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                           Abstract 

     This paper  cleats with the wave refraction due to current by a theoretical treatment and a 
 numerical model. The theory of refraction of deep-water waves traversing a simple horizontal 

 current with vertical axis of shear by Longuet-Higgins and Stewart" is extended to the case 
 of shallow-water waves. It is found that the wave direction and wave height of shallow-water 

 waves refracted by the current vary more rapidly than those of deep-water waves, and the 
 variation of wave height is expressed as the product of the similar coefficients to the shoaling 

 and refraction coefficients and a coefficient representing the effect of the radiation stress. A 
 numerical model is presented for the wave refraction due to current. The variation of wave 

 direction is calculated with the wave orthogonal equation along a path propagating in the  di-
 rection of the sum of the wave velocity and the current, which is derived from the irrotational 

 condition of wave number. The variation of wave height is also calculated with the equation 
 of wave energy conservation in current derived by Longuet-Higgins and Stewart" along 

 another path propagating in the direction of the sum of the group velocity and the current. 
 The numerical results agree roughly with the theoretical results, and the validity of the 

 numerical model is roughly confirmed. The effects of the relative wave velocity to the current, 
 the derivatives of wave direction with respect to the horizontal coordinates and the radiation 

 stress on the wave refraction due to current are found to be not negligible. 

1. Introduction 

   Refraction of waves due to current is one of wave transformation phenomena. 
This phenomenon has not been investigated so widely compared with wave shoaling, 
wave refraction by underwater topography and wave diffraction. 

   Longuet-Higgins and  Stewart" presented a wave energy conservation equation 
in current including the  so-called radiation stress. They showed that the existing 
theoretical  treatments2r° for the wave height variation of the refracted waves due to 
current failed to take the effect of this radiation stress into account. Taking the radi-
ation stress into account, they solved the deep-water wave refraction due to current 
in special cases theoretically. They neglected the effect of the waves on the current . 

   In this paper, a theoretical treatment of the shallow-water wave refraction due 
to current in the same case as Longuet-Higgins and Stewart treated is presented. 
These theoretical results, however, can predict the wave refraction due to current 
only in special cases. A numerical model is necessary for the prediction of the wave 
refraction due to current of arbitrary distribution.
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    Recently, several theoretical models for the prediction of nearshore circulations 

due to waves in the surf zone have been  presentee-110 . These theories neglected the 
wave-current interaction as the first step to predict the nearshore circulation . Noda, 
Sonu, Rupert and Collins"' and Skovgaard and  Jonsson'" presented independently 

numerical models for the prediction of the wave-current interaction. Noda et al. 

made use of a kinematic conservation equation of waves in current by  Phillips") and 

the dynamic conservation equation of wave energy in current by Longuet-Higgins 

and Stewart". They repeated the computation of the current induced by the waves 

and the computation of the wave refraction due to the current alternately to take the 

effects of the wave-current interaction on the nearshore circulation into consideration. 

Skovgaard and Jonsson made use of a wave energy conservation equation of different 

type from that by Longuet-Higgins and Stewart which they called "the equation of 

wave action  conservation". 

   A similar numerical model for prediction of wave refraction due to current is 

presented here. The same two equations as Noda et al. used are applied as the 
basic equations. The current, however, is assumed not to be affected by the waves 

in contrast to two models mentioned above. The wave direction is calculated by a 

technique of integrating along characteristic lines similar to the conventional numer-

ical technique of the wave refraction by underwater  topography'''. The wave height 

is also calculated by the technique of integrating along characteristic lines different 

from those mentioned above. 

   This numerical model is applied to special cases which are able to be predicted 

by the theoretical treatment. The numerical results are compared with the theoretical 

ones, and the validity of the numerical model is discussed. The effects of the relative 

wave celerity, the derivatives of wave direction and the radiation stress are also 

discussed with the numerical results. 

