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                           Abstract 

    Gouge—microstructure near faults—the existence of which is accepted as a compromise between 
data from laboratory experiments and from earthquakes is modelled under the following assumptions: 
An internal energy is assumed to be a function of strains referred on the particle frame and rotation 
differences between rotations referred on the absolute frame and  ones on the particle frame. Simul-
taneously, a dissipation law is formulated from the law of entropy production. From characteristic 
equations, three branches of solutions are derived: 

    (i) Non-attenuative and non-dispersive longitudinal waves 
   (ii) Two types of transversal  waves— 

         A. weakly dispersive and attenuative waves which have a limit to those of perfect elasticity 
         B. non-causal and dissipative waves which have a limit to those of pure dissipation 

    Pre-seismic or post-seismic time-dependent deformations and coseismic quasi-elastic deformations 
are discussed from the proposed model. 

1. Introduction 

   In the so-called crack model of seismic sources (e.g., Kostrov (1966)), the start and 
stop of fracture motions are controlled by proper boundary conditions on a fracture 
region, which is usually composed of one fracture plane. In order to obtain more 
realistic features, the model should have a more complicated structure. For instance, 
we may consider an increased number of fracture planes. These lines of complications, 
however, would need the enormous memory of computers and hence there should be 
alternative ways of complication, retaining high precision in numerical computations. 
For this reason, models have been simplified under the assumptions that some compli-
cated structures are concentrated on one fracture plane. (e.g., Otsuka (1971), Mikumo 
and Miyatake  (1978)) 

   We discuss here an extension of conventional source models (which we call "one 
 shed model") To overcome some difficulties and restrictions imposed by computer 

capacity, we introduce a new freedom of motion into the problem. This parameter 
could be an adequate representation of the nature of fault gouge material for which much 
attention has been paid in laboratory experiments. (e.g., Byerlee et al.  (1978)) 

   A model of fault gouge is formulated under assumptions that the internal energy 
of the system of an aggregate of deformable particles is composed of two variables, that 
is, strains on a particle and rigid rotations independent of averaged movements. An
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intuitive exposition of a model and the necessity of dissipative forces are discussed. 

Experimental results are cited in support of these formulations. From an observational 

point of view, there remains some problems to be solved, that is, pre-seismic or post-
seismic time dependent deformations and coseismic quasi-elastic deformations. The 

solution of the above formulated equations gives necessary information for a possible 

interpretation of these phenomena. 

   As will be subsequently described in a separate paper, some extension of a model 

are attempted in a thermodynamical approach (Part II) and in a differential geometrical 

approach (Part III). The idea of independent-rigid rotations first took rise in Cosserat 

(1909) whose research had its recaptulation in Mindlin and Tiersten  (1962), and 
independently in Oshima (1953). Our present formulation is more elementary and as 

explanatory as possible to leave out the ambiguity existing in former researches. 

2. Mechanism of friction 

   Recently much work has been done on the problem of friction in relation to rock 
mechanics such as Brace and Byerlee (1966), Brace (1972), Scholtz (1968), Brune 

(1973),  Johnson et al. (1975) and others. In frictional sliding experiments, there are 
several controlling parameters and conditions, e.g., surface roughness, thickness of gouge 

layers, confining pressure, temperature etc. Brace (1972) has shown that a transition 

occurs from stick-slip to stable-sliding motions under appropriate P-T conditions. 

Dieterich (1972) has also shown the time-dependent recovery of fracture strength or 

static frictions after stick-slip events under some controlled normal pressures. How-

ever no complete dynamical experiments wherein the various parameters are controlled 
have been performed to date, so the above results may reflect only one aspect of the facts. 

   There has been much discussion about the stress drops estimated from the analysis 

of seismic waves ranging some ten to one hundred bars, which are one to two orders of 

magnitude lower than the results from laboratory experiments. When we compare the 

experimental results with the field data, we must pay attention not only to scaling effects 

(e.g., Maeda (1977)) but to the effects of compound material including several weak 
zones. Here we introduce gouge as a possible way of representing these effects. One 

sheet model with properly controlled surface conditions may be one primitive model 
along this line. 

   Recent development in experimental techniques has revealed the nature of gouge 

in sliding on a microscopic scale. (e.g., Byerlee et  al. (1978)) Although the formation 

process of gouge is not yet clear at present, we have the following concept in constructing 
our model. After a virgin fracturing in the earth and several repetitions of sliding on 

or near the same surface, the slipped segments will have been crushed to pieces and lose 

their elasticity as a whole. An influx of water from the surrounding region may pro-
mote further degradation. The region of slippage is called gouge. Although the 

whole gouge has lost elastic properties, the constituents of the gouge, which we call 

particles, still have elasticity as in the surrounding region. Even if gouge is  substitut-
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ed by different minerals due to the influx of water, it is usual that each of the particles 
are still elastic. For this reason, it is now necessary not  only to elucidate the nature of 

friction mechanism of each contacting particle on the gouge material but to model the 

aggregation of particles. 

3. Models of fault gouge 

   Following discussions in the preceding sections, we model the source of earthquakes 
as a fault including gouge sandwiched between nearly perfect elastic rocks, unlike that 

of one dislocation surface. This feature of the source is in harmony with geological 

field observations of active faults near the earth's surface. 

