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                             Abstract 

    Usually some cohesive materials are contained in bare slopes, where the  rill  like streams are 
  formed in the process of surface water erosion. For the prediction of the sediment run-off from 

  such a slope, it is important to know the arrangement and scale  of  streams and soil property against 
  erosion. In this study a new theoretical model is offered to obtain the shear distribution along 

  the channel perimeter with an arbitrary cons section, and the erosion process of the cohesive 
  material bed  is investigated. The theory is examined by flume experiments using bentonite. 

    Main results are as follows. 
    The rate of erosion is related to the local shear. 

   Shear distribution in a uniform flow is obtained by differentiating the area between the normals 
  to the wall with the wetted perimeter. 

   Bed unevenness in the lateral direction may be amplified or reduced according to the shape of 
  the unevenness and the flow conditions. The criterion is obtained in the domain of  a/ Hand  and  L/H, 

  where a and L are the wave height and length respectively and H is the water depth. 
    A stream has an equilibrium cross section corresponding to the hydraulic conditions. When the 

  rate of erosion is proportional to the shear velocity, the ratio of the water surface width to the 
  maximum water depth is about 4 in the equilibrium state. 

1. Introduction 

  Usually some cohesive materials are contained in bare slopes, where erosional 
characteristics distinctly differ from those on the noncohesive bed. For example, 
the angle of repose is one of the restriction for the shape of the noncohesive bed, but 
there is not such a restriction for the cohesive bed. Consequently, when the stream 

position is fixed on the cohesive bed, the bed is locally eroded there, and deep ditches 
are formed and even overhangs can be seen. Rills often observed on bare slopes 
are supposed to be the products of such a process. 

  Another feature of erosion on the cohesive bed is that the sediment supply is less 
than the transport capacity when the bed length is not sufficiently long, because of 
the large resistance against detachment. So, flow energy usually acts on the bed as 

the erosional agent without sediment deposition and the bed level is always lowered. 
  The study on the erosion of such cohesive beds is not advanced compared with 

that of noncohesive beds, and the only empirical information under some restricted 
conditions is used to predict the critical velocity for erosion or sediment run-off. 
According to the report of ASCE,  l968'), the previous studies were directed to clarify 
the erosional resistance of cohesive soils, soil loss from the land, design of the stable 
channel etc.. But the information about the arrangement and the cross sectional 
form of the streams on bare slopes, which are necessary to predict the sediment run-
off from the hydraulic view points, have not been obtained.
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  In this study, theoretical and experimental considerations about the transforma-
tion process of the channel cross section including  rill development are discussed. 

2. Rate of erosion of the cohesive material bed 

 It is known that the rate of erosion of clay has a positive correlation to the tractive 
force and rapidly varies near the one named critical tractive force, for the fixed 
condition of clay and water quality etc.. However, the erosion of clay is not only 
a simple mechanical phenomenon but also an electro-chemical one, so no theoretical 
approach has been succesful. Some empirical approaches to correlate the critical 
tractive force to the shear strength of the clay mass, plasticity index, dispersion ratio 
etc. have been  tried2)3), but the relation differs from case by case, and it is necessary 
to do a sample test for each respective soil type. 

 Partheniades4) took up sediment concentration also the parameters relating to 
erosion and derived the reltaion between tractive force and rate of reosion from 

probabilistic consideration, but it is not sufficient to be applied generally. 
 Then, the authors carried out an erosion test of bentonite. The relation between 

tractive force (r) and rate of erosion (E) is shown in Fig. 1. The water content 
and saturation ratio are considered to be indicies representing the condition of ben-
tonite. Fig.  1, corresponding to the fully saturated condition, shows that the rate 
of erosion of bentonite considerably depends on the water content, and the smaller 
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                    Fig.  1. Rate of erosion related to the tractive force.
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the water content, the larger the erosional resistance is. For the fixed water con-
tent, the rate of erosion is proportional to the shear velocity in the range of high 
tractive force. 