2. Theoretical Treatment of Wave Refraction Due to Current 

 2.1 Deep-water wave refraction due to  current" 

   Longuet-Higgins and Stewart" treated a case of waves traversing a simple 

horizontal current with vertical axis of shear. The stream velocity (U. 0, 0) is sup-

posed to be everywhere parallel to the x-axis and also 

 dU/dx—aU/dz=0.  ( 1  ) 

The angle of the wave direction with the x-axis is denoted by 0 (Fig. 1). It is 

assumed that the range of value of  B is  Oc  ---00° and U takes both positive and 

negative values. The wave number k is irrotational due to the definition of the wave 

number  (Phillips)"), that is, 

 akx/dy—akylax  -=  0,  ( 2  ) 

where  ter and k, are the x- and y-components of k. Since the current varies only in 

the  y-direction, the wave length and wave height are independent of x. Furthermore,
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               Fig. 1. Definition diagram for waves on a shearing current. 

the wave number in the x-direction is k cos 0. So, we have 

   k  cos  const.  =  b.  ( 3  ) 

The kinematic conservation equation for the wave number given by Phillips is as 

follows: 

 akiat  +  FLO  =0,  (  4  ) 

where  to is the apparent angular frequency of the waves relative to a fixed point. 

Since the apparent velocity of the waves at right-angles normal to their crests is 

 (et+  U cos 0) and their wave number is k, the apparent angular frequency  an of the 
waves is k  (c.,±U cos 0). Therefore, considering the steady state, equation (4) 

becomes 

 k(c*+U  cos  0)  —0.,  (5) 

where  c* is the relative wave velocity to the current in the presence of current and 
 ao the angular frequency of the waves in the region of no current. Thirdly, we have 

the relation connecting the local wave number and the relative wave velocity in deep-

water  waves  : 

 k  (6) 

Equation (6) is applicable if the water depth and the current vary slowly. From 

equations  (3), (5) and  (6), we have 

 c*/co  =1/  (1—U/co  • cos  do),  (  7) 

 kik.=  (1—U/co  •  cos  002,  (  8  ) 

       cos 0/cos  00=  1/  (1—U/co  • cos  00  2,  (  9  ) 

where  co,  k. and  00 denote the values of c, k and 0 in the region of no current. It 
should be noticed that in general  co,  ko and  00 are not the values in deep water but 

in this case they are equal to the values in deep water. 
   The refracted wave height variation in the current is calculated by using the 

wave energy conservation equation in  current'  :



76 Y.  IWACAKI, T. SAKAI,  7'.  TSUDA and Y. OKA 

 aE/at  +a{E  (U  +  Cg„)}1ax  a{E(V+  cg*,)}/aY 
 +S.,•aU  /aX  ±Sxy  •  iiV/aX  +S  DU  ±S  yy•av/ay=  0. (10) 

S is the so-called radiation stress and given as  follows  : 

            c
og:  cos'  0+ 21 (2:g**—1),Ceg:                                               cos•  sin 

 S=E (11) 

 1 c"-cos• sin  0,cgs._ soli 0+1( 26n,\)I      c*C*2\c*) 

where  Cg* is the relative group velocity of the waves to the current,  cg*, and  cg*, the 
x- and y-components of  Cg* and E the wave  energy . Johnson" considered the same 
case without taking into account the radiation stress . The group velocity in deep 
water is given by 1/2 •  c*. Hence equation (10) becomes in the steady state , eliminat-
ing all derivatives with respect to t and x, 

 a(E  •  1/2  •  c*sin  6)  Thy  1/2  Eau/ay  •  cos  &ink  =O. (12) 

On substitution from equations  (7)  (9), the integral of equation (12) gives 

     E  •  sin  0/  (a  o—bU)o =  const. (13) 

or, from equation (9), 

   E  • sin  20  =  const. (14) 

The relative amplification of the waves is therefore given by 

 H  /  Ho=  (E/E0)+= (sin  20i/sin  20)+, (15) 

where H and  Ho are the wave heights in the regions of current and no current 
respectively. 

 2.  2 Shallow-water wave refraction due to current 

   As seen from equation  (8)  , the wave length becomes longer than that in the 
region of no current when the current is in the positive  x-direction. Hence the 

situation in which the relative wave velocity is given by equation  (6) may be limited, 

Here the relation between the relative wave velocity and the local wave number is 

assumed to be given by the shallow-water wave relation of small amplitude  waves  : 

   k  c4,2=g  • tanhkh, (16) 

where  it is the water depth. Equations (3) and (5) are applicable also in this case. 

