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                             Abstract 

    Aftershock sequences in Kuril of August 11, 1969 and June 17, 1973 are investigated by 
 a statistical method. On the assumption of a unilateral propagation of aftershock activity, 

 the direction of propagation is likely to be normal to the trench axis. On the basis of this 
 result, time-space plots of other sequences in Kuril are examined. It is commonly observed 

 that a quiescent area of aftershock activity originates at the epicenter of the main shock, and 
 spreads seaward with time. The spreading velocity of a quiescent area is estimated at  8.--16 

 km/day. 

1. Introduction 

    For many years, many investigations have been done regarding aftershock phe-
nomena, such as the frequency of aftershocks with time, Gutenberg-Richter's law 

(b values), seismicity maps, and so on. Recently, closer  researches"'" on seismicity 
maps have been made by more accurate data of hypocentral parameters. An after-
shock area is considered to indicate the fracture zone of the main  shock". On this 
assumption, maps of aftershocks play important roles for determining fault geometries 
and other source parameters. Also, the location of the main shock with respect to 
the aftershock area gives a hint on faulting  characteriscics. 

   Kellher  at  al." examined aftershock areas of some large earthquakes at the 
trenches of the Pacific Ocean and the  Caribbean Sea, and tried to forecast locations 
of large shallow earthquakes in near  future. It was mentioned that epicenters of the 
main shocks tended to be located near the landward side of the aftershock area, and 
they inferred that during large thrust earthquakes ruptures initiate at some depth 
and propagate upward and seaward.  Wes' also examined relations between epicen-
ters of the large thrust earthquakes and their aftershock areas using more recent 
and accurate data. Generally speaking, samely as one of their conclusions, epicenters 
of the main shocks are situated landward. But  strictly, this tendency seems to be 
somewhat different for different regions, that is, this tendency is prominent in  Kurll 
and not in New Britain and New Hebrides. 

 Mogi" investigated development of aftershock areas of some great earthquakes 
which occurred in the  Circum-Pacific Seismic Belt. Development of aftershock areas 
were seen during one year after main shocks. In the same paper, rapid propagations 
of aftershock activities were reported for the Alaskan Earthquake of March 28, 1964 
and the Aleutian Earthquake of Marth 9, 1957.  Ida" proposed a model of slow-moving
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disturbance of deformation to interpret the observed propagation of earthquake foci 

and nonseismic creep. His analysis was based on an assumption that thin fault 

gouge participates in viscous slip. The viscosity of the gouge was estimated from 

observed propagation speed. Investigations on the aftershock migration might give 

some rheological information in the source region. 

   In this paper, we investigate migration phenomena of aftershock sequences 

particularly in Kuril. Because, in this region, the seismic activity is high, many 
sequences with recent and accurate data of hypocenters are available, and aftershock 

activity is characterized by its large  scale.sl As mentioned in our paper cited 

 above,51 the relation between the epicenter of a main shock and its aftershock area, 

which is considered to be a distinctive feature of thrust faults, also holds good. 

These characters of the Kuril region are adequate to examine the aftershock activity 

 systematically. 

2. Data 

   We selected the sequences in which magnitude of main shocks are greater than 

7, and each of which consisted of many shocks. These main shocks are listed in 

Table 1 and plotted in Fig. 1. The data of hypocentral coordinates, origin times, 

and magnitudes are after NOAA Earthquake Data File and Earthquake Data Report. 

    Magnitude-frequency relations were examined for two sequences of October 

1963 and August 1969 so as to see detection capability for these sequences. All 
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                       Fig. 1. Plots of the main shocks in Table 1.
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                            Table 1. List of main shocks. 

          Date Origin Time Epicenter  ' Depth  !snag.      Y M  D  h 
m  s  Lat.°N  Lon.  °E (km) 

      63 10 13 5 17  57.1  :  44.8  149.5 60  8.1 

     64 7 24 8 12  40.0  47.2  153.8 33  7.0 
      68 1 29 10 19  5.6  '  43.6  146.7 40  7.0 

      69 8 11  I 21 27  39.4  43.5  147.4 28  7.8 

      71 12 15 8 29  55.3 , 56.0  163.3 33  :  7. 
     73 6 17 3 55  2.9  43.2  145.8 48  7.7 
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     Fig.  2. Magnitude-frequency relations of October 1963 and August 1969 sequences. 

aftershocks that occurred during 30 days after the main shock and within 200 km 

distance from it were adopted in both of Fig. 2 (1) and  (2). Gutenberg-Richter's 

law seems to hold good in a range of magnitude greater than 4. 5 for both sequences. 

