
 Bull.  Disas. Prey. Res. Inst. Kyoto Univ., Vol. 28, Part 1, No. 254, April 1978 9 

   Mechanical Model of Particulate Material Based on 

                   Markov Process 

               By Sakuro  MURAVAMA and Ryosuke KITAMURA 

                        (Manuscript received April 28, 1978) 

                           Abstract 

       In this paper a mechanical model for particulate materials, such as sand, is proposed to 
   analyse their stress-strain behaviours during shear. In modelling, the motion of individual 

   particles is assumed to be a Markov process, which is one of the well-known stochastic processes, 
   because the irregularity of particles in both shape and volume, and the complicated fabric of 

   particulate material are considered to prohibit the deterministic approach to the motion of in-
   dividual particles in a particulate material. The strain of the particulate material is then derived 

   by the motion of particles. It is shown that the stress-strain relationships of a particulate materi-
   al derived from the proposed model compare favorably with those of Toyoura sand which are 

   obtained from the drained compression tests and the proposed model can comprehensively evalu-
   ate the inherent anisotropy due to the fabric of particulate material, the extrinsic anisotropy due 

   to the stress history and the non-linearity of stress-strain relationship. 

1. Introduction 

   The problems of settlement, landslide, liquefaction and failure of embankment, and 
the development of the finite element method by the computer realize recently that one of 
the most essential subjects in soil mechanics is to establish the general stress-strain re-
lationship of soil. For the last two decades theoretical and experimental studies have 
been carried out in order to obtain the stress-strain relationship. Basically, these studies 
are divided into two approaches, one of which is the macroscopic approach in which soil 
is regarded as an elastic or a plastic or an elasto-plastic or a  visco-elasto-plastic body and 
the other is the microscopic approach in which soil is regarded as an assembly of rigid 

particles. In this paper the authors adopt the latter approach and attempt to clarify the 
deformation characteristics of particulate material such as sand by regarding the motion 
of individual particles as a Markov process. In what follows the coefficients in the basic 
equation of the  Markov process are determined by using the concepts of the potential wall 
and the potential slip plane, and the stress-strain relationship of a particulate material will 

 he derived by solving the basic equation of the Markov process. 

2.  Application of the  Markov process to mechanical behaviour of particulate 
   materials 

2.1. Basic equation of the Markov process 

   The basic equation of the n-dimensional Markov process is expressed as  follows  :
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      a"
Yt3            3-;.w(7,E[21s)20(71, s)i±i,J=E1 'Va2,[AA, s*(7/,(1) 

 E where  zi; a point  (yi,  yz,  yz) of the n-dimensional space, 

             s; time, 
 w s); the probability density function of  n at the time s, 

 A1 and B15; the coefficients depending on  n and s. 

In the application of the Markov process all factors that make possible contributions to 
the deformation of a particulate material must be considered as random variables. How-
ever, this procedure is considered to lead to mathematical difficulties in solving Eq. (1). 
Therefore, as a random variable, we will adopt the factor which is considered to contri-
bute most significantly to the deformation of a particulate material. In this respect, the 
direction of the normals to the tangential contact planes between particles in the particu-
late material are chosen here as the random variable. As a consequence of this, the 
motion of particles which causes the deformation of particulate material is replaced by 
the change in the direction of the normals. 

   Figure 1 shows the tangential contact plane of the two adjacent particles and the 
reference frame adopted. The angles between the normal line of the tangential contact 

plane and the reference axes, xi,  x2 and  xz are denoted by  fit,  fla and  Ps, respectively. 
Since the tangential contact plane is specified by two of the three direction cosines, we 
adopt contact angles fit and  gz, as the independent random variables. Furthermore, it 
is possible to replace the time s in Eq. (1) by the stress ratio in the shearing process. 
Thus Eq. (1) can be rewritten in the following form. 

   a 2a232 
        E,w(7).4= -jEs)w(77, s)]+Eag 2 [B ii(n, 4w(-q, s)] (2) 

 A  ieq, =lin, T;f2rfri2(13;,,+4—gi,z)P(ns,nz-F4,z,z                                         dgi+edgz+4(3) 

   xl   4-0u 

                         normal line 

                               particle 

 1010 X3 
                          angential plane 

                    particle                                               Fi
g. 1. Relation between two adjacent particles. 

