the resulting data would yield unrealistic calculated velocities and displacements without base-line corrections.

Considerable efforts have been made in the past to understand the details of the base-line correction problem. Berg\(^6\), Amin\(^5\) and Shiff\(^6\) assumed the center line as follows:

\[
C_i t^{(i-1)}
\]

where the coefficient \(C_i\) was determined by the rule that minimize the computed mean-square ground velocity. Minimizing the mean-square ground velocity with respect to the \(C_i\) requires:

\[
\frac{\partial}{\partial C_i} \int_0^T \hat{x}^2(t) dt = 0
\]

where \(T\) is the duration of the earthquake record and \(\hat{x}(t)\) is the ground velocity.

From the following simultaneous equations, the coefficient \(C_i\) may be determined:\(^6\):

\[
\sum_{j=1}^{3} C_j \frac{T^{(j-i)}}{j(i+j+1)} = B_i - \frac{v_0}{(i+1)T}, \quad i = 1, 2, 3
\]

where

\[
B_i = \frac{1}{T^2(i+i+1)} \int_0^T \hat{x}_o(t) \hat{x}_o(t) dt, \quad i = 1, 2, 3
\]

\[
v_0 = \hat{x}_o(0) - \hat{x}(0)
\]

and \(x_o(t)\) is the uncorrected velocity.
In the present paper, following the precedent method, a five-ordinal base line is assumed. While the higher-ordinal base line give the probability of loss of characteristics contained in uncorrected digitized data, the five-ordinal base line correction would be permissible referring to the literature. Resultant velocities and displacements computed by the five-ordinal base line are compared to that by the three-ordinal base line in the later section.

Coefficients \(C_i \) \((i = 1 \sim 5)\) are determined by Eq. (4) as follows;

\[
\begin{align*}
C_1 &= 3675B_1 - 29400B_2 + 79380B_3 - 88200B_4 + 34650B_5 \\
C_2 &= (58800B_1 + 501760B_2 - 1411200B_3 + 1612800B_4 - 646800B_5) / T \\
C_3 &= (238140B_1 - 2116800B_2 + 6123600B_3 + 7144200B_4 + 2910600B_5) / T^2 \\
C_4 &= (-352800B_1 + 3225600B_2 - 9525600B_3 + 11289600B_4 - 4656960B_5) / T^3 \\
C_5 &= (173250B_1 - 1617000B_2 + 4851000B_3 - 5821200B_4 + 2425500B_5) / T^4
\end{align*}
\]

3. Integration and High-Pass Filter by Fourier Series Expansion

Generally, time curve \(x(t) \) of ground motion during earthquakes can be expressed in the form of the following finite fourier series;

\[
x(t) = \frac{A_0}{2} + \sum_{n=1}^{N-1} \left(A_n \cos \omega_n t + B_n \sin \omega_n t \right) + \frac{A_N}{2} \cos \omega_N t
\]

where

\[
A_n = \frac{2}{T} \int_0^T x(t) \cos \omega_n t \cdot dt, \quad B_n = \frac{2}{T} \int_0^T x(t) \sin \omega_n t \cdot dt
\]

\[
\omega_n = \frac{2n\pi}{T}
\]

2N are the number of points plotted on the time curve \(x(t) \) at intervals of time step \(dt \) and \(T \) is the duration of \(x(t) \). Continuous time variable \(t \) being transformed into discrete variable \(k \cdot dt \), Eq. (8), (9) are rewritten as follows;

\[
x_n = \frac{A_0}{2} + \sum_{n=1}^{N-1} \left(A_n \frac{\cos nk\pi}{N} + B_n \frac{\sin nk\pi}{N} \right) + \frac{A_N}{2} \cos k\pi
\]

\[
A_n = \frac{1}{N} \sum_{k=0}^{N-1} x_k \cdot \cos \frac{nk\pi}{N}, \quad B_n = \frac{1}{N} \sum_{k=0}^{N-1} x_k \cdot \sin \frac{nk\pi}{N}
\]

Moreover \(x_k \) is expressed as a complex number by the Euler formula;

\[
x_k = \frac{\alpha_0}{2} + \sum_{n=1}^{N-1} \alpha_n e^{i(nk\pi/N)} + \frac{\alpha_N}{2} e^{i(Nk\pi/N)} + \sum_{n=1}^{N-1} \frac{\alpha_n}{2} e^{-i(nk\pi/N)}
\]

where

\[
\alpha_n = A_n - iB_n, \quad \alpha_{-n} = A_n + iB_n
\]

The next relationship is easily proved to be a fourier coefficient;

\[
\alpha_{-n} = \alpha_{2N-n} \quad (n = 1, 2, \ldots, N - 1)
\]