   Consider interacting forces between two particles in gouge. The interacting forces 

between particle A and particle B act only at their contacting point, which is illustrated 

in Fig. 1, if force at a distance, for instance an electrostatic force, can be neglected. 
In the case of Coulomb's type of frictions, the tangential component of contacting force 

is proportional to its normal component. Particle A and particle B rotate keeping in 

touch with each other, when the relative velocity between the contacting points is zero, 

i.e., the tangential component of the contacting force is lower than that of static friction 

or the intrinsic strength. Once slip motion between the two particles initiates, the inter-
acting force will be divided into two distinguishing terms; dissipation force acting due 

to mutual slippage and restoring force due to breaking of a static equilibrium. After 

the relative velocity between the particles is generated, eigen rotations distributed to 

the particles will become uniform or cease immediately, following fault movements. 

At the initiation of relative motions, the contacting points would collapse in such a way 
that the relative motion becomes dissipative in itself. 

    The above stated circumstances are schematically illustrated in Fig. 2, where the 

stage indicated downward by an arrow is the local motion and not relevant directly to 
the fault movement. If we make the size of the particles smaller and smaller, the dipole 

of eigen rotations of the particles in opposite directions will not be essential and would 

disappear under the assumption of finite eigen rotations. In this case the deformation 

process reduces to that described by classical continuum mechanics (e.g., Love (1927)), 
and hence dissipative processes become insignificant. After the initiation of rotations, 

the system of particles will be placed in a neutral equilibrium. This image of the neutral 
equilibrium is completed by the introduction of 

sub-particles as in Fig. 3. But the condition of 

the convenience of this sort is not always satisfied ( 
in the medium  composed of  aggregated particles. 

    There could  he a different case shownin 

Fig. 4. At the contacting surfaces between 

particles and the continuum medium, the  dis- Fig. 1. Two particles which constitute 

sipation due to rotations without slippage maythe part of gouge contacting 
                                                          each other without mutual 

be negligible, while with internal contacting local rotations.
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                       Fig. 2. The stage of motions indicated downward by an arrow is 
                              characterized by local rotations without slippage. The stage 

                              indicated rightward by arrows shows mutual local rotations 
                              with slippage due to fault movement. 

points, the dissipation due to slippage is not. (We call rotations without slippage as 
the motion exerted under static type of friction and rotations with slippage as the 

motion exerted under dynamic type of friction.) Deformation without dissipation 

cannot be realized in such a multi-particle system as in Fig. 4. This is contrary to the 

case of a model of perfect elasticity or a perfect fluid without internal structures. 

Since we cannot usually expect a favorable configuration of particles such as shown in 
Fig. 3, we assume here the model of gouge as in Fig. 4. 

   When the slippage initiates after the stress exceeds the critical strength, it is to be 

noted that even when the nature of contacting points that are crushed primarily deter-

mines the type of dissipation mechanism, the averaged nature of dissipation would be 

somewhat different from an elementary process. For instance, in crystallography, vis-

cous medium is inserted within grain boundaries as a model of the mechanism of gliding 

or attenuation of acoustic vibrations, or in other words, as a model of grain boundaries. 

(Smoluchowski (1952)) Since grain boundaries should be expressed as an aggregation 
of dislocation lines  (e.g., Cottrell (1953)), this way of modelling has a phenomenological 
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Fig. 3. A multi-size particle system of which Fig. 4. A schematic exposition of a model of 

       motion is generated by mutual fault gouge: particles rotate in the same 

       rotation without  slippage. direction after being triggered by fault 
                                                         movement.



              A Model of Fault Gouge with  Dissipative Rotational Interactions 5 

significance in that the mechanical behavior of the model properly approximates those 
of the matter. 

   In this paper we adopt Smoluchowski's model of grain boundaries as a model of 
dissipation for the system of particles, based on the reasoning stated above, although 
our particles do not correspond to his crystallographic grains. 

4. Formulation of models 

   We next derive the equations of motion for the system with dissipative forces. As 
stated in the preceding section, we supposed that gouge is composed of particles with a 
finite size. This finiteness can be put in another way; inhomogeneities of distribution 
of relative rotations as modelled below. Each of the particles can deform elastically. 
Motions of a particle can be decomposed into a relative rotating motion around the 
center of gravity and a deformation of the system with respect to the center of gravity. 
This deformation can also be decomposed into strains and rotations within linear transfor-
mations. 

   In the following calculations we apply Einstein's summation convention. And 
the process of mixing over p indices by constructing  all  p isomers obtained by permuta-
tions of these indices, addition of these isomers and division of  /5  I is denoted by a round 
bracket ( ): 

 /  „  ,  A  ,              e.g..Aar= 

A similar process with the only difference that all isomers obtained by odd permutation 

get a negative sign is denoted by a square bracket  [  ]. If indices have to be singled out, 
the sign  I  I is  used  : 

 / 
            e.g.,  Briiiik]=  (DiJk  —Bhp) 

   Here we assume that the type of interaction between  particles is that described 
below: Strains on an average of particles are not primary and interacting forces be-
tween the particles only act through mutual rotations. This assumption will be debated 
later with a supplemented extension of a model. 

   First we assume that dissipative forces act on or near the surface of a particle. 
Hence the equations of motion for the system of the center of gravity are expressed below, 

 pv.  =aim;  ft, (4-1) 

                                                         (4-2) 

where  act is the stress tensor and  f; is the dissipative force. The coordinate system is 
supposed to be Cartesian hereafter. 

   Next, the equations of motion for the relative rotating motion of a particle around 
the center of gravity are expressed in the integrated form,
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 1 

 2-  f  plo;  kid  V= f  ac[kGiiii]dS;±  f  MaidSt (4-3) 
 (4-4) 

where  MI  ki is the surface distribution of torque which has an arm in the k-direction and 

the force exerted in the i-direction on a surface element with a normal in the 1-direction. 