 X2
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                          1TxEr/ 2         B;1("l,s)=1 eimo2-4J 0J.oks+°—Pi-02Pei- ns+411131'2±I492'sta  (4) 
where  w(r, s); the probablity density function of contact angle  n=(fit,  PO at the 

                stress ratio s. 
 P  (ns,71.44); the transition probability that contact angle changes from  ns to  ns+a 

               when the stress ratio changes from s to  s+4. 

2.2 Method to determine coefficients and  Bii 
   It is necessary to determine the coefficients  Ai and  Bii in order to solve Eq. (2). It 

should also be noted that the coefficients  Ai and  Bii, defined by Eqs. (3) and (4), corres-
pond to the mean value and the variance with respect to the change of contact angles 
which occur when the stress ratio changes. Therefore, the coefficients  Ai and  B are 
found to represent the mechanical properties of particulate material at conatct points of 
adjacent particles in the shearing process as the Markov process. In order to determine 
these statistical quantities,  Ai and  Bii, from the physical view point, we will introduce the 
concepts of the potential wall and the potential slip plane. 

   First, we will briefly explain the nature of the potential wall. Figure 2 schematical-
ly shows the potential walls of the elastic, viscous and visco-elastic bodies on the micro-
structural scale. In the elastic body the potential wall is so high that the atoms compos-
ing the elastic body cannot surmount it, as shown in Fig. 2(a). Thus the elastic beha-
viour is exhibited by the body. However, in the viscous body the potential wall is low as 
shown in Fig. 2(b), the atoms composing the body can easily surmount it and the body 
exhibits viscous flow. Furthermore, in the visco-elastic body the height of the potential 

                                  XI"( 

 (a)  elastic body       71)11 
              rXrbi   (b) viscous body  df3i 

2 f \ \ 

 • 

 S  
                     dB2  (c)  visco -etastic body 

       Fig. 2. Concept of patential wall. Fig. 3. Potential wall at the contact point of two 

                                                adjacent  particles.
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wall is random as in Fig. 2(c). This is a micro-structural explanation of the visco-elastic 

behaviour. In the present study the micro-structural concept stated above is assumed 

to apply to the potential of the change in contact angle at a contact point of the two adja-

cent particles in a particulate material. Figure 3 schematically shows the potential wall 

at a contact point in the three dimensional space. The followings are assumed in the 
application of the potential wall to the proposed model: a recoverable change in contact 

angle occurs at the contact point where the activation energy cannot surmount the po-

tential wall; and an irrecoverable change in contact angle occurs at the contact point 

where the activation energy can surmount the potential wall. 

   Let us consider combining microscopic quantities with macroscopic physical quanti-

ties by summing up the microscopic quantities. Then, the following equations are 

derived. 
 r2  2.  /2 2. 

   E E  E  E  n,=11/2 (5) 
 Pi=  o  P2=o  B,=0  P2=0 

               ./ 2 at             E E (n,,r;pc,,i+n,,o; xmol-n„,o.•hi-x^b2).--,jyy(6) 
 P1=0  P2=0 2R, 

 n„=  New(?),  s)43,..432 (7) 

where  x„,1 and  x„,2; the minimum and the maximum heights of a potential wall at the 
                 contact point which has the contact angle  ti and the irrecoverable 

                 change in contact angle as shown in Fig. 3, 
 n,,,t and  n,„2; the number of contact points where the activation energy can 

                  sumrunt the potential walls, and  .x,,s, respectively, 
 n,,o; the number of contact points which have recoverable changes in 

                  contact angles, 
 N0; the total number of contact points in the particulate material 

 dw; the work transferred into a particulate material by external forces, 
 R”; the coefficient expressing the height of potential walls at the 

                 contact points which have the recoverable changes in contact 
                    angles. 

