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 Analysis of Hydraulic Resistance for Mobile Bed Channels 

                            By 

                 Masanori  MICHILIE and  Allen W. PETERSON* 

                                  Abstract 

   Extensive studies, experiments and field observations on sediment transportation in mobile 
bed channels have been carried out for estimating the rate of sediment transport and the bed 
roughness in river channels. Nevertheless, it is difficult to predict accurately these quantities. 
This paper treats an approach to predict friction factors in alluvial channels based on a 
number of experimental and observational data collected from various fields. It was clear that 
multiple parameters should be used to estimate accurately friction factors in alluvial channels. 

1. Introduction 

  The prediction of hydraulic resistance in alluvial channels, which is very impor-
tant for the design of river and channel improvements, is one of the most difficult 

problems at the present time. This difficulty arises from the occurrence of various 
kinds of bed configurations on the loose boundary with the change of flow stage, 
because these bed configurations severely affect the hydraulic resistance to flow. In 
other words, in rigid boundary channels the roughness height of flow does not 
change and remains fixed, but in alluvial channels the roughness height, which is 
formed by the irregularity of sand waves, changes with the intensity of flow. There-
fore, since the roughness height in alluvial  channels is a function of flow intensity 
which has not been determined yet, this fact makes a main objection to the predic-
tion of hydraulic resistance. 

  Extensive studies have been carried out for establishing the approach to the 

prediction of friction factors in alluvial channels. Since the content of these studies 
is reviewed in detail in a paper by a Task Committee of ASCE", only outlines of 
these approaches are presented herein. The approaches for predicting friction factors 
can be classified into three types as (  i) the regime  theory''''', (ii) the approach 
which divides total hydraulic resistance into two parts of resistance due to the skin 
friction and the form  drag"" and (iii) the mean velocity formula of exponential 

 types"i”. 

( i ) In the regime theory, mainly based on the analysis of canal data, experimental 
     flume and natural river data have hardly been treated. Hence, to extend it to 

     experimental flumes and natural rivers, it should first be checked by using 
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     various kinds of data in alluvial channels. 

(ii) The approach which divides total hydraulic resistance into two parts of resist-
     ance, first proposed by Einstein and  Barbarossa'', is 'the most theoretical of 

     these approaches. The adaptability to various kinds of data has been examined 

     and it has been modified. As shown by Galay and  Cheung8' for some river 

     data, however, it is not always consistent although it appears to be the most 
     reliable. 

(iii) The Manning formula is the most famous of all the mean velocity formulae in 
     this kind of approach. The Manning's coefficient is not constant but changes 

     with the stage of flow. Hence, in order to apply it to the estimate of flow 

     velocity in alluvial  channels. the coefficient should be determined based on 

     some knowledge of hydraulics in alluvial channels. For this purpose Liu, 
 Hwang° and Garde,  Raju" attempted to investigate relations between the 

     mean velocity formula of exponential types and bed configurations, but their 

     results are not always satisfactory. 
   As shown by Cooper, Peterson and  Blench'', since many approaches described 

above have been investigated using the individual collection of data with narrow 

range in scope, they often derive incorrect results when they are applied to condi-

tions falling outside this scope. 

  Peterson and  Howells" collected various data describing the behavior of flow in 
alluvial channels from different places, which include measurements for rivers, canals 

and flumes. In this paper, the hydraulic resistance to various kinds of flow stages 

are discussed using their data with observations of bed configurations. 

2. Dimensional analysis 

  The phenomena occurring in alluvial channels are controlled by many factors, and 

accordingly they seem to be too complex to describe them by simple mathematical 

equations. For that reason, when analyzing various phenomena in alluvial channels 

the approach of dimensional analysis has been used extensively as the most useful 

tool. 
  The variables which determine the phenomena occurring in alluvial channel flows 

consist of flow properties, physical properties of bed sediment and water, channel 

properties and gravitational acceleration. More fully, the flow properties are water 
depth h, mean velocity  V, flow discharge Q, and concentration of transported bed 

material C. Physical properties of sediment and water are median diameter  D50, 

sediment density ps, geometric standard deviation on size  go, fluid density p and 

kinematic viscosity  v. Channel properties are channel width B and bed slope S and 

gravitational acceleration g. 
   As shown by Kennedy and Brooks'", various sets of dependent variables can be 

chosen from the variables in flow properties and bed  slope.  In this paper, let us 
choose mean velocity and sediment concentration as dependent  variables  : 

            C,  V  =  f (h,  S,  D  so, p,  ps,v,g,  ae,  B) (1)
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in which f,, means only  "some function of". In Equation 1, the shape effect of par-

ticles and plan-form geometry in channels are not considered by assuming their 

effects are secondary. Using the method of dimensional analysis and rearranging, 

Equation 1 can be written in terms of non-dimensional variables  as  : 

          C, f=hs( ,ri,3\4 D50 Bal,  es) (2)           D„'h' 

in which  r,,=non-dimensional tractive  force=  14,2  /(ps/  p-1)g.D„,  u*=shear velocity 
 =  Vght, and  f=Darcy-Weisbach friction  factor=8/(V/u02. Many investigators inde-

pendently introduced equations of non-dimensional forms similar to Equation 2. 
Recently, Cooper, Peterson and Blench analyzed the flume data in alluvial channels 
and got function relationships  as  : 

 fn(Fr,   h   ,C)=0 (3a) 
 Dso 

 fm(S,h,,,C)=0  (3b) 
in which F,=Froude number= V /1/g-J2, and S is used instead of  r*. Their scatter 

plots given by Equations 3a and 3b showed good correlation on analyzing flume data 
 although  ilyg  D5o/v,B/h,ab,  ps/p were neglected. 