As stated previously,  Mipi is determined by mutual rotations of neighboring particles. 
I is the distribution of a moment of inertia per unit mass, which is properly transformed 

into that in the principal axis, and here assumed to be isotropic for convenience's sake. 

   After some calculations, 

 X[kGliji3d.51= f  (Glki]d-pX[A61])d  V 

If we presume that 

 a;  J=a0 (4-5) 

and 

 G[a]=F[ii] (4-6) 

then 

            1r•     —
2'maw —pX[kVii (4-7) 

The above expressions (4-7) show that the force is decomposed into the purely conserv-

ative part and the dissipative part. Usually the assumption (4-5) is identical to the 

law of the conservation of angular momentum. Since we introduced the interacting 

term represented by  Mai, our new form of conservation of angular momentum is ful-

filled together with the assumptions (4-5) and (4-6). Especially the assumption (4-6) 

comes from the fact that dissipative forces should be tangent to the surfaces of particles. 

   These aspects are easily confirmed by formalistic calculations. With the voluminal 

distribution of torque  hu and that of body force  in newly introduced, the equations of 

motion for inertia moment are expressed as, 

 If  x[kpvi]e/  =  f  x[kG[if  /id&  +  f  MikidS: 

         +  f  xikg  nel  V  +  f  hod  V (4-8) 
and the translational part of  motion is expressed as, 

 f xckp;  ;id  V=  f  xikal  iGil  Ad  V+ f  x[kg  Ad  V 
 =f f  Gitod  V+  f  xckg  ijd  V (4-9) 

From expressions (4-8) and (4-9), we get



              A Model of Fault Gouge with Dissipative Rotational Interactions 7 

 AftkidSt+  f  hfrid17+  f  Guind  V=0 (4-10) 

Hence, if  Mu/=0 and  hki=0, then  GEkii=0 and vice versa. 
   The expressions (4-7) and (4-10) are identities derived from kinematical relations. 

Usually since we may presume 

            17• 
             2preokt=px[hvii, 

expression (4-10) is identical to (4-7). If the discrete nature of mass distributions is 
essential, such as of atoms in a crystal,  plthki may have proper meaning. However, 

since we assume the smoothness of mass distributions, we get the next expression. 

 Fcii3+,3,Atii=0 (4-7') 

   We must assume dynamical relations between kinematics and deformation quan-
tities — constitutive equations. The law of termodynamics  — energy conservation and 
entropy production — must be fulfilled. We express by  iii, the eigen rotations inde-

pendent of the rotational strains referred at the particle frame. Internal energy  te for 
each of the particles or per unit volume is a function of strains  s;j, relative rotations 

 Cif* approximated below and entropy  S, that is, 

 5) (4-11) 

where 

 hilt  843(065]-0O (4-12) 

The  khi; are defined on the absolute frame, so that  aLian—oil have only approximate 
meanings. Formalistic extension of expressions (4-11) and (4-12) are, of course, 
conceivable. For instance, as a substitute for  Cho, 

 Zif=aiitif]-0i; 

may be variables of the internal energy. But since we now concentrate our discussions 
on the model with inhomogeneous distributions of rotations, we do not adopt such models 
These points will be discussed in Part III. 

   The law of energy conservation 

 dE=8W-1-8Q (4-13) 

where 

 dE: the increment of the sum of internal energy U and kinetic energy  K. 
 W: the work done by the exterior system. 

 8Q: the inflow of heat (non-mechanical external action) 

The expression (4-13) is rewritten as evolutional forms. 

 dE  dU  
 at  dt
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 dE  SW, SQ 
 dt dt 

where  SIdt shows the path-dependent derivatives. 
    If we assume 

 K=Kor--  J  1pitihaiV, 
 SW  dK 

             f(audvd-FifhpdV (4-13')  dt 

from expressions (4-1) and (4-2), 

where 

 die=a0,;;), 

and 

 SW             =  f  tiferifdSi+ f  itFudS, 
 dt 

   Here we furthermore add the effect of rotational type of interaction, that is, 

   The increment can be written as, 

 SW=  f  [(ak,d-FH)auf-Ftlfki,SCif]dSk 
           =  f  (akiSaou,)+FA,856ki+Mai,a(SkCi,)-FpU,SundV (4-14) 

using expressions (4-1),  (4-2) and (4-7'). We notice the discrepancies between (4-13') 
and (4-14), which originates from newly introduced terms. 

   The increment of internal energy is 

    auau dS (4-15)           dU=clei•+au dCki•H-                          as 

where 

       au  
 as =T (4-16) 

   The law of entropy production 

 dS�812                                                         (4-17) 

If the entropy per unit volume is s, 

 ds�—a,  (4-18) 

where  Qi is heat flux from a unit surface element with a normal in the  1-direction. If 
we substitute (4-13), (4-14), (4-15), and (4-16) into (4-18), noting
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                                                    (4-19) 

then 

    2uau 
       (an—wf-)deng±(Mki)—didtku 

 ±Fsgelkbii+Qeae 7,1 0 (4-20) 

This inequality must be fulfilled for all variation of  EH,  Cub  Oi; and  (2i. Hence 

 au (4-21)  ail=  
au; 

               au  
                   j 

   Mkii=
u6hinr(4-22) 

 Fj;=2rl(j;)E.+k (4-23) 

 Qs=  —Koir>2.+1 (4-24) 

The first relation (4-21) is anextended form of Hooke's law. The relation (4-22) is a 
dynamical relation between any and  Mai which is defined in this way. The relation 

(4-24), when is a well-known heat conduction law. The relation (4-23) is a possible 
form of friction or dissipation law due to the condition of the coexistence with the law of 

 (4-24) and we call  n angular viscosity of  (2n-F1)-th order, tentatively. If we set integer 
n to be zero, (4-23) is analogious to Newtonian type of viscosity. 