Equation (6) is the energy balance equation and shows that the proposed model satisfies 
the first law of thermodynamics. 

   For later convenience, let us denote the ratios  x„,i/x,,2 and by  RP,„ 
 R„,„, respectively, i.e., 

 r-q,  /x,„  Rp,„ (8) (9) 

If the probability density function of the contact angles at the contact points where the 
activation energy can surmount the minimum potential walls is the same in form as the 

probability density function of the contact angles in the whole particulate material, it 
then follows that 

 w(t),^)effi•dfis (10) 

where  ./17c,)  ; the total number of contact points where the activation energy can 
          surmount the minimum potential wall at each contact angle.
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Using Eqs. (5), (6), (8), (9) and (10),  /KJ can be expressed as follows (see Appendix): 

                   A rzrP(16,0-1 
                                    A=0fig=0 \ 2R,i*RM N

C1=r/2(11) 
      EEs)431-02{(1+ (1+ )(1+R„,,)/2R41 

     131=0 92=0 2,17AI b,n 

Substituting Eq. (11) into Eq. (10),  n„,1 can be expressed in terms of the quantities  n,„ 
 w(71,  s),  RD,,,, and  14. By using Eq. (9),  n,,,2 can be expressed in terms of the 

six quantities just mentioned. Furthermore.  no,0 can be obtained from Eqs. (5) and (7). 
The details of the method to determine n,,  RD,n,  Rn, and  le, will be explained 
and the physical meanings of these quantities will be discussed from the microscopic 
view point later. 

   Let us consider the concept of the potential slip plane. 
When the stress ratio changes from the peak to the residual value in the triaxial shearing 
test with a particulate material, a slip plane is usually observed on the surface of the re-
lative dense sample. The phenomenon of the formation of the slip plane is considered 
to be the convergence of the local slip planes, which develop randomly at the numerous 
contact points in a particulate material during the shearing process, to the macroscopical-
ly observable slip plane. The potential slip plane used in the proposed model means the 
representative plane which is composed of these numerous local slip planes and finally 
coincides with the macroscopically observable slip plane during the shearing process. 
It is also assumed here that contact planes tend to be parallel to potential slip planes. 
This assumption means that the probability of the occurrence of changes of contact 

planes proceeding in the direction of the potential slip plane is greater than the probabili-
ty of the occurrence of changes of contact planes proceeding in the reverse direction of 
the potential slip plane. 

   This kind of the concept for the potential slip plane has been proposed by  Mura-

yamath2h3), and Matsuoka and  Nakai'll. Murayama applied the  Mohr-Coulomb 
failure criterion not only to the failure but also to the shearing process preceding the fai-
lure and proposed the potential slip plane named the plane of maximum mobilization, 

             Matsuoka and Nakai extended the  (r/a)„,,,.-plane to the plane named 
the spatial mobilized plane in the three dimensional stress space. Hereafter, the spatial 
mobilized plane will be adopted as the potential slip plane. 

   With the aid of the concepts of the potential wall and the potential slip plane men-
tioned above,  A, and  Ai can be expressed as 

               1            21,(n,  s)=—(n,,ethi,s+n,,,2.8,,,2,i+nmo•Smo ,i),  (i=1,  2) (12) 
                        n, 

         B*Oh1s)=i+ nms. 2,, 2, i+ 71/40'82,, a  (2=1,  2) (13) 

where  8,,,n,i and  820,1; the mean and the mean square values of the change in contact 

      (k=0, 1, 2) angles at the contact points where the activation energy can 
                   surmount the potential wall,
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 &hos and  52,,A;  ; the mean and the mean square values of the change in contact 

                   angles at the contact points where the activation energy cannot 
                   surmount the potential wall. 