3. Shear distribution in an arbitrary channel cross section 

 In a uniform flow, if the effect of the secondary  flow is negligible, shear stress 
does not act on the orthogonal planes to the isovels as shown in Fig. 2(a). So that 
the gravity component acting in the fluid mass between those orthogonals is balanced 

                                           i%&coml.  _100:415 
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             Fig. 2. Various calculation methods of tractive force. 
                  (a) With orthogonals of  isovels. 

                   (b) With vetricals  (It': Local water depth, 8:  Wall inclination). 
                  (c) With  orthogonals of equi-distance lines from the wall. 

with only the shear along the wetted perimeter so-called tractive force. Conse-

quently, the tractive force r is represented as follows, 

 r  pg(dA/ds)I   ( I  ) 

where, A is the area between orthogonals, s is the wetted perimeter, p is the fluid 
density, g is the acceleration of gravity and I is the longitudinal channel slope. 

  It is very difficult to obtain isolves in an arbitrary channel cross section, so that the 
orthogonals are usually replaced with the verticals as shown in Fig. 2(b). Then, 
the shear distribution is approximated by the next equation. 

 r=--pgh#2 cos 0   (2) 

where,  11' is the local water depth and 0 is the inclination of the wall. This ap-

proximation is, however, unreasonable, not only because the shear acting on the 
vertical side wall can not be evaluated but also because the shear at the deep is max-

imum regardless of the curvature. Thus, the authors propose to replace isovels with 

equi-distance lines from the wall as shown in Fig. 2(c), by which it becomes possible 
to obtain the shear distribution graphically, and to represent the sheltering effect 

at  the  concaves and the shear concentration at the convexes. For the orthogonals 
coincide with the normal lines to the wall, Eq. (1) reduces to the following form, 

as long as those normal lines do not cross one another. Using the symbols shown in 
Fig. 3, the equation is,
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Where,  h is the maximum water depth, X and Y are the coordinates of the wall 
normalized with  h. One of the distinctive features of this equation is that the 
curvature of the wall is introduced by the existence of the second order derivative 

 d2Y/dX2. When both of  dY  IdX and  PY/dr are small, this equation coincides with 
Eq. (2).  

I 

                                                                                   •  I  

I 

 N  aim= [0,4cot8/2I —F—,(0, h)r.(x,h)    0____A 
              ,(x-f h -AO tone, h)                                          / 

              (C,y„(S))--  From  E4.(2) /  ° 
              =(5344.0C-C /COW) 0.5 

X=xih a, 

    A /ack'sliv-/4  Y=y/h/ /dx't/.9° 

     Y / (x,y(x)) 1.0                         :IF g 4 4' 1 es 
                             ( SVC))----Fromcomputer gene-                                            / 2;"IsTil'134::Teinit." 

 o  s  1,5

_____„../technique 
 •BY"Um-or-the-                                                                                           Ry

amethod 

 0  after Replogleat   x  al.5) 

   Fig. 3. Definition sketch for Eq. (3). Fig. 4. Various determinations of shear stress 
                                                    distribution in a circular channel. 

  Fig. 4 shows the shear stress distributions determined from various methods, in a 
circular channel with width-depth ratio 3. Eq. (3) is much better than Eq. (2), 
though the mean tractive force coincides in both equations, i.e. 

 f  =CPpgdAIds =                  118 p gh'Icos  Ods  = pgAl—pgRI   ( 4  ) 
   PJods Pa P 

where, P is the wetted perimeter, B is the water surface width and R is the hydraulic 

radius.
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4. Amplification and reduction of the lateral bed unevenness 

  Generally, there are various scales in the lateral unevenness on the slope or on the 
channel bed. When the rate of erosion at the trough is larger than that at the ridge, 
the unevenness grows, and in the case of the contrary the unevenness reduces. There-
fore it is important to compare the rates of erosion at the trough and ridge of the 
unevenness. 