We must take care to use data of smaller aftershocks. For the statistical analysis in 

later sections, we shall use the data of shocks with magnitudes greater than  4.  5. 

3. Time-space analyses of aftershock sequences 

   Time-space plots (figures with time and space axes) are often useful to see 

time variation of seismic active area. These plots sometimes give a good idea for 

investigations on seismic activity. However, space distribution of earthquakes in 

three dimensions is usually  projected onto a line, and difference of direction of 

the line sometimes makes a quite different impression. What direction should be 

selected to obtain the best feature for representing physical meanings? We shall 

investigate the time variations of aftershock areas by the following statistical method 

and show how we can find the best direction of the projection line. 

3.1 Method 

   Seismic activity is represented by the five parameters, origin time, hypocenter 

coordinates, and magnitude. Among these five parameters, time-space interaction is



96 M. IMOTO and Y. KISHIMOTO 

important to see time variation of an aftershock area. If earthquakes in one sequence 

show propagative activity exactly in one direction, the apparent velocity between 

every two earthquakes 

 Uri=  itriil  Atij 

where 

 Ax;;: distance interval between event i and j 

 Sir time interval between event  i and j, 
will be equal to the speed of propagation. The relationship may give a 

hint for aftershock migrations. 

   Kagan and  Knopoff91 investigated a time-space-magnitude relationship among 

worldwide earthquakes of magnitudes greater than 7 by a statistical method. They 

assumed that earthquakes have a Poissonian distribution and compared the actual rate 

of occurrence of subsequent shocks in any time interval with the value calculated 
from the  Poissonian. They examined the propability of occurrence of earthquakes 

actually obtained in each time-distance interval. According to them, some of these 
time-distance intervals in which earthquakes occurred much more frequently than 

expected by the  Poissonian rate are explainable by the time-space relationship of a 
migration. 

   We do not assume any stochastic process such as Poisson process in their case 
to be compared with any actual process, but it is assumed that spatial distribution 

is independent of time. We examined how much inconsistency will occur on this 

assumption. The propability density of aftershock occurrence,  p(x,  0, is assumed to 

 be the following, 

    p(x,  t)  =  pi(x)  •  92(t)  (  1  ) 

Integrating this function with respect to time in a certain period, a spacial distribution 

is obtained. In the same way, integrating with respect to space within a certain 

volume, a time-frequency relation is obtained. Distributions of pairs in relation to a 
certain time-distance interval,  coGdx,  410, are derived from p(x, t), as follows; 

 cu(tlx,  ,t1t)-=p(8,  it)  •  p(s+  dx,  u+40  duds.  (  2  ) 
 VT 

Substituting Eq. (1) into Eq. (2), we have 

 99(41x,  —Spi(s)  •  pi(s±,t1x)  •  p2(u)  •  92(u±dOduds 
 VT 

 =191(8)  •  pt(S±  Llx)dsSp2(u)  •  p2(u+40du.  (3) 

 V Assuming that a domain V is so large that 

 91(8)=0
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outside V, 

 y(Glx,  JO  Ir.  JO  (  4  ) 

is derived from Eq.  (3). This equation means that a distribution of pairs in relation 

to  dx is expected to be symmetric with respect to the origin in any time interval 

At. In practice, integrals are replaced by summations. Aftershocks adopted in later 

analysis will be restricted to a certain domain V, so that the above  assumption, 

pi(8) =0 outside  V, shall be accepted. 
   Examples of symmetric and disturbed cases are seen in Fig. 3 (1) and (2). 

  (1) (2) 
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x (lon)60                                                              x (km) 

           Fig. 3. Histograms of pairs in a certain time interval. (1) An example 
                   of symmetric case, (2) an example of disturbed case. Arrows 
                   indicate distance intervals of disturbance. 