   Next, let us consider  n„,  xmi,  14,  R  p, and  R0,,, in Eq. (11), and  5„,k,i and  52,0,i 

(1=1, 2,  k  =0,  1,  2) in Eqs. (12) and (13), 
 Ne presents the total number of contact points in a particulate material and the 

following relations are derived. 

  C.V 1     N
g—•Np(14).114=•(15)    21+er7 

where  Co; the mean value of the contact points per particle, 

 N  pi the total number of particles in the particulate material, 
 V; the volume of the particulate material, 

      e; the void ratio of the particulate material, 

 V; the mean volume per particle. 

Substituting Eq. (15) into Eq. (14),  N  cis expressed in terms of  C.,  V, e and  0 as 

   C.V1(16) 

. 

        N=•              21+ eV 

Then,  n„ included in Eq. (11) is known by the use of Eq. (7). 

With respect to  C.,  Field') and  Odas) carried out experimental studies and Field pro-

posed the following experimental equation. 

             12    C
.= 1+e (17) 

 In the proposed model Eq. (17) is used when  C. is calculated. 
 x„,,, which is the minimum potential wall at the contact angle  n, has the dimension 

[force] x [length]. Therefore, the force T causing the change in contact angle and 
the change  3 in contact angle must be obtained. First, method to determine T 

 xt 

 i 

 normal  tine 

        : riik...... 
                            interparticle 

)                    

'  et
a 

                             X3 

                       tangential planeFig. 4. Relation between the tangential plane and                                                      interparticle force at a contact point. 

    X2
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is described by using the interparticle force F and the frictional coefficient  p between the 

particles. Figure 4 shows the relation between the tangential plane and the interparticle 
force at a contact point. Denoting the angle between the normal line of the tangential 

contact plane and the direction of interparticle force by 0, I  T  I assums the following 
 form: 

      for  0505tan-lp  TI  =yr  IFI•cos 0 (18) 

      for  tan-/  pgegi  =  F  I•sin  0 (19) 

The interparticle force F is obtained by the simple average of the force and the number 
of contact points, i.e., 

 F  I =[resultant force per unitarea]/[the number of contact points per unit  area] 
                  AT,1    =vo.0±0.0' (hID) A±a32_ .1_24.012+022+00.iveD(20) 

where  ai,  a2 and as; the principal stresses, 
              A; the area of cross section in the particulate material, 

              h; the height of the particulate material, 
              D; the mean diameter of particles in the particulate material. 

Next, let us consider the change in contact angles in the shearing process. 
When the contact angle changes from  ii=g3i,  (12,  /3s) to  /32',  /V), the change, 8,,, 
in contact angle can be given as 

 8„=cos-1(cos  Pecos  fli'±cos  /32•cos  132'±cos  fircos  fls') (21) 

Thus, the mean value of  8,, is obtained in the following form. 

 8„=  f  cos-'(cos  fi•cos  1311-Hcos  Pecos  132'±cos  /32•cos  fis)Pen,  n)dn (22) 
where  P(n,n'); the transition probability of the change in contact angle from  22 to  71'. 

Using Eqs. (18), (19), (20) and (22),  x,,,i is derived as  follows  : 

   for  0  so  s  tan-1  IL  ;cm  r-  I  T  .8,,•0/2  Thic,4•Vai2-Fa22--Ea32  •  awn  •  cos  0.8, (23) 

   for  tan-'µ5B5  1;1  x„,i=  T  .8„.M2=A-Vai2-ka22-Fiza2  •  atv 

                                                 

• sin 0• ,,(24) 

   R, in Eq. (6) is the coefficient which represents the height of potential walls at the 
contact points where the recoverable changes in contact angles occur and is related to the 
elastic state which means that the motion of particles in a particulate material is recover-
able. Thus, in the elastic state  n„,i and  n,,2 in Eq. (6) are equal to zero and Eq. (6) is 
rewritten as 

                x/2 2x 
 E  E  [74xn,l-Fx,,,2)12Rvl (25) 

 ,e1=o 

where  ZIW„; the work distributed to the recoverable motion of particles.