  Most investigators analyzed the various phenomena in alluvial channels flows by 
using two or three variables but  Vanoniw attempted to classify the bed configura-
tions with a functional relationship as  : 

           bed  configurations=f4F,, rt_o,sv.gpso) (4) 
If we consider bed configurations as one variable, the scatter plot suggested by 

Equation 4 forms four-dimensional plots. It was shown from these plots that the four 
-dimensional plot is useful for classifications of bed configurations . 

  For simplifying Equation 2,  B/h,  ab and  pslp can be omitted from this equation. 

These omissions are justified by reason that the effects of B/h appear to be negligi-

ble when  B/h is in excess of about 4. Based on the study of  Cooper"',  ab is ignored 

in Equation 2. The effects of  ps/p are omitted since the value of  ps/p for the data 

used in the analysis is practically constant. Based on these facts,  Equation 2 can be 

rewritten  as  : 

 fit;   h  ,t+,sibig D50)=0                                                           (5a)  Dso
ft,(C,  h ,r* 311'g D50)-0 (5b) 

   Furthermore, when  'ylvgD„IL), which represents the effects of viscosity and 

sediment size on flow, is eliminated from Equations 5a and 5b, one can obtain the 

following  equation  :
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 fn(f,C,  ,  t-*)  =0 (6)  D50 

Equations 5a, 5b and 6 are used in the analysis. 

3. Analysis of data 

In order to obtain scatter plots suggested by Equation  5a, only the alluvial channel 
data with observations of bed configurations are used in the analysis. The dramatic 
change of friction factor is closely related to the change of  bed configurations. 
Hence it seems to  be reasonable to investigate the fricton factor by means of the 
knowledge of hydraulics of bed configurations and the parameters in Equation 5a. 

  In Figs. 1-7, the median size  D50 is used instead of the parameter  31,14D50/v 

in Equation 5a because  3,4  D50/1, is practically equivalent to  D55. Bed configura-

tions are classified into four  types  : plane bed, in which bed sediment hardly moves, 
ripples, dunes and upper flow regime in which transition, flat bed, antidunes, standing 
waves and chute and pool are included. The data in which  B/h is greater than 4 are 

plotted on graphs of f against  hi  Dso for several ranges of  r,„ and bed configurations 
and the ranges of  D5, are shown by different symbols. 
CASE 1  :r,,50.  4 

  As shown in Figs. 1 4 the scatter plots of f against  hID50 can distinguish 

upper  flow regime from ripples and dunes when using the parameter of  hID50 to 
determine the boundary between the former and the latter, and the boundary lines 
are shown by dashed  lines. Furthermore, in this region f can be uniquely deter-
mined by using the parameters in Equation 5a. This fact means that the parameters 
suggested by Equation 5a, which are determined easily by  S, h,  D50 and other con-
stant physical quantities, are useful to predict the friction factor in this region.    
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  In Figs. 1-2, the scatter plots of f against  h/D50 are shown for a  low value of 

 z-. in which sediment movement is not active. Therefore, in this region the equivalent 

roughness height is to be equal to the scale of sediment size when the logarithmic 
velocity distribution is used as a hydraulic resistance law: 

       f[2 .5 la(118 /hk,)]2(7) 

in which  ks=equivalent roughness height and  l.=  natural logarithm. In the region 

of  r.<0.09, k, in Equation 7 is approximately equal to 4  D55 when  hips, is greater 
than 20. When  hips, is less than 20,  ks is not proportional to  D55 but proportional 

to h, and f is held constant. Ripples data in Fig. 2 are different with the trend 
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            Fig. 5 Relationship between f and  h/D50 in range 0.  4<r,<0.6 

described above, but this discrepancy seems to be due to the wide band width of 

 r* and some instability  of transition from plane bed to ripples. Furthermore, 

although it is difficult to distinguish upper flow regime from one part of plane bed, it 
does not make an  objection  for predicting f because f can be determined uniquely 

in these two bed configurations. 
  In Figs. 3 4, in the case of which bed sediment is transported actively, f can 

 be represented by a single-valued function of  hiDs, when using  r. and  1),,, as the 

third and fourth parameters. In the case of  D„<0. 3 mm, even if both ripples and 

dunes are included in this region,  f can be given by Equation 7 and  ks is equal to 
180  D5, at  IT*=  0,  09  —0,  2 and to 250  D50 at  r,,  =  0.  2—Q 4. Even if the bed configura-

tions in this region belong to dunes, f in dunes has the same characteristics as that 
of ripples.
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  It was shown by  Yalin") that the scale of ripples is not proportional to water 

depth but proportional to sediment size. This fact herein can be proved indirectly 

through the consideration of f because  ks, which represents a certain kind of scale 

of sand waves, is proportional to  As. On the other hand, in the case of  Dss>0.  3  mm 
and lower flow regime, f is independent of  hInso and kept approximately constant. 