The fourth item in right hand side in Eq. (12) is transformed using Eq. (14);
\[
\sum_{n=1}^{N-1} \frac{\alpha_n}{2} e^{-i \frac{2 \pi n k r}{N}} = \sum_{n=1}^{N-1} \frac{\alpha_{N-n}}{2} e^{-i \frac{2 \pi (N-n) k r}{N}} = \sum_{n=N+1}^{2N-1} \frac{\alpha_n}{2} e^{i \frac{2 \pi n k r}{N}}
\]

From Eq. (12), (15), \(x_k\) is shown as the following form;
\[
x_k = -\frac{1}{2} \sum_{n=0}^{2N-1} \alpha_n e^{i \frac{2 \pi n k r}{N}}
\]

Consequently \(x_k\) and \(\alpha_n\) are the complex finite Fourier series and complex finite Fourier coefficients respectively. And \(x_k\) is computed quickly and accurately by F.F.T. developed by Cooly and Turkey\(^\circ\).

From Eq. (10) the integration of time record \(x(t)\) is expressed as follows;
\[
X(t) = \frac{A_0}{2} t + \sum_{n=1}^{N-1} \left\{ \frac{B_n}{\omega_n} \cos \omega_n t + \frac{A_n}{\omega_n} \sin \omega_n t \right\} + \frac{A_N}{2 \omega_N} \sin \omega_N t + C_1
\]

Assuming the initial condition that \(X(t)\) is equal to zero at \(t=0\), \(C_1\) is that;
\[
C_1 = \sum_{n=1}^{N-1} \frac{B_n}{\omega_n}
\]

\(X(t)\) can be expressed in the same Fourier series pattern as \(x(t)\) in the following form;
\[
X(t) = \frac{A_0}{2} t + \sum_{n=1}^{N-1} \left[A_n' \cos \omega_n t + B_n' \sin \omega_n t \right] + \frac{A_N'}{2} \cos \omega_N t
\]

where
\[
A_n' = \frac{2}{T} \int_0^T X(t) \cos \omega_n t \cdot dt = -\frac{B_n}{\omega_n}
\]
\[
B_n' = \frac{2}{T} \int_0^T X(t) \sin \omega_n t \cdot dt = \frac{A_n}{\omega_n} - \frac{A_0 T}{2 \pi n}
\]
\[
A_N' = \frac{2}{T} \int_0^T X(t) dt = \frac{A_0 T}{2} + 2 \sum_{n=1}^{N-1} \frac{B_n}{\omega_n}
\]

Now, in the case that \(x(t)\) is an acceleration time record of ground motion, a velocity time curve could be obtained by operating the above mentioned procedure for once and a displacement time could be calculated repeating the above method again. On the other hand, as mentioned in the previous section, displacement curves obtained by double integration of the acceleration time record is subjected to considerable error over a long period. To eliminate these errors, a high-pass filtering method is frequently useful.

Filtering technique is very easy when the treated record \(x(t)\) is expressed in the form of Eq. (8).

Defining the cut-off frequency \(f_L\) which should be greater than all frequencies associated with long-period recording and digitizing errors not to be corrected, the filtered curve \(x(t)\) becomes;
\[
x(t) = \sum_{n=-L}^{N-1} \left[A_n \cos 2 \pi f_n t + B_n \sin 2 \pi f_n t \right] + \frac{A_N'}{2} \cos 2 \pi f_N t
\]
Lower limit frequency f_L should be decided most carefully. Trifunac9 showed that errors are relatively small in the double-integrated digitized data up to the period of about 16 sec by a study of the properties of the random digitizing errors introduced by the operator.

On the other hand, strain levels induced in the underground structure would not be so much for the case of long-period seismic waves. Therefore displacement spectra for earthquake-resistant design used to construct the Kinuura submerged tunnel10 were calculated using seismic records of which longer period components were filtered out than 15 sec. In the present computation, f_L is adopted to be 0.06 Hz considering the above studies.

4. Numerical Computation and Discussion

Influences of base-line correction and high-pass filtering operation upon the integrated time curves are investigated by means of several cases. Strong earthquake accelerogram, S544N, obtained at Hosojima in Kyushu (data by The Port and Harbour Research Institute in Japan) is used for the above purposes modifying the maximum acceleration to be 250 gals.

Case 1: Both the base-line correction and high-pass filter operation are not practiced. Fig. 1 shows the acceleration, velocity and displacement curves for this case, which has no physical meanings in the latter two curves. This computation suggests that a base-line correction of some sort or high pass filter is necessary for the present purposes.

Case 2: Base-line correction of three-ordinal line as specified in Eq. (2) which minimizes the mean-square velocity is used and no filter is operated. As can be judged from Fig. 2, it is also true in Case 2, velocity and displacement curves preserve no meaningful forms.