In the same manner as in 2.1, we have 

 c*I  co=  1  /  (1  —  Ulco  • cos  Bo)  •  tanh  kh/tanh  kolz„ (17) 

 kik--  (1—U/co  • cos  00)2  • tanh  kahatanh  kh, (18) 

         cos  6/cos  Bo=1/(1—U/co  • cos  002  • tanh   kh/tanh  koho, (19) 

where  ho is the water depth in the region of no current (y<0). It is evident that
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in this case the terms underlined are added to equations  (7)  (9) in the case of 

deep-water wave refraction. As seen from equation  (18), the unknown k is included 
in both left and right hand sides. So it is necessary to calculate the value of k by 

iteration. 

   The relative group velocity is given by 

 Cg*/C*=  n*  =1/2  • (1  1-2  kh/sinh  2kh). (20) 

Using equation (20), equation (10) becomes in this case 

 a  (  n*  • E  • tanhkh •  sinen*E •  b. tanhkh  •  sin  e  au                                                       0. (21)      ay ko - bU )1-  (a0-bU)2  ay. 

The integral of equation (21) gives 

 n* • E  • tanhkh  •  sin  01  (ao-bU)2=const., (22) 

or, from equation  (19). 

 n* - E  • sin  20=  const. (23) 

The relative amplification of the waves is therefore given by 

 H/1-1,-(E/E0)+= (sin 200/sin  28)*  •  (ho/h*)+, (24) 

where no is n in the region of no current. 

   Since cos 0 in equation (19) can not exceed unity, there is clearly an upper limit 

to U for which a solution  exists  : 

 U  /  co  �{1  - (cos  Oo•tanh kh/tanh  koh0)4}  cos  00. (25) 

It is evident that in the case of deep-water wave refraction the term underlined in 

equation (25) is equal to unity. At this upper limit 0 becomes equal to  0, and 

the waves are interrupted to proceed by the current. On the other hand, for 
negative current  tic), there is no kinematic limit to U. However, as  U-4.-00, k 

becomes very large, that is to say, the wave length becomes very small (Fig. 1, (b)). 

The angle  e approaches  90°, that is, the direction of propagation becomes nearly 

normal to the  current, Fig. 2 shows the variations of the wave direction. The broken 

line curves are for the deep-water wave refraction (equation (9)). The full line 
curves are examples for the shallow-water wave refraction  (koh0=0.1 in equation 

(19)). It is evident that in the shallow-water wave refraction the wave direction 
varies more rapidly than in the deep-water wave refraction. 

   As seen from equations (15) and  (24), the wave height becomes infinite both 

when  0->11° and  0->90'. Longuet-Higgins and  Stewart" described on this phenom-

enon as  follows  : 

       In the first case the infinity is not  significant  : it is due to the fact that 

    the ray-paths intersect, and the corresponding line  y=const. is a caustic.
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               In the neighbourhood of such a line the ordinary approximations of ray optics 

               do not  apply  ; a higher-order theory, generally involving Airy functions, must 

               be used. One may expect that the wave amplitude in fact remains finite 

               even in the  neighbourhood of the critical line. 

                    The second case, when  61-90`, corresponds to the limit  U—>-00. In that 

               case the infinity is genuine and is due mainly to the fact that the wave 

               length and wave velocity are so much reduced that, in order to maintain the 
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   energy flux in the y-direction, the wave height must increase. In practice 
   the waves may break  ; but for no finite velocity U<0 is the ratio  H/Ho 

   theoretically infinite. 

      We may note that it is possible for the component of stream velocity 

   opposite to the waves to exceed the group  velocity  : 

 1/2  +U cos 0<0. 

   The waves are not thereby stopped, for the wave amplitude tends to be 

   diminished by a lateral stretching of the wave crests. 

   Fig. 3 shows the variations of the wave height H. The broken line curves are 

for the deep-water wave refraction (equation  (15)), and the full line curves are 

examples for the shallow-water wave refraction  (koho  =O.  1 in equation (24)). It is 
evident that in the shallow-water wave refraction the wave height varies more rapidly 

than in the deep-water wave refraction. 