16 S.  KMURA  YAMA and R.  'TAMURA 

Assuming that  len is independent of the contact angle  n, the following equation is derived 

from Eq. (25). 

 r/2  2rt 

 E  E {nv(semr+xv,2)} 
   Ro_ As-a/12=-0 (26)  2•4We 

   Let us consider  Rp, defined in Eq. (8) on the basis of the relation of two adjacent 

particles as shown in Fig. 1. 
Since the probability of change in contact angles to all directions is equal at the contact 

points where either  /31 or  /32 in Fig. 1 is zero or  42, the height of the potential wall can be 
assumed to be constant. Thus,  Rp, is unit when either  g,  or  s2 is zero or  42. Further-
more, at all the contact points where the tangential planes are parallel to the potential 
slip plane (the spatial mobilized plane) the change in contact angles is considered to be 
the same as the change of the potential slip plane. In this case the maximum potential 
wall  x,,,  2 can be assumed infinite and thus  R  p, is equal to zero. 
The simplest function  R  ft, of contact angle  , which satisfies the above relations between 

 R  pin and  i at the specific contact angles can be formed by the planes as shown in Fig. 5. 
The relation between  Rp, and  n shown in Fig. 5 is used in the numerical experiment. 

 Rn, is assumed to be the same as  R  p, for simplicity in  the proposed model because 
the ratio of the numbers of contact points,  Rn,, can be considered to be propotional to 
the ratio of the heights of the potential wall,  R  p,. 

 8,,,k,i in Eq. (12) and  82„,k,  i in Eq. (13) which are the mean and the mean square values 
of the change in contact angles in the shearing process are obtained as  follows  : The dis-
tribution function of the change in contact angles in the shearing process is assumed to 
be the normal distribution function in which the mean value and the standard deviation 
are equal to the change of the potential slip plane. Furthermore, the concept of the 

potential slip plane is used to determine the direction of the change in the mean value of 
the distribution function. 
Thus, the following equations can be given. 

 RPM. 
 , 

 Air 
 iron0• 2 131 

                                 -r/2- 

          W, ,          c17,10,1,,                                                   Fig. 5. Relation between  Rp,v and  a. 

 TT/2   

 B1
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      for  05Pi59C.,i  (1=1,  2) 

  c•'          Lit =j81,ia„rafibi(8)d8 (27), 82„,o,i=f1,182f,„;(8)d8 (28)                                            afid
oo8

,111=f8f,,,i(8)d8 (29),82,,),;=1"82A,;(8)d8 (30) 
   aidDia 

           = faV„,;(8)d8 (31), 82„2,;=fie -82f,,,;(8)d8 (32) 
where 

       fv,i(8)=1  f(8 -456no,021     exp(33)                 A
chme,i427r 2(dstim.,02 

 4.,,t; the angle between the normal line of the spatial mobilitzed plane 
                 and the reference axis,  xi-axis, 

         440,i; the change in clome,i accompanied with the change of the spatial 
               mobilized plane, 

 81,1 and  82,1; the  minimum values of the change in contact angle, at the 
                contact points where the activation energy can surmount the 
                minimum and the maximum potential walls respectively, and 

 4Z10.0,t and 82,i=k" Z1140,i are adopted in the numerical 
                   experiment. 

   for (1=1, 2) 

         8Tho,i =„s8f,,;(8)d8 (34), 82,(I,j=f °pi82f„,i(8)d8 (35) 
                              Si,,a 

   a„•l,         aosr-f'8.4,;(8)d8 (36), 82,,,),;=1182f,,,;(8)d8 (37) 
       8,2,1=f2,i88f„,;(8)d8 (38),g2„,2,i=f2a82f,,,;(8)(18 (39)  .7 

where 

               1(8+458.0,021  (40)         Ai(8)=Z140,i427( exp{ 2(496,n,,,02 
 Sti=  -ZItOmo,i and  82,i= are adopted in the numerical experiment. 