Case 3: Five-ordinal base-line correction of velocity curve specified in Eq. (7) is employed. A high-pass filter is not used as in Case 2. Fig. 3 shows the three curves of ground motion of Case 3. The velocity curve would be simulative to the curves in the next Case 4, 5. However, the displacement curve fluctuates 5 cm about the center of negative displacement value. Therefore the base-line correction only would not be adequate to obtain the meaningful displacement curve from the integration of the acceleration record.

Case 4: Only a high-pass filter is operated using the formulae specified in Eq. (21). The Lower bound of effective frequency f_L is set by 0.06 Hz to cut off the long-period components of more than 16.7 sec contained in the seismic waves. In Fig. 4 are shown the time curves of ground motion in this case. Both the velocity and displacement curves do not exhibit drifting character. High-pass filter operational method would be a very effective one to compute the velocity or displacement curves by integrating the accelerograms in the case when long-period components in the seismic waves have no significant influences over the
S544N HOSOJIMA

ACCELERATION

MAX = 245.69 CAL
FILT = 0.00 HZ

VELOCITY

MAX = 54.80 CM/S
FILT = 0.00 HZ

DISPLACEMENT

MAX = 781.17 CM
FILT = 0.00 HZ

Fig. 1. Uncorrected curves (S544N).
Fig. 2. Three ordinal base line corrected curves (S544N).
Fig. 3. Five ordinal base line corrected curves (S544N).
Fig. 4. Filtered curves (S544N).
Fig. 5. Base line corrected and filtered curves (S544N).
Fig. 6. Comparison between Case 3 and Case 5 (S074).
raw digitized acceleration records

(1)

add zeros \(\ddot{y}_0 \)

(2)

fourier transformation (f.t.)

(3)

high pass filter \(f_u = 0.06 \text{Hz} \)

(4)

fourier inverse transformation (f.i.t.)

(5)

integration

(6)

\((\text{f.i.t.}) \hat{y}_1 \)

(7)

base line correction \(C_i \) in Eq.(8)

(8)

corrected acc. \(\ddot{y}_1 \)

(9)

\((\text{f.t.}) \)

(10)

fourier spectra of \(\ddot{y} \)

(11)

integration

(12)

high pass filter \(f_u = 0.06 \text{Hz} \)

(13)

fourier spectra of \(\ddot{y} \)

(14)

\((\text{f.i.t.}) \hat{y} \)

(15)

corrected vel. \(\dot{y} \)

(16)

fourier spectra of \(y \)

(17)

\((\text{f.i.t.}) \)

(18)

corrected dis. \(y \)

(19)

(20)

Fig. 7. Flow chart of integration.
Case 5; Both the base-line correction and high-pass filter are used. Integration method used in this case is employed in order to obtain the velocity and displacement curves from after numerical computation. As shown in Fig. 5, velocity and displacement curves are almost the same as that in the Case 4. Differences between Case 4 and Case 5 are 0.16 percent for the maximum velocity and 5.7 percent for the maximum displacement. Moreover, differences between Case 3 and Case 5 are 0.04 percent for the maximum velocity, but 37.7 percent for the maximum displacement. So far as velocity curves are concerned, it would not be difficult to obtain meaningful curves by integrating the acceleration record while judging the above computational results.

However, displacement curves should be calculated taking into consideration the purpose of the curves.

In addition to SS44N, earthquake acceleration record S074E recorded at Shimizu in 1965 has been used for the calculation of Case 4 and Case 5. Fig. 6 shows the velocity and displacement curves obtained by integrating S074E by the method specified in Case 4 and Case 5.

The character of velocity curves are similar but the displacement curve being not filtered in Case 4 is drifting and has no physical meaning. In the numerical calculation of present study, the integrating method specified in Case 5 has been employed.

Flow chart of integration procedure is shown in Fig. 7, and the number in the chart indicates the sequence of computation. 19 strong earthquake acceleration records listed in Table 1 are integrated according to the procedures shown in Fig. 7. Among these records, 18 seismograms were recorded by the SMAC B2 seismograph for the past six earthquakes which have occured in Japan during six years from 1965 to 1970. The remaining acceleration record is the one obtained at Taft in 1952.

In Table 1, \(N = 2^n \) is the total number of data points of digitized accelerations and ND, IO are the number of data points of unmodified acceleration records and additional zeros. Moreover DT is the time interval of data points. All the records are scaled to have the same maximum amplitudes of 250 gals. Several details of the six earthquakes are shown in Table 2.

And computational resultant informations known from velocity, displacement curves and their Fourier spectra are also listed in Table 2.

As the appendixes, acceleration, velocity and displacement curves in time domains and their Fourier spectra in the frequency domains are shown. In these figures, maximum values, filtered lower-limit frequencies and predominant periods are printed.