   When  u is positive definite quadratic form of  Eij and  Cluj, and the material is 
assumed to be isotropic, then 

 ajj=Aekk8ji-{-2µe;;(4-25) 

 Afkii=C651  (4-26) 

where A and  p. are elastic moduli and C is a newly introduced material constant. 
   From these expressions, 

 -Fir4ai(anik)-Endui=-2naiii2"±ld-pu- (4-27) 

 27/56i.,2"±I=C4(54ii—a[jUi])  (4-28) 

   The duality between the image of an aggregation of particles with a  finite  size and 
that of properly smoothed but inhomogeneous distributions of relative  rotations will 
not be rectified, but be used accordingly. 

5. Estimations of the order of magnitude 

   The difference in the time derivative with respect to the moving frame (Lagrangean 
description) and to the absolute frame (Eulerian description) will be negligible when 
the spatial variations of the physical quantities are small, or when the initial field small.
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With sufficient correctness we sometimes identify two types of description of time history. 
   We evaluate the significance of each term of the system of equations in the case of 

 n=0, by estimating the order of their magnitudes (dimensional analysis). If we set 
particle size or the extent of an approximately homogeneous region as L, and the relaxa-
tion time or period as T,thenfor (4-27), 

          piipII\ 2  (5-1) 
        laLlua\T ) 

and for (4-28), 

  u  2'7   La (5-2) 
 C  T 

under the approximation 

                                                     (5-3) 

From these estimates 

 pAu   T  u  p  12  (5-4) 

              

.  - 

 2nak  27? L 

For the estimate of(5-1), we can generally assume 

 LI 
VPp (55) 

   Here we define A=1=12. If AC tends to zero as L approaches zero. In                          c 

this case the system of equations cannot be reduced to that for perfect elasticity as long 
as friction terms have not been left out.  >1=0 should be substituted for expressions 

(4-27) and (4-28), if we want to eliminate the effects of friction alone. Then the equations 
of motion for perfect and isotropic elasticity are derived. In addition, it is necessary 
that  d[pco-¢;1 are harmonics. Since this part if the equations is time-independent, 

 c6ig=eciuz) should be kept. if held at an initial time. 
   There are two  possibilities  ; (i) C tends to zero or (ii)  L tends to infinity, if A tends 

to infinity. In case (ii), as the size of particles increases, we describe a one-particle 
approximation, that is, on the earth we may let a maximum value of it be a plate size. 
Of course, this is not directly applicable to the plate motions, because of the assumption 

(5-3). Under the assumption  Ppazni<10;;), by similar reasoning, we get 

 A_ p-Tu_a  L2 u  21?  L  IS  2  C  LO 

While in the case of  Idpufil=  kind, we have 

 A= p2qTu                                                    ck-nu    Cas I                        L 

Hence we can determine the law of similarity of the system of equations (4-27) and (4-28) 
by parameters;
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                   p. \T-11 

 277  /2  (5-7) 
 C  T 

       and 

 L2 (=A) (5-8) 

      From the inequality(5-5), 

                p1\               k
T)2 z 

      Consider, for instance, the difference scheme of equation (4-28) and we get the dissipation 
      condition for  qS as 

                2n 2  �4                                                                (5-9)                T 

       In order to give an assurance of terminal stability, we presume this inequality. Similar 
      discussions for the condition (5-5) can be performed as in Courant et  al. (1928). However 

      for the quantity of (5-8), we cannot assume definite inequalities. In the case of  A<1, 
      we get from expression (4-27) 

 27,4,  =  puTi (5-10) 

      as a limited form, and expression (4-28) does not change at all. The relation (5-10) is 
       rewritten as 

 (1  pizir/V)'=(1  FfidS1)1 (5-10') 
      The left hand side of (5-10') is the time derivative of the linear momentum and the right 

      hand side is that of the purely dissipative forces acting on the surface of particles. 
      Then acted forces are purely dissipative. If  A<1, there are two possibilities; (i)  C  tends 

      to infinity or (ii) L tends to zero. In the case (ii) for which the particle size gets smaller 
       and smaller, particle motions reduce to that of microscopic scales, i.e., random motions 
      by thermal agitations. If  L tends to zero under the condition of C,  p,  p,  and  n fixed, 

      similarity of motions will not be maintained due to expressions (5-6) and (5-7) so far as 
       T is fixed. As previously stated, to determine similarity relations, parameter A is 

       directly relevant. Here is given some expositions. If L and C simultaneously tend to 
       zero; for expression (5-7), 

                27)  L2  =0(aqzoo.)             C T1TI 

      owing to the conditions of diffusivity and for expression (5-6), the same inequality as 

      (5-5) is maintained owing to the conditions of stability of hyperbolic type of equations 
      and for expression (5-8),
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       Table 1. Relation between particle size or the extent of approximately homogeneous 
               region (L)  and newly introduced material constant C. A is defined by the 

               ratio of the terms of restoring forces and the terms of dissipative forces. 
               The state of fault gouge is characterized between two extreme values of A. 