   Using the distribution function of the change in contact angles defined in Eqs. (33) 
and (40),  a, in Eq. (22) is given as 

 8,7=440=  cos-1 {cos  Ino,t•cos(0..,1+45L,1) 

 +cos  0.0,2•cos(c6.0,24-d4o,2)+cos  0,3•cos(0,,,,,,2+495,,,,,,a)} (41) 

   In the section 2.2 the physical meanings of several quantities, which are introduced 
in order to determine the coefficients  A; and  B„ in the basic equation of the Markov 

process are discussed. It is difficult to determine these quantities by direct measurement 
in the shearing test with a particulate material.
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   Then, the authors indirectly investigate these quantities, i.e., the quantities men-
tioned above are comprehensively determined so as to represent the mechanical behavi-
ours of a particulate material which has various intial conditions and stress histories. 

3. Determination of strain 

   When the basic equation of the Markov process, Eq. (2), is solved, the strain of a 

particulate  material can be obtained in terms of the probability density function,  iv(?), s). 
Figure 6 shows an element of a particulate material in the three dimensional space. The 
strain on the direction of  xi-axis at the stress ratio s is defined in the following form. 

                           .1.3.,,—L1_45,z1 
  Es,si=  - (42)  L

s-as,x; 

where  45.1; the length of an element in the direction of  xi-axis at the stress ratio s 
             as shown in Fig. 6, 

 Ls_,,,,xs; the length of an element in the direction of  xi-axis at the stress ratio 
 s-ds. 

Let us denote the number of particles in the direction of xi-axis along the path which 
combines the planes facing each other at the stress ratio s as shown in Fig. 6 by  N1,.; 
and the distance in the direction of  xi-axis between the centers of adjacent particles 
by  1,,rid as shown in Fig. 1. Then the following equation is given. 

 N, ,xi 

 Ls,si—4,11,j(43) 
 3=1 

Substitution of Eq. (43) into Eq. (42) leads to the following equation. 

 Ns,s;  10-48,s, 

         E 6,ri,s—  E 1,—ass;,;
Es,z,=:—1 i=1  (44)                                     Ni-41,x1 

 E Is—d,,si,l 
 5=, 

                        X1 

 41 4,,„   PPP 
            7,,i. 

     Aar..../Ls,: X3 
                                            Fig. 6. Element of a particulate material. 

                                                  , 

                                               , 
 i 

 X2
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Dividing the denominator and the numerator on the right side of this equation by 

      the following equation is derived. 

 Ni.  xi  N,-d,. 
 1/N,-thai  E 6,51,1-1.11VE-J,,51 E4•1                                                                          -431'i 

       5=2 jai         E
s,re -r- Ns-ds, sj 

 liNs-ds,xi E 

 (45)  E[4 -4.,,.  id] 

where  E[1,,x1,1]; the mean value of  13,.  is along the path in Fig. 6. 

   Furthermore, if the fabric of a particulate material in the direction of  xi-axis is 
stochastically uniform, the following equation should hold. 

 E[4.xij]=M[4,fij] (46) 

where the mean value of  is,si,j in a particulate material. 