We could know the various significant characteristics as to ground motions during earthquakes from the resultant time curves and Fourier spectra. It would be useful to reduce the correlative relationships among maximum acceleration, velocity, displacement and predominant period of the ground for the purpose of earthquake resistant design of underground structures.
Table 1. Data of acceleration records used for analyses.

<table>
<thead>
<tr>
<th>Epicenter</th>
<th>Record No.</th>
<th>N</th>
<th>ND</th>
<th>IO</th>
<th>DT</th>
<th>Station</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Wakayama</td>
<td>S 265 N</td>
<td>1024</td>
<td>980</td>
<td>10</td>
<td>0.01</td>
<td>Wakayama</td>
<td>1968.3.30</td>
</tr>
<tr>
<td></td>
<td>S 265 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coast of Iwate Pref.</td>
<td>S 573 N</td>
<td>4096</td>
<td>3930</td>
<td>50</td>
<td>0.01</td>
<td>Miyako</td>
<td>1970.4.1</td>
</tr>
<tr>
<td></td>
<td>S 537 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Miyazaki Pref.</td>
<td>S 544 N</td>
<td>4096</td>
<td>3930</td>
<td>50</td>
<td>0.01</td>
<td>Hosojima</td>
<td>1970.2.26</td>
</tr>
<tr>
<td></td>
<td>S 544 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokachi Oki</td>
<td>S 252 N</td>
<td>4096</td>
<td>4000</td>
<td>50</td>
<td>0.01</td>
<td>Hachinohe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 252 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 236 N</td>
<td>4096</td>
<td>3940</td>
<td>50</td>
<td>0.01</td>
<td>Miyako</td>
<td>1968.5.16</td>
</tr>
<tr>
<td></td>
<td>S 236 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 234 N</td>
<td>4096</td>
<td>4000</td>
<td>50</td>
<td>0.01</td>
<td>Muroran</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 234 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokachi Oki</td>
<td>S 241 N</td>
<td>4096</td>
<td>3950</td>
<td>50</td>
<td>0.01</td>
<td>Muroran</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 241 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S 271 N</td>
<td>4096</td>
<td>3960</td>
<td>50</td>
<td>0.01</td>
<td>Miyako</td>
<td>1968.5.16</td>
</tr>
<tr>
<td></td>
<td>S 271 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suruga</td>
<td>S 074 N</td>
<td>4096</td>
<td>3950</td>
<td>50</td>
<td>0.01</td>
<td>Shimizu</td>
<td>1965.4.20</td>
</tr>
<tr>
<td></td>
<td>S 074 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kern Country</td>
<td>II A 004</td>
<td>2048</td>
<td>1510</td>
<td>25</td>
<td>0.02</td>
<td>Taft</td>
<td>1952.6.21</td>
</tr>
</tbody>
</table>

Fig. 8. Relationships between maximum acceleration and maximum velocity.
Table 2. Integrated results of acceleration records by P.H.R.I.