   A 0 1  00 

 C 0                        (°'j)Fault
elasticity 

 oo 
                                G                         Microscopic motionGouge one-particle 

                                                (plate  tectonics)  

 L2='  OW, 

then we have  A  =0(p). 
   In case (i), from the analogy with the treatment of rigid matter in the class of elastic 

matter,  reii=3Lizzo, i.e., the freedom of rotational motion is degenerated.  Mirk and 
 .F1; are consequently indefinite so that the relation  (5-10') is only an example aptly 

converged. 
   We summarize the results from the above stated discussions in Table 1. Remem-
bering that parameter A is the ratio of the restoring forces to the dissipative forces, we 

propose to use critical A for describing the state of fault gouge. For instance, the 
cluster size may get smaller as fracturings proceed, as far as L alone is concerned. 
However, another parameter C controls the formation of fracturing simultaneously. 

   Then ,how can we observe and determine these parameters? 

6. Determination of some types of solution and their characteristic 

   Particle size L may be determined by means of field observations. We can deter-
mine the remaining parameters, after solving equations (4-27) and (4-28) in the case of 

 n=0. 
   For simplicity, we consider plane waves as, 

 ter=  ue(x, t) and  Ou=-00(x, t) (6-1) 

As stated above, physical parameters A,  n and C are assumed to be homogeneous. 
Here if we define 

      Oi=fijkOjk,C6i -(0.7OYchz)  (6-2) 
 14;  =(u,  v,  w) 

where  sip, is Eddington's symbol, then 

     (A4-2p) ax, =pu,  ax,  Os (6-3) 

   32v aav                 ekz=pv, 2n9C2=c- ax +Os) (6-4)
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      ax  32 /3        ILars ax 24.-6 ax.1ax   +0Y) (6-5) 
   The first part of (6-3) shows plane P-wave propagation. This P-wave is charac-
terized by non-dispersive and non-attenuative nature. If we give an initial condition 
for the second part 

 qc,(x,  0)=8(x), 

then we have 

         0,(x,0= 1r  exp It t 
             x2 ) (6-6) 

                   C 

            lair= 
This equation has the same form as that for heat conduction and diffusion equation. 
If we assume 

         9Sx=c6x°-exp (i(kx—11)} , 

           ----Oro•exp74- .x) exp  ft(1/14--x —ft)) (6-7) 

 o  

 P-h  I 

 rt  -
  v 

i 1.0E7 .• 

 _,  at ) •''' 

 /0E4 

 Q01  1
.400 

 Q0/  01  1  to 

         Fig.  5  (1). Relation  between  f and imaginary parts of wave number divided 
 by  j ()WRYf)—first branch of solutions, under  71=25 and C varied.
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It is easily shown that equations (6-4) and (6-5) have the same type of solutions. If we 
assume for (6-4) that 

 v=vo•exp  {i(kx  —ft)} and  cd,=0.°•exp  (i(kx—ft)) (6-8) 

then we have the next characteristic equation. 

 pf2—µk2  —nfk  =0 (6-9) 
 —iCk3 2ifn—C42 

   Dispersion and attenuation relations derived from this equation are shown in Fig. 5. 

The abscissa of the figures gives the angular frequency  (f), and the ordinate gives the 
magnitude of the real and imaginary parts of the wave number (4) divided  by  f with 

parameters C  and  a varied. The density p and  rigidity  p are assumed to be  unity for 
simplicity. It is seen from this figure that two branches of solution exist, one or both 
of which have the properties of a velocity higher than that of S waves. One of the two 
bracnhes can be properly approximated by the (6-7) in a wide range of combinations 
of parameters C and  ,j. 

   There appears a maximum in each of the  Im(k)11  vs.  f curves within the frequency 
range 0.001 to  10.0 rad/sec,  as  12 increases. In the case when C is relatively larger and 

 n is smaller, the value off at which each of the Im(k)If curves of the non-purely  dissi-

lc)   

                                                to 

- 5 

                                                    1.0E4 

                   } 

   KC:1 

 am-
                                          tOE  7 

 0001  001  01 

        Fig.  5(2). Relation between J and  /m(k)/f-second branch of solutions, under 

 q=25 and C varied. For higher values of C (104 and  107),  Re(k)/f 
                is nearly equal to  Im(4)11
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pative branch of the solutions takes a maximum is roughly proportional to  lin. (e.g., 
 c=107,  7i=102/4,  j=  0.069  ; C=105,  n=10/4,  f=0.7  ;  C=106,  -9=1/4,  f=6.9;  C=104, 

 n=1/4  f  =7.0  ;  C=103,  77=1/4,  1=6.9) If the condition  C27? is satisfied, one of the two 
branches of solutions shows a close agreement between Re(k) and  Im(k).  Comparative-
ly speaking under such combinations of C and  n as  C<7, there appear discrepancies 
between Re(k) and Im(k). For both circumstances, the velocity necessarily becomes 
lower than that of S waves at lower frequencies. 

   As C becomes larger  with?) left fixed, the velocity of the dissipative branch generally 
becomes higher, and the motion gradually gains non-attenuative properties. The 
higher velocity is mainly due to the dissipative forces and results in rigidly coupled motion 

of the medium. In field observations, we might not detect this type of motion directly 
through the determination of local distribution of higher propagation velocities, but 
moderately averaged motions through several instrumental distortions and filtrations. 
It may be appropriate for models with a sudden start of fracturing in the case of strong 

interaction between particles. Conversely, as C becomes smaller  with  n left  fixed, lower 

velocities and highly attenuative branches become predominant, that is, in the case of 
weak interaction between particles. 