 A  1[1,,,ci,f] can be expressed in terms of the probability density functions  W(71,  s) and 

g(D) which present the distributions of contact angles  7/ and grain size D, i.e., 

                             toorvrf          m[4,xiii1=.1.J.J./2.D.cos ficg(D)w(n, s)a)91.-42.dD 
          =1)ffn               '

cosiw(7),4442 (47) 
                  oo 

Substituting Eqs. (46) and (47) into Eq.  (45), the strain  Es,7  i is given by 

                                 7./2                f 0uncos Pati(n, s)d,81.492—o2cos Pave?, s—ds)dfireip2 

                                                       o 

 €3•X 2gft/ 2  f
00  cos  giZe(ri,  s—ds)dfi•d/32 

                                            (48) 

Eq. (48) shows that the strain which occurs due to the change in the stress ratio from 
 s—th to  s  can be defined in terms of and  w(77, s). 

           which represents the ratio of the numbers of particles along the path in 
the direction of  xi-axis, can evaluate the discontinuous motion of particles such as the 
disappearance of particles from the path and the new appearance of particles along the 

path. It may be reasonable, thereofre, to consider that this discontinuous motion of 
particles corresponds to the so-called dislocation in crystal materials. 

    Let us consider  N,,,i/Ars-nai quantitatively. 
It is assumed that the discontinuous motion of particles such as the disappearance of 

particles occurs at some of the contact points where the activation energy can surmount 
the potential wall. Furthermore, the discontinuous motion such as the disappearence of 

particles is assumed not to occur at the contact points where the tangential contact planes 
are horizontal (i.e.,  p,--o) and to occur at all the contact points where the tangential 
contact planes are vertical (i.e.,  pi=7r/2).
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Denoting the ratio of the discontinuous contact points to the contact points where the 
activation energy can surmount potential the wall by  P  d(131), the simplest function  Pd(fl) 
which satisfies the above assumption can be given as 

        pai)  = (n„,i +n„,2)d(2„ y                                               (49)  (n„,i±n„,2)7T 

where  (n„,i+n„,2)d  ; the number of contact points where the disappearance of particles 

                     occurs, 
             A; the coefficient depending on the fabric of a partculate material and 

                  stress ratio. 

Then  AT  s,sil  s- d,,,; for the disappearance of particles can be expressed as follows 

 r/2  1r 

 E  E                                  .Ns,zi—N.-43,xt  P1=0A-0 
         s,x,INs-es,x,r-1=1—  r/2  Zr  N

,-e,,,;  E  E 
 -0  P2-, 
                               1

/3`12                      =1—Iv,-0 PE,d(fi1.)• (n,?a, ,2)} (50)                                        a12 

It is also assumed that  the appearance of particles occurs at some of the contact points 
where the disappearance of particles occurs. Denoting this ratio by  K,  N,,x;IN3-a,,.; 
for the appearance can be expressed as  follows  : 

                           1 riz        N
34-.).;= 1+E E (K. Pd(gi)•(n,,,i(51)                             117,fti=o  h.° 

                Change of 

              Stress Ratio s 

 "-C
oncept of Potential  Wall 

 4— 

 Concept of Potential Slip  Plane 

  Determination  of  Ai 

 and  Bii  in  Eq.(2)  

 Change of Distribution Concept  of 

 of Contact  Angles  , w Dislocation  ,  Ns/Ns-As 

 11,  
                  Strain 

              in Eq.(48)  
                          Fig, 7. Flow chart of the proposed model.
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where  K; the coefficient depending on the fabric of a particulate material and stress 
        ratio. 

   Figure 7 shows the essential flow chart of the proposed model which is explanied in 
the chapters 2 and 3. In the next chapter the numerical experiment will be carried out 
in accordance with this flow chart. 