4.1 Theoretical approach 

 For the convenience of the analysis, the form of the unevenness is assumed to be 
approximately represented by a single sine-wave shown in Fig. 5, i.e. 

 cU  
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                        Fig. 5. Definition sketch for Eq. (5). 

 =  a  sin  (27re/L)   ( 5  ), 

where, a is the amplitude, L is the wave length and  (E,  n)=(x—L/4,  y  —a). Then 
the shear distribution becomes from Eq. (3), 

    r   —  {l  +52  cos'  co  +  (52/2a)  sin  •  PI  rP — min[l —a sin co,a (2C°±2r1r 
 pgHl '/1 +52 cos' 9)  252  cos  co   

(  6  ) 

and the mean shear value derives from Eq. (4), 

 f A        =CL/4(H—v)delizra+(dqde=   
  PellHPJ-114J-a4vie/2-V1+52E (sin (tan-' 

 (  7  ), 

where,  a=a/H,  6=2na/L,  H  h—a,  =  2,re/L and  E  (sin  (tarrl  a)), 

  V1 —sin'  (tan-1  8)  sin' codc a. Then the ratio of the local shear stress to the mean 

one becomes, 

 r 2 I +82    = E (sin (tan-I(3)),V1+ a' cos' pv  1+  82  COS2 +82sin yo• Fl• F'  (8). 
 Fig. 6 shows the shear stress distribution obtained from Eq. (8) on the furrow-like 

stream bed with various wave lengths and heights.
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                Fig. 6. Shear stress distribution on the furrow-like stream bed. 

 By the way, the rate of erosion correlates positively to the shear. So, when the 
shear at the trough is larger than at the ridge, the unevenness amplifies, and when 
the shear at the ridge is larger than at the trough, the unevenness reduces. The 
shears at the ridge and at the trough are obtained from Eq. (8) by replacing  co with 

 +w/2, i.e. 

 rridgelpgHl =(1 +-1Ka(1 — a)} (1 — ce)    ( 9  ) 
 '11(2Ka)  [(2a+1)2?  1  ±  (4/K)] 

 1-trough/Jogai  ='1  (10)              1 —2Ka (1 ±a) } (1 ± a) [(2a+1)2..._1+ (4/Kfl 
where, K (S a)2= (27:111L)2 

 Fig. 7 shows the stability diagram derived from Eq. (9) and Eq. (10). The une-
venness grows in the region indicated by the upward arrows, reduces in the region 
indicated by the downward arrows, and is in equilibrium on the boundary between 

them and on the axis of the abscissas. If the form of the unevenness remains sinu-
soidal and the wave length and water depth do not change in the process of erosion, 
any point on Fig. 7 moves to the direction indicated by the arrow there, i.e. the 

 1,0  
                                                     "C

t > T r 

                                             'Namplification 

 Fi  t,  <  -tr 

                                                  • 

           reduction• 

         0.5  I  t 

         °PA.              xtj, 

                                          — 

                     y a(l-  coe2ax  /L)                                                      ?
ts 
   Q

0  05 I  (L/4)/  H 1.5 

                 Fig. 7. Stability diagram  of  the furrow-like stream bed.
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unevenness reduces to zero in region I; grows to split itself in region II; and approaches 
to the equilibrium state in region III. Though both the solid and broken lines in 
Fig. 7 indicate equilibrium states, the former indicates the stable equilibrium state 
in the sense that the deviation from it diminishes and the latter indicates the unstable 
equilibrium state in the  sense that the point near it goes away toward another state. 

  Putting the depth from a datum line to the ridge of the bed  z,., and that to the 

trough z, as shown in Fig. 8, the amplitude of the unevenness is, 

 z  _  _  Zr- 

 = 

 Zt 

                           Er  2a 

 E  1 
                    Et 

                        Fig. 8. Definition sketch for Eq.  (11). 

a = (z,—z,)/2  (11) 

whose rate of change is, 

 daldt  = (E,—E,)I2 2—1(dEldu*)• du*  (12) 

where,  E,=dz,/dt,  Et=dz,Idt,  u*, and  u,Ki represent the shear velocity 
at the ridge and at the trough respectively. 