<table>
<thead>
<tr>
<th>Time and Date</th>
<th>Location of Epicenter</th>
<th>Magnitude</th>
<th>Station</th>
<th>Epicentral Distance (km)</th>
<th>Record No.</th>
<th>Predominant Period (sec)</th>
<th>Max. Acc. (gal)</th>
<th>Max. Vel. (cm/sec)</th>
<th>Max. Dis. (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968. 3.30</td>
<td>Near Wakayama</td>
<td></td>
<td>Wakayama</td>
<td>5.1</td>
<td>S265N</td>
<td>0.19</td>
<td>176</td>
<td>5.35</td>
<td>0.92</td>
</tr>
<tr>
<td>1970. 4.1</td>
<td>Coast of Iwate Prof.</td>
<td></td>
<td>Miyako</td>
<td>21.7</td>
<td>S537N</td>
<td>0.17</td>
<td>111</td>
<td>1.16</td>
<td>1.96</td>
</tr>
<tr>
<td>1970. 2.26</td>
<td>Off Miyazaki Pref.</td>
<td>6.7</td>
<td>Hosojima</td>
<td>10.0</td>
<td>S544N</td>
<td>0.93</td>
<td>85</td>
<td>8.71</td>
<td>3.10</td>
</tr>
<tr>
<td>1968. 5.16</td>
<td>Tokachi Oki</td>
<td>7.8</td>
<td>Hachinohe</td>
<td>188.3</td>
<td>S252N</td>
<td>2.73</td>
<td>235</td>
<td>34.01</td>
<td>11.14</td>
</tr>
<tr>
<td>1968. 5.16</td>
<td>Tokachi Oki</td>
<td>7.4</td>
<td>Muroran</td>
<td>217.9</td>
<td>S241N</td>
<td>0.42</td>
<td>95</td>
<td>5.84</td>
<td>2.78</td>
</tr>
<tr>
<td>1965. 4.20</td>
<td>Suruga</td>
<td>6.2</td>
<td>Shimizu</td>
<td>13.6</td>
<td>S074N</td>
<td>1.28</td>
<td>86.3</td>
<td>9.04</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Analysis of Strong Motion Accelerograms
<table>
<thead>
<tr>
<th>Time and Date</th>
<th>Location of Epicenter</th>
<th>Magnitude</th>
<th>Station</th>
<th>Epicentral Distance (km)</th>
<th>Record No.</th>
<th>Predominant Period (sec)</th>
<th>Max. Acc. (gal)</th>
<th>Max. Vel. (cm/sec)</th>
<th>Max. Dis. (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940. 3.18</td>
<td>Imperial Valley</td>
<td>6.3</td>
<td>El Centro</td>
<td>32°47'43"N, 115°32'55"W</td>
<td>II A001 S</td>
<td>0.68</td>
<td>341.7</td>
<td>33.4</td>
<td>10.9</td>
</tr>
<tr>
<td>20 : 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S00E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951.10.7</td>
<td>North West Calif.</td>
<td>7.7</td>
<td>Ferndale</td>
<td>40°34'00"N, 124°15'00"W</td>
<td>II A002 S</td>
<td>0.38</td>
<td>102.0</td>
<td>4.8</td>
<td>2.4</td>
</tr>
<tr>
<td>20 : 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952. 6.21</td>
<td>Kern Country</td>
<td>7.7</td>
<td>Pasadena</td>
<td>34°08'20"N, 118°07'17"W</td>
<td>II A003 S</td>
<td>0.68</td>
<td>46.5</td>
<td>6.2</td>
<td>2.7</td>
</tr>
<tr>
<td>04 : 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954.12.21</td>
<td>Eureka</td>
<td>7.7</td>
<td>Taft</td>
<td>35°09'00"N, 119°27'00"W</td>
<td>II A004 N</td>
<td>0.74</td>
<td>152.7</td>
<td>15.7</td>
<td>6.7</td>
</tr>
<tr>
<td>11 : 56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955. 9.4</td>
<td>San Jose</td>
<td></td>
<td>Santa Barbara</td>
<td>34°28'28"N, 119°42'05"W</td>
<td>II A005 N</td>
<td>0.54</td>
<td>87.8</td>
<td>11.8</td>
<td>4.6</td>
</tr>
<tr>
<td>18 : 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955. 2.9</td>
<td>El Alamo Baja Calif.</td>
<td></td>
<td>Hollywood</td>
<td>34°05'00"N, 118°20'00"W</td>
<td>II A006 S</td>
<td>0.92</td>
<td>43.5</td>
<td>9.4</td>
<td>5.9</td>
</tr>
<tr>
<td>06 : 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hollywood</td>
<td>34°05'00"N, 118°20'00"W</td>
<td>II A007 S</td>
<td>1.03</td>
<td>58.1</td>
<td>6.6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eureka</td>
<td>40°48'00"N, 124°09'00"W</td>
<td>II A008 N</td>
<td>0.41</td>
<td>164.5</td>
<td>31.6</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Jose Bank</td>
<td>37°20'00"N, 121°53'00"W</td>
<td>II A009 N</td>
<td>0.22</td>
<td>105.8</td>
<td>4.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El Centro</td>
<td>32°47'43"N, 115°32'55"W</td>
<td>II A001 S</td>
<td>1.64</td>
<td>32.4</td>
<td>4.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Month</td>
<td>Location</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Amplitude</td>
<td>Cycles</td>
<td>Period</td>
<td>Distance</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>1956</td>
<td>2</td>
<td>El Alamo Baja Calif.</td>
<td>Elcentro</td>
<td>32°47′43″N, 115°32′55″W</td>
<td>122.1</td>
<td>II A012 S00W</td>
<td>1.69</td>
<td>11.8</td>
<td>1.9</td>
</tr>
<tr>
<td>1956</td>
<td>2</td>
<td>San Francisco</td>
<td>San Francisco</td>
<td>37°48′00″N, 122°24′00″W</td>
<td>16.6</td>
<td>II A013 N45E</td>
<td>1.32</td>
<td>45.9</td>
<td>2.9</td>
</tr>
<tr>
<td>1957</td>
<td>3</td>
<td>San Francisco</td>
<td>San Francisco</td>
<td>37°47′00″N, 122°24′00″W</td>
<td>15.0</td>
<td>II A014 N09W</td>
<td>0.30</td>
<td>41.8</td>
<td>2.9</td>
</tr>
<tr>
<td>1957</td>
<td>3</td>
<td>San Francisco</td>
<td>Golden Gate Park</td>
<td>37°46′12″N, 122°28′42″W</td>
<td>11.6</td>
<td>II A015 N10E</td>
<td>0.25</td>
<td>81.8</td>
<td>4.9</td>
</tr>
<tr>
<td>1957</td>
<td>3</td>
<td>San Francisco</td>
<td>State Bldg Basement</td>
<td>37°47′00″N, 122°25′00″W</td>
<td>14.3</td>
<td>II A016 S09E</td>
<td>0.28</td>
<td>50.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1961</td>
<td>4</td>
<td>Hollister</td>
<td>Hollister</td>
<td>36°40′N, 121°18′W</td>
<td>24.3</td>
<td>II A017 N26W</td>
<td>0.26</td>
<td>39.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1968</td>
<td>4</td>
<td>Elcentro</td>
<td>Elcentro</td>
<td>32°47′43″N, 115°32′55″W</td>
<td>67.8</td>
<td>II A019 S00W</td>
<td>1.79</td>
<td>127.8</td>
<td>25.8</td>
</tr>
<tr>
<td>1954</td>
<td>12</td>
<td>Eureka</td>
<td>Ferndale</td>
<td>40°34′00″N, 124°15′00″W</td>
<td>108.7</td>
<td>II A009 N44E</td>
<td>1.72</td>
<td>155.7</td>
<td>35.6</td>
</tr>
</tbody>
</table>
In addition to the above computational results, integrated results of 60 seismograms by the Earthquake Engineering Research Laboratory of Cal. Tech. are appropriate for the present purposes. Data on these earthquakes and obtained maximum values of acceleration, velocity and displacement are tabulated in Table 3.