   Next we consider some special configuration of equations  (9-27) and (4-28), that is, 

 1.0E -4 
 1 

 1D 

 10 

             rt 

 _0.1  -  1.0E  .4 

 0.1 1 10 

         Fig.  5(3). Relation between f and real parts of wave number divided  by  j 
 (Re(k)/f)-first branch of solutions, under n=25 and C varied.
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u=u(x, y,  t), v=v(x, y,  t),  zef=0 and  0, y,  t),  1Si  53. These equations are 
reduced to 

 24.=  cdox (6-10) 
 2inks.—Cdoku 

 274:=C(tlikz—a,Av±a„Au) (6-11) 

 (Ä+143.,(8.u+a,o+taite-94,---pie (6-12) 

 0+14ar(aru+3,0+144v+-04.--pi;  (6-13) 

For the condition for initial values, we get from equation (6-10) and the equation for w, 

 10   

 1.0E-4 

  1>/- 

                  0.1 

                                         1.0 

                             10 

                001 - 

  a 1 10 
             Fig.  5(4). Relation  between  j and  Re(k)/I-second branch of solutions, 

                       under  n=25 and C varied.
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 Cdox4y—aoz>=0 (6-14) 

If 

 ax0y=ask. (6-14') 

is fulfilled at infinity or at initial time, then  azor=a06, is identically realized at any time. 
We tentatively call this time-independent identity for  0; the compatibility condition of 

 itn. Then and  0„ field is expressed as a gradient field like  4's=axx and  021-aa. 
From the expression (6-10), x field is purely dissipative. Here if we introduce new 
functions  W and  0 for the sake of convenience, 

as  u=aro-kayw 

                                                        (6-15) 
 v=avo—axlm 

then 

 274„—C(44W  +400 (6-16) 

 (A  +4)40  p0 (6-17) 

 W-2/2Sz  =Pql (6-18) 

   If C tends to infinity  with  n kept finite, expressions (6-16) and (6-18) are transformed 
into 

 PAW-HA  qfr-PP (6-19) 

Then the fields 0 and  W are decoupled into expression (6-17) and expression (6-19). 
The field  Os, is constrained by the field V' in the same form as conventional continuum 
field, i.e., 

           44. = axv —apt, 
The equation system of (6-17) and (6-19) are a special type of Voigt solid (Voigt (1892), 
Sezawa (1927), etc) In the scheme of Table 1, we should add the above type of medium. 

   As in the case of plane waves,  P waves are non-dispersive and non-attenuative. 
It is easily seen that monochromatic 2-dimensional waves 

 P  =W0  •  exp  {i(kx+  ly  —ft)} 

       95. =the • exp {i(kx+ ly—ft))(6-20) 

satisfy the characteristic equation 

 442+19—pf  2                                                         (6-21) 
 C(k2+  /2)  2 c(k2 +12)-21-v 

This relation is similar to that of (6-9) if  k2 is substituted for k2+12. 
   Secondly in the case of  a=0, v=0,  w--w(x,  y, t) and  #i---44(x,  y, t),  1  Si53, then 

we have,
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 27284.=0,  2,10,s/C.=0, (6-22) 

 pAw+n(-8.4C+aycs.)=p; (6-23) 

 214:=C(—aAw+40x) (6-24) 

 274,,=coxilw  +400 (6-25) 

If we put 

 71=0 (6-26) 

equation (6-22) reduces to 

 Cdch  =0 (6-27) 

and from the remaining equations we obtain 

 C(-3,42v-i-Asbo=0                                                         (6-28) 
 cia,ziw-Hioy>=0 

The relations (6-27) and (6-28) can be summarized using vector notation as 

 Cd(rot  U-0)=0 (6-29) 

As discussed in §. 5, 0—rot U are harmonics and 

 0=rot U (6-30) 

holds if initially holds. Then in this case the system of equations can be reduced to 
those for perfect and isotropic elasticity. 

• 

   If 

 0 (6-31) 

in the equation (6-22) should have a form 

 sit=s1r(t)  (6-32) 
and simultaneously from the equations (6-22) we have 

 (42=0 (6-33) 

The remaining equations are 

 Civ=p4w  +17(-3,4+4,) 
 2.74x=C(-8,4.,  4—drk.) (6-34) 

 27A,=C(8rdze  —24,) 

It is easily seen that monochromatic 2-dimensional waves 

 w  =w0- exp  {i(kx+  ly  —fl)) 

 9x=95zo• exp  11(kx+Ij  —ft)] (6-35) 
              exp  (i(kx  —11+ft))
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satisfy the characteristic equation 

 f  —C(k2  +  12)  0  —2.0(k2  +  12) 
             0  i27if  —C(k2  +  12)  iCk(k2+  12) (6-36) 

        —nif  pf2—p(k2+  12) 

and that this equation is factorized into a purely dissipative term 

 2inf  =  C(k2  +  12) (6-37) 

and a coupled term as (6-21). 
   If C tends to infinity with  77 kept finite, not only the same type of equation as (6-19) 

is realized, but the same conclusion as the former case under this special condition is 
easily gained. 

   If we adopt the conditions that  u,=u,(xt,  1) and that the surface element on 
which a proper boundary condition is assigned is perpendicular to the 3-direction, then 
displacements, stresses, torques and dissipative forces are decomposed explicitly as 
follows, 

   (i)  112,  01,  Os, 

 cra2=tzasuz (6-38) 

            C           M312 =4  v3(ite2  —03) 
                                                        (6-39) 

 M323 =  =2  G3(031/2+100 

 F32==2  18103(0i/is  —03)-822141-822(asus+01)) (6-40) 

   (ii) ui,  us,  02, 

 (6-41) 
 ciss—Maiut-i-asus)+2ta3113 

             Cf       M331 =-2Vn3Wn3141-80,3-02) (6-42) 

           Fat=—C—312(aatit -a,u3-02)+82202 —493203/11 —alma —001 (6-43) 

            2 

   The above decomposition has essentially the same nature as the previous one derived 

by a rather heuristic manner. Using this 2-dimensional type decomposition, we can 

determine not only the wave number vs. frequency relation, but the absolute amplitudes 

of displacement and eigen rotation due to the applied external forces. However, the 

latter approach is not performed in this paper partly because there have not been much 

data for the estimate of boundary conditions both in the field and in the laboratory 

except for seismic moment calculated from far field seismograms. 