 When the relation between shear velocity and rate of erosion is represented as 

 Emu*  (13), 

Eq. (12) becomes 

 (daldt)IE„,4  (n/2)  •  (Au*IU*)  (14), 

where n is the constant concerned with soil nature and shear range,  E, is the rate 
of erosion corresponding to  U* and  U*—N  /  grn. 

 As mentioned above,  n is nearly equal to unity in the range of high tractive force 
in the case of bentonite. 

 Substituting Eqs. (9), (10) into  du* in Eq. (14), and putting  n=1, the diagram of 
amplification rate is obtained as shown in Fig. 9. In Fig. 9 upward arrows represent 
amplification and downward arrows represent reduction of unevenness, and the
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                     Fig. 9. Amplification rate and the time required. 

length of arrows are proportional to the rate of those amplification or reduction i.e. 
values of Eq. (14). 

 Integrating the reciprocal of the amplification rate, the time required for the 

change of the amplitude is obtained. Putting the initial point of integration at the 
state where the amplitude is half of the mean depth, the time T is, 

  T  —dtdatr2U* d °) (15). 
 HJEaH'oda1/2  ndu*  \H 

 The numerals on the dotted lines in Fig. 9 show the values of Eq. (15) in the case 
 of  n---1 and mean depth  H  being time-independent. 

 As shown in Fig. 9, the rate of amplification or reduction is small near the bound-
ary between the two regions and in the range of small amplitude. For the constant 
furrow intervals L, there is a  certain wave height in which the reduction rate  ( I  daldt  I  ) 
is maximum in the region of reduction, but the higher the wave height is, the faster 
it grows in the region of amplification. For the constant wave height, the unevenness 
with narrower intervals is easy to reduce, and that with wider intervals is easy to 

amplify. 
  On the other hand, the average bed level lowers in the process of erosion. For 

the  sinusoidal,  stream bed, the average bed is equal to the middle of the ridge and 
trough, so the depth from the datum line to the average bed level  z as shown in 
Fig. 8 is, 

 =  (z,±z,.)12   (16), 

and the lowering rate  E is, 

  =  aldt =  (E,±E,)12:=7.E67.1  (17), 

where  E(1.) is the rate of erosion corresponding to the mean shear velocity
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 ti*[=(ust-i-u*,.)12]. Normalizing with  E, and using Eq. (13), E.q (17) becomes, 

 ElEc,,(II*IU*)"  (18). 

  Further, the average lowering height Z from the state in which the amplitude is 
half of the depth  His, 

 Z1 Ca di-da=1Ca  E   da=2•a*4-1  a* da  (19).   H HJillida H.111/2daldt Jva n U* du* H 

In Fig. 10, arrows represent the scouring rate in Eq. (18) and the numerals on the 
dotted lines represent the scouring depth in Eq. (19), using Eqs. (9), (10) and put-
ting  n=1. 
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                   Fig. 10. Average scouring rate and the scouring depth. 

  Some of the unevennesses of the stream bed among various scales grow to split 
its water surface, which is supposed to be the mechanism of  rill generation on the 

bare slopes. By the way, the width of stream is not practically infinite, so the scale 
of the lateral unevenness is restricted as follows, 

 LIB<1/2  (20) 

where, L is the wave length (furrow interval) of the lateral bed unevenness and B 
is the water surface width of stream. As sohwn in Fig. 9, when the amplitude is 
infinitely small, the bed is stable, neutral or unstable for each of the next three con-

ditions respectively, 

 (L14)111Vtir141.1  (21). 

 Among the unevennesses satisfying the unstable condition, those which grow to 
split their water surface must moreover satisfy the next condition, 

 (L/4)/H>  %.1.2   (22).
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Therefore, the condition under which such unevennesses can exist is from Eqs. (20) 
and (22), 

 BIH>27c1-  \/__1  (23). 