First, in Fig. 8 are shown the plots of maximum velocity amplitude obtained by the numerical integration of accelerograms against the corresponding maximum acceleration amplitude. These accelerograms are classified into three groups depending on their predominant period T as shown in the figure. Denoting the maximum acceleration amplitude by A_m and the maximum velocity amplitude by V_m, the following approximate representations are possibly adopted for each group:

\[
\begin{align*}
T > 0.7; & \quad V_m \approx 0.2 \times A_m \\
0.7 > T > 0.3; & \quad V_m \approx 0.1 \times A_m \\
T < 0.3; & \quad V_m \approx 0.05 \times A_m
\end{align*}
\]

(T; sec, V_m; cm/sec, A_m; gal)

More important results are obtained concerning the relationship of the maximum velocity amplitude to the predominant period of the corresponding accelerograms, which is shown in Fig. 9. In advance of the computation, all the records are scaled to have the same maximum amplitude of 250 gals.

![Graph showing relationship between maximum velocity and predominant period.](image)

- Fig. 9. Relationships between maximum velocity and predominant period.

Applying the least square method to these plots, the following expression is obtained;

\[V_m \approx 16.5 \times T^{0.58} \quad (\text{for } A_m = 250 \text{ gals}) \]

These empirical formulae enable us to estimate the maximum velocity amplitude.
when the maximum acceleration for the design purpose is given.

Once the maximum acceleration and velocity amplitudes are determined, a rough estimate of the upper bound of the strains induced in the underground tubular structures are readily calculated from Eq. (1).

5. Conclusions

The present integrating techniques as shown in Fig. 7 would be able to be used for calculation of ground velocity and displacement curves at a very useful level of engineering significance in order to estimate the strain levels of underground structures. Moreover, Eq. (23), (24) are the significant formulae for the knowledge of the ground motion during earthquakes, and for the earthquake-resistant design purpose of the underground structure.

Acceleration, velocity and displacement curves and Fourier spectra presented in appendix would be very suggestive for the various problems of earthquake engineering.

References

10) Aoki, Y.; Seismic Design Criteria for Trench Type Tunnel, JSSA, No. 211, 1973, pp. 77-87.
S265N WAKAYAMA

ACCELERATION

MAX: 250.00 GAL
FILT: 0.06 HZ

TIME (SEC)

VELOCITY

MAX: 7.60 CM/SEC
FILT: 0.06 HZ

TIME (SEC)

DISPLACEMENT

MAX: 1.31 CM
FILT: 0.06 HZ

TIME (SEC)

Fig. A-1
S265E WAKAYAMA

ACCELERATION MAX = 250.00 CAL
 FILT = 0.06 HZ

TIME (SEC)

VELOCITY MAX = 12.50 CM/S
 FILT = 0.06 HZ

TIME (SEC)

DISPLACEMENT MAX = 1.50 CM
 FILT = 0.06 HZ

TIME (SEC)

Fig. A-2
S537N MIYAKO

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

TIME (SEC)