   The main reason is that, if a step-wise propagation after the drop of moment is 

included in calculations, the totality of the nature of the fracturing process would be
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obscured by the combination of several parameters and would not be obtained from a 

rather simplified analytic consideration. Our simplified model has two  characteristics  : 

relaxation of initial moment distribution can be realized, and delay or deceleration 

effects which are inherent from the existence of strength are not taken into consideration 
hereafter. 

   It is easily inferred from the preceding discussions that type (i) corresponds to an 

extention of  SH-type deformation, and that type (ii) corresponds to that of P and  S  V-
type deformation in conventional  continua. The motion of type (ii) can be illustrated 

as Fig. 4, which is composed of aggregates of cylinders. 

   Here we notice the coventional definition of the dislocation field. The right 
hand side of expression (6-39), as an instance, can be transformed as, 

 f as(3,u2-1,3)dx3A  dx  =  izeti  —  f  stsdxt (6-44) 
The first term of the right hand side of expression (6-44) corresponds to a non-integra-

bility effect (screw-type dislocation) and the second term corresponds to the Volterra 

type of dislocation. From the relation 

 M312  =M3[12] (6-45) 

and expression  (6-44), it is shown that the well-known equivalency between the exertion 

of double-couples and the occurrence of an infinitestimal dislocation loop in elasticity 

theory (e.g. Maruyama (1963)) is valid in an extended form. 

   Generally it cannot be expected that the total rotational field disappears in the 
medium composed of aggregations of coarse particles. The interaction we have adopted 

in this paper is decomposed into such translational and rotational terms as in expression 

(6-44). Especially, according to the independence of displacements and eigen rotations, 
we have formulated dissipative rotational interactions among neighbouring particles 
with the expression  (4-7') utilized as an intermediary  relation. 

   What differs from other models with porous media (e.g., Biot (1941)) is the assump-

tion that there is no macroscopic flow in a viscous liquid and that the liquid is incom-

pressible. Following this assumption, the propagation of P waves is characteristic 
of nondispersion as well as non-attenuation. The macroscopic flow of liquid becomes 

important in lower frequencies namely, beyond which the assumption of local relaxation 

breaks down. (O'Connell and Budianski (1977)) Of cource there remains an upper 
bound for the frequency, at which the wavelength becomes the size of a pore. As stated 

previously, it is assumed to be of no consequence that there might exist micro-fluctu-
ations of density distribution, e.g., mixture of bulk water and particles. Hence the 

effect of the configuration or shape of pore and matrix is replaced only with the distri-
bution of one parameter C. This assumption is a simplification for complicated rock 

structure. Although the influence of the existence of a thin liquid layer between the 

particles can be partly evaluated by the effect of dissipation in our formulation, there are 
no effects on the P wave propagation from neglecting the effects of compressibility and 

draining of water.
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7.  Discussions 

   The synthesis of seismograms in the regions located near or far from the seismic 

source has been successfully performed by one sheet model of dislocation. (e.g.,  Aki 

(1968)) Furthermore, the synthetic seismograms in the near-field have been constructed 
 not only for direct body waves (e.g., Kanamori (1973)), but for surface waves, surface-

associated waves such as SP phase and reflected waves at the Moho-discontinuity. 

(Kawasaki et al. (1972)) If we make use of inversion techniques, the distribution of 
dislocation could be determined within a statistical allowance. (e.g., Matsu'ura (1977)) 

   Some questions arise here as to what the distribution of dislocations tectonically 
means and how the movement of faults is developed, if these are controlled by some 

physical parameters. Some calculations concerning these questions have been 

performed under approximations by 2-dimensional or 3-dimensional motions of a discrete 
system composed of spring-mass. (Burridge and Knopoff (1967), Yamashita (1977)) 

Yamashita (1977) successfully showed the effects of inhomogeneous distribution of the 
initial stress on the fracture patterns. For the initial stress with spatially linear and 

quadratic functions, the fracture is more localized in the latter distribution than the 
former, in the case of uniform distribution of the fracture strength. Such localization 

of the fracture nucleation for a quadratic distribution will be discussed in Part  H, 

from a somewhat different standpoint. 

   Tiltmeters and strainmeters have been installed in regions usually far from faults 

except in the case of the San Andreas Fault, the Yamasaki Fault in Japan etc., where a 

dense array of these instruments is operated along these faults. (Savage et al. (1976), 

Oike (1977)) For instance, residual tilts associated with teleseismic earthquakes have 

been reported by Nishimura (1953) and others, although the elastic strain energy change 
required to produce the observed tilts is impossibly high. (e.g., Press (1965)) The 

instruments must be examined for mechanical instability accompanied by ground shak-
ing due to seismic waves such as large-amplitude Rayleigh waves. Even if these instru-

mental problems remained to be solved, it is not regarded to be unreasonable to assume 

one sheet model for an earthquake source, especially for shallow earthquakes, as a whole. 

Probably, it is no exaggeration to say that all facts are hidden in the darkness except 

these coseismic dynamics which are considered as rather convincing among the observed 
earthquake phenomena. 