 As far as the stream satisfies this condition, it will be split into more parts in suc-
cession. But the pattern of the split depends on the initial distribution of the wave 
length or height, and is not necessarily unique for the given hydraulic or soil con-
dition. The time required for the split also depends on the initial condition, and 
rapidly increases when the initial height is small, as shown in Fig. 9. 

 In the foregoing argument, although the unevenness may be composed of various 
different scales, the amplification and reduction model derived from the single sinu-

soidal wave was applied, so that more consideration will be necessary, for example, 
about the phase effect in the superposition. 

4.2 Experimental approach 

  To examine the foregoing theoretical results, some experiments were carried out 

(Series A). As the bed material, the mixture of sand, bentonite and water with 
the ratio of 9:1:3 in weight was used. Sand diameter was  I mm or  0.3  mm and 
nearly uniform. So, the pores of the sand were nearly filled with the saturated 

bentonite whose water content is about  300%. The mixture was set in the inclined 
flume with furrow-like wavy surface and the water was supplied from the upper-
end of the flume. The level of the water surface and the bed form were measured 
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     Fig. 11. Growing and attenuating process of the furrow-like stream bed (Exp. Series A).
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                 Table  I. Experimental conditions and results (Series A). 

       Run Run Run Run Run Run Run Run Run Run Run Run Run Run 
     1 2 3 4 5 6 7 8 9 10  11 12 13 14 

 Q(1(s) 0.1 0.6 0.15 0.6 0.15 1.2 0.6 0.15 0.6 0.3 0.15 6.6 6.6 4.3 

 /  1/5 1/20 3/10 1/20 3/10 1/40 1/20 3/10 1/20 1/5 3/10 1/20 1/20 1/20 

 H  (cm) 0.17 0.85 0.35  1.1 0.4 2.5 0.8 0.45 0.9 0.4 0.3 1.5 1.0 0.8 

 L  (cm) 7 0.5  l 2 4 100 4 

a (cm) 0.25 0.50  

t  (min)  10 5 5 10 5 5 5 5 5 5 5 16 16 48 
 a (cm) 0.05  0.04 0.04 0.15 0.15 0.25 0.23 >11 0.25 0.38  >11 0.10 0.60 0.45 

 t  (min) 20 10 10 20 10 10 10 10 45 45 
 a (cm) 0.07 0.04 0.04 0.10 0.07 0.22 0.20 0.25 0.15 0.45  

t  (min) 30 15 15 15 15 15 75 
 a (cm) 0.10 0.07 0.18 0.19 0.15 0.25 0.40  

t  (min) 5  15 15 48 
 Blh 2.82  i 3.73 3.37 3.41 

with time, and are shown in Fig. 11. Experimental conditions and results are sum-
marized in Table 1. 

  The outline of Exp. Series A is qualitatively described as follows: 
  When the intervals of furrows are narrow as in Run 2-Run 5, the bed is eroded 

much faster at the ridge than at the trough, and the wave height rapidly reduces. 
On the other hand, when the intervals are wide and the water depth is comparable 
with the wave height, as Run 11, the bed is eroded faster at the trough than at the 
ridge, and the wave height grows until the stream splits into parts. When the in-
tervals are medium as Run 6-Run 9, the bed changes into the form with sharp 
ridges, but thereafter it lowered holding a nearly constant form. 