VELOCITY

MAX = 3.35 CM/S
FILT = 0.06 HZ

TIME (SEC)

DISPLACEMENT

MAX = 4.42 CM
FILT = 0.06 HZ

TIME (SEC)

Fig. A-3
S537E MIYAKO

ACCELERATION

MAX: 250.00 GAL
FILT: 0.05 HZ

TIME (SEC)

VELOCITY

MAX: 10.34 CM/S
FILT: 0.06 HZ

TIME (SEC)

DISPLACEMENT

MAX: 0.89 CM
FILT: 0.06 HZ

TIME (SEC)

Fig. A-4
S544N HOSOJIMA

Accelration

Max: 250.00 gal
Filt: 0.06 Hz

Velocity

Max: 25.63 cm/s
Filt: 0.06 Hz

Displacement

Max: 9.13 cm
Filt: 0.06 Hz

Fig. A-5
S544E HOSOJIMA

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

TIME (SEC)

VELOCITY

MAX = 27.33 CM/S
FILT = 0.06 HZ

TIME (SEC)

DISPLACEMENT

MAX = 15.05 CM
FILT = 0.06 HZ

TIME (SEC)

Fig. A-6
S252N HACHINOHE

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY

MAX = 36.18 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 11.85 CM
FILT = 0.06 HZ

Fig. A-7
Fig. A-8

S252E HACHINOHE

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY

MAX = 52.45 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 33.13 CM
FILT = 0.06 HZ
S236N MIYAKO

ACCELERATION

MAX = 250.00 CAL
FILT = 0.06 HZ

VELOCITY

MAX = 14.51 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 9.29 CM
FILT = 0.06 HZ

Fig. A-9
S236E MIYAKO

ACCELERATION
MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY
MAX = 13.12 CM/S
FILT = 0.06 HZ

DISPLACEMENT
MAX = 9.94 CM
FILT = 0.06 HZ

Fig. A-10
S234N MURORAN

ACCELERATION

MAX = 250.00 g
FILT = 0.06 Hz

VELOCITY

MAX = 43.88 cm/s
FILT = 0.06 Hz

DISPLACEMENT

MAX = 22.56 cm
FILT = 0.06 Hz

Fig. A-11
S234E MURORAN

ACCELERATION \[\text{MAX} = 250.00 \text{ GAL} \]
\[\text{FILT} = 0.06 \text{ Hz} \]

VELOCITY \[\text{MAX} = 31.47 \text{ CM/S} \]
\[\text{FILT} = 0.06 \text{ Hz} \]

DISPLACEMENT \[\text{MAX} = 20.82 \text{ CM} \]
\[\text{FILT} = 0.06 \text{ Hz} \]

Fig. A-12
S241N MURORAN

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY

MAX = 15.31 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 7.32 CM
FILT = 0.06 HZ

Fig. A-13
Analysis of Strong-Motion Accelerograms

S241E MURORAN

ACCELERATION

Max: 250.00 G
Filt: 0.05 Hz

VELOCITY

Max: 15.19 CM/S
Filt: 0.06 Hz

DISPLACEMENT

Max: 13.42 CM
Filt: 0.06 Hz

Fig. A-14
S271N MIYAKO

ACCELERATION

MAX = 250.00 gal
FILT = 0.05 Hz

VELOCITY

MAX = 11.80 cm/s
FILT = 0.06 Hz

DISPLACEMENT

MAX = 10.97 cm
FILT = 0.06 Hz

Fig. A-15
S271E MIYAKO

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY

MAX = 12.35 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 11.17 CM
FILT = 0.05 HZ

Fig. A-16
SO74N SHIMIZU

ACCELERATION
MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY
MAX = 25.20 CM/S
FILT = 0.06 HZ

DISPLACEMENT
MAX = 13.61 CM
FILT = 0.06 HZ

Fig. A-17
S074E SHIMIZU

ACCELERATION
MAX= 250.00 GAL
FILT= 0.06 HZ

VELOCITY
MAX= 25.24 CM/S
FILT= 0.06 HZ

DISPLACEMENT
MAX= 12.58 CM
FILT= 0.06 HZ

Fig. A-18
IA04N TAFT

ACCELERATION

MAX = 250.00 GAL
FILT = 0.06 HZ

VELOCITY

MAX = 25.36 CM/S
FILT = 0.06 HZ

DISPLACEMENT

MAX = 9.93 CM
FILT = 0.06 HZ

Fig. A-19
FOURIER SPECTRA S265N

ACCELERATION
T (MAX SPCT) = 0.19 SEC

VELOCITY
T (MAX SPCT) = 1.28 SEC

DISPLACEMENT
T (MAX SPCT) = 1.28 SEC

Fig. A-20
FOURIER SPECTRA

ACCELERATION \(T (\text{MAX SPCT}) = 0.51 \text{ SEC} \)