4. Numerical experiments 

   The basic equation of the Markov process, Eq. (2), was numerically solved by using 
the difference scheme and thus the stress-strain relationships of a particulate material were 
obtained. Figure 8 shows the stress-strain curves of the drained triaxial compression 
tests with Toyoura sand under constant radial stress and the stress-strain curves obtained 
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                     Table 1. Values used in numerical experiments 

 Test No.  oa(kg/cm2)  eo  (t A  re 

   1 2  0.713  0.3  15  +  0.  75  (ca-or)  0.25 
   2 3  1  0.720  0.3  20  +1.  50  (ire  —ar)  0.20 
   3  4  0.716  0.3  25+1.75  (ere-or)  0.25 
   4 3  0:645  0.3  15+1.50  (cre  -or)  0.30 

 Cl: axial stress,  as: radial stress,  eo: initial void ratio,  ri: Eq. (18), A: Eq. (49),  x: Eq. (51)
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by numerical experiment based on the data of Toyoura sand. Table 1 shows the values 

used in the numerical experiments. The initial distribution of contact angles is assumed 

to be a triangle distribution. The change in the distribution of contact angles is schema-
tecally shown in Fig. 9 which represents that the number of contact points which have 

angles near the potential slip plane increases in the shearing process because the contact 

angles will tend to move as to be parallel with the contact angle of the potential slip plane. 

It can be seen from Fig. 8 that if the initial probability density function of contact angles 

and the work transferred into a particulate material during the shearing process are 
known, the proposed model can comprehensively follow the mechanical behaviours of a 

real particulate material, which include the inherent anisotropy due to the complicated 

fabric of a particulate material, the extrinsic anisotropy due to the stress history of un-
loading and reloading, and the non-linearity of the stress-strain relationships. 

5. Conclusion 

   A mechanical model for a particulate material has been developed through the 

microscopic approach based on the Markov process and on the concepts of the potential 

wall and the potential slip plane, and the stress-strain relationships associated with the 

model have been formulated. 

The results obtained in the present paper may be summarized as  follows: 

 (1) The application of the Markov process to the microscopic  research of a parti-
     culate material is promising. 

   (2) The coefficients  Ai and  Bii in the basic equation of the Markov process present 
     the mechanical properties at the contact points in a particulate material. Thus 

     the method of determining these coefficients exerts profound influence on the 

     propriety of the model. 

   (3) the inherent anisotropy due to the fabric of a particulate material, the extrinsic 
     anisotropy due to the stress history and the non-linearity of stress-strain relation-

     ships can be comprehensively explained by means of the proposed model. 
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                         Appendix 

   Eqs. (5), (6), (8), (9) and (10) are again written below. 

 $2,70.-En,,,z+na,o=n,  (5) 
 rfi  zsx ,,i+ x,,,2  E  E  (11,,,cx„,2+22„,2*x12+n  1°)=Aw(6) 

    A-0/31-02R„ 
    x,,,il  x,,,2=R p,,,(8) 

    n,,, skz,,,i =R,,,, (9) 

          sv,,,I=1V,,i•w(n, s)43111,92(10)                                                 (10) 

   Eliminating  x„,2 and  n,,,2 in these simultaneous equations, Eqs. (5) and (6) are 
rewritten as follows: 

 n,,,o-=n,,—n„,i(1±R„,,,)  (5') 

                                                         I• 

                           (1+1)x,,i  EEt n,i.R.,R p,,, 1                       ,x, „i+ , ,•x,,,thhi+x,,,o                               2R,,—,e1W (6')  p,-0  p2-0-IL,7? 

   Furthermore, by the elimination of  n„,0 and  n„,i in Eqs. (5'), (6') and (10), the 
following equation is derived. 

                 /22.        Nco.-rE E [x„,iin(q, s)dfirdi32{(1-1-R=n") — (1+1r)(1+R.,012R,711 
        131=co 1,2=oPmPmA P ,77 

            =A W=Pi-0 P2-0VI?(1 +/?,,,Yxibili'l 
                                      r Thus,  N,,i is given as follows: 

                                     (RP ,,,± 1 

• 

                       ALF — E E.n,cnn} - 
             Ph'-= /2  2r 

                                                                            x 

              E E  [x,,,i-so(7), s)(113,.. dflzi (1 +R,'t                           ) (1+2) (1-1-R„,)/2R41 
         PL-0 p2=o410,n -anl