  These features are explained from the shear distribution already shown in Fig. 6. 
  In Fig. 12, the process of Exp. Series A are traced on the plane of Fig. 7, which 

shows the theory can be applied to some extent quantitavely, too. Numerals in the 
figure indicate the time normalized by the mean water depth and the mean lower-

ing rate of the bed. 
  The trace of Run  8 is complicated, in that the wave height grows to split its water 

surface immediately after the initiation of the water supply, thereafter the split parts 

join together again to reduce the wave height. This process is understood as fol-
lows: In the early state, the rate of erosion was larger at the trough than at the 
ridge, the level of the water surface lowered faster than the level of the ridge, which 
became exposed above the flow, but the individual split stream parts were too deep 
and narrow compared with the equilibrium form corresponding to the hydraulic 

conditions. So they were widend to scour the foot of their partition walls. Then, 
the overhung partitions were destroyed for the streams to be joined together. There-
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             Fig. 12. Trace of Exp. Series A on the wave  length-amplitude plane. 

fore, it is supposed that the shear at the ridge came to be larger than at the trough, 

as Run 2—Run 5 and Run 13. 

 On the other hand, in Run 11 and partly in Run 14, after the unevenness had 

grown to split into parts in the early stage, the individual split parts lowered keeping 
approximately constant forms. In this case it is supposed that because the indi-
vidual stream may be flatter than the equilibrium form at the moment of split, it 
approaches to the equilibrium state, being eroded at the center to reduce the width. 

If the split streams join together again, it may be not by the widening but by the 

meandering of them. 
 Run 10 is the medium one between Run  8 and Run 11, 14. 

 It is not because of the change of wave length (L), but because of the change of 

water depth (H) i.e. because of the change of the flow resistance accompanied with 

erosion, that the abscissa of this figure slightly shifts as Run 9. It is the result of 
selective survival of the large wave length, that the abscissa largely shifts to the right 

as Run 2, 3, 4 and lately in Run 12. And it is because of the generation of new 

unevenness with smaller scales than the flume width on the initial  fiat bed whose 
wave length is regarded to be the flume width, that the abscissa largely shifts to the 
left as Run 1 and the early stage of Run 12. 

  Thus, in the actual erosion phenomena, there are various scales of unevenness and 

the prevailing wave length is not necessarily constant with time. 
  In this experiment, the condition such as Eq. (23) in which rills generate from a 

flat bed could not be confirmed. When the amplitude is small, the rate of growth 
is also so small, that experiments over a long time would be required to confirm it.
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5. Formation of the equilibrium  channel  cross section 

5.1  Transformation of the channel cross section 

 As mentioned before, the wall surface of a cohesive stream bed is eroded correspond-
ing to the respective local shear, and unless a kind of special  condition is satisfied, 
the  cross  section  is generally transformed in the process  of  erosion. Then it is nec-

essary to know the shear distribution in the cross section and the relation between 
the shear and the rate of erosion, in order to follow the process hydraulically. When 
the shear distribution is given by Eq. (1) replacing the isovels  approximately with 
the equidistance lines, and the retiring rate normal to the wall surface is related to 
the shear velocity using Eq. (13), the transformation of the cross section can be ana-
lized graphically. The law of resistance is necessary to  determine the  water depth 
from the given discharge and inclination, for the water depth must generally change 
in the process of erosion. 

 Here, we have several interesting problems; Is the equilibrium cross section al-
ways formed from an arbitrary initial one? What is the shape of equilibrium cross 
section like and does it depend on the initial condition? 

  In Fig. 13, the transforming process  of the cross sections with  parabolic initial 
forms is traced by a method of numerical finite differences. The shear distribution 
was calculated from Eq. (3), and for  the ratio of the rate of erosion to the  shear  ve-
locity and the coefficient of flow  resistance  f, the numerals shown in the figure were 

used to compare with the experiment described later. 
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                  Fig. 13. Transformation process of  channel cross section 

                         (simulated by method of numerical finite differences).
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  As shown in Fig. 13, when the initial cross section is narrow and deep, the width 
widens and the depth reduces. On the other hand, when the initial cross section 

is wide and shallow, deepening occurs and the width reduces. In this way, though 
the rates of transformation are different, the cross sections approach to the nearly 
equal equilibrium forms. 