VELOCITY \(T (\text{MAX SPCT}) = 0.73 \text{ SEC} \)

DISPLACEMENT \(T (\text{MAX SPCT}) = 5.12 \text{ SEC} \)

Fig. A-21
Analysis of Strong-Motion Accelerograms

FOURIER SPECTRA

ACCELERATION

VELOCITY

DISPLACEMENT

Fig. A-22
FOURIER SPECTRA

ACCELERATION $T_{\text{MAX SPFCT}} = 0.15$ SEC

VELOCITY $T_{\text{MAX SPFCT}} = 1.24$ SEC

DISPLACEMENT $T_{\text{MAX SPFCT}} = 13.65$ SEC

Fig. A-23
Fourier Spectra

Acceleration

Velocity

Displacement

T (Max SPCT) = 0.93 SEC

Fig. A-24
FOURIER SPECTRA

ACCELERATION \(T \text{ (MAX SPCT)} = 0.77 \text{ SEC} \)

VELOCITY \(T \text{ (MAX SPCT)} = 13.65 \text{ SEC} \)

DISPLACEMENT \(T \text{ (MAX SPCT)} = 13.65 \text{ SEC} \)

Fig. A-25
Analysis of Strong-Motion Accelerograms

FOURIER SPECTRA

ACCELERATION \(T \) (MAX SPCT) = 2.73 SEC

VELOCITY \(T \) (MAX SPCT) = 2.73 SEC

DISPLACEMENT \(T \) (MAX SPCT) = 10.24 SEC

Fig. A-26
FOURIER SPECTRA

ACCELERATION \(T \) (MAX SPCT) = 1.14 SEC

VELOCITY \(T \) (MAX SPCT) = 13.65 SEC

DISPLACEMENT \(T \) (MAX SPCT) = 13.65 SEC

Fig. A-27
FOURIER SPECTRA

ACCELERATION

VELOCITY

DISPLACEMENT

Fig. A-28
FOURIER SPECTRA

ACCELERATION

T (MAX SPCT) = 0.19 SEC

VELOCITY

T (MAX SPCT) = 10.24 SEC

DISPLACEMENT

T (MAX SPCT) = 10.24 SEC

Fig. A-29
FOURIER SPECTRA

ACCELERATION

T (MAX SPECT) = 0.49 SEC

VELOCITY

T (MAX SPECT) = 13.65 SEC

DISPLACEMENT

T (MAX SPECT) = 13.65 SEC

Fig. A-30
FOURIER SPECTRA

ACCELERATION
T (MAX SPCT) = 0.55 SEC

VELOCITY
T (MAX SPCT) = 5.85 SEC

DISPLACEMENT
T (MAX SPCT) = 13.65 SEC

Fig. A-31
FOURIER SPECTRA

ACCELERATION

T (MAX SPCT) = 0.42 SEC

VELOCITY

T (MAX SPCT) = 13.55 SEC

DISPLACEMENT

T (MAX SPCT) = 13.55 SEC

Fig. A-32
FOURIER SPECTRA

ACCELERATION \(T \text{ (MAX SPCT)} = 0.48 \text{ SEC} \)

VELOCITY \(T \text{ (MAX SPCT)} = 10.24 \text{ SEC} \)

DISPLACEMENT \(T \text{ (MAX SPCT)} = 13.65 \text{ SEC} \)

Fig. A-33
FOURIER SPECTRA

ACCELERATION \(T \) (MAX SPCT) = 0.20 SEC

VELOCITY \(T \) (MAX SPCT) = 13.65 SEC

DISPLACEMENT \(T \) (MAX SPCT) = 13.65 SEC

Fig. A-34
FOURIER SPECTRA

ACCELERATION T (MAX SPCT) = 0.19 SEC

VELOCITY T (MAX SPCT) = 13.65 SEC

DISPLACEMENT T (MAX SPCT) = 13.65 SEC

Fig. A-35
Analysis of Strong-Motion Accelerograms

FOURIER SPECTRA

ACCELERATION

T (MAX SPCT) = 1.28 SEC

VELOCITY

T (MAX SPCT) = 1.29 SEC

DISPLACEMENT

T (MAX SPCT) = 13.65 SEC

Fig. A-36
FOURIER SPECTRA

ACCELERATION

PERIOD (SEC)

VELOCITY

PERIOD (SEC)

DISPLACEMENT

PERIOD (SEC)

Fig. A-37
FOURIER SPECTRA

ACCELERATION
T (MAX SPCT) = 0.73 SEC

VELOCITY
T (MAX SPCT) = 2.73 SEC

DISPLACEMENT
T (MAX SPCT) = 13.65 SEC

Fig. A-38