 These are the histograms of pairs at every 15 km intervals and a certain range 

 of time intervals  (P—  o—dt  1  a). In Fig. 3  (2) (a disturbed case), symmetry is 

 disturbed near  ,ix  —15 km or —15 km (indicated by arrows), that is, pairs in the 

 distance intervals of  4X=0--15 and 15-30 km are more frequent than those in 

 the corresponding intervals of  Ght=0---15 and —30 km. We may suspect that 

 this excess of pairs in  X  =  0--30 km is caused by propagation of activity and that 

 the velocity of propagation will  be nearly equal to the apparent velocity,  4x/it.



98 M. IMOTO and Y. KISHIMOTO 

3.2 Aftershock sequence of August 1969 

   The hypocentral parameters of the main shock are given in Table 1. Fault 

parameters were calculated by  Abe."' The fault-plane solution is shown in Fig. 
4. Abe concluded that the actual dislocation took place over a gently dipping 

     1963 10 13 1964 7 24 1968 1 29 

     1969 8 11 1971 12 15 1973 6 17 

                  Fig. 4. Fault-plane solutions of the main  shocks."),") 

nodal plane, considering a large aftershock area and slip directions of neighboring 

earthquakes.  Hatori"' estimated source area of tsunami generated by this shock. 

This agreed with the aftershock area. One of the present  authors"' reported that 

just before the main shock, a few large foreshocks occurred and migrated to  landward 
side of the aftershock area where the main shock took place.  Motoya"' investigated 

the aftershock activity with the data observed by sensitive seismographs at Urakawa 

and reported that the decay of frequency of aftershocks with time is well represented 

by an equation  n(t)  =A  •  (t-I  c)-(1  (p=1.0,  c=0.  02 days).  Santo°' pointed out the 

migration of this sequence. We have investigated the aftershock activity of this 
sequence in more detail by the method mentioned above. 

   Fig. 5-(4) shows the epicenter distribution of the aftershocks during 20000 minutes 

(about 2 weeks) after the main shock. From these  aftershocks, we selected about 
120 shocks which occurred within 100 km distance from the main shock in both 
directions normal and parallel to the trench axis, and whose magnitudes are greater 

than  4.5. The range of magnitudes greater than 4. 5 seems to be relatively narrow, 

so that it does not seem necessary to take magnitude as a parameter. The focal 

depth is generally less accurate than horizontal coordinates, and also the change of
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Fig. 5. Epicenters of aftershocks during 20000 minutes after the main shocks. 

       The largest circle at a cross mark indicates the main shock.
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       Fig. 6. Numbers of pairs in each time-space interval of August 1969 sequence. 
              Coordinate system is referred to the trench axis as Fig. 6-(6). 

focal depths seems to be rather small on the gently dipping fault plane. Therefore 

we use only three parameters of origin time and horizontal coordinates among the 

five parameters. The distributions of  dx are shown at successive 1000 minutes 

intervals in Fig. 6. As seen,  ix are represented by a polar coordinate system. The 

azimuth is classified into four quadrants, referring to the trench axis. Two rows of 

numerals from upper-right to lower-left and from upper-left to lower-right represent 

numbers of pairs parallel and normal to the trench axis, respectively. Fig.  6-U) 

seems to show something symmetric with respect to the origin. On the other hand, 

in Fig. 6-(4), the distance intervals of  30^-60 and  6090 km have 22 and 10 pairs of 

NW direction and 89 and 63 pairs of SE direction, respectively. This figure does 

not show symmetry at  all. This suggests that aftershock activity is apt to propagate 

in the SE direction (seaward). The ratio of  NW  —SE direction to total tends to 

increase with time, that is  41.  1,  39.7.  44.  0,  46.9. and  47.1(96). This means that 

shocks during short time intervals after any shock are apt to occur in NE—SW 

direction, and that with increase of time interval, activity of NW—SE direction, 

particularly SE direction becomes high. 
   Next, we estimate the speed and direction of migration. We used three para-

meters of  (Ax,  JO above. Hereafter we use only two parameters of  (dx,  410 by 

projecting vector  ,61x on one line. An example is seen in Table 2. The line of 

projection is oriented in  S40`E (positive) —N40°W (negative) direction. In every 
time-distance interval each entry is a ratio of the number of pairs in positive
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          Table 2. An example of time-space analysis of August 1969 sequence. 
                   Abscissa is time interval from one shock to another later shock, 

                   and ordinate is distance interval from the former of the pair to 
                 the later along S40°E (positive)-N40°W (negative) direction. 