  But the uniqueness of the equilibrium state found there is no more than that derived 
from smooth parabolic initial forms. From the wavy initial forms belonging to the 
amplification region mentioned above, it is supposed that after the stream is split 
into parts, they form their own equilibrium cross sections. The pattern of split will 

depend on the distribution of the wave length and wave height and the composition 
of the phase in the initial state. 

  The actual surface of the slope is irregular even just after the work, and not only 
in the initial form but also in the process of erosion, there are various irregular phe-
nomena. Therefore, in order to deal with the stream forming process generally, it 
will be necessary to introduce the statistical approach along with the deterministic 
one. 

5.2 Equilibrium channel cross section 

  In the previous section, the existence of the equilibrium channel cross section was 

clarified. In this section, the authors derive the equation to determine the equilib-
rium cross section and obtain the form of the cross section by solving the equation 
numerically, and examine it through experiments. 

  The condition that the stream lowers while keeping the same cross section is, 

 Oz/at =  E/cos  B = const.  (24). 

Substituting Eq. (13) and Eq. (3), Eq. (24) reduces to, 

   =±(dY)2_1 d'YFi.F.11 44171v.-la,                                       F = min[1 — Y, xdX 
                           dX    \dx/ 2  dX2\dyi 

 (25) 

where C is the ratio of the tractive force to pghl at the point of maximum depth. 
Fig. 14 shows the integration of Eq. (25) under the condition of  Y=O,  dY  IdX=0 

at  X=0 and  n=1. 
 When  C  <0.833, the solution rises vertically in the water, and the normals to the 

wall are entangled with one another. On the other hand, when  C  >0.833, the 
maximum bed level appears at  X  =-72, and the transverse wavy bed is obtained with 
the ratio of the furrow interval to the maximum water depth by about 4. But 
in that case, for the waterside does not appear, and the width of the stream is in-
finitely large, it cannot be the solution for the actual one with finite scales. Only 
when  C  t:0.833, does the ridge coincide with the water surface, and the closed equi-
librium cross section with the ratio of the water surface width to the maximum depth 

by 4 is obtained.
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                  Fig. 14. Theoretical equilibrium channel cross sections. 

 Thus the equilibrium channel cross sections obtained from this model are similar 
independent of the hydraulic parameters such as discharge or inclination of the 
streams. This result comes from the proportionality between the shear and the 
rate of erosion, thus the form of the cross section would change by considering the 
critical shear or the exponent n in Eq. (13). 

 Table 2 and Fig. 15 show the conditions and results of the experiment (Series B) 

carried out for the formation of the equilibrium channel cross section with cohesive 
bed material. The material in Run 1-9 is the mixture of sand and bentonite as 
in the above mentioned Exp. Series A, and that in Run 10 is the soil taken at the 
Rakusai New Town in Kyoto, Japan. Initial cross sections had been cut rectan-

gulaly, with the width of 1 cm. 

                Table 2. Experimental conditions and results (Series B). 

 Run  1   Run  2  Run  3  1  Run  4  1  Run  5  Run  6  Run  7  Run  8  Run  91Run  10 
 Q.  (ma(s)  5 9  1 20 2   5  I  10  1  1  2 5 10 

 sin-1  I 13° 26° 45° 33°  

t  (min) 180 180 120 210 120 90 18 105 75 20 

  B (cm) 1.33 1.20 2.20 0.90 1.26 1.68 0.83 1.20 1.25 

  h (cm) 0.32 0.32 0.63 0.27 0.34 0.36 0.21 0.35 0.39 
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            Fig.  15.  Transformation process of channel cross section (Exp. Series B).
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  In a short time after the water  supply, they were transformed into the parabolic 
forms. Thereafter, though the longitudinal bed forms get to have steps and the 
lateral stream positions considerably deviate, the forms of the cross section are adjusted 
faster into the equilibrium forms. Therefore, they do not change considerably 
through the experiment, but for Run  1 and Run  5. (In Run 1, 5, the streams once 
split, joined again upstream from the measuring point because of meander.) 