 2.3 Effect of radiation stress 

   Dividing equation (19) by equation (17) yields 

        cos  0/cos  00—(c*Ico)/  (1—U  lc,  • cos  00). (26) 

Substituting equation  (26), equation (24) becomes 

 H/H0=(noco/ns,c0-1-  • (sin  00/sin  0)-1-  •  (1—U/co cos  00*. (27) 

If the deep-water wave velocity without current  cc/ is used as  co, no=nd=1/2 and 

equation (27) becomes 

 H/Hd=  Ks'  •  K,' (28) 

 Ks'  =  (cd1214c*)+, (29) 

        K,'= (sin  0a/sin  0)+, (30) 
 =  (1—  U/ca  •  cos  0a)+ . (31) 

The coefficient  Ks' has the same form as the shoaling coefficient  K, except for that 

n and c are replaced with  n,, and  c*. This coefficient means the rate of wave height 

variation due to not only the water depth variation but also the current. The coeffi-

cient  K,' has the same form as the refraction coefficient K,. The wave direction  0 is 
however the refracted wave direction not only by the underwater topography but also 

due to the  current, If the radiation stress is neglected in equation  (21), it will be 

found that 

 H/Hd=Ks'  •  Kr'. (32) 

The coefficient  Kr., therefore represents the effect of the radiation stress on the wave 
height variation. In equation  (31). cos  0a is positive for  0°  <0a<90° . Therefore 
if U>0, that  is, the current is in the same direction of the waves,  K,s<1 so that 

the wave height is damped. On the contrary, if  U<O, that is, the current is in the
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opposite direction to the waves,  Krs>1 so that the wave height is amplified. 

3. Numerical Model of Wave Refraction  Due to Current 

 3.1 Wave orthogonal equation 

   In the theoretical treatment, the wave direction  8 is determined with the irrota-

tional condition of the wave number (equation  (2)). On the other hand, in the con-

ventional numerical technique for wave refraction by underwater  topography"), the 

wave direction is determined by the equation of the curvature of a ray along the 

ray. A similar equation is derived by  Arthur'®' for the wave refraction due to 

current. 

 dOldt=a(qc  +c.)  lax  •  sin  —a  (qo  +  c.)  /ay-cos  0, (33) 

 dxldt=U+c,cos0,  dyldt=V+c.  sin  0, (34) 

where x and y are the horizontal coordinates, U and V are x- and y- components 

of the current and qc is the component of the current in the direction of  c, as 

shown in Fig. 4: 

 qc--Ucos  0+ Vsin 8. (35) 

                                             qc       Pt. 

 U 

 e 

                                      wave crest 

                 Fig. 4. Definition diagram  for numerical model of wave 
                          refraction due to current. 

The above equations mean that the variation of the wave direction 0 with time 

along a path given by equation (34) is represented by equation (33). Skovgaard 

and  Jonsson"' called equation (33)  "wave orthogonal  equation". 

   A similar equation is also derived from the irrotational condition of wave number 

(equation (2)). Using the relationships  kr=k  cos 0 and  ky=k  sin 0, equation (2) is 
transformed as 

        cos 0  •  wax+  sin 0  •  DOlaY=cosOlk  •  aklay  —sin  0Ik  ak/ax. (36) 

The kinematic conservation equation of waves (4) is given in this two-dimensional
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      case as 

 k(c*+U  cos  0+ Vsin 0)  =a0. (37) 

     Differentiating equation (37) yields 

         at,auao                  —a 0[=+-cos 0+-5Tisin 0+( Usin 0 +Vcos 0)1 
 ak  ax* axaz az    (38) 

 ax  (c.  +(Taos  0+  Vsin  6)2 

     and 

                             av.,ao                   —ac.aui ,cos 0+sina+ ( —Usin 0+ Vcos 6) 
 akg°  ay-ay  ay (39) 

            ' ay1  
 ay (c.+Ucos  6+  Vsin16)2 

     Substituting equations  (37)—  (39), equation (36) becomes 

             o          aao(V+c *sin 0)                    (U+c*cos 6) +--     azay 

           (au cos@au                        +sin 0)cos 0 + (aircos 0+aVsin 0\sin6/ 

 _ 

    aYazayaxI 
 +(ac*cos8±ac*sin 0)(40) 

       ayaz 

     The rate of variation with time along the path given by equation (34) is written 

      as 

     d a dx a dy a aa                   + +=  (u  Hc
*coso) + (v+ coin 0)       dt atdt axdt  ayaxay 

                                                   (41) 

     in the steady state. Equation (40) is therefore expressed as follows: 

           d°— (—au  cos 0+au sin O)cos 0 + (aV cos 0+ axsin 0)sin 0      dtayauay 
 4( ac* cos 0+ac 8)      ayax (42) 