This fact means that  ks in Equation 7 is proportional not to  D5  0 but to h. This is 

consistent with the results obtained by Yalin through consideration of sand waves 

geometry that the scale of dunes is proportional to h. Since we have little knowledge 
of upper flow regime, it would be difficult to have a detailed discussion of f in this 

region. 
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  The data in this region are shown in Figs. 6 and 7. Kennedy and Brooks 

suggested that in some regions f is not a single-valued function of hID50 but a 

multiple-valued function even if  z. and  D50 are used as parameters. This means 
that in some regions two different bed configurations of lower flow regime and upper 

flow regime exist on scatter plots even if  h;  D55,  r, and  D50 are kept constant and 

there exist different friction factors  cm  responding to each bed configuration. There-
fore, in order to obtain f-diagrams, the parameters in Equation 5a are not useful and 

it is impossible to determine f uniquely. Figs. 6 and 7 are rewritten with the 

parameters of Equation 6 in which C is included instead of D50 since  A, is not so 
effective for classifications of bed configurations in this region. When using C as the 

fourth parameter, the multiplicity of f can be cancelled. Furthermore, f in lower flow 

regime can be represented by Equation 7 as shown in Figs. 6 and 7. 

CASE 3  : 0.  4<r,,<0, 6 
  This region belongs to the transition between Case 1 and Case 2 as shown in 

Fig. 5, and the influence of C and  D50 on f is almost the same. In the case of 

 D5,50.  3  mm, f can be represented by Equation 7 and  k, is proportional to  D50. On 
the other hand, in the case of  D55 >O.  3  mm, f is kept constant on lower flow regime 

and upper  flow regime, respectively. 

  The data of lower flow regime and  D50<0. 3 mm are plotted in Fig. 8. The 

average value of f in Fig. 8 can be represented by Equation 7 when substituting 

 )4=200  D5  0 into Equation 7. It  is interesting that the value of  ks is equal to that of 
the maximum wave height of ripples given by Yalin. Furthermore, a certain region 

of the regime theory are shown by hatching parts in Fig. 8. It is concluded from 

this figure that Equation 7, in which  k,=200 D50, can be extended to the regime 

theory for the region of  A5�0. 3 mm.  
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                      Summary and Conclusion 

  The  data in alluvial channel flows have been investigated by means of dimensional 
analysis and based on the knowledge of hydraulics on the scale of sand waves, and 

the following results have been obtained. 

  When  r,�0. 4, the four-dimensional scatter plots given by Equation  5a are availa-

ble for predicting the friction factor. When using the parameters, the friction factor 

has a single-valued function of  hID5D and can be determined uniquely. In the case 

of  r,<0. 09, for the region of  h/D5o>20, f can be represented by Equation 7 when 

substituting  le,—  4D50 into Equation 7. On the other hand, for the range of  h/D5o<20, 

f is kept constant, In the case of  0.  09�r*SO.  4, for the range of  Dso<0.  3  mm and 
the lower flow regime, f has the characteristics of dunes that k, is proportional to 

water depth. 
  When  x*>0. 6 and the parameters given by Equation 5a are used for the analysis 

of f, f has a multiple-valued function of  hID50. Hence, Equation 5a is not available 

for predicting f but Equation 6, in which the charge of sediment C is included 

instead of  D,,, can produce a  single-valued function for f in this region and is 

useful.  In the case of lower flow regime, f has the characteristics of ripples that 
k, is proportional to sediment size. 

  When  0.  4<r*<0.  6, this region belongs to the transition between the two above 

cases. In the range of  D5050. 3 mm, f has the characteristics of ripples and can be 

represented by Equation 7. On the other hand, in the range of  Dso>0.  3  mm, f can 

be kept constant in lower flow regime and upper flow regime. 
  For the data of the lower flow regime and  Dso�0.  3  mm,  f can be approximately 

represented by Equation 7 when substituting  ks  =200D50. It was also clear that this 

relationship for f can be extended to the regime theory in the range of  Ds0�0.  3  mm. 

                             List of symbols 

 B channel width 
 C charge weight of transported bed material (parts per  100,000 by weight of water dis-

      charge) 
 D50 median diameter of bed material 

 f friction factor of  Darcy-Weisbach=8/(V/u*) 
 g gravitational acceleration 

 h water depth 
 S slope of energy grade line 

 ^ mean velocity 
 u* shear  velocitym/ghS 
 p fluid density 
 Ps sediment density 

 v kinematic viscosity of fluid 
 a  b geometric standard deviation of sediment 

 r* non-dimensional tractive  force—u*21(p,Ip-1)gD60 
 F, Froude  number=V/47.5 

 ks equivalent roughness height 
 In natural logarithm
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