  Though the scales of the cross sections depend on the hydraulic parameters such 

as discharge or inclination, it is difficult to determine the systematic differences in 
their  forms, whose ratio of the water surface width to the maximum water depth 
lies in the range from 3 to 4. This value is close to the theoretical one i.e.  B/h4  4. 

  It seems to be by the lateral stream migration or the crash of the side wall, that 
the channel width at the upper part is wider than at the water surface. 

  Comparing the nearly constant forms found after the early change in Run 6-9 

of Exp. Series A with the theoretical wavy equilibrium forms, some of the experi-
mental ones have a much smaller ratio of the wave length to the water depth and 

have sharper ridges. Although it is difficult to judge whether they are actual equi-
librium forms or they are transient ones transforming toward the equilibrium ones 
very slowly, as far as the shear distribution is calculated by Eq. (3), the sharpness 
of the ridge cannot be explained. Then it will be necessary to consider the effect 
of the secondary  flows). 

  By the way, when the form of the channel cross section is obtained, its scale such 
as depth or width is related to the composition of discharge and inclination by giving 
a law of flow resistance. But there are many unknown factors concerning the re-
sistance of the flow in slope erosion, for example, the effect of the form of cross section, 
meander, longitudinal steps of the bed etc.. It is a problem to be clarified in future. 

6. Conclusions 

  For the prediction of the sediment run-off from bare slopes, the process of  rill 

formation on the  flat slope, and its transformation toward the equilibrium channel 
cross section was considered theoretically. The applicability of the theory was 
examined through some experiments. 

  The results obtained are summarized as follows. 
  1) The rate of erosion of cohesive materials depends not only on the flow con-

dition but also on the composition and existing condition of soil. When the other 
conditions are kept constant, the rate of erosion correlates positively to the tractive 
force. According to our experiment in the case of bentonite, the correlation is 
linear in high shear range. 

 2) Shear distribution along the perimeter in the cross section of uniform flow 
is obtained by differentiating the area between the orthogonal lines to the isovels 
with the wetted perimeter. For simplification, the authors proposed to replace the 
isovels with the equi-distance lines from the perimeter and derived the equation of 
shear distribution in the arbitrary channel cross section, in which the curvature of
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the wall surface is contained and it is quantitatively represented that the shear in-
creases at the convexes and decreases at the concaves. 

 3) Using the shear distribution and the nature of erosion, it is possible to trace 
the transforming process of the arbitrary channel cross sections. Representing the 
lateral bed unevenness in a sinusoidal wave, it was derived that the unevenness with 

the extremely short wave length is smoothed out in the process of erosion, and that 
with large wave length compared with the water depth  (L/H>5) develops to split 
the water surface into parts. 

 4) Applying this model to the parabolic cross section, the following processes 
were traced: The cross section whose initial form is wide and shallow is deepened 
at a portion of the bed and that whose initial form is narrow and deep is widened 
toward the nearly equal equilibrium cross sections. When the rate of erosion is 

proportional to the shear velocity, these equilibrium cross sections are similar ir-
respective of discharge or inclination of the stream, with the ratio of water surface 
width to the maximum water depth of about 4. 

  5) When the form of the channel cross section is obtained, its scale is related to 
the composition of discharge and inclination by giving a law of flow resistance, which 
is in turn related to the longitudinal, cross-sectional and plane geometry of the channel 
and cannot be generally grasped. 

  Further, although the effect of the secondary flow was neglected in this research, 
regarding the flow as nearly uniform, the actual flow is often so complicated that 
the calculating method of shear distribution has to be improved. 

  6) In this paper the authors argued the formation process of the channel cross 
section mainly from deterministic viewpoints. In the actual phenomena, however, 
the existence of the irregularity is inevitable not only in hydrological, geomorpho-
logical or soil mechanical conditions but also in the hydraulic mechanism of the 
flow itself. Therefore it will be necessary to join both the deterministic and statis-
tical approaches together for these problems. 
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