                 Each entry indicates the ratio of number of pairs in positive 
                 direction to the total of both directions. Numbers with brac-

                 kets are the total values. In the case that a hypothesis, a 
                 ratio is equal to  O.  5, is rejected, the entry is  underlined. 

 90  

 0.54  0.37  0.52  0.96  0.70  

(  56)  ( 35)  ( 21)  ( 27)  ( 27) 

 75  

 0,52  i  0.47  0.65  0.84  0.71 

       (113)  ( 70)  (54)  ( 64)  ( 59) 

 60  

 0.57  0.46  0.65  0.  85  0.64  

        (238) (125)  ( 97) (108)  ( 91) 
 'a'  45  

 0.50  0.48  0.57  0.83  0.69  

        (371) (206) (188) (161) ( 99) 

 30 

 0.56  0.57  0.54  0.70  0.58 

        (552) (273) (260) (209) (113) 

 15  

 0.54  0.57  0.55  0.49  0.56 

        (662) (334) (260) (234) (126) 

   0 1000 2000 3000 4000 5000 

                              Time interval  (min) 
                               S40°E                                                       (340°E -I-N40°W) 

 S40°E+N40°W  ' 

direction to total of both directions (the same distance interval but opposite direction). 

The total number is also shown with brackets in each interval. This ratio is an 

indicator of the symmetry, and is expected to be  0.5 in a symmetric case. With 

some exceptions, the ratio is larger than  a  5 in Table  2. Under a null hypothesis 

that both directions have the same propability  (0. 5), the binominal test is used 

at the level of significance of 5%. The entry is underlined in the case that this 

hypothesis is rejected. As we examine these underlined entries, it seems that the 

asymmetric case takes place in farther distance interval with increase of time interval. 

This might show the seaward propagation of aftershock activity. We estimate the 

speed at  10--35 km/day. 

   Fig. 7 shows the results concerned with other  directions of projection lines. 

The direction of the line is set for every 30 degrees from parallel to the trench axis. 

The six lines in the figure show these directions. They intersect at the epicenter 

of the main shock. The longer part of each line shows the positive direction in 

projection. Six inserted figures are obtained in the same way as Table 2, ordinate
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        Fig. 7. Results of time-space analysis of August 1969. Six lines indicate 
                directions of projection. Inserted figures are results of analysis in 

                respective directions of projection. Ordinate and abscissa are 
               graduated in every 15 km of distance interval and 1000 minutes of 

               time interval, respectively. A black block shows that a ratio of the 
               number of pairs in positive direction to the total of  both  directions 

                is expected to be greater than  0.5 by a binominal test. A dotted 
               block shows that a ratio is to be smaller than  O. 5. A blank block 
                shows the other case. Epicenters of aftershocks are also shown 

               (see Fig.  5-  (4))  . 

and abscissa are graduated in every 15 km of distance interval and 1000 minute of time 

interval, respectively. The binominal test was used in each time-distance interval, 

and the result is represented in three ways as  follows  : A blank means that null 

hypothesis is not rejected. The black means that the hypothesis is rejected and that
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the propability of positive direction is expected to be larger than  0.5. The dotted 

means that the hypothesis is also rejected and that the propability is to be smaller 

than 0.5. As seen in Fig. 7, the symmetry is largely disturbed in the cases of  370°E 

and S40°E directions. If we assume that the migration is one directional, or unila-

teral, the direction is most likely to be normal to the trench axis or somewhat 

counterclockwise. The speed is estimated at 10-35 km/day as before. 

3.3 Aftershock sequence of June 1973 

   This earthquake occurred on June 17. 1973 in eastern Hokkaido. It had been 

predicted on the basis of a seismicity  gap."' The faulting nature of this earthquake 
is considered to be similar to those of neighboring great earthquakes (see Fig. 4), 
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but in quantity this shock was smaller by a factor of  3--615),16) than the earthquake 

in the previous section. The epicenters of aftershocks are plotted in Fig.  5-  (6). 