   It is also an important problem whether laboratory experiments could properly 

simulate or reproduce earthquake phenomena or not. Some laboratory experiments of 

fracture—A. E., Kaiser effects etc.—as well as frictional sliding, have been performed 

with recent advancements in electronics, i.e., extension of frequency band, which will 

elucidate the problem of dilatancy and some related phenomena. Concerning frictional 
sliding experiments, it is pointed out that stick-slip motions accompany inhomogeneous 

distribution of strains and local rotations whithin the gouge and that except in these 

narrow regions the material does not deform too  much. (e.g., Byerlee et al. (1978)) 
These experiments are considered to give support to our model. 

   It must be pointed out that no reliable interpretations have been offered particularly
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with respect to long-period and transient parts of coseismic and associated movements, 

that is, 

 (  i  ) aseimic creep motions along faults 

 ( ii) tilt and strain steps 
Although concerning (ii), it seems that some consensus, as stated previously, exists under 

one sheet model, there remains many problems to be solved. It  may  be said that residual 

tilts and strains could be investigated more thoroughly by using faster recording speed 

of signals. Since residual tilts independent of elastic strain change have an important 

meaning in our model, dynamic behaviors of the model are directly reflected in obser-

vation of dynamic behaviors of immediate neighboring regions of faults. It is to be 
reckoned in our model that the condition under which the fault movement occurs is 

identical to the condition that  44,,*0. 
   It might be assumed here that there exists a threshold of torque similar to the 

strength in the case of a discrete system of a mass-spring. The value of matter constant 
C determines the roughness of an aggregation of particles.  If we neglect the deceler-
ation effect due to the threshold of torque at each point, the fracture pattern will be 
mainly determined by the distribution of matter constants  C  and  71. The above simplified 
assumption will make the analysis of an initial value problem easier. The assumption 
will be satisfied in case (i). Then the nucleation or initiation of  fracture is characterized 
by the existence of matter constant C. The derived equations are of a non-causal type 
due to rigid rotation and dissipation. By means of numerical procedures, we get two 
branches of solutions of the characteristic equation, i.e., almost purely dissipative 
motions and coupled motions with a velocity higher than S waves. If the branch of 

(6-6) or (6-7) is applied to case (i) as 

         /c   —y(7-1) 
               It71 

 Le--f—C Cif(7-2) 
                     where v: the expanding rate of fracture region 

        L: the magnitude of fractured region, 
it follows that  f For estimates of v=1 to  10  km/day for propagating creep 
velocity obtained for the San Andreas Fault (Nason (1969)), we get  Ch-107 cm2/sec. 
It is to be noted that similar results can be obtained, except for extreme cases of  C<'j, 
by means of the quasi-decoupled branch of solutions as well as the dissipative branch. 

   From observations of the decay of strain and tilt step amplitudes, one sheet model 
is a good approximation of the far field data. (e.g., Takemoto (1972)) It may be 
considered that the propagation velocity of the main part of tilt step movements along 
faults is of the order of S wave velocities. The nature of propagation for (ii) cannot 
be regarded as purely dissipative as in the case of (i). Another branch of solution pro-
vides the properties of propagation, as 

   >1 (7-3)  R
e(k)
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 (7-4) 

 (when.Knm 
where the velocity of S waves is assumed to be unity for the convenience of numerical 
calculations. It can be understood that the attenuation effect shows a strict dependence 
on frequency as in the type of Voigt model within the above frequency range considered. 
In the frequency  range  f>1/11,  fm(k)-- const. A Maxwell type of liquid possesses such 
an attenuation property. Our model possesses two extreme states in respect to attenu-
ation: At higher frequencies it behaves like a liquid, on the other hand, at lower 
frequencies it behaves like a solid. The weak dispersion of coupled type waves may  he 

non-detectable and negligible at lower frequencies. 

8. Conclusions 

   We propose a model for gouge which corresponds to microstructures near a fault 

plane. The existence of gouge may be accepted as an assumption which could reduce 
the difference in the stress drop by one or two orders of magnitude between laboratory 
experiments and data from seismic waves. It is frequently observed that clay-like 
materials are sandwiched between fault surfaces. 

   There can be two viewpoints for constructing the model of gouge. One is that of 
compaction and drainage of an ensemble of particles and liquid, of which many examples 
can be found in soil mechanics. The other is that, as described in our model, which 
stresses the importance of mutual rigid rotations of interstitial particles and does not 
emphasize that of pure  deformation—strains—of an ensemble of particles. The latter 
is a possible assumption for simplicity. The role of liquid in this model is considered 
as a mechanism of local dissipations in contrast with the flows responding to the distri-

bution or gradient of pressures in the former model. 
   The rotation of interstitial particles is often observed in laboratory experiments— 

brittle fractures of intact rocks, stick-slip on frictional sliding surfaces and so on. 
Following the introduction of mutual rotations, we assume a newly defined internal 
energy and physical constants. From some combination of the physical constants and a 
degree of inhomogeneity or particle-size, we classify various stages of deformation. The 
formation process of faults is considered to be that of degradation of a particle (a giant 

particle i.e., a plate). This process would have properties of high non-linearity. In 
our linearized formulation, the property is expressed only in the form of a division of 
contributions to the equations of motion--inertial terms, deformations and dissipations 
—and in the form of combined ratios. 

    The propagation velocity and attenuation coefficients are also calculated. Because 
of neglecting macro-strains, longitudinal-type waves are non-attenuative and non-
dispersive. Transversal-type waves have two branches of solutions, i.e., weakly disper-
sive type and non-causal dissipative type. We can apply these results to a unified 
understanding of creep phenomena—e.g., along the San Andreas Fault—and coseismic 
strain and tilt steps observed close to several faults.
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