     On the other hand, equation (33), substituting equation (35), becomes 

 dB _au(  auav5 V                      cos0+sin 0)cos 0 + (cost) +sin  0)sin 0       dt(a y  axay ax 
               +(—Us in' 0+ Vsin B. cos 8)A+ ( — Vcos2 0 +Us inB. cos 0)o 

                                          a  

        axay  

 +(5c*—cost) +ac*sin 0)(43) 
        ayaz 

     It is evident that equation (43) has the additional terms containing  awaz and  away 

     compared with equation (42). This discrepancy is not discussed here. Equations (42) 
 • and (34) derived from the  irrotational condition of wave number are used in this 

      numerical model.
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   Noda et  al:" used equation (36) giving the irrotational condition of wave 

number, but they solved equation (36) directly on the numerical grid points instead 

of using the technique of integrating along the path given by equation (34) . 

 3.2 Relative wave velocity to current 

    As mentioned above, the kinematic conservation equation of waves in current is 

represented as  follows  : 

 k(c*+Ucos  0+  Vsin  8)  00=  27r/T, (44) 

where T is the period of waves in the region of no current. On the other hand, 

equation (16) is assumed as the relation between the relative wave velocity to 

current and the local wave number. Combining equations (44) and (16), we have 

        L.  2n— gT2/2k •  tanh (2rrh/             k (1 — TIL. •  U  cos  0  —  TIL.  •  V  sin  0)  2 (45) 

Therefore if the wave period T, the water depth h, two components of current veloc-

ity U and V and the wave direction 0 are known, the wave length  L. is determined 

by iteration. Then the relative wave velocity  c* is obtained from equation (16). 

The characteristics of the wave length in current was discussed in detail by Jonsson, 

Skovgaard and  Wang"'. 

 3.3 Wave energy equation 

   The wave energy conservation equation in current (10) derived by Longuet-

Higgins and Stewart" is used  here, Considering the steady state and the represen-

tation of the radiation stress (11), equation (10) becomes 

        (u-Fcg*cos 0)aE—+  (V+  cg*sin 0)aE =E(U, V,  c*,  Cg*, 0)  • E, (46)                               ay 

where 

 F_ _au +ava  
                      `.*cos 0 -ECg31` sin 0 + Cg*( —sin 0-3+ cos elm') 

 a,  ay  a, ay ax  ay 

       +1cen  cos' 0+4( 2cC"-1)1aaux+crcossin o (da xv+ aau, 
                   c* 

              *_sin2 0 +
2/2c*cg*11  ay  •av                                                    (47) 

Lets consider a path given by 

 dx/dt—D  +cg*cos 0,  dy/dt=V-hc** sin 0. (48) 

Along this path, the rate of wave energy variation with time is, from equation (46), 

given as 

 dEldt—F(U,V;c*,  Co,  0)  • E. (49)
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This representation of the wave energy variation is similar to that of the wave direc-

tion variation (42) and (34). Two paths given by equations (34) and (48) do not 

coincide, for  cg, is not equal to  c, in general. Furthermore, the term  F contains the 

wave direction  O. So, before the calculation of the wave energy variation, it is 

necessary to calculate the wave direction variation by using equations (42) and (34). 

   In the conventional numerical technique of wave refraction by underwater 

 topography"), the refraction coefficient is calculated at each step point along a ray 

according to the theory developed by Munk and Arthur"'.  It is clear that the cal-

culation of the wave height in wave refraction due to current is not so simple 

compared with the calculation in wave refraction by underwater topography  only, 

   Noda et al. solved equation (46) directly on the numerical grid points. In this 

numerical model, equations (48) and (49) are used, The wave height H is calculated 

with the relationship  E  =  1/8  •  pg1-11. 

 3.4 Numerical computation 

   The region of computation is constructed by a set of perpendicular grids of 

equal spacing  As (Fig. 5). At each grid point, the water depth  h, two com-

ponents of current velocity  U and V are known. On the offshore boundary  j=1, the 

initial wave direction 0, and the initial wave height  H, are known. The wave period 

 7' is given  and constant in the whole region. The numerical computation consists 

of two parts. In the first part, the wave direction  0 is calculated by using equations 

(42) and (34). After that, the wave height  H is calculated by using the calculated 
values of wave direction and the equations (48) and  (49)-

   The path in the calculation of wave direction given by equation (34) starts at 

each grid point on the offshore boundary  j  =1. Along each path,  the  new  !step point 

 (x,,,  ye) and the wave direction  0,„ are calculated every time increment  alt (Fig. 6). 

In practice, at each step, the temporary increment of  0 (denoted by  a is calculated 

 is'  yen, 
  NNE   M

EM •••s-i  s-i 

 1.111  (xm.y.) 

 

3  MEM  1...  3  3 
2 M.. MEM  ....1=MEME A 2  

1  2  3     
- 1  "I  0 

Fig. 5. Set of perpendicular grids of equal Fig . 6. Paths in calculation of wave 
   spacing  Os. direction.



84 Y.  IWAGAKI, T.  SAKAI-, T. TSUDA and Y. OKA 

 rY 

 xrJ.Y  In) 
                  em_i+0.5(AerpteV 

 •Y 

 Om,  +0 

 •Ym-1)  11-1 

                                             0 

   Fig. 7. Temporary step point. Fig. 8 Interpolation from values on four grid 

                                                    points surrounding a step point 

at first (Fig. 7). The temporary step point  (ad,  ha') is calculated by the equations 

 xmi  —  Xn1-1  c*m_r  •  cos  (thn_i  +1/2  •  am')  At  +Um_,  •  At, (50) 

 ym'  =y7,1  +c*m_,  •  sin  (60m_i +  1/2.  40.1)  •  zit  +  _,  •  At. (51) 

At this temporary point, the increment of  0 (denoted by  dOm") is calculated again. 

The final new wave direction and the new step point are calculated by the equations 

 —0,n_1+1/2  •  (40m'  +  40m"). (52) 

 Cion_,  •  cos  Om  •  dt  U.,'  •  dt, (53) 

 Ym  ±C*n^-i  •  S  them  •  Zit  +141_,  At. (54) 

   In general, the step point does not  coincide with the grid point (Fig. 8). In the 

calculation of equations (42) and (34). the interpolated value from the values on four 

grid points surrounding the step point is used. The derivatives of  U, V and  c,, with 

respect to x and y are also calculated from the values on four grid points. 

   The calculation of wave direction along each path is stopped if the path runs 

out of the boundary of the computation region. Therefore, in general, some part of 

the computation region is left in which the value of wave direction is not calculated 

                    / / 

                                    '1( 

                T„,                           nI I 
                                                     ItI
t "•                                                                                         rei-i 

 1I                                               1 
                                              1 
                                               1 

                                                   t 

 Ts 

Fig. 9. Region in which wave directions Fig. 10. Paths in calculation of wave height. 
        are calculated.
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(Fig. 9). The values of 0 on the grid points are interpolated from the calculated 
values of 0 on the nearest three step points for the next calculation of wave height. 

   The path in the calculation of wave height given by equation (48) also starts at 

each grid point on the offshore boundary  j=1. Along each path, the new step point 

 (xa,  yn) and new wave height  H,, are calculated every time increment  At by using 
equation (49) (Fig. 10). In the wave height calculation, the temporary step point 

used in the wave direction calculation is not used. In the same manner as in the 
wave direction calculation, the values and derivatives at the step point are interpo-

lated from the values on four grid points surrounding the step point. The calculation 

of wave height along each path is stopped if the path runs out of the region where 
the interpolated values of wave direction are registered on the grid points. 

   As an example of the numerical computation, a 500  m  X500 m rectangular region 

with a simple current of only the  x-component of velocity U increasing linearly in 

the y-direction (Fig. 11) is considered. 

 0<y�80 m,        U = 
 0.01(y-80)  m/s  : 80  m<y<500  m. (55) 

The cases of constant water depth and plane beach are considered. In the case of 

plane beach the water depth decreases in the y-direction and becomes  0  at  y  =500  m. 
The grid spacing  As is set equal to 20 m, and the wave period T is 5 sec. The time 
increment  At is set equal to 1/2  • T. In the numerical model, the current U takes 

only positive value, and the wave direction 0 can vary from 0° to  180'. The numer-

ical results for  Bo>90° are comparable with the theoretical results for the initial 
wave direction of  00- 90° and the current  -U. The initial wave height  Ho is  lm . 

 4.2m/s  
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  J 500   

.1+1 
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 J_1                                                               as=2051 

 As 

          80   

               N0 •0x( m) 

                1 

 0H 500        

1  i-1 1+1  1 

          Fig. 11.  500m  X  500m rectangular region with a simple current of only 

                  x-component of velocity U increasing linearly in y-direction .
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4. Results of Numerical Computation and Discussions 

 4.1 Comparisons of numerical and theoretical results 

   Fig 12 shows an example of comparisons of the numerical and theoretical results 

for the cases of plane beach without current. In this case, the slope of beach is 

1/50. At the offshore boundary  y=-0 the water depth is  10  m and the initial wave 

direction  00 is 135° (Fig. 11). The theoretical values are calculated by using equa-

tions (19) and (24). The numerical results agree well with the theoretical results, and 

they show the well known behaviours that the wave direction becomes normal to the 

beach and the wave height decreases at first and increases as the waves approach 

the shoreline. 

   Fig. 13 shows the result of the case of uniform depth h=30m and the current 

given by equation (55). The initial direction of waves  00 is  60°, and the current is 
in the same direction of the waves. The numerical and theoretical results agree 

roughly. The wave direction becomes parallel to the direction of current gradually 

and the wave height decreases with increase in y. The theoretical curve of wave 

height increases after the initial decrease. This increase is not significant as de-

scribed in the theoretical treatment. The numerical result does not exist in the 

range of the theoretical increase of wave height, because all paths run out of the 

boundary of computation region before approaching the boundary  y  =500m. 

   Fig. 14 shows the result of the same case as in Fig. 13 except for  0a=120`. The 

current is in the opposite direction to the waves. The numerical and theoretical 

results agree roughly also in this case. The wave direction becomes normal to the 

direction of the current gradually and the wave height increases with increase in y. 

   Fig. 15 shows the result of the same case as in Fig. 14 except for the uniform 

water depth  h=10rn. The numerical and theoretical results agree roughly. Compared 
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 no current 1 
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135 I  1 

        200 r tii,                      ") ."..
0,Ztro 

 0./#7 
                                                           (47..-- 0 .--- 

0.9 125• , 0-- 

 0  :  numerical  nodel 

 theory 
 0.8-  115° 

                        •  1  nine,  cal  model 
 \  • 

 0.7-105"theory \ • 
 \  • 

      Fig. 12. Comparison between numerical and theoretical results for case of plane 

              beach without current (beach slope=1/50,  00=135°).
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 Fig. 13. Comparison between numerical and theoretical results for case of uniform 
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 Fig. 14. Comparison between numerical and theoretical results for case of uniform 
         depth  (h  =30  m,P0-120°). 
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  Fig.  15. Comparison between numerical and theoretical results for case of uniform 
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                    , 
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      Fig. 16. Comparison between numerical and theoretical results for case of plane 
              beach (beach slope=1/50,  0=120'). 

with Fig.  14, the variations of wave direction and wave height for  11=10 m resemble 

the variations for  h=30  m. The rate of increase of wave height for  h  =10 m is how-

ever larger than that for h=30m. Also the differences between the numerical and 

theoretical results of wave height for  hr-10m are larger than those for  h=30m. 

   Fig. 16 shows an example of the results of the cases of plane beach and current. 

The slope of beach is  1/50 which is the same as the case of no current  (Fig_ 12). 

The initial wave direction is 120°. The numerical and theoretical results also agree 

roughly. As well as the case of Fig.  la the wave direction becomes normal to the 

direction of the current gradually due to the underwater topography and the opposite 

current. The wave height becomes larger than that in the case of Fig. 12, because 

the rate of wave height increase is amplified by the opposite current. 

   As seen from five examples in Figs.  12^-16, the numerical results agree roughly 

with the theoretical results. The differences between them however increase with 

increase in y. This is because the errors at each step in the numerical computation 

accumulate as the paths go on in the region of computation. 

 4.2 Effects of  c* and  cn,88/8x and  88/8y and radiation stress 

   As seen from equation (45), the wave length in the presence of current  L., is 

not equal to the wave length of small amplitude waves in the absence of current  L. 

The relative wave velocity to the  current c, and the relative group velocity to the 

current  cg, calculated by using equations (16) and (20) respectively are also not 

equal to c and  cg in the absence of current. The value  cf wave direction  C is 

necessary to be known before the calculation of the wave length  L, by using equa-

tion  (45). And the wave direction 0 is one of the unknowns to be determined by
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the numerical computation. This is one of the reasons why the numerical computa-
tion of wave refraction due to current is complicated compared with the numerical 

computation of wave refraction by underwater topography. If it would be possible to 
use c and Cg instead of  c* and  Cg*, the computation would become fairly simple. In 
Figs. 14 and 15, two examples of the comparisons between the numerical results 
using  c,  cg and  c*,  cg* under the same conditions are shown. In these cases, the 
calculated values of wave direction by using c are about the half of the value by 
using  c*, and the values of wave height by using c and  cg are about 30%  or 40% 
of the values by using  c* and  Cg*,. As seen from these examples, the relative wave 
velocity and group velocity to current  c* and  cg* have to be used in the computation 

of wave refraction due to current. 
   As mentioned in 3, there are two kinds of wave orthogonal equations, (42) and 

(43). In this numerical model, equation (42) is used. The effects of the terms con-
taining  30/3x and  30/ay in equation (43) are therefore not discussed. On the other 
hand, the term F in the equation of wave energy variation (49) also has a term 
containing  30/3x and  38/3y (equation (47)) • 

 cg*  (  —sin  0  •  30/3x+  cos  0  •  38/3y). 

In Figs. 14 and 15, two examples of comparisons between the numerical results of 
wave height considering and neglecting the term containing  Wax and  delay in F 

are shown. In these cases, the values neglecting the term are about 1.2 times as 
large as the values considering the term. The term containing  30/3x and  30/3y in 
F is therefore not negligible in the computation of wave height. 

   Finally, the effect of the radiation stress on the wave height variation is  discuss-
ed. The last three terms in F 

 {Cg*/C*  •  cos2O  +1/2  •  (2cg*Ic*-1)}  •  aUlax 
 +cg*Ic*  • cos 0  • sin  0  (3  V/ax  3U/3y) 

 +{cg*Ic*  •  sin28  +  1/2  •  (2cg*/c*--1)}  •  aV/ay 

represent the effect of the radiation stress. In Figs. 14 and 15. two examples of 
comparisons between the results of wave height considering and neglecting those 
terms are shown. The calculated values of wave height neglecting those terms are 
about a half of the values considering the radiation stress. The effect of the radia-
tion stress is therefore not negligible in the computation of wave height. 

   As described above, any of the effects of  c* and  c**,  Wax and  60Thy and the 
radiation stress is not negligible at least in the cases treated here. These discussions 
are however limited to the cases treated here. It is necessary to apply this numerical 
model to many cases of currents of various distributions for the discussion of general 
characteristics of these effects. 

5. Conclusions 

   The wave refraction and the wave height variation due to current are discussed by
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a theoretical treatment and a numerical model. The main conclusions are as  follows  : 

1) The theory of refraction of deep-water waves traversing a simple horizontal 

   current with vertical axis of shear by  Longuet-Higgins and Stewart" is extended 

   to the case of shallow-water waves. The wave direction and wave height of 

   shallow-water waves refracted by the current vary more rapidly than those of 

    deep-water waves. 

2) The variation of wave height in this case is expressed as the product of the 

   similar coefficients to the well known shoaling and refraction coefficients and a 

   coefficient representing the effect of radiation stress. 

3) The wave orthogonal equation for wave refraction due to current given by 

 Arthur"' has additional terms containing the derivatives of wave direction with 

   respect to the horizontal coordinates compared with the equation derived from 

    the irrotational condition of wave number. 

4) A numerical model is presented for the wave refraction due to current. The effect 

   of the waves on the current is neglected in this model. This model consists 

   of two parts  : the computation of wave direction and the computation of wave 

   height. The variation of wave direction is calculated with the wave orthogonal 

   equation derived from the irrotational condition of wave number, which represents 

   the variation of wave direction with time along a path propagating in the direc-

   tion of the sum of the wave velocity and the current. The variation of wave 

   height is also calculated with the equation of wave energy conservation in current 

   derived by Longuet-Higgins and Stewart", along another path propagating in 

   the direction of the sum of the group velocity and the current. 

5) The numerical results agree roughly with the theoretical results, and the validity 

   of the numerical model is roughly confirmed 

6) The effect of the relative wave velocity to the current is not negligible in the 

    computation of wave refraction due to  'current. Also the effects of the derivatives 

   of wave direction with respect to the horizontal coordinates and the radiation 

   stress on the wave height variation are not negligible. 

   A part of the present investigation was accomplished with the support of the 

Science Research Fund of the Ministry of Education for which the authors express 

their appreciation. 
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