Number of aftershocks is smaller than that of the previous case.  In the same way 

as the previous, we investigate migration of this sequence. The results are shown 

in Fig. 8 with the same notations as those in Fig. 7. The upper-right parts of 

inserted figures are cut off because of scanty  /lath_ It seems that the symmetry is 

most largely disturbed in the direction normal to the trench  axis.  It might be 

concluded that the direction of propagation, on the assumption of unilateral propagation, 

is seaward. The speed of the propagation is estimated at 20-50 km/day. 

3.4 Time-space plots of sequences 

   In Kuril, many large earthquakes occurred recently. Among them, the shocks 

followed by many aftershocks are listed in Table 1. These have been already 

investigated by many  authors."'-221 These main shocks are situated on landward side 

of their aftershock areas (see Fig. 5). The fault-plane solutions are given in Fig. 4. 

These shocks seem to be of the similar faulting nature, for example, a low angle 

thrust fault. 

    Fig. 9 shows time-space plots of those sequences, where epicenters of shocks 

are projected on a line normal to the trench axis. Ordinate and abscissa indicate 

the distance from, and the time lapse after the main shock, respectively. Each of 

Fig. 9 (1)-(6) shows a migration feature well. Particularly in Fig. 9  (2). (3) and 

(5), a quiescent area of activity originates at the epicenter of the main shock, and 

spreads seaward with time. Such a feature appears in the other cases, although it 

is not so clear. Spreading speeds are 8-16 km/day. 

4. Discussion and conclusion 

   One of the present  authors"' has  already reported such a migration feature of 

aftershock activities in other regions as those mentioned in the previous sections. 

A spreading speed of quiescent area is summarized in Table 3. These values were 

estimated visually from time-space plots such as Fig. 9. In each case of August 

1969 and June 1973, the speed in Table 3 is lower than that estimated previously 

by the statistical method. Because the former represented a propagation velocity of 

relatively high seismicity, and the latter represented the velocity of lower limit. The 

difference between two values estimated by different methods is at most a fatcor 

It may be concluded that the propagation speed of aftershock sequences in Kuril is 

the same order as that of San Fernand earthquake." and on the other hand much 

lower than those of Alaska and Aleutian  sequences.s' In Kuril, the fault width of a 

large thrust earthquake is about 100  km, and propagation speed is about 10 km/day. 

Then, the migration should be observed during only about 10 days just after a main 

 shock. Even if migrations are concerned in a crustal movement, it is difficult to 

detect this short time deformation by leveling.  Tada"' reported crustal movement 

during a short period after the 1973 Nemuro-Oki Earthquake on the basis of tide
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Fig. 9. Time-space plots of sequences. Ordinate and abscissa indicate the 

       distance from and the time lapse after the main shock, respectively. 
       The number at a upper-left corner is the azimuth of a projection 

       line counted clockwise from the north.
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                    Table 3. Spreading velocities of quiescent areas. 

            Date Epicenter Velocity 
          Y M D Lat. Lon. (km/day) 

            1970 4 29  14.  5°N  92.  6°W 11 

           1971 7 9  32.5°S  71.2°W 15 

 1972 12 2  6.5°N  126.6°E 7 

            1964 7 24  47.  3°N  153.8°E  8 

            1968 1 29  43.  6°N  146.  7°E 8 

           1969 8 11  43.5°N  147.4°E 9 
            1971 12 15  56.0°N  163.3°E 9 

             1973 6 17  43.  2°N  145.  8°E 13 

gauge records. 
   In any case, detailed researches for mechanisms of migrations are left for future 

study. Our conclusions summarized as  follows  : 

   1) On the assumption of unilateral propagation, the direction of propagation is 
likely to be normal to the trench axis. 

   2) Time-space plots, where epicenters of aftershocks are projected onto the 

line normal to the trench axis, show that the quiescent area starts at the epicenter of 

the main shock and spreads seaward. 

    3) Propagation speeds of aftershock sequences are estimated at  8----50 km/